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Measurement of the window interface velocity is a common technique for investigating the 

dynamic response materials at high strain rates.  However, these measurements are limited in 

pressure to the range where the window remains transparent.  The most common window material 

for this application is lithium fluoride, which under single shock compression becomes opaque at 

~200 GPa. To date no other window material has been identified for use at higher pressures.  Here 

we present a Lagrangian technique to calculate the interface velocity from a continuously 

measured shock velocity, with application to quartz. The quartz shock front becomes reflective 

upon melt, at ~100 GPa, enabling the use of velocity interferometry to continuously measure the 

shock velocity.  This technique overlaps with the range of pressures accessible with LiF windows 

and extends the region where wave profile measurements are possible to pressures in excess of 

2000 GPa.  We show through simulated data that the technique accurately reproduces the interface 

velocity within 20% of the initial state, and that the Lagrangian technique represents a significant 

improvement over a simple linear approximation. 

 

Introduction 

The development of laser interferometry enabled time-resolved measurement of the 

velocity of a reflective surface.1  This allowed for the measurement of free surface and window 
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interface velocities in dynamic compression experiments.  These measurements have yielded 

valuable data on the compressive behavior and strength of materials during both shock2-4 and 

ramp compression5, 6 and release.3, 4  

One complication of window interface measurements is the unavoidable presence of 

wave interactions caused by wave reflections due to impedance mismatch at the interface. Recent 

efforts have gone towards improvement of the analysis of such experiments to better infer in-

material velocity from the window interface velocity.  Initial techniques include the self-

consistent method3 and incremental impedance matching method,4 which correct for the different 

impedance of the window and sample, but not the variable wave speed in the material due to 

characteristic interactions.  Later techniques, such as the backwards characteristics analysis 

method7, 8 (BCAM, also referred to as iterative Lagrangian analysis) and transfer function 

method5, 6 (TFM), account for the bending of characteristics due to wave interactions and 

significantly improve the accuracy of the analysis compared to the earlier techniques. 

In common between all the described techniques is a reliance on the free surface or 

window interface velocity profile.  In the case of window interface measurement this limits the 

range of pressures over which experiments can be performed to that where the window is 

transparent and the interface velocity can be recorded.  Lithium fluoride (LiF) is commonly used 

as a window material for shock and ramp compression experiments; LiF has been demonstrated 

to remain transparent to ~200 GPa under single shock compression9, 10 and ~800 GPa under ramp 

compression.11, 12  Under shock compression, most materials melt at low enough temperatures for 

LiF to be a viable window material.  However, high-strength materials, such as diamond13-17 and 

beryllium,18, 19 can have higher melting points, above 200 GPa where LiF is no longer 

transparent.  For such materials, a different window material needs to be identified. To date no 
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other material has been identified as a suitable window for these types of experiments at shock 

pressures above 200 GPa. 

Many transparent materials, including plastics20, aerogels21-23, glasses24-30, and crystals13-

16, 26-32, have been shown to shock melt into a conductive fluid with reflective shock fronts at 

pressures as low as 100 GPa. If the interface velocity could be calculated from the measured 

shock velocity, any of these materials could serve as a viable window for wave profile 

measurements in the multi-Mbar regime, provided that the equation of state (EOS) of the 

material is well known. This technique can be used for pressures in excess of 2000 GPa33, 34, 

significantly greater than the shock-melting pressure of any previously studied material. 

Here we describe a Lagrangian technique to calculate the sample-window interface 

velocity from the measured shock velocity in the window and discuss the application of this 

technique to quartz windows, which have well-characterized shock and release responses.  This 

is similar to the technique described by Nikolaev et al using a linear characteristic model to 

relate the radiation history of a shock front in bromoform to the particle velocity at a bromoform-

sapphire interface.35, 36  The Lagrangian technique uses knowledge of the sound velocity at the 

pressure-density conditions accessed in shock-release experiments.  Using simulated data, we 

demonstrate that the Lagrangian technique accurately reproduces the interface particle velocity 

along the release for velocities within 20% of the initial particle velocity.  The technique is also 

shown to be a significant improvement over a linear characteristic model, particularly in cases 

where time dependent phenomena may be encountered. 

