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Abstract.
Reheating is a transition era after the end of inflation, during which the inflaton is

converted into the particles that populate the Universe at later times. No direct cosmological
observables are normally traceable to this period of reheating. Indirect bounds can however be
derived. One possibility is to consider cosmological evolution for observable CMB scales from
the time of Hubble crossing to the present time. Depending upon the model, the duration
and final temperature after reheating, as well as its equation of state, may be directly linked
to inflationary observables. For single-field inflationary models, if we approximate reheating
by a constant equation of state, one can derive relations between the reheating duration (or
final temperature), its equation of state parameter, and the scalar power spectrum amplitude
and spectral index. While this is a simple approximation, by restricting the equation of state
to lie within a broad physically allowed range, one can in turn bracket an allowed range of ns
and r for these models. The added constraints can help break degeneracies between inflation
models that otherwise overlap in their predictions for ns and r.
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1 Introduction

The inflationary paradigm [1–10] offers, in its numerous constructions (see e.g. [11]), a
testable [12, 13] description for the physics of the very early Universe. Inflation addresses
several open problems in cosmology, chief among them the question of the origin of cos-
mological structures. In its simplest realization, the Universe is dominated by the potential
energy of a light scalar field, the inflaton, that drives the expansion. In this picture, quantum
fluctuations of the scalar field during inflation are precisely the primary source of cosmolog-
ical perturbations [14–19]. The statistical properties of the Cosmic Microwave Background
(CMB) fluctuations and of the Large Scale Structures (LSS) may therefore contain infor-
mation about the physics of inflation. In addition to scalar density perturbations, inflation
generically produces tensor perturbations, resulting in a spectrum of primordial gravitational
waves which, via their impacts on the CMB and other astronomical sources, reveal informa-
tion about inflation [20–23].

The transition from inflation to later stages of the evolution of the Universe (radia-
tion and matter dominance) is referred to as reheating. During reheating the inflaton field
loses its energy, eventually leading to the production of ordinary matter. Several reheating
models have been proposed: the simplest ones, involve the perturbative decay of an oscil-
lating inflaton field at the end of inflation [24–26], while more intricate scenarios include
non-perturbative processes such as (broad) parametric resonance decay [27–29], tachyonic
instability [30–35], and instant preheating [36]1. The word preheating indicates the initial
stage of reheating, especially in the context where decay happens exponentially, generat-
ing high occupation numbers in select frequency bands. Immediately after preheating the
frequency bands that underwent parametric resonance will have extremely high occupation

1See also [37–40] for reviews and, e.g., [41, 42] for more studies on reheating.
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numbers while the rest of the space will be basically un-populated, a highly non-thermal
state. Over time, scattering events will spread out the distribution, eventually leading to a
blackbody spectrum characterized by a final temperature Tre, which normally corresponds
to the temperature at the beginning of the radiation-dominated era.

For some inflationary scenarios and for given interactions between the inflaton field and
other matter fields, numerical studies were performed to derive an effective equation of state
(eos). The eos is parametrized by a function wre(t) for the Universe during the various stages
of reheating. As inflation ends, the eos parameter is equal to −1/3. Assuming a massive
inflaton, very quickly the eos climbs to 0, the eos of a massive harmonic oscillator oscillating
between potential dominance (eos of −1) and kinetic dominance (eos of 1). During this initial
phase of reheating, the frequency of oscillations, characterized by the inflaton mass m, will be
larger than the expansion rate. It is therefore correct to approximate the eos of the inflaton
as a constant of 0. This is the equation of state of the Universe at the beginning of reheating
when the Universe is still dominated by the inflaton field. As the inflaton decays and the
decay products compose an increasing percentage of the energy density of the Universe, the
eos will increase from 0 to 1/3 at the start of radiation dominance. In [43] it was shown
that for a simple chaotic inflation model and for a quartic g2φ2χ2 interaction (φ being the
inflation and χ its decay product), the equation of state right after inflation, characterized by
wre = 0, sharply, within a couple efolds, changes to wre ∼ 0.2− 0.3 already during preheat-
ing, long before the system reaches thermal equilibrium2. The duration of preheating can
therefore generally be regarded as “instantaneous” in comparison with the remaining stages
of reheating. In cases like the ones described in [43] (see also [27]), wre may therefore be
rightfully treated as a constant throughout the entire reheating era.

