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Abstract— We examine the merit of Bernoulli packet drops in
actively detecting integrity attacks on control systems. The aim
is to detect an adversary who delivers fake sensor measurements
to a system operator in order to conceal their effect on the
plant. Physical watermarks, or noisy additive Gaussian inputs,
have been previously used to detect several classes of integrity
attacks in control systems. In this paper, we consider the
analysis and design of Gaussian physical watermarks in the
presence of packet drops at the control input. On one hand,
this enables analysis in a more general network setting. On
the other hand, we observe that in certain cases, Bernoulli
packet drops can improve detection performance relative to a
purely Gaussian watermark. This motivates the joint design
of a Bernoulli-Gaussian watermark which incorporates both
an additive Gaussian input and a Bernoulli drop process. We
characterize the effect of such a watermark on system perfor-
mance as well as attack detectability in two separate design
scenarios. Here, we consider a correlation detector for attack
recognition. We then propose efficiently solvable optimization
problems to intelligently select parameters of the Gaussian
input and the Bernoulli drop process while addressing security
and performance trade-offs. Finally, we provide numerical
results which illustrate that a watermark with packet drops
can indeed outperform a Gaussian watermark.

I. INTRODUCTION

The security of cyber-physical systems (CPS) has become
a critical issue [1]. Since CPS such as the smart grid, waste
management systems, water distribution systems, transporta-
tion systems, and smart buildings are linked to critical
infrastructures, it is imperative that they operate securely. Un-
fortunately, attacks have occurred against CPS. This includes
Stuxnet [2], which targeted uranium enrichment facilities
in Iran, the Maroochy Shire incident [3], an attack by a
malicious insider on a sewage management system, and the
Ukraine power attack [4], a hack resulting in widespread
blackouts in Ukraine. The threat does not appear to be over
as the growing connectivity and heterogeneity of our system
architectures provide new attack surfaces for adversaries.

We focus on detecting integrity attacks in control systems
in the presence of packet drops at the control input. In an
integrity attack, an adversary modifies inputs and sensor
measurements in a control system. The goal of such an
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attacker may be to achieve some economic benefit or cause
physical damage to a system. An attacker can potentially
maximize his impact by hiding his presence from the opera-
tor. Remaining stealthy allows an attacker to affect the sys-
tem for long periods of time without defender interference.
The adversary can avoid detection by intelligently modifying
the sensor measurements to fool detectors. One example
is a replay attack, as used in Stuxnet, where an attacker
replaces true outputs with a previously recorded sequence
of measurements [5].

We consider the use of physical watermarking to detect
integrity attacks. A physical watermark is a noisy Gaus-
sian signal added on top of an optimal control input to
authenticate a system’s dynamics. Physical watermarking is
a method of active detection, where a defender alters his
strategy to recognize attacks. These methods are necessary
when standard fault detection methods provably fail [6], [7].
Recent work has investigated physical watermarking. In [5],
[8]–[10], the design of watermarks against replay attacks
was examined. Additionally, [11] and [12] design asymptotic
detectors in systems implementing physical watermarking
to ensure zero additive distortion power is introduced into
sensor measurements. Additionally, in a scalar setting, [13]
demonstrates the optimality of Gaussian watermarks against
Gaussian attackers and vice versa. [14] evaluates the use of
non-stationary watermarks to hamper system identification.
Finally, [15] considers watermarks to thwart adversaries who
have access to a subset of inputs and model knowledge.

However, prior work fails to consider the scenario where
there exists packet drops in the network. In this paper, we
generalize the design of the Gaussian physical watermark
by incorporating Bernoulli drops at the control inputs. This
enables the operator to account for imperfect networks when
designing a Gaussian watermark for secure detection. We
also argue that using Bernoulli drops together with a Gaus-
sian watermark can improve detection. This motivates the
analysis and design of a joint Bernoulli-Gaussian watermark.
In our preliminary work [16], we proposed using packet
drops in a setting without Gaussian watermarks to detect
replay attacks. This article extends these results by providing
a rigorous mathematical setting to jointly design parameters
of both a Gaussian watermark and Bernoulli drop process.

We investigate two types of watermark design: 1) a water-
mark with an independent and identically distributed (IID)
Gaussian additive input multiplied by a Markovian Bernoulli
drop process at the control input and 2) a watermark with
a stationary Gaussian additive input generated by a hidden
Markov model (HMM) multiplied by an IID Bernoulli drop



process at the control input. We incorporate a correlation
detector [17], [8] to recognize integrity attacks and char-
acterize adversarial scenarios where the Bernoulli-Gaussian
watermark is provably effective. Next, we provide efficiently
solvable optimization problems to design parameters of the
Gaussian input and the Bernoulli drop process. Simulation
results illustrate scenarios where packet drops improve de-
tection performance relative to a purely Gaussian watermark.