Characteristics method 

Similar to the BCAM and TFM techniques, our analysis code is developed to determine 

the in-material properties from observation of velocity at an interface.  However, in this 
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technique the interface is not a fixed surface between a sample and window, but a moving 

boundary between shocked and unshocked material in the window.  Hence, in the Lagrangian 

x t−  frame, the characteristics are no longer bounded by fixed coordinates, but by a fixed 

coordinate at the sample-window interface and a moving coordinate at the shock front as seen in 

Figure 1.  The Lagrangian coordinate at the shock front, ( )SD t , is defined as 

 ( ) ( )
0

St

S SD t U t dt′ ′= ∫ ,  (1) 

where ( )SU t′  is the measured shock velocity at time t′ . 

We use the conventional definition of the Riemann invariants with respect to density 

along the characteristics37, 38, such that 

 
0
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S

p
Cu dR

ρ

ρ

ρ ρ
ρ

± = ± ∫ ,  (2) 

where pu  is the particle velocity, )(SC ρ  is the isentropic sound velocity, ρ  is the density along 

the isentrope, and 0ρ  and Hρ  are the initial density and shocked density of the window.  The 

properties at the shock front are determined from the Rankine-Hugoniot relations, which give 
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 0 S pP U uρ=   (4) 

where P  is the pressure.  Because the integral in the Riemann invariant in Eq. 2 is defined along 

an isentrope, the isentrope that intersects the shock state is calculated and the sound velocity is 

given as 2
S

S

dC P
dρ

=  for every Lagrangian coordinate, ( )SD t .  The Riemann invariant is 

calculated at the shock front for both the positive (C+ ) and negative ( C− ) characteristics under 

the assumption that the isentrope at the shocked state is known.  For the shock to be reflective, 
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the window must have melted into a conductive fluid, hence it can be assumed that the release is 

isentropic.  In this case, the release can be determined either from a tabular EOS model, such as 

SESAME, or from an analytic model such as a Mie-Grüneisen EOS. 

Within the window, the C+  and C−  characteristics are propagated backwards from the 

shock front at the Lagrangian sound velocity, 
0

L SC Cρ
ρ

= , which defines the local slope in the 

x t−  frame.  At intersections between positive and negative characteristics, the particle velocity 

is given as 

 
2p

R Ru
+ −+

= . (5) 

We assume that the P ρ−  state of a particular Lagrangian coordinate lies on the release  

intersecting its Hugoniot state.  Calculating the release of the Hugoniot state at the Lagrangian 

coordinate where intersection occurs determines the isentropic sound velocity as a function of 

the particle velocity along the release.  The sound velocity is then determined by interpolating 

along the release for the particle velocity determined from Eq. 5.  The sound velocity between 

intersections is assumed to be constant and equal to the sound velocity determined at the 

previous intersection along the particular characteristic. 

 This procedure is repeated for all intersections between positive and negative 

characteristics between the shock front and the sample-window interface.  Because the sound 

velocity along a given C−  characteristic depends on the intersections with positive 

characteristics, the intersections must be mapped simultaneously forward in time and backward 

in space.  This is done by following C+  initiating at later times along the shock front back to the 

interface.  The initial C+  characteristic reaches the shock front at the moment the rarefaction 

overtakes the shock.  Therefore, at a given Lagrangian position, prior to arrival of the first C−  
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characteristic, the positive characteristics are all simple waves.  At later times, the positive 

characteristics interact with negative characteristics, changing the local sound velocity and the 

slope of the characteristics.  In particular, the jC+  characteristic will intersect all iC−  

characteristics, provided that i j<  and the iC−  characteristics have not reached the sample-

window interface prior to the jC+  characteristic entering the window.  We chose to ignore 

reflections of the characteristics at the sample-window interface and second-order intersections 

in this analysis. 

The particle velocity at the sample-window interface along a given C+   is defined as the 

particle velocity from Eq. 5 of the characteristic intersection closest to the interface.  Similarly, 

the time at the interface is found from interpolating the C+  characteristic for zero Lagrangian 

depth.  These values build the interface profile shown in Figure 2. 

