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Measurement of the window interface velocity is a common technique for investigating the
dynamic response materials at high strain rates. However, these measurements are limited in
pressure to the range where the window remains transparent. The most common window material
for this application is lithium fluoride, which under single shock compression becomes opaque at
~200 GPa. To date no other window material has been identified for use at higher pressures. Here
we present a Lagrangian technique to calculate the interface velocity from a continuously
measured shock velocity, with application to quartz. The quartz shock front becomes reflective
upon melt, at ~100 GPa, enabling the use of velocity interferometry to continuously measure the
shock velocity. This technique overlaps with the range of pressures accessible with LiF windows
and extends the region where wave profile measurements are possible to pressures in excess of
2000 GPa. We show through simulated data that the technique accurately reproduces the interface
velocity within 20% of the initial state, and that the Lagrangian technique represents a significant

improvement over a simple linear approximation.

Introduction
The development of laser interferometry enabled time-resolved measurement of the

velocity of a reflective surface.r This allowed for the measurement of free surface and window



interface velocities in dynamic compression experiments. These measurements have yielded
valuable data on the compressive behavior and strength of materials during both shock?* and
ramp compression® © and release.®

One complication of window interface measurements is the unavoidable presence of
wave interactions caused by wave reflections due to impedance mismatch at the interface. Recent
efforts have gone towards improvement of the analysis of such experiments to better infer in-
material velocity from the window interface velocity. Initial techniques include the self-
consistent method? and incremental impedance matching method,* which correct for the different
impedance of the window and sample, but not the variable wave speed in the material due to
characteristic interactions. Later techniques, such as the backwards characteristics analysis
method” 8 (BCAM, also referred to as iterative Lagrangian analysis) and transfer function
method® ® (TFM), account for the bending of characteristics due to wave interactions and
significantly improve the accuracy of the analysis compared to the earlier techniques.

In common between all the described techniques is a reliance on the free surface or
window interface velocity profile. In the case of window interface measurement this limits the
range of pressures over which experiments can be performed to that where the window is
transparent and the interface velocity can be recorded. Lithium fluoride (LiF) is commonly used
as a window material for shock and ramp compression experiments; LiF has been demonstrated
to remain transparent to ~200 GPa under single shock compression® *° and ~800 GPa under ramp
compression.t 12 Under shock compression, most materials melt at low enough temperatures for
LiF to be a viable window material. However, high-strength materials, such as diamond®*-*" and
beryllium,!81° can have higher melting points, above 200 GPa where LiF is no longer

transparent. For such materials, a different window material needs to be identified. To date no



other material has been identified as a suitable window for these types of experiments at shock
pressures above 200 GPa.

Many transparent materials, including plastics®, aerogels®%, glasses®*%, and crystals™*-
16,2632 ‘have been shown to shock melt into a conductive fluid with reflective shock fronts at
pressures as low as 100 GPa. If the interface velocity could be calculated from the measured
shock velocity, any of these materials could serve as a viable window for wave profile
measurements in the multi-Mbar regime, provided that the equation of state (EOS) of the
material is well known. This technique can be used for pressures in excess of 2000 GPa% 34,
significantly greater than the shock-melting pressure of any previously studied material.

Here we describe a Lagrangian technique to calculate the sample-window interface
velocity from the measured shock velocity in the window and discuss the application of this
technique to quartz windows, which have well-characterized shock and release responses. This
is similar to the technique described by Nikolaev et al using a linear characteristic model to
relate the radiation history of a shock front in bromoform to the particle velocity at a bromoform-
sapphire interface.® % The Lagrangian technique uses knowledge of the sound velocity at the
pressure-density conditions accessed in shock-release experiments. Using simulated data, we
demonstrate that the Lagrangian technique accurately reproduces the interface particle velocity
along the release for velocities within 20% of the initial particle velocity. The technique is also
shown to be a significant improvement over a linear characteristic model, particularly in cases
where time dependent phenomena may be encountered.