II. SYSTEM MODEL

We consider a discrete time LTI control system as follows

xk+1 = Axk +Buk,c + wk, yk = Cxk + vk. (1)

xk ∈ Rn is the state vector at time k. A set of m sensor
measurements yk ∈ Rm is delivered to a supervisory control
and data acquisition (SCADA) system at time k in order to
perform remote estimation and compute an intended control
input uk ∈ Rp. A set of p control inputs uk,c ∈ Rp actuate
the system. We differentiate uk,c, the control input applied
to the system, versus uk, the input computed by a SCADA
operator. We assume wk ∼ N (0, Q) is IID process noise
and vk ∼ N (0, R) is IID measurement noise (independent
of {wk}), where Q � 0, R � 0. A Kalman filter performs
state estimation as follows.

x̂k+1|k = Ax̂k|k +Buk,c, x̂k|k = x̂k|k−1 +Kzk, (2)

K = PCT (CPCT +R)−1, zk = yk − Cx̂k|k−1, (3)

P = APAT +Q−APCT (CPCT +R)−1CPAT . (4)

The defender minimizes a cost function J :

J = lim
N→∞

1

2N + 1
E

[
N∑

k=−N

xTkWxk + uTk,cUuk,c

]
, (5)

where W � 0 and U � 0. We assume (A,B) and (A,Q
1
2 )

are controllable and (A,C) and (A,W
1
2 ) are observable.

A. Control in Uncertain Networks

As shown in Fig. 1, the control input uk may be dropped
as it is sent from the SCADA system to the plant. Here,

uk,c = ηkuk, (6)

where ηk ∈ {0, 1} is a Bernoulli random variable. The
control input uk may be dropped due to network imperfec-
tions. In this case, we assume the operator receives an ac-
knowledgement (ACK), which specifies if uk was delivered.
Alternatively, the input uk may be intentionally dropped as
a means to watermark the system, enabling the detection of
integrity attacks that fail to preserve the effect of the drop
process. This strategy was initially investigated in [16]. We
consider both IID and Markovian drop processes.

1) IID Bernoulli Process: First, we assume {ηk} is
an IID Bernoulli process where P (ηk = 1) = 1 −
pd. LQG control with IID Bernoulli packet losses was
studied in [18]. Consider the information set Fk ,
{y−∞:k, η−∞:k−1, u−∞:k−1}. We suppose pd is chosen (or
given) so that the system (1) can have finite cost J . The
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optimal control strategy at time k given Fk is as follows
[16], [18]:

ubk = Lkx̂k|k, Lk = −(BTSk+1B + U)−1BTSk+1A,

Sk = ATSk+1A+W + (1− pd)ATSk+1BLk. (7)

As we expect the system has been running for a long time,
both Lk and Sk have converged to fixed point values so that

ubk = L(b)x̂k|k, L(b) = −(BTS(b)B + U)−1BTS(b)A,

S(b) = ATS(b)A+W + (1− pd)ATS(b)BL(b). (8)

J = J(b) for this strategy where J(b) is

J(b) = tr
(
S(b)Q+ (ATS(b)A+W − S(b))(P −KCP )

)
.

(9)
2) Markovian Bernoulli Process: In this setup, we assume

there are Markovian packet losses [19] at the input where[
P (ηk+1 = 0|ηk = 0)P (ηk+1 = 1|ηk = 0)
P (ηk+1 = 0|ηk = 1)P (ηk+1 = 1|ηk = 1)

]
=

[
ᾱ α
β β̄

]
(10)

and ᾱ , 1 − α, β̄ , 1 − β. Here, we assume 0 < α ≤ 1,
0 < β ≤ 1 so that ηk is irreducible. Moreover, we assume
ηk is stationary, which can be obtained by letting its initial
distribution be P (η−∞ = 0) = β

α+β . Finally, we assume that
α and β are selected (or given) so that the system (1) can
have finite cost J . The optimal strategy at time k given Fk
is

umk = L(m)x̂k|k, L(m) = −(BTR(m)B + U)−1BTR(m)A,

Rm = AT (βS(m) + β̄R(m))A+W + β̄ATR(m)BL(m),

Sm = AT (ᾱS(m) + αR(m))A+W + αATR(m)BL(m),

where L(m), R(m), S(m) are parameters which converged to
their steady state values. The resulting cost of control is

J = J(m) =
tr(βS(m)Q+ αR(m)Q)

α+ β
(11)

+
tr((AT (ᾱS(m) + αR(m))A+W − S(m))(P −KCP ))

α+ β
.

Remark 1: The prior strategies are optimal when the de-
fender only has knowledge of the observed drop sequence



η−∞:k−1. However, if the drop sequence is intentionally in-
troduced using a pseudo random number generator (PRNG),
the defender knows future values of ηk. The design of a
controller that uses this information is left for future work.