Simulation of shock experiments 

To evaluate the accuracy of the Lagrangian technique we appealed to simulated data 

using the 1-D Lagrangian magnetohydrodynamics code LASLO39, a lightweight analogue of the 

more mature ALEGRA code40.  In the simulations, a tracer was positioned at the interface 

between the sample (either copper or diamond) and the quartz window.  Additional tracers were 

uniformly spaced every 2 µm through the quartz window. The shock position as a function of 

time was determined by identifying the times at which the particle velocity along the subsequent 

tracers reached 10% of the maximum value for a given position.  The derivative of the shock 

position as a function of time provides the shock velocity, which was used in the Lagrangian 

technique described in the previous section.  Characteristics were initiated from each Lagrangian 

coordinate along the shock front. The resulting inferred particle velocity at the sample-window 

interface obtained from the Lagrangian technique was then compared directly to the simulated 
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particle velocity at the corresponding tracer location. The results were also compared to the 

linear characteristic model which assumes the sound velocity, LC , along each characteristic is 

constant, such that the time at the interface, It , is simply ( )S
I S

L

t t
D t

C
= − .  In this approximation 

the particle velocity at the interface is set equal to that at the shock front along the given 

characteristic. 

The EOS models used in the simulations were SESAME 3700 (aluminum), SESAME 

3325 (copper), LEOS 7899 (diamond, a 5-phase Purgatorio-based table that includes phase 

transitions and melting along the principal Hugoniot), and SESAME 90010 (quartz). In order to 

simplify calculations using the Lagrangian technique a Mie-Grüneisen, linear reference (MGLR) 

constant Gamma model, similar to the experimental quartz MGLR model developed by Knudson 

and Desjarlais, was constructed for the SESAME 90010 table.  This was accomplished by 

optimizing the effective Gamma, effΓ , over numerous SESAME 90010 release paths for quartz 

shock velocities ranging from ~11-25 km/s (160-1050 GPa). A comparison between effΓ  

calculated from the experimental results (black line) and the SESAME 90010 table (red 

diamonds and dashed line) is shown in Figure 3a. This enabled a completely analytical 

calculation for the Lagrangian technique. 

The release curves calculated using the MGLR model  with effΓ  from SESAME (dashed 

lines) have slightly less curvature than those calculated directly from SESAME (solid lines) as 

seen in Figure 3b.  This results in the local sound velocity being underpredicted at high pressures 

and overpredicted at lower pressures along a given release path, which impacts the calculated 

Riemann invariants and intersection particle velocities.  In particular, the C−  characteristic used 

in determining the particle velocity at the interface would be shifted to a higher pressure initial 
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state and be artificially high due to a decrease in the value of the integral in Eq. 2.  This produces 

interface velocities that are inflated over the range of pressures where the MGLR release curve 

lies above the SESAME result. 

The first case considered was a simple shock and release simulation where the sample 

fully melts and no strength remains in the sample. The simulation consisted of an aluminum-

backed copper flyer plate impacting a copper baseplate backed with a quartz window at 20 km/s. 

At this impact velocity the shock is sufficiently strong to fully melt the copper, thus the 

rarefaction from the Cu/Al interface in the flyer produces a simple, featureless release as seen in 

Figure 4.  For this simple case, both the Lagrangian technique (black dashed line) and the linear 

approximation (blue dotted line) reasonably reproduce the simulated interface particle velocity 

(red line). In particular, the arrival time of the release overtake at the window-sample interface is 

accurately determined with both techniques. However, the initial rate of release is over-predicted 

by the linear approximation, while it is well described by the Lagrangian technique.  Further 

down the release, the agreement with the interface velocity lessens for both the linear 

approximation and Lagrangian technique.  This is particularly true with respect to the velocity 

plateau; both methods differ by ~2% from the simulated results.  In this simulation, the initial 

shock in the quartz was ~800 GPa and decayed to ~450 GPa at the velocity plateau.  From Figure 

3b, the MGLR release lies above the SESAME release over range of pressures in this simulation, 

generating the inflated particle velocity seen in the Lagrangian technique as discussed earlier.  

We note, however, that the time at which the interface reaches the velocity plateau is better 

reproduced by the Lagrangian technique. 