Characteristics method

Similar to the BCAM and TFM techniques, our analysis code is developed to determine

the in-material properties from observation of velocity at an interface. However, in this



technique the interface is not a fixed surface between a sample and window, but a moving
boundary between shocked and unshocked material in the window. Hence, in the Lagrangian
x—t frame, the characteristics are no longer bounded by fixed coordinates, but by a fixed
coordinate at the sample-window interface and a moving coordinate at the shock front as seen in

Figure 1. The Lagrangian coordinate at the shock front, D(t), is defined as

ts
D(ty) = [Us (t')dt", (1)
0
where U (t') is the measured shock velocity at time t'.

We use the conventional definition of the Riemann invariants with respect to density

along the characteristics®” %, such that

P
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where u_ is the particle velocity, C () is the isentropic sound velocity, p is the density along

the isentrope, and p, and p,, are the initial density and shocked density of the window. The

properties at the shock front are determined from the Rankine-Hugoniot relations, which give

U
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where P is the pressure. Because the integral in the Riemann invariant in Eq. 2 is defined along

an isentrope, the isentrope that intersects the shock state is calculated and the sound velocity is

given as C? =3—P for every Lagrangian coordinate, D(t;). The Riemann invariant is
S

calculated at the shock front for both the positive (C*) and negative (C ™) characteristics under

the assumption that the isentrope at the shocked state is known. For the shock to be reflective,



the window must have melted into a conductive fluid, hence it can be assumed that the release is
isentropic. In this case, the release can be determined either from a tabular EOS model, such as

SESAME, or from an analytic model such as a Mie-Grineisen EOS.

Within the window, the C* and C~ characteristics are propagated backwards from the

shock front at the Lagrangian sound velocity, C, = ﬁCS , which defines the local slope in the
Po

x—t frame. At intersections between positive and negative characteristics, the particle velocity
is given as

R*+R~
u, = . (5)

We assume that the P — p state of a particular Lagrangian coordinate lies on the release

intersecting its Hugoniot state. Calculating the release of the Hugoniot state at the Lagrangian
coordinate where intersection occurs determines the isentropic sound velocity as a function of
the particle velocity along the release. The sound velocity is then determined by interpolating
along the release for the particle velocity determined from Eq. 5. The sound velocity between
intersections is assumed to be constant and equal to the sound velocity determined at the
previous intersection along the particular characteristic.

This procedure is repeated for all intersections between positive and negative

characteristics between the shock front and the sample-window interface. Because the sound

velocity along a given C~ characteristic depends on the intersections with positive

characteristics, the intersections must be mapped simultaneously forward in time and backward
in space. This is done by following C* initiating at later times along the shock front back to the
interface. The initial C* characteristic reaches the shock front at the moment the rarefaction

overtakes the shock. Therefore, at a given Lagrangian position, prior to arrival of the first C~



characteristic, the positive characteristics are all simple waves. At later times, the positive

characteristics interact with negative characteristics, changing the local sound velocity and the

slope of the characteristics. In particular, the C; characteristic will intersect all C~
characteristics, provided that i < j and the C.~ characteristics have not reached the sample-
window interface prior to the C; characteristic entering the window. We chose to ignore
reflections of the characteristics at the sample-window interface and second-order intersections

in this analysis.

The particle velocity at the sample-window interface along a given C* is defined as the
particle velocity from Eq. 5 of the characteristic intersection closest to the interface. Similarly,
the time at the interface is found from interpolating the C* characteristic for zero Lagrangian
depth. These values build the interface profile shown in Figure 2.

Simulation of shock experiments

To evaluate the accuracy of the Lagrangian technique we appealed to simulated data
using the 1-D Lagrangian magnetohydrodynamics code LASLO®°, a lightweight analogue of the
more mature ALEGRA code®. In the simulations, a tracer was positioned at the interface
between the sample (either copper or diamond) and the quartz window. Additional tracers were
uniformly spaced every 2 um through the quartz window. The shock position as a function of
time was determined by identifying the times at which the particle velocity along the subsequent
tracers reached 10% of the maximum value for a given position. The derivative of the shock
position as a function of time provides the shock velocity, which was used in the Lagrangian
technique described in the previous section. Characteristics were initiated from each Lagrangian
coordinate along the shock front. The resulting inferred particle velocity at the sample-window

interface obtained from the Lagrangian technique was then compared directly to the simulated



particle velocity at the corresponding tracer location. The results were also compared to the
linear characteristic model which assumes the sound velocity, C, , along each characteristic is

D(t)
C

L

constant, such that the time at the interface, t,, is simply t, =t — . In this approximation

the particle velocity at the interface is set equal to that at the shock front along the given
characteristic.