Aside from its thermalization temperature, Tre, and effective equation of state, wre,
reheating is also characterized by its duration, which one may quantify in terms of e-foldings
Nre ≡ ln(are/aend), occurring between the time inflation ends, tend, and the beginning of the
radiation-dominated era, tre.

The reheating era is a difficult one to constrain observationally: except for some non-
conventional scenarios (e.g. [45–56]). In the absence of topological defects like monopoles or
strings, the fluctuations produced during reheating remain sub-horizon and cannot leave an
observable imprint at the level of the CMB or LSS. A lower bound is placed on the reheating
temperature by primordial nucleosynthesis (BBN) TBBN ∼ 10−2GeV [57]3; the scale of infla-
tion is merely bounded from above (the CMB B-modes recently measured by BICEP2 [59, 60]
do not yet, unfortunately, point to an inflationary signal) and can be as large as ∼ 1016GeV ,
leaving for Tre an allowed range of many orders of magnitude . Aside for the production of
metric fluctuations in the aforementioned scenarios, a variety of signatures (or lack thereof)
relative to the production of primordial black holes [61–63], magnetic field [64–66], unwanted
relics [67, 68] and also to mechanisms such as baryo-and leptogenesis [69–73] (and more, see
[39] for an overview and for a full list of related references), may be traced back to specific
preheating/reheating models.

2A physical system reaching an effective (macroscopic) state characterized by nearly constant ratio of
pressure over energy density while it is, microscopically, still out-of-equilibrium (“pre-thermalization”) had
been previously investigated in Minkowski spacetime in [44].

3Smaller values may be assigned to the lower bound of the reheating temperature in models such as [58].
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Another possibility for extracting information about reheating is to consider the expan-
sion history of the Universe between the time the observable CMB scales crossed outside the
Hubble radius during inflation and the time they later re-entered, in such a way as to define
a relation between inflationary and reheating parameters [74]

ln

[
k

a0H0

]
= −Nk −Nre −NRD + ln

[
aeqHeq

a0H0

]
+ ln

[
Hk

Heq

]
. (1.1)

In this equation, k can be chosen as the pivot scale for a specific experiment, Nk is the num-
ber of e-foldings between the exit time of the modes at this pivot during inflation and the
end of inflation, Nre and NRD respectively indicated the e-folds between the end of inflation
and the end of reheating and between the end of reheating and the end of the radiation-
dominated era. From (1.1) one realizes that from the CMB constraints on the primordial
power spectrum (which would correspond to a prediction for Nk), for a given inflationary
model one would be able to infer the sum of NRD and Nre. To solve for Nre and NRD

individually one needs more information. For reheating models that can be parametrized by
a constant effective pressure to energy ratio wre, one can relate the density at the end of
inflation to the density at the end of reheating, and then assuming conservation of entropy
after reheating, to the temperature today. This way one obtains another equation with the
same two unknowns Nre and NRD that can be used to solve for each individually, or to
rework the equations to trade the quantity Nre for Tre, the temperature at the end of re-
heating. All of this is particularly straightforward for single-field models of inflation that are
entirely defined by the form of their potential. In summary, for a given inflationary model
and for given equations of state during reheating lying within a reasonable physically plau-
sible range, one may use the CMB data to place constraints on the reheating temperature
and its duration. These techniques have been successfully employed in several studies [75–82].

In the same spirit as [75–82], and using similar techniques as in [81] (where the attention
was directed specifically to inflation with power-law potentials, V (φ) ∼ φα), we consider the
constraints imposed by reheating on popular single field inflationary scenarios. We derive
predictions for the length of the reheating era, and the temperature at the end of reheating
for each model, assuming a constant equation of state during reheating. Accounting for the
lower bounds on Tre imposed by BBN and considering a physically plausible range of values
for wre (likely the average value will fall between 0 and 1

3) we use the relations between
reheating and inflationary parameters and the constraints on the primordial power spectrum
amplitude and tilt from Planck [12, 13] to provide new constraints on the parameter space
in given inflationary models. This is a useful and relatively new tool for constraining and
differentiating between inflation models. Models might overlap in predictions for ns and r,
but not for the same wre. As the constraints on ns gets tighter, this will translate into an
increasingly narrow allowed range for wre for a given inflation model, and so this technique
of constraining models with reheating will be increasingly efficient in ruling out some models
in favor of others.