The second case considered was a shock and release simulation in a solid, assuming an 

ideal elastic-plastic response. With the addition of strength, the system becomes more 
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complicated due to interactions between elastic and plastic waves in the sample.  To model this 

case, an identical flyer to the previous example was impacted into a diamond sample backed by a 

quartz window at an impact velocity of 14 km/s. This impact generates a ~600 GPa shock in the 

diamond.  The diamond was modeled as a rate-independent purely elastic-plastic solid, and the 

material was assumed to be overdriven at 600 GPa, so there was no elastic precursor at the 

diamond/quartz interface.  The inferred particle velocity at the sample-window interface for the 

linear approximation and the Lagrangian technique are compared to the simulated result in 

Figure 5. For particle velocities above 8 km/s, the Lagrangian technique reasonably reproduces 

the simulated profile due to the small change in pressure from the initial shock state. In contrast 

the linear approximation slightly underpredicts the velocity at the second plateau, prior to 

overtake of the bulk release.  Similar to the previous case, the difference between SESAME and 

MGLR releases produces a particle velocity ~2% high at the final velocity plateau, but accurately 

reproduces the time at which the plateau occurs for the Lagrangian case.  The divergence of the 

linear approximation is more pronounced in this example as it initially underpredicts the 

interface velocity, but at later time predicts a higher velocity than both the simulation and 

Lagrangian technique.  The interface is also predicted to reach the final velocity plateau ~3 ns 

later for the linear approximation than the simulation or Lagrangian analysis. 

The final case considered included a rate-dependent Steinberg-Guinan-Lund (SGL)41 

strength model which includes work hardening, strain hardening, and thermal softening.  

Because the Lagrangian technique assumes the behavior in the quartz window is rate-

independent, this simulation provides a strenuous test of the accuracy of the technique due to the 

complicated behavior of diamond.  As in the previous case, the diamond strength was adjusted 

such that the shock in the simulation was overdriven so as to transmit a single shock into the 
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quartz window, rather than a two-wave structure with an elastic precursor.  This was necessary to 

accurately calculate the displacement of the shock in the quartz window from the simulated 

shock velocity. 

The SGL model also allows for modification of the P T−  dependence of the melt curve 

such that shock melting occurs at different pressures along the Hugoniot.  In this simulation, the 

melt temperature along the Hugoniot was set at 7000 K, just below the temperature reached in 

the peak shocked state of the simulation. The negative Clapeyron slope in the SESAME model 

for diamond, consistent with experimental measurements of Brygoo et al16 and Eggert et al,15 

resulted in the diamond sample undergoing a liquid-solid phase transition upon release. This 

transition is manifest in the simulation by a rarefaction shock in the diamond.  As shown in 

Figure 6, both the linear approximation and Lagrangian technique reasonably reproduce the 

initial release in the liquid diamond.  This is expected because above the shock-melt transition, 

the diamond has no strength and the release is therefore rate-independent.  However, across the 

transition, the behavior becomes rate-dependent due to the onset of strength.  At the liquid-solid 

transition, a rarefaction shock occurs in the simulation.  The Lagrangian technique successfully 

captures both the magnitude and arrival time of the rarefaction shock at the sample-window 

interface, as well as the initial slope of the release in the solid diamond.  Similar to the previous 

examples, the Lagrangian technique overpredicts the particle velocity for velocities below ~80% 

of the initial steady state velocity.  Unlike the previous examples, the linear approximation does 

a very poor job of representing the particle velocity at the interface.  In particular, the linear 

approximation does not reproduce the rarefaction shock at the liquid-solid transition and the 

velocity is significantly different for all later times. 

Application to quartz windows: 
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α-Quartz is an ideal material for high-pressure windows due to its well-defined Hugoniot 

and release behavior, with both experimentally constrained in excess of 1200 GPa33, 42 and 

further constrained by first-principles molecular dynamics calculations to 3000 GPa.43 Shocks in 

quartz have been demonstrated to be reflective for pressures around 100 GPa28, which enables 

overlap with transparent LiF windows due to their closely-matched impedances.  Fratanduono et 

al44 and McCoy et al45 have demonstrated that the sound velocity calculated from the quartz 

release model developed by Knudson and Desjarlais42 accurately reproduces the quartz sound 

velocity over the entire high-pressure liquid regime.  This satisfies the criterion for the 

Lagrangian technique of knowledge of the EOS and sound velocity at all states intersected by a 

shock and release experiment. 