B. Joint Bernoulli-Gaussian Physical Watermarking

To account for adversarial behavior, we consider additive
Gaussian physical watermarks ∆uk. First introduced in [5]
to detect replay attacks, an additive Gaussian watermark can
be leveraged to verify the freshness of outputs. We aim to
intelligently combine the Gaussian watermarks considered
in [8] and [9] with a Bernoulli drop process at the input.
Such a design accomplishes two goals: 1) to expand the
analysis of physical watermarking to a more realistic network
setting with packet drops and 2) to potentially improve
performance by considering a more general joint Bernoulli-
Gaussian watermark.

We consider two main joint designs.
Watermark 1: IID Gaussian Input + Markovian Drops

uk,c = ηk(umk + ∆uk). (12)

{ηk} is a Markovian Bernoulli process and ∆uk ∼ N (0,Q)
is an IID Gaussian watermark [5]. We assume ∆uk is
independent of other stochastic processes in the system.
Watermark 2: Stationary Gaussian Input + IID Drops

uk,c = ηk(ubk + ∆uk). (13)

In this case, {ηk} is an IID Bernoulli process. The Gaussian
input ∆uk is assumed to be a stationary process generated
by a hidden Markov model (HMM) as considered in [9].

ζk+1 = Aωζk + ψk, ∆uk = Chζk. (14)

ζk is the hidden state of the HMM, Aω has spectral radius
ρ(Aω) ≤ ρ̄ ≤ 1, and ψk ∼ N (0,Ψ) is IID Gaussian noise.
For stationarity, Cov(ζ0) = AωCov(ζ0)ATω + Ψ. ∆uk is
independent of other stochastic processes in the system.

Remark 2: Here, ρ̄, the maximum allowable spectral ra-
dius, is a design parameter for the defender. We observe a
larger ρ̄ improves expected detection performance. However,
a larger ρ̄ means a larger correlation between watermarks and
this could facilitate the prediction of future watermarks if the
attacker guesses an initial Gaussian input ∆uk.

III. ATTACK MODEL

In this section we describe a model of our adversary in
terms of knowledge, capabilities, and potential strategies.

A. Attacker Capabilities

Without loss of generality, we assume an attack begins at
time k = 0. We make the following assumptions.

1) The attacker can modify all measurements yk, k ≥ 0.
The falsified outputs at time k are denoted by yvk .

2) The attacker inserts an input Bauak into the system.
3) The attacker is unable to read the true control inputs

uk,c. As a result, he is unaware of the drop sequence
{ηk} and the Gaussian watermark {∆uk}.

The system under attack is given by

xk+1 = Axk +Buk,c +Bauak + wk, (15)
x̂k+1|k+1 = (I −KC)(Ax̂k|k +Buk,c) +Kyvk+1. (16)

Remark 3: Attackers can inject Bauak by appropriating
the defender’s actuators or inserting their own. The attacker
could possibly modify inputs without being able to read them
if the inputs are encrypted. Alternatively, the attacker can
cause damage even if Bauak = 0. For example, the attacker
can destabilize the plant if A is open loop unstable.

B. Attack Strategy

The attacker generates yvk through a virtual system:

xvk+1 = Axvk + ηvkB(Lm|bx̂
v
k|k + ∆uvk) + wvk, (17)

x̂vk+1|k+1 = (I −KC)(A+ ηvkBLm|b)x̂
v
k|k +Kyvk+1 (18)

+ ηvk(I −KC)B∆uvk,

yvk = Cxvk + vvk . (19)

In the case of Watermark 1, Lm|b = L(m), ηvk follows
a Markovian process (10) with parameters α and β and
∆uvk ∼ N (0,Q) is an IID Gaussian process. In the case of
Watermark 2, Lm|b = L(b), ηvk is an IID Bernoulli process
with drop probability pd and ∆uvk is a stationary Gaussian
process which satisfies (14). Additionally, vvk ∼ N (0, R)
and wvk ∼ N (0, Q) are IID processes. Finally, we assume
the stochastic processes {ηvk ,∆uvk, wvk, vvk} are independent
of the real system’s stochastic parameters {ηk,∆uk, wk, vk}.

The previous attack strategy can be generated (approx-
imately) by a replay attack where the attacker records a
long sequence of outputs y−T ′:−T ′+T and, starting at time 0,
replaces yk with yvk = yk−T ′ for 0 ≤ k ≤ T . Attackers who
do not have precise knowledge of the model may engage in
replay attacks, which only require access to the outputs [5],
[8], [9]. Alternatively, this attack strategy can be constructed
by an adversary who is familiar with the model, for instance a
malicious insider. In this case, the attacker simulates a virtual
copy of the system dynamics to fool a bad data detector. It
was previously shown [9] that if pd = 0 and there is no
Gaussian watermark, the given strategies are asymptotically
stealthy when A , (A+BL(b))(I −KC) is Schur stable.