The EOS models used in the simulations were SESAME 3700 (aluminum), SESAME
3325 (copper), LEOS 7899 (diamond, a 5-phase Purgatorio-based table that includes phase
transitions and melting along the principal Hugoniot), and SESAME 90010 (quartz). In order to
simplify calculations using the Lagrangian technique a Mie-Griineisen, linear reference (MGLR)
constant Gamma model, similar to the experimental quartz MGLR model developed by Knudson
and Desjarlais, was constructed for the SESAME 90010 table. This was accomplished by

optimizing the effective Gamma, I, , over numerous SESAME 90010 release paths for quartz
shock velocities ranging from ~11-25 km/s (160-1050 GPa). A comparison between T,

calculated from the experimental results (black line) and the SESAME 90010 table (red
diamonds and dashed line) is shown in Figure 3a. This enabled a completely analytical

calculation for the Lagrangian technique.

The release curves calculated using the MGLR model with I, from SESAME (dashed

lines) have slightly less curvature than those calculated directly from SESAME (solid lines) as
seen in Figure 3b. This results in the local sound velocity being underpredicted at high pressures

and overpredicted at lower pressures along a given release path, which impacts the calculated

Riemann invariants and intersection particle velocities. In particular, the C™ characteristic used

in determining the particle velocity at the interface would be shifted to a higher pressure initial



state and be artificially high due to a decrease in the value of the integral in Eq. 2. This produces
interface velocities that are inflated over the range of pressures where the MGLR release curve
lies above the SESAME result.

The first case considered was a simple shock and release simulation where the sample
fully melts and no strength remains in the sample. The simulation consisted of an aluminum-
backed copper flyer plate impacting a copper baseplate backed with a quartz window at 20 km/s.
At this impact velocity the shock is sufficiently strong to fully melt the copper, thus the
rarefaction from the Cu/Al interface in the flyer produces a simple, featureless release as seen in
Figure 4. For this simple case, both the Lagrangian technique (black dashed line) and the linear
approximation (blue dotted line) reasonably reproduce the simulated interface particle velocity
(red line). In particular, the arrival time of the release overtake at the window-sample interface is
accurately determined with both techniques. However, the initial rate of release is over-predicted
by the linear approximation, while it is well described by the Lagrangian technique. Further
down the release, the agreement with the interface velocity lessens for both the linear
approximation and Lagrangian technique. This is particularly true with respect to the velocity
plateau; both methods differ by ~2% from the simulated results. In this simulation, the initial
shock in the quartz was ~800 GPa and decayed to ~450 GPa at the velocity plateau. From Figure
3b, the MGLR release lies above the SESAME release over range of pressures in this simulation,
generating the inflated particle velocity seen in the Lagrangian technique as discussed earlier.
We note, however, that the time at which the interface reaches the velocity plateau is better
reproduced by the Lagrangian technique.

The second case considered was a shock and release simulation in a solid, assuming an

ideal elastic-plastic response. With the addition of strength, the system becomes more