This work is organized as follows: in Sec. 2 we detail the derivation of the reheating
duration and of the temperature at the end of reheating as a function of the spectral index, for
canonical single-field inflationary models and for reheating scenarios that can be described
in terms of a constant effective equation of state; in Sec. 3 we review the analysis of [81]
for a power law potential and we discuss the constraints from reheating on the inflationary
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parameters; in Secs. 4 through 7 we compute the relations between inflationary and reheating
parameters in the Starobinsky, Higgs, natural and hilltop inflation models and we discuss the
bounds placed on some of these models by reheating; in Sec. 8 we present our conclusions.

2 Calculating Nre and Tre

A reheating model (or class of models) may be characterized by a thermalization temperature
Tre, a duration, Nre (here defined in terms of the number of e-folds counted from the end
of inflation), and an equation of state with an effective pressure-to-energy-density ratio, wre.
The latter should have values larger than −1/3 for inflation to come to an end, and is assumed
to be smaller than 1 in order not to violate causality. A variety of reheating scenarios allow
for an equation of state that is nearly constant in time. For the purposes of this work we will
thus approximate wre as a constant in all our calculations; in our plots for Nre and Tre, we
assign to wre sample values ranging in the interval [−1/3, 1]. We define Nre as the time frame
from the end of inflation until the equation of state makes a step function transition from
the value wre it had during reheating to w = 1/3, which we define as the start of radiation
dominance. Tre is the temperature when this transition occurs. From this definition, Nre

and Tre are not well defined if the equation of state during reheating is also equal to 1/3
(we will discuss this case more later). Also, we assume a standard expansion history after
reheating, with a radiation-dominated (RD) era followed by a matter-dominated (MD) one.

We derive, following [75–82], an expression for the reheating parameters (Nre, Tre and
wre) in terms of a set of physical quantities that are specific to inflation and to the cosmolog-
ical epochs subsequent to reheating. Considering the evolution of the Universe between the
Hubble-exit time during inflation (henceforth indicated by tk) for observable scales and the
time of observation of the same scales (t0), one can write matching conditions for the total
energy density as well as for the scale factor, a(t), during the intermediate eras. Fig. (1)
summarizes the evolution of the comoving horizon distance throughout this length of time,
marked by the transitions between consecutive epochs at tend, the end of inflation, tre, the
end of reheating/beginning of RD era, and teq, the beginning of the MD era.

In the figure we equate the size the comoving horizon far back into inflation, correspond-
ing to modes l = 2, to the size of the horizon today. In order to solve the horizon problem,
the span of comoving scales that leave the horizon from l = 2 to the end of inflation must
equal the span of comoving scales that reenter the horizon after inflation till today. Note the
factor by which the comoving horizon shrinks between scales l = 2 and the end of inflation
(the length of the first line in the figures) is not known. The slope of that line is set by the
fact that the equation of state is ≈ −1 during inflation. Depending on the model, that line
could be longer or shorter. While there is a minimum length in order to solve the horizon
problem while having Inflation occur before BBN, there is no upper bound. The value of
wre will set the slope of the second line, the rate by which modes reenter the horizon during
reheating. In the figure we display the two extreme cases of wre = 1 and wre = −1/3. One
can see from comparing the two plots, the smaller wre is during reheating, the less efficiently
modes re-enter the horizon, and the more efolds will be necessary in the post-inflation period.

We consider single-field inflationary models with background field equations, φ̈+3Hφ̇+
V
′

= 0 and 3H2M2
P ' V (φ). We also assume that both ε and η remain smaller than 1

throughout the inflationary regime.
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Figure 1: Each figure shows the evolution of the comoving horizon distance over time.
Each figure shows the extreme cases for wre: the first figure for wre = 1 and the second for
wre = −1

3 .