A model aware attacker could also potentially pursue an
additive attack, for instance a false data injection attack [20]
or a zero dynamics attack [21], [22]. In these attacks, the
adversary injects an additive bias into the system which
preserves the watermark and allows the attacker to remain
stealthy. However, there are scenarios where additive attacks
on sensor measurements are not feasible. As an example,
suppose the defender uses public key cryptography, where
a public key is used to encrypt the measurements while a
private key is used to decrypt the associated cipher text. An
attacker could send his own virtual measurements encrypted
with the public key. However, such an attack could not
leverage information in the true measurement as that would
require access to the defender’s private key to learn yk. In this
case, additive attacks constructed by replacing a true output



packet with a virtual packet would be infeasible. By assump-
tion, an additive networked-based attack on the defender’s
control input is also impossible because the adversary is
unable to read the defender’s input.

We argue that alternative attack strategies which manipu-
late all sensors yk in a setting with public key cryptography
also fail due to the fact that the resulting attack sequence
{yvk} is independent of the watermarks {∆uk, ηk}. Specifi-
cally, an attacker who is unable to read the inputs or outputs
will have no information about the watermarks. As a result,
the outputs he can construct will fail to fool the correlation
detector, which we propose in the next section.

IV. A CORRELATION DETECTOR

We consider a correlation detector, proposed in [8]. The
defender computes a virtual output y′k, which explicitly
characterizes the effect of watermarks on yk.

x′k+1 = Ax′k + ηkB(Lm|bx̂
′
k|k + ∆uk), y′k = Cx′k, (20)

x̂′k+1|k+1 = (I −KC)(A+ ηkBLm|b)x̂
′
k|k +Ky′k+1 (21)

+ ηk(I −KC)B∆uk,

where with some abuse of notation x′−∞ = 0, x̂′−∞|−∞ = 0.
We can simplify (20) and (21) to obtain

x′k+1 = (A+ ηkBLm|b)x
′
k + ηkB∆uk, y′k = Cx′k. (22)

This virtual process created by the defender is driven en-
tirely by the sequence of Bernoulli-Gaussian watermarks
{∆uk, ηk}. Thus, if we were to multiply the true outputs
yk with the defender’s virtual outputs y′k we would expect
a positive correlation. However, if an attacker introduces
measurements yvk , which are driven by an independent se-
quence of watermarks, the expected correlation drops to 0.
This motivates consideration of the detection statistic yTk y

′
k,

where a large statistic is indicative of normal behavior while
a small statistic indicates malicious behavior. Observe due to
the random real time selection of watermarks, ‖y′k‖2 may be
close to 0, impacting detector performance since the correla-
tion will likely also approach 0 even under normal operation.
As a result, we propose an event triggered detector:

If ‖y′k‖22 ≥ µ Perform Detection

κ = κ+ 1, tκ = k
κ∑

j=κ−W+1

gj
H0

≷
H1

τ, gκ = yTtκy
′
tκ . (23)

The null hypothesis H0 is that the system is operating
without malicious behavior while the alternative hypothesis
H1 is that the system is under attack. W is the size of the
detector’s window. A detection event is triggered if ‖y′k‖22 is
greater than some user defined threshold µ, preventing false
alarms from being raised when y′k is small, while sacrificing
time to detection. This tradeoff can be addressed by tuning
µ. Note that κ corresponds to the time index of the event
triggered correlation detector and increases at instants when a
new detection statistic is computed. Identifying attacks on an
individual sensor i can be done by focusing on the correlation

between individual measurements. An appropriate statistic giκ
would be yitκy

i
tκ

′ where yitκ is the ith entry of ytκ .
Remark 4: A detector with an adaptive threshold could

address issues of small y′k. However, such a detector is more
prone to misses, mistaking an attack for noise. Incorporation
and analysis of such a detector is left for future work.

Remark 5: An adversary that can not read {uk}, {yk} can
not take advantage of instances when detection does not
occur, because such instances are entirely dependent on the
realization of previous watermarks. An attacker who is forced
to act independently of the real time watermarking sequence
cannot determine if a detection has been triggered.

We now verify that the expected correlation is 0, if the
outputs yvk are generated independently of the watermarks.

Theorem 6: If yvk and {∆uk, ηk} are independent, then

E
[
yvk
T y′k

∣∣∣ ‖y′k‖22 ≥ µ] = 0.

Proof: Observe that y′k can be written as a linear
function of the Gaussian watermarks ∆uk so that

y′k =

k−1∑
j=−∞

Gj(ηj:k−1)∆uj , (24)

where Gj is some linear gain, determined by the sequence
of Bernoulli drops ηj:k−1. Thus, we have

E[yvk
T y′k] = E

yvkT k−1∑
j=−∞

Gj(ηj:k−1)∆uj

∣∣∣∣∣ ‖y′k‖22 ≥ µ


=

k−1∑
j=−∞

E [yvk ]
T E

[
Gj(ηj:k−1)∆uj

∣∣∣ ‖y′k‖22 ≥ µ] = 0.