As an example, we show in Figure 7 results from recent experiments investigating the 

sound velocity in beryllium which used both quartz and LiF windows for wave profile 

measurements.  These experiments impacted copper-faced aluminum flyers into stepped 

beryllium targets (steps ranging from 500-1100 µm) at velocities ranging from 7-13 km/s.  A full 

description of the experiments and results will be the subject of a future publication.  For the 

quartz (Figure 7a), the shock velocity (thin blue lines) was measured for each step and the 

Lagrangian technique was used to determine the interface profiles (thick black lines) using the 

experimentally determined Hugoniot and MGLR release model for quartz (black solid line in 

Fig. 3).  In the LiF (Figure 7b), the interface profile (green dashed-dotted lines) is measured 

directly for each step and the profiles are compared to the time-shifted quartz profiles.  The 

interface profiles in both cases are similar with both exhibiting a 2-wave (longitudinal and bulk) 

release structure in the beryllium. 

Conclusions: 
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We developed a Lagrangian technique to use the shock velocity in a transparent window 

to infer sample-window interface wave profiles at pressures in excess of traditional interface 

measurement techniques.  The technique uses knowledge of the sound velocity to account for 

nonlinear characteristics while propagating the shock velocity profile back to the sample-window 

interface.  Analysis of simulated experiments demonstrates that the Lagrangian technique 

adequately accounts for bending of characteristics and better reproduces the interface particle 

velocity than the linear characteristic approximation.  The simulations show that for particle 

velocities within 20% of the initial velocity, the Lagrangian technique reasonably reproduces the 

interface velocity in both rate-independent and rate-dependent cases.  We also utilize the 

Hugoniot and release model of α-quartz to produce sample-window interface profiles from 

recent experimental measurements of Be in the multi-Mbar regime and show that α-quartz is an 

ideal material to supplement LiF windows at high pressure. 

Acknowledgements: 

We would like to thank Jean-Paul Davis and Steve Rothman for their discussions on 

characteristic analysis and calculating the sound velocity from the Riemann invariants.  We also 

thank Justin Brown for his explanation of the strength models in LASLO.  Sandia National 

Laboratories is a multimission laboratory managed and operated by National Technology and 

Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, 

Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under 

contract DE-NA0003525. 

References: 

1. L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43 (11), 4669−4675 (1972). 

2. T. J. Ahrens, W. Gust and E. Royce, J. Appl. Phys. 39 (10), 4610-4616 (1968). 



13 
 

3. J. Asay and J. Lipkin, J. Appl. Phys. 49 (7), 4242-4247 (1978). 

4. J. Lipkin and J. Asay, J. Appl. Phys. 48 (1), 182-189 (1977). 

5. J. Brown, C. Alexander, J. Asay, T. Vogler and J. Ding, J. Appl. Phys. 114 (22), 

223518 (2013). 

6. J. Brown, C. Alexander, J. Asay, T. Vogler, D. Dolan and J. Belof, J. Appl. Phys. 

115 (4), 043530 (2014). 

7. J. R. Maw, AIP Conf. Proc. 706 (1), 1217-1220 (2004). 

8. S. Rothman, J. Davis, J. Maw, C. Robinson, K. Parker and J. Palmer, J. Phys. D: 

Appl. Phys. 38 (5), 733 (2005). 

9. M. Furnish, L. Chhabildas and W. Reinhart, Int. J. Imp. Engin. 23 (1), 261-270 

(1999). 

10. P. Rigg, M. Knudson, R. Scharff and R. Hixson, J. Appl. Phys. 116 (3), 033515 

(2014). 

11. D. E. Fratanduono, T. R. Boehly, M. A. Barrios, D. D. Meyerhofer, J. H. Eggert, 

R. F. Smith, D. G. Hicks, P. M. Celliers, D. G. Braun and G. W. Collins, J. Appl. Phys. 109 (12), 

123521 (2011). 

12. J.-P. Davis, M. D. Knudson, L. Shulenburger and S. D. Crockett, J. Appl. Phys. 

120 (16), 165901 (2016). 

13. D. Bradley, J. Eggert, D. Hicks, P. Celliers, S. Moon, R. Cauble and G. Collins, 

Phys. Rev. Lett. 93 (19), 195506 (2004). 

14. M. D. Knudson, M. P. Desjarlais and D. H. Dolan, Science 322 (5909), 

1822−1825 (2008). 