If one assumes a constant equation of state, the change in the scale factor during reheating is
easily related to the change in the energy density. Using ρ ∝ a−3(1+w), the reheating epoch
is described by

ρend
ρre

=

(
aend
are

)−3(1+wre)
, (2.1)

where the subscript end refers to the end of inflation (the start of reheating), and re refers
to the end of reheating. Writing this in terms of e-foldings

Nre =
1

3(1 + wre)
ln

(
ρend
ρre

)
=

1

3(1 + wre)
ln

(
3

2

Vend
ρre

)
, (2.2)

where the last step of (2.2) is obtained by replacing ρend = (3/2)Vend, derived by setting
w = −1/3 at the end of inflation.
The temperature is related to the density by

ρre =
π2

30
greT

4
re, (2.3)

where gre is the number of relativistic species at the end of reheating. Combining Eqs. (2.2)
and (2.3) one finds

Nre =
1

3(1 + w)
ln

(
30 · 32Vend
π2greT 4

re

)
. (2.4)

Making the standard assumption that entropy is conserved between the end of reheating
and today, one can relate the reheating temperature to the temperature today by taking
into account the changing number of helicity states in the radiation gas as a function of
temperature,

Tre = T0

(
a0
are

)(
43

11gre

) 1
3

= T0

(
a0
aeq

)
eNRD

(
43

11gre

) 1
3

, (2.5)
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where NRD is the length in e-folds of radiation dominance, e−NRD ≡ are/aeq. The ratio
a0/aeq can be rewritten as

a0
aeq

=
a0Hk

k
e−Nke−Nree−NRD , (2.6)

where one uses the relation k = akHk for the time at which the pivot scale k 4 crosses outside
the Hubble radius and Nk is defined as the number of e-foldings between the latter and the
time inflation ends. Inserting (2.6) into (2.5) one finds

Tre =

(
43

11gre

) 1
3
(
a0T0
k

)
Hke

−Nke−Nre . (2.7)

Notice that larger values of Nre corresponds to smaller Tre and vice versa. In other words, as
expected, the quicker and more efficiently reheating takes place, the larger the temperature.
Plugging (2.7) into Eq. (2.4)

Nre =
4

3(1 + wre)

1

4
ln

(
32 · 5
π2gre

)
+ ln

V 1
4
end

Hk

+
1

3
ln

(
11gre

43

)
+ ln

(
k

a0T0

)
+Nk +Nre

 .
(2.8)

One can first solve for Nre assuming wre 6≡ 1
3

Nre =
4

(1− 3wre)

−1

4
ln

(
32 · 5
π2gre

)
− 1

3
ln

(
11gre

43

)
− ln

(
k

a0T0

)
− ln

V 1
4
end

Hk

−Nk

 .
(2.9)

Notice that the values of the last two terms in Eq. (2.9) depend on the specific inflationary
model. Assuming gre ≈ 100 and using Planck’s pivot of 0.05Mpc−1 5, one obtains a simplified
expression for Nre, before specifying a particular inflationary model:

Nre =
4

(1− 3wre)

61.6− ln

V 1
4
end

Hk

−Nk

 . (2.10)

One can then use Eq. (2.7) to obtain

Tre =

[(
43

11gre

) 1
3 a0T0

k
Hke

−Nk
[

32 · 5Vend
π2gre

]− 1
3(1+wre)

] 3(1+wre)
3wre−1

. (2.11)

4Note in the following when we repeatedly refer to the pivot scale, we will use throughout Planck’s pivot
scale of 0.05Mpc−1.