The proposed detector can often differentiate between
faulty and malicious scenarios. During a fault, we expect
to see the effect of the embedded watermarks in the output
and it could be measured through correlation. Alternatively,
residue based detectors such as a χ2 detector (gκ =
−zTtκ(CPCT + R)−1ztκ ), which measures the difference
between measured and expected behavior, will likely raise an
alarm during faulty behavior and malicious behavior. Both
detectors can be used in tandem. A residue based detector
can raise alarms in the case of faulty or malicious behavior,
while a correlation detector can distinguish these events. In
this article, we focus on the correlation detector.

V. THE FIRST WATERMARK DESIGN

We consider the design of a watermark consisting of an
IID Gaussian input and Markovian drops. This requires the
evaluation of a detection and performance trade-off. We wish
to maximize the correlation of yk and y′k to distinguish the
system under attack from normal operation. However, we
also need to ensure the system meets an adequate level of
performance as characterized by the cost J̄ , starting at k = 0.

J̄ = lim
N→∞

1

N
E

[
N−1∑
k=0

xTkWxk + uTk,cUuk,c

]
. (25)



As such, we design the parameters α, β,Q by solving the
following optimization problem

maximize
α,β,Q

lim
k→∞

E[yTk y
′
k|H0]

subject to J̄ ≤ δ, 0 < α, β ≤ 1.
(26)

To begin with, we use [19, Theorem 3] to analytically
compute the cost J̄ as follows.

Theorem 7: Suppose α and β are chosen so that the
system has finite cost J(m) in the absence of a Gaussian
watermark. The LQG cost J̄ of the control system (1) with
IID Gaussian and Markovian watermark (12) is:

J̄ = J(m)(α, β) +
α

α+ β
tr
(
(BTR(m)B + U)Q

)
. (27)

Proof: Consider the cost to go in a finite hori-
zon, Vk(xk) ,

∑N
j=k E

[
xTj Wxj + uTj,cUuj,c|Fk

]
, and let

uN,c = 0. Similar to, [19], it can be shown that

Vk(xk) =

{
E[xTk Skxk|Fk] + ck (ηk−1 = 0)

E[xTkRkxk|Fk] + dk (ηk−1 = 1)
, (28)

where cN = dN = 0, RN , SN = W, P̄ = P −KCP and

F = (A+BL(m)),

Rk = W + βATSk+1A+ β̄FTRk+1F + β̄LT(m)UL(m),

Sk = W + ᾱATSk+1A+ αFTRk+1F + αLT(m)UL(m),

ck = −αtr((FTRk+1F −ATRk+1A+ LT(m)UL(m))(P̄ ))

+ α[tr(Rk+1Q) + dk+1 + tr((BTRk+1B + U)Q)]

+ ᾱ[tr(Sk+1Q) + ck+1], (29)

dk = −β̄tr((FTRk+1F −ATRk+1A+ LT(m)UL(m))(P̄ ))

+ β̄[tr(Rk+1Q) + dk+1 + tr((BTRk+1B + U)Q)]

+ β[tr(Sk+1Q) + ck+1]. (30)

Let J̄N = E
[∑N

k=0 x
T
kWxk + uTk,cUuk,c

]
= E[V0(x0)]. We

find that

J̄N = P (η−1 = 0)
(
E[xT0 S0x0|η−1 = 0] + c0

)
+ P (η−1 = 1)

(
E[xT0 R0x0|η−1 = 1] + d0

)
.

Leveraging the fact that {ηk} is stationary with P (ηk = 0) =
β

α+β as well as (29) and (30), we obtain

J̄N =
1

α+ β

N−1∑
k=0

(
− αtr((FTRk+1F −ATRk+1A

+ LT(m)UL(m))(P̄ )) + tr((βSk+1 + αRk+1)Q)

+ αtr((BTRk+1B + U)Q)

)
+
βE[xT0 S0x0|η0

−1] + αE[xT0 R0x0|η1
−1]

α+ β
,

where ηj−1 refers to the condition η−1 = j. It can be shown
(in a similar manner to the proof of Theorem 8) that the last
term is bounded. Note J̄ = limN→∞

1
N J̄N−1. Moreover,

from [19][Theorem 3, Lemma 4], {Sk}, {Rk} converge to
S(m), R(m), respectively. This proves the desired result.

We now compute the expected correlation without attacks.
Theorem 8: Suppose α and β are chosen so the resulting

system has finite cost J(m) [19][Theorem 3] in the absence
of a Gaussian watermark. Then, for the control system (1)
with IID Gaussian and Markovian watermark (12), we have

lim
k→∞

E[yTk y
′
k|H0] =

tr(C(αX1 + βX0)CT )

α+ β
, (31)

where

X0 = A(ᾱX0 + αX1)AT , (32)

X1 = (A+BL(m))(βX0 + β̄X1)(A+BL(m))
T +BQBT

Proof: We begin with the Lemma below.
Lemma 9: ∀ M ∈ R2n×n, limk→∞ Lk0(M) = 0 where,

L0

(
X
Y

)
=

[
A(ᾱX + αY )AT

(A+BL(m))(βX + β̄Y )(A+BL(m))
T

]
.