complicated due to interactions between elastic and plastic waves in the sample. To model this
case, an identical flyer to the previous example was impacted into a diamond sample backed by a
quartz window at an impact velocity of 14 km/s. This impact generates a ~600 GPa shock in the
diamond. The diamond was modeled as a rate-independent purely elastic-plastic solid, and the
material was assumed to be overdriven at 600 GPa, so there was no elastic precursor at the
diamond/quartz interface. The inferred particle velocity at the sample-window interface for the
linear approximation and the Lagrangian technique are compared to the simulated result in
Figure 5. For particle velocities above 8 km/s, the Lagrangian technique reasonably reproduces
the simulated profile due to the small change in pressure from the initial shock state. In contrast
the linear approximation slightly underpredicts the velocity at the second plateau, prior to
overtake of the bulk release. Similar to the previous case, the difference between SESAME and
MGLR releases produces a particle velocity ~2% high at the final velocity plateau, but accurately
reproduces the time at which the plateau occurs for the Lagrangian case. The divergence of the
linear approximation is more pronounced in this example as it initially underpredicts the
interface velocity, but at later time predicts a higher velocity than both the simulation and
Lagrangian technique. The interface is also predicted to reach the final velocity plateau ~3 ns
later for the linear approximation than the simulation or Lagrangian analysis.

The final case considered included a rate-dependent Steinberg-Guinan-Lund (SGL)*
strength model which includes work hardening, strain hardening, and thermal softening.
Because the Lagrangian technique assumes the behavior in the quartz window is rate-
independent, this simulation provides a strenuous test of the accuracy of the technique due to the
complicated behavior of diamond. As in the previous case, the diamond strength was adjusted

such that the shock in the simulation was overdriven so as to transmit a single shock into the



quartz window, rather than a two-wave structure with an elastic precursor. This was necessary to
accurately calculate the displacement of the shock in the quartz window from the simulated
shock velocity.

The SGL model also allows for modification of the P —T dependence of the melt curve
such that shock melting occurs at different pressures along the Hugoniot. In this simulation, the
melt temperature along the Hugoniot was set at 7000 K, just below the temperature reached in
the peak shocked state of the simulation. The negative Clapeyron slope in the SESAME model
for diamond, consistent with experimental measurements of Brygoo et al'® and Eggert et al,*®
resulted in the diamond sample undergoing a liquid-solid phase transition upon release. This
transition is manifest in the simulation by a rarefaction shock in the diamond. As shown in
Figure 6, both the linear approximation and Lagrangian technique reasonably reproduce the
initial release in the liquid diamond. This is expected because above the shock-melt transition,
the diamond has no strength and the release is therefore rate-independent. However, across the
transition, the behavior becomes rate-dependent due to the onset of strength. At the liquid-solid
transition, a rarefaction shock occurs in the simulation. The Lagrangian technique successfully
captures both the magnitude and arrival time of the rarefaction shock at the sample-window
interface, as well as the initial slope of the release in the solid diamond. Similar to the previous
examples, the Lagrangian technique overpredicts the particle velocity for velocities below ~80%
of the initial steady state velocity. Unlike the previous examples, the linear approximation does
a very poor job of representing the particle velocity at the interface. In particular, the linear
approximation does not reproduce the rarefaction shock at the liquid-solid transition and the
velocity is significantly different for all later times.

Application to quartz windows:

10



a-Quartz is an ideal material for high-pressure windows due to its well-defined Hugoniot
and release behavior, with both experimentally constrained in excess of 1200 GPa** 2 and
further constrained by first-principles molecular dynamics calculations to 3000 GPa.*® Shocks in
quartz have been demonstrated to be reflective for pressures around 100 GPa?3, which enables
overlap with transparent LiF windows due to their closely-matched impedances. Fratanduono et
al** and McCoy et al* have demonstrated that the sound velocity calculated from the quartz
release model developed by Knudson and Desjarlais*? accurately reproduces the quartz sound
velocity over the entire high-pressure liquid regime. This satisfies the criterion for the
Lagrangian technique of knowledge of the EOS and sound velocity at all states intersected by a
shock and release experiment.

As an example, we show in Figure 7 results from recent experiments investigating the
sound velocity in beryllium which used both quartz and LiF windows for wave profile
measurements. These experiments impacted copper-faced aluminum flyers into stepped
beryllium targets (steps ranging from 500-1100 um) at velocities ranging from 7-13 km/s. A full
description of the experiments and results will be the subject of a future publication. For the
quartz (Figure 7a), the shock velocity (thin blue lines) was measured for each step and the
Lagrangian technique was used to determine the interface profiles (thick black lines) using the
experimentally determined Hugoniot and MGLR release model for quartz (black solid line in
Fig. 3). Inthe LiF (Figure 7b), the interface profile (green dashed-dotted lines) is measured
directly for each step and the profiles are compared to the time-shifted quartz profiles. The
interface profiles in both cases are similar with both exhibiting a 2-wave (longitudinal and bulk)
release structure in the beryllium.