5The convention in the Planck analysis defines the pivot scale such that the comoving momentum k becomes
horizon sized when ka0 = aH, where we have been using k = aH, so using our conventions k

a0
= 0.05Mpc−1.
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2.1 Special case wre =
1
3

The final result for Nre in Eq. (2.10) only applies for wre 6≡ 1/3. Going back to Eq. (2.8),
notice that if wre = 1

3 , Nre cancels from both sides of the equation, and one is left with

0 =
1

4
ln

(
30

π2gre

)
+

1

4
ln

(
3

2

)
+ ln

V 1
4
end

Hk

+
1

3
ln

(
11gre

43

)
+ ln

(
k

a0T0

)
+Nk . (2.12)

Assuming gre = 100, and Planck’s pivot scale, this simplifies to:

61.6 = ln

V 1
4
end

Hk

+Nk . (2.13)

For w = 1/3, it is not possible to derive a prediction for Nre or Tre but instead, for a
particular inflation model, one finds a prediction for ns. Note the ambiguity in Nre and Tre
is due to the fact that we are defining the start of radiation dominance as the moment wre
reaches 1/3. If wre is already equal to 1/3 during reheating, then there is ambiguity in when
to differentiate between the two regimes.

2.2 Model dependent part

In order to solve for Nre in Eq. (2.10) (or to solve for ns in Eq. (2.13) if wre = 1/3) for a
particular model, one needs to compute Nk, Hk, and Vend. Nk can be calculated starting
from the definition of e-foldings:

∆N =

∫
Hdt . (2.14)

Recasting the r.h.s. of (2.14) as an integral over φ and using the background equation of
motion for the inflaton, 3Hφ̇ + V ′ ' 0, and the Friedmann equation, H2 ' V/(3M2

P ), one
finds

Nk '
1

M2
P

∫ φk

φend

V

V ′
dφ . (2.15)

Next, Hk can be written as a function of ns. Using the definition of the tensor-to-scalar ratio
r = Ph/Pζ (where Ph = (2H2)/(π2M2

P ) and Pζ = As at the pivot scale)

rk =
2H2

k

π2M2
PAs

. (2.16)

Then using r = 16ε this gives

Hk ' πMP

√
8Asεk. (2.17)

Once the form of V (φ) is specified for a given model, one can express Vend as a function of
model parameters calculated at the pivot scale. The explicit form of Vend along with (2.15)
and (2.17) can be plugged into Eqs. (2.10) and (2.11) to derive Nre and Tre as a function of
inflationary model parameters (or into Eq. (2.13) in the case wre = 1/3).

– 7 –



3 Polynomial potentials

Consider a polynomial type potential

V =
1

2
m4−αφα. (3.1)

This was considered in the context of reheating in [11, 75, 77, 81, 82]. We quickly review this
specific application. At the end of this section, we discuss with some quantitative examples
how closely the constraints from inflation compare to the ones from reheating.
The first step is to calculate the model dependent parameters in Eq. (2.10), i.e. Nk, Hk, and
Vend. The number of e-folds between the time the pivot scale exited the Hubble radius and
the end of inflation can be derived using Eq. (2.15)

Nk =
1

2αM2
P

(
φ2k − φ2end

)
. (3.2)

The potential in these polynomial models is generally steep enough so that φk � φend and
it is appropriate to approximate

Nk ≈
1

2αM2
P

φ2k . (3.3)

We now require Nk as a function of ns. From the expression of the spectral index as a function
of the slow-roll parameters, ns = 1−6ε+2η (where ε = (M2

P /2)(V ′/V )2 and η = M2
PV
′′/V ),

and using (3.3) to rewrite ε and η as functions of Nk, one finds

Nk =
α+ 2

2(1− ns)
. (3.4)

From Eq. (2.17) and using the previous equation, Hk is given by

Hk = πMP

√
4πAs
α+ 2

(1− ns). (3.5)

Lastly one computes Vend in terms of ns and As,

Vend = 3M2
PH

2
k

φαend
φαk

= 6π2M4
PAs(1− ns)

(
α(1− ns)
2(α+ 2)

)
, (3.6)

where the value of the inflaton field at the end of inflation was computed by solving for φend
from the condition ε = 1.

Thus Nk, Hk, and Vend are all expressed as functions only of α, ns and As and one
may plot Nre (and Tre) as a function of ns for some fixed values of wre and α. We use
ns = 0.9682 ± 0.0062 and Planck’s central value As = 2.196 × 10−9 (small variations in As
have negligible effects on reheating predictions).