The proof is found in an extended version of this article [23].
The closed loop dynamics are

xk+1 = (A+ ηkBL(m))xk − ηkBL(m)ek + wk + ηkB∆uk

ek+1 = (A−KCA)ek + (I −KC)wk −Kvk+1,

where ek = xk − x̂k|k. From (22), when ηk = 1. we obtain

E[x′k+1x
T
k+1|ηk = 1]

= (A+BL(m))E[x′kx
T
k |ηk = 1](A+BL(m))

T−
(A+BL(m))(E[x′ke

T
k |ηk = 1]LT(m)B

T − E[x′kw
T
k |ηk = 1])

+ (A+BL(m))E[x′k∆uTk |ηk = 1]BT

+BE[∆ukx
T
k |ηk = 1](A+BL(m))

T

+B
(
E[∆ukw

T
k |ηk = 1] + E[∆uk∆uTk |ηk = 1]BT

)
−BE[∆uke

T
k |ηk = 1](BL(m))

T ,

where we implicitly condition on H0. x′k is independent of
∆uk, wk, ek and ∆uk is independent of xk, wk, ek. Thus,

E[x′k+1x
T
k+1|ηk = 1] (33)

= (A+BL(m))E[x′kx
T
k |ηk = 1](A+BL(m))

T +BQBT .
Next, since the Markov process is stationary and xk, x′k and
ηk are conditionally independent given ηk−1, we observe

E[x′kx
T
k |ηk = 1] (34)

= P (ηk−1 = 1|ηk = 1)E[x′kx
T
k |ηk = 1, ηk−1 = 1]

+ P (ηk−1 = 0|ηk = 1)E[x′kx
T
k |ηk = 1, ηk−1 = 0],

= β̄E[x′kx
T
k |ηk−1 = 1] + βE[x′kx

T
k |ηk−1 = 0].

It can be similarly shown that

E[x′k+1x
T
k+1|ηk = 0] = AE[x′kx

T
k |ηk = 0]AT . (35)

E[x′kx
T
k |ηk = 0] (36)

= αE[x′kx
T
k |ηk−1 = 1] + ᾱE[x′kx

T
k |ηk−1 = 0].

Letting Xk,j = E[x′kx
T
k |ηk−1 = j] we have(

Xk+1,0

Xk+1,1

)
= L0

(
Xk,0

Xk,1

)
+

[
0

BQBT
]
. (37)

Since L0 is stable, limk→∞ E[x′kx
T
k |ηk−1 = 0] and

limk→∞ E[x′kx
T
k |ηk−1 = 1] are obtained by solving a fixed



point equation which has a unique solution X0 and X1. (32)
immediately follows from (37). Next, we find that

lim
k→∞

E[x′kx
T
k ] = P (ηk−1 = 1)X1 + P (ηk−1 = 0)X0, (38)

=
αX1 + βX0

α+ β
.

Finally, we observe that

E[yTk y
′
k] = tr

(
E[(y′ky

T
k )]
)

= tr
(
CE[x′kx

T
k ]CT

)
. (39)

Thus, the watermark design problem (26) is given by

maximize
α,β,Q

tr(C(αX1 + βX0)CT )

α+ β

subject to
(
X0

X1

)
= L0

(
X0

X1

)
+

[
0

BQBT
]
,

J(m)(α, β) + tr((BTR(m)B + U)Q) ≤ δ,
0 < α, β ≤ 1.

(40)
For fixed α and β, the problem is an efficiently solvable
semidefinite program. However, to optimize over α and β,
we have to solve multiple instances of the problem over a
finite 2 dimensional space. Ideally a designer will sample the
space sufficiently. Note, not all (α, β) in (0, 1]× (0, 1] are
feasible as some selections of α and β lead to unbounded
cost. Likewise, there may be naturally occurring drops which
constrain α and β. For instance, if we add an artificial
Markovian drop process on top of a naturally occurring
IID drop process with drop probability pd, we know that
α ≤ (1− pd), β̄ ≤ (1− pd).

Remark 10: The optimal design of Watermark 1 requires
solving multiple instances of a convex optimization problem
with parameters varying over a bounded 2 dimensional space.
This will also be true for Watermark 2. A formulation that
considers a stationary Gaussian input with a Markovian drop
process is nontrivial. Even if analysis can be performed, op-
timal design will likely require searching over 3 dimensions.
This more complicated case is left for future work.