14 
 

15. J. Eggert, D. Hicks, P. Celliers, D. Bradley, R. McWilliams, R. Jeanloz, J. Miller, 

T. Boehly and G. Collins, Nature Physics 6 (1), 40-43 (2010). 

16. S. Brygoo, E. Henry, P. Loubeyre, J. Eggert, M. Koenig, B. Loupias, A. Benuzzi-

Mounaix and M. R. Le Gloahec, Nature materials 6 (4), 274-277 (2007). 

17. K. V. Khishchenko, V. E. Fortov, I. V. Lomonosov, M. N. Pavlovskii, G. V. 

Simakov and M. V. Zhernokletov, AIP Conf. Proc. 620 (1), 759-762 (2002). 

18. M. D. Knudson, AIP Conf. Proc. 1426, 35-42 (2012). 

19. L. X. Benedict, T. Ogitsu, A. Trave, C. J. Wu, P. A. Sterne and E. Schwegler, 

Phys. Rev. B 79, 064106 (2009). 

20. M. A. Barrios, D. G. Hicks, T. R. Boehly, D. E. Fratanduono, J. H. Eggert, P. M. 

Celliers, G. W. Collins and D. D. Meyerhofer, Phys. Plasmas 17 (5), 056307 (2010). 

21. J. E. Miller, T. R. Boehly, D. D. Meyerhofer and J. H. Eggert, Shock 

Compression of Condensed Matter–2007 955, 71−74 (2007). 

22. K. Falk, C. A. McCoy, C. L. Fryer, C. W. Greeff, A. L. Hungerford, D. S. 

Montgomery, D. W. Schmidt, D. G. Sheppard, J. R. Williams, T. R. Boehly and J. F. Benage, 

Phys. Rev. E 90 (3), 033107 (2014). 

23. M. D. Knudson and R. W. Lemke, J. Appl. Phys. 114 (5), 053510 (2013). 

24. C. A. McCoy, M. C. Gregor, D. N. Polsin, D. E. Fratanduono, P. M. Celliers, T. 

R. Boehly and D. D. Meyerhofer, J. Appl. Phys. 119 (21), 215901 (2016). 

25. Y. B. Zel’dovich, S. B. Kormer, M. B. Sinitsyn and A. I. Kuryapin, Dokl. Akad. 

Nauk. 122, 48-50 (1958). 

26. Y. B. Zel'Dovich, S. B. Kormer, M. V. Sinitsyn and K. B. Yushko, Dokl. Akad. 

Nauk 138, 1333 (1961). 



15 
 

27. S. B. Kormer, Physics-Uspekhi 11 (2), 229-254 (1968). 

28. J. A. Akins and T. J. Ahrens, Geophysical Research Letters 29 (10), 31-31-31-34 

(2002). 

29. D. G. Hicks, T. R. Boehly, J. H. Eggert, J. E. Miller, P. M. Celliers and G. W. 

Collins, Phys. Rev. Lett. 97 (2), 025502 (2006). 

30. D. Spaulding, R. McWilliams, R. Jeanloz, J. Eggert, P. Celliers, D. Hicks, G. 

Collins and R. Smith, Phys. Rev. Lett. 108 (6), 065701 (2012). 

31. R. S. McWilliams, D. K. Spaulding, J. H. Eggert, P. M. Celliers, D. G. Hicks, R. 

F. Smith, G. W. Collins and R. Jeanloz, Science 338 (6112), 1330-1333 (2012). 

32. D. G. Hicks, P. M. Celliers, G. W. Collins, J. H. Eggert and S. J. Moon, Phys. 

Rev. Lett. 91 (3), 035502 (2003). 

33. M. D. Knudson and M. P. Desjarlais, Phys. Rev. Lett. 103 (22), 225501 (2009). 

34. R. F. Trunin, Physics-Uspekhi 44 (4), 371-396 (2001). 

35. D. N. Nikolaev, A. S. Filimonov, V. E. Fortov, I. V. Lomonosov and V. Y. 

Ternovoi, AIP Conf. Proc. 429 (1), 509-512 (1998). 

36. D. N. Nikolaev, A. A. Pyalling, K. V. Khishchenko, V. Y. Ternovoi and V. E. 

Fortov, Chem. Phys. Rep. 19 (10), 1967-1990 (2001). 

37. R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves. (Springer-

Verlag, New York, 1976). 