Conclusions:

11



We developed a Lagrangian technique to use the shock velocity in a transparent window
to infer sample-window interface wave profiles at pressures in excess of traditional interface
measurement techniques. The technique uses knowledge of the sound velocity to account for
nonlinear characteristics while propagating the shock velocity profile back to the sample-window
interface. Analysis of simulated experiments demonstrates that the Lagrangian technique
adequately accounts for bending of characteristics and better reproduces the interface particle
velocity than the linear characteristic approximation. The simulations show that for particle
velocities within 20% of the initial velocity, the Lagrangian technique reasonably reproduces the
interface velocity in both rate-independent and rate-dependent cases. We also utilize the
Hugoniot and release model of a-quartz to produce sample-window interface profiles from
recent experimental measurements of Be in the multi-Mbar regime and show that a-quartz is an
ideal material to supplement LiF windows at high pressure.
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Figure 1: In the Lagrangian frame, the interface remains fixed and the shock front (black)
propagates to the right. When shock pressure is constant, characteristics (blue) propagate in a
simple wave region without interaction. After reflection of the first characteristic, subsequent
C™ characteristics interact with the reflected C~ characteristics and bend due to changing sound
velocity. The analysis technique starts with first characteristic and propagates simultaneously

later in time and towards the interface.

17



N
o

N
o

—
]

Velocity
=

o

0 1 1 1
10 20 30 40 50
Time
Figure 2: Propagation of characteristics back to sample-window interface determines the time at
which the rarefaction reached the interface and assigns a particle velocity through characteristic

interaction.
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Figure 3: (a) The effective Griineisen parameter calculated using multiple release curves from
the SESAME 90010 model (red diamonds) and a fit to those results (red dashed line) agree with
the experimentally derived model (black line) for shock velocities greater than 20 km/s in quartz.
Below 20 km/s, the value from SESAME remains approximately constant to ~15 km/s where it
drops rapidly. The experimental model begins decreasing for velocities below 20 km/s, but with
a slightly lower slope than the SESAME table. (b) The release curves calculated with the MGLR
fit to SESAME (dashed lines) display less curvature than those calculated directly from
SESAME 90010 (black lines). The shallower curvature decreases the sound velocity along the

release curves and can impact the calculated particle velocity at the interface.
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Figure 4: In the simple release case, both the Lagrangian technique (black dash) and linear

approximation (blue dot) accurately reproduce the simulated result (red solid). The steady state

time at the tail of the release is better inferred by the Lagrangian technique.
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Figure 5: (Lines same as Figure 4) Assuming an elastic-plastic response, the Lagrangian
technique matches the simulation for velocities above ~8 km/s. The linear approximation
slightly underpredicts the particle velocity at the plateau prior to bulk release and reaches the

final plateau at a noticeably later time.
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Figure 6: (Lines same as Figure 4) The simulation incorporating the SGL model with an
artificially lowered melting point has the most significant difference between the Lagrangian
technique and linear approximation. The solidification upon release results in a rarefaction
shock in the simulation, which is reproduced in the Lagrangian calculation. The linear

approximation fails to reproduce this feature or the behavior at later times.
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Figure 7: (a) The measured shock velocity profiles in a quartz window (thin blue lines) are used
with the Lagrangian technique to determine the sample-window interface profiles (thick black
lines). (b) The wave profiles inferred using the quartz window (black solid lines) exhibit a
similar shape to those directly obtained using LiF windows at slightly lower pressure (green
dashed-dotted lines), with both sets of profiles exhibiting a longitudinal and bulk release in the
beryllium. The quartz profiles in (b) are the same as those in (a) with the time axis adjusted to

overlap the LiF profiles.
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