VI. THE SECOND WATERMARK DESIGN

We now investigate a watermark consisting of stationary
Gaussian noise generated by a HMM (14) and an IID
Bernoulli drop process at the control input with drop proba-
bility equal to pd. Again, we design a watermark to address
a performance and security trade-off. We wish to solve:

maximize
pd,Aω,Ch,Ψ

lim
k→∞

E[yTk y
′
k|H0]

subject to J̄ ≤ δ, ρ(Aω) ≤ ρ̄,
0 ≤ pd ≤ 1.

(41)

Rather than optimizing over the parameters of the HMM,
we instead optimize over the autocovariance functions
Γ(d) , E[∆uk∆uTk+d]. For tractable analysis we replace the
constraint ρ(Aω) ≤ ρ̄ with the following related assumption.
Assumption 1: Let Γ(d) be an autocovariance function for a
Gaussian process generated by an HMM (Aω, Ch,Ψ). Then

(Aω, Ch,Ψ, ρ̄) is feasible only if Γ̃(d) , ρ̄−|d|Γ(d) is a
autocovariance function of a stationary Gaussian process.

Γ̃(d) can be potentially realized by an alternate HMM

ζ̃k+1 = (Aω/ρ̄)ζ̃k + ψ̃k, ∆ũk = Chζ̃k, (42)

Cov(ζ̃0) = AωCov(ζ̃0)ATω + Ψ, (43)

ψ̃k ∼ N (0,Cov(ζ̃0)−AωCov(ζ̃0)ATω/ρ̄
2). (44)

Note, that if ρ(Aω) > ρ̄, (42) can not be a stationary
process. This HMM can be realized if and only if Cov(ζ̃0)−
AωCov(ζ̃0)ATω/ρ̄

2 is positive semidefinite. Intuitively, if
ρ(Aω) is marginally less than ρ̄, there is a larger chance
that Cov(ζ̃0)−AωCov(ζ̃0)ATω/ρ̄

2 is positive semidefinite.
Remark 11: When ρ̄ = 1, Assumption 1, introduces no

relaxation. In fact, the resulting formulation optimizes all
stationary Gaussian processes in general. However, in the
case ρ̄ = 1, we will prove that the resulting Gaussian process
{∆uk} is entirely deterministic except for the initial water-
mark. A lower parameter ρ̄ reduces average performance, but
prevents an attacker who learns or guesses the current hidden
state from adequately predicting future watermarks.
We arrive at a relaxed formulation to (41) below.

Theorem 12: Consider the control system (1) with IID
Bernoulli and stationary Gaussian watermark (14). Sup-
pose pd is chosen so that the system has finite cost J(b)

[19][Theorem 3] in the absence of a Gaussian watermark. An
equivalent formulation to (41) after replacing the constraint
ρ(Aω) ≤ ρ̄ with Assumption 1 is given by

maximize
ω,H,pd

tr(CF2(ω,H, pd)C
T )

subject to J(b)(pd) + F1(ω,H, pd) ≤ δ,
0 ≤ pd ≤ 1, 0 ≤ ω ≤ 0.5,

H ∈ Cp×p, H � 0.

(45)

where

F2(ω,H, pd) = 2Re
(
2sym

[
L1(M2HB

T )
]

+ L1(BHBT )
)

F1(ω,H, pd) = tr(UΘ) + tr((W + p̄dL
T
(b)UL(b))F2),

Θ(ω,H, pd) = 2Re (2sym [p̄dM1H] + p̄dH) ,

M2 = p̄dρ̄s(A+BL(b))
[
I − sρ̄(A+ p̄dBL(b))

]−1
B,

M1 = p̄dρ̄sL(b)

[
I − sρ̄(A+ p̄dBL(b))

]−1
B,

L1(X) = p̄d
(
(A+BL(b))L1(X)(A+BL(b))

T +X
)

+ pdAL1(X)AT ,

sym(X) =
X +XT

2
, s = exp(2πjω), p̄d = 1− pd.

There is also an optimal solution (H∗, ω∗, pd∗) such that
H∗ = hhH where hH denotes the conjugate transpose of
h ∈ Cp. Letting Re and Im be the real and imaginary parts
of a matrix/vector, respectively, an optimal Aω, Ch,Ψ is

Aω = ρ̄

[
cos(2πω∗) − sin(2πω∗)
sin(2πω∗) cos(2πω∗)

]
,

Ch =
√

2
[
Re(h) Im(h)

]
, Ψ = (1− ρ̄2)I. (46)

The proof is similar in nature to the proof of Theorem
6 in [9]. A sketch is found in [23]. For fixed pd and ω,



the proposed problem is an efficiently solvable semidefinite
program. To approximate a global maximum, we solve the
problem repeatedly over the space 0 ≤ ω ≤ 0.5 and
0 ≤ pd ≤ 1. For sufficiently large pd, the cost J̄ becomes
infinite in open loop unstable systems [18], limiting the
feasible space. We can account for natural packet drops in
the system as before. For instance, if the input is dropped
naturally with probability p′d, we have p′d ≤ pd ≤ 1.