38. Y. B. Zel'dovich and Y. P. Raizer, Physics of Shock Waves and High-

Temperature Hydrodynamic Phenomena. (Dover Publications, 2002). 

39. J. H. Carpenter, private communication  (2016). 



16 
 

40. A. Robinson, T. Brunner, S. Carroll, R. Drake, C. Garasi, T. Gardiner, T. Haill, H. 

Hanshaw, D. Hensinger and D. Labreche, presented at the 46th AIAA Aerospace Sciences 

Meeting and Exhibit, 2008 (unpublished). 

41. D. Steinberg and C. Lund, J. Appl. Phys. 65 (4), 1528-1533 (1989). 

42. M. D. Knudson and M. P. Desjarlais, Phys. Rev. B 88 (18), 184107 (2013). 

43. M. P. Desjarlais, M. D. Knudson and K. R. Cochrane, J. Appl. Phy. 122 (3), 

035903 (2017). 

44. D. Fratanduono, P. Celliers, D. Braun, P. Sterne, S. Hamel, A. Shamp, E. Zurek, 

K. Wu, A. Lazicki and M. Millot, Phys. Rev. B 94 (18), 184107 (2016). 

45. C. A. McCoy, M. C. Gregor, D. N. Polsin, D. E. Fratanduono, P. M. Celliers, T. 

R. Boehly and D. D. Meyerhofer, J. Appl. Phys. 120 (23), 235901 (2016). 

 

  



17 
 

 

Figure 1: In the Lagrangian frame, the interface remains fixed and the shock front (black) 

propagates to the right.  When shock pressure is constant, characteristics (blue) propagate in a 

simple wave region without interaction.  After reflection of the first characteristic, subsequent 

C+  characteristics interact with the reflected C−  characteristics and bend due to changing sound 

velocity.  The analysis technique starts with first characteristic and propagates simultaneously 

later in time and towards the interface. 
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Figure 2: Propagation of characteristics back to sample-window interface determines the time at 

which the rarefaction reached the interface and assigns a particle velocity through characteristic 

interaction. 
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Figure 3: (a) The effective Grüneisen parameter calculated using multiple release curves from 

the SESAME 90010 model (red diamonds) and a fit to those results (red dashed line) agree with 

the experimentally derived model (black line) for shock velocities greater than 20 km/s in quartz.  

Below 20 km/s, the value from SESAME remains approximately constant to ~15 km/s where it 

drops rapidly.  The experimental model begins decreasing for velocities below 20 km/s, but with 

a slightly lower slope than the SESAME table. (b) The release curves calculated with the MGLR 

fit to SESAME (dashed lines) display less curvature than those calculated directly from 

SESAME 90010 (black lines).  The shallower curvature decreases the sound velocity along the 

release curves and can impact the calculated particle velocity at the interface. 
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Figure 4: In the simple release case, both the Lagrangian technique (black dash) and linear 

approximation (blue dot) accurately reproduce the simulated result (red solid).  The steady state 

time at the tail of the release is better inferred by the Lagrangian technique. 
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Figure 5: (Lines same as Figure 4) Assuming an elastic-plastic response, the Lagrangian 

technique matches the simulation for velocities above ~8 km/s.  The linear approximation 

slightly underpredicts the particle velocity at the plateau prior to bulk release and reaches the 

final plateau at a noticeably later time. 
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Figure 6: (Lines same as Figure 4) The simulation incorporating the SGL model with an 

artificially lowered melting point has the most significant difference between the Lagrangian 

technique and linear approximation.  The solidification upon release results in a rarefaction 

shock in the simulation, which is reproduced in the Lagrangian calculation.  The linear 

approximation fails to reproduce this feature or the behavior at later times. 
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Figure 7: (a) The measured shock velocity profiles in a quartz window (thin blue lines) are used 

with the Lagrangian technique to determine the sample-window interface profiles (thick black 

lines).  (b) The wave profiles inferred using the quartz window (black solid lines) exhibit a 

similar shape to those directly obtained using LiF windows at slightly lower pressure (green 

dashed-dotted lines), with both sets of profiles exhibiting a longitudinal and bulk release in the 

beryllium.  The quartz profiles in (b) are the same as those in (a) with the time axis adjusted to 

overlap the LiF profiles. 

 