Remark 13: An optimal watermark for a given pd 6= pd∗
may have better detection performance than the globally op-
timal watermark. Future work aims to use objective functions
that better highlight the relative performance of watermarks.

Remark 14: While packet drops at the sensor measure-
ments are not modeled in this paper, our framework could
be extended to address this behavior without significantly
changing the formulations of the proposed optimization
problems. The main effect of packet drops at the sensor
side is a time varying Kalman gain. The objective function
and increase in cost J̄ due to the Gaussian portion of the
watermark are not affected by time variations in the Kalman
gain in both watermarking settings. Both J(m) and J(b) can
be empirically evaluated for fixed (α, β) and pd, respectively,
to account for packet drops at the sensor measurements.

VII. SIMULATIONS

In this section, we illustrate the performance of the pro-
posed watermarking designs through extensive numerical
results. We tested our watermark designs in various randomly
generated systems and, unless otherwise stated, averaged
results over 1500 trials. Replay attacks are considered.

In Fig. 2, we utilize Watermark 1, which has a Marko-
vian drop process defined by parameters (α, β) and an IID
Gaussian watermark. The watermark is tested on a randomly
generated open loop stable system with 5 states, 4 inputs,
and 2 outputs. We plot the receiver operating characteristic
(ROC) curve for both the proposed correlation detector and a
χ2 detector. The χ2 detector serves as a benchmark, having
been previously used for attack detection [5], [8], [10], [16]
in watermarked systems. The threshold µ is chosen to be
a constant multiple of limk→∞E[yTk y

′
k]. The ROC curves

are collected at multiple different costs ∆J = 1.05J∗,
∆J = 0.45J∗ and ∆J = 0.15J∗. Here, ∆J represent the
increase in the cost J̄ relative to optimal cost J∗ without
drops or a Gaussian watermark. We compare a system with
drops (α = 0.69, β = 0.9) to a system without drops
(α = 1, β = 0). The proposed detector outperforms the
χ2 detector in all cases and packet drops improve the ROC
curve for both detectors. The improvement appears to be
higher for moderately valued ∆J before saturating. In Fig.
3, we plot the expected time to detection for both detectors
in a system with Watermark 1. The packet drop process
introduces an additional delay in the time to detection though
this additional time is less significant as ∆J is increased.

In Fig. 4, we introduce Watermark 2, which has IID
drops (with probability of drop pd) and a stationary Gaussian
watermark. The watermark is added to a randomly generated
open loop stable system with 6 states, 5 inputs, and 5 outputs.
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Fig. 2. Detection probability versus false alarm rate for χ2 and correlation
detectors for a system using Watermark 1.
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Fig. 3. Expected time to detection for χ2 and correlation detectors for a
system using Watermark 1.

We plot ROC curves generated by both the correlation
detector and χ2 detector for a system with drops (pd = 0.6)
and a system without drops (pd = 0), at various costs of
control ∆J = 0.95J∗, ∆J = 0.45J∗ and ∆J = 0.15J∗.
Time to detection plots are provided in Fig. 5. The results
and patterns observed here are similar to the results seen in
the system with Watermark 1.
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Fig. 4. Detection probability versus false alarm rate for χ2 and correlation
detectors for a system using Watermark 2.

In Figs. 6 and 7, we plot χ2 detector and correlation
detector statistics (averaged over 500 trials) during a fault
in the system. The fault introduced (at time 210) is a
constant additive bias added to a subset of sensors (i.e. due
to disturbances/sensor drift). While the χ2 detector raises an
alarm, the correlation detector does not since the watermark
is preserved in the system. This motivates the use of both the
correlation and χ2 detector to distinguish faults from attacks.
If both detectors raise an alarm, indicating the watermark is
absent in the outputs, we consider a likely attack scenario.
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Fig. 5. Expected time to detection for χ2 and correlation detectors for a
system using Watermark 2.

If only the χ2 detector raises an alarm, we expect that the
watermark is preserved while the dynamics are inconsistent
with modeling. As such, we anticipate a fault.
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Fig. 6. Average correlation detector and χ2 detector statistics under a fault
at the sensor output for a system using Watermark 1.
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Fig. 7. Average correlation detector and χ2 detector statistics under a fault
at the sensor output for a system using Watermark 2.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we showed how to incorporate Bernoulli
packet drops at the control input in the design of physical wa-
termarks. We argued that packet drops can be beneficial for
detection and consequently considered the design of a joint
Bernoulli-Gaussian watermark to detect integrity attacks.
We proposed two main watermark designs in conjunction
with a correlation detector and provided efficiently solvable
optimization problems to address the trade-off between de-
tection and control performances. In future work we aim to
generalize our watermarking approach to allow us to drop
either the entire control input or the Gaussian portion of the
watermark. We also hope to conduct testing in real systems.
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