We plot in Fig. 2 Nre and Tre predictions for α = 2/3, 1, 2 and 4. The case α = 2/3 is
favored by axion-monodromy models, and α = 1 and α = 2 give promising predictions when
compared with the Planck data. The case α = 4 is difficult to reconcile with wre ≤ 1 even

– 8 –



�

��

��

��

��

��

��

��

�
��

�= �
�

�	
� �	
� �	
� �	
� �	


�	��

���	��

���

����

����

��

� �
�
[�
��

]

�

��

��

��

��

��

��

��

�
��

�=�

�	
� �	
� �	
� �	
� �	


�	��

���	��

���

����

����

��

� �
�
[�
��

]

�

��

��

��

��

��

��

��

�
��

�=�

�	
� �	
� �	
� �	
� �	


�	��

���	��

���

����

����

��

� �
�
[�
��

]

�

��

��

��

��

��

��

��

�
��

�=�

�	
� �	
� �	
� �	
� �	
� �	
� �	


�	��

���	��

���

����

����

��

� �
�
[�
��

]

Figure 2: Plots of Nre and Tre, the length of reheating and the temperature at the end
of reheating respectively, for polynomial potentials with exponent α. The solid red line
corresponds to wre = −1/3, the dashed green line to wre = 0, the dotted blue line to
wre = 2/3, and the dot-dashed black line to wre = 1. The pink shaded region corresponds to
the 1σ bounds on ns from Planck. The purple shaded region corresponds to the 1σ bounds of
a further CMB experiment with sensitivity ±10−3 [83, 84], using the same central ns value as
Planck. Temperatures below the dark green shaded region are ruled out by BBN. The light
green shaded region is below the electroweak scale, assumed 100 GeV for reference. This
region is not disallowed but would be interesting in the context of baryogenesis.

considering the 2σ bounds on ns
6.

Instantaneous reheating is defined as the limit Nre → 0, visualized in the figure as the point
where all the lines converge. Such instantaneous reheating leads to the maximum temperature
at the end of reheating, and the equation of state parameter is irrelevant.
(Thus, while not shown, a wre = 1

3 solution would correspond to a vertical line passing
through the instantaneous reheat point.)

From Fig. 2, α = 2/3 can be consistent with Planck bounds, but assuming an equation
of state wre ≥ 0, the model would tend to predict smaller reheating temperatures if one
considers Planck’s 1σ bound on ns; using Planck’s 2σ bounds, any reheating temperature up

6An exception where φ4 may still be viable is in the context of warm inflation [85, 86].
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to the maximum instantaneous case is still allowed.
For α = 1 and α = 2 all the lines in Fig. 2 are shifted towards the central value of ns

when compared to the α = 2/3 case, thus allowing for a wider range of reheating tempera-
tures as well as values of the equation of state parameter.

Consider now the case wre = 1/3. Solving Eq. (2.13) for the polynomial potential, one
obtains

61.6 =
1

4
ln

(
3α

4π2As(α+ 2)

)
+

α+ 2

2(1− ns)
. (3.7)

Using Planck’s central value for As, Eq. (3.7) gives specific predictions for ns
ns = 0.977 for α = 2

3 ,

ns = 0.974 for α = 1 ,

ns = 0.965 for α = 2 .

(3.8)

Notice that larger values of α require smaller values of ns. With the 2σ bounds on ns from
Planck, 0.956 < ns < 0.981, wre = 1

3 would be consistent with all three values of α.
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Figure 3: Parameter space for φ2/3 inflation. The figures show r and Nk predictions that
give the correct As for the plotted ns at the pivot scale. The green portion of the line
comprises the region of parameter space corresponding to reheating models with wre > 1,
the yellow part corresponds to wre > 1/3, red to wre < 1/3 and orange to wre < 0. Note the
most likely wre, between 0 and 1/3, falls in the red region.
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Figure 4: Parameter space for φ inflation. Shading is as for Fig. (3).
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Figure 5: Parameter space for φ2 inflation. Shading is as for Fig. (3).

Figs. 3-5 shows the parameter space in the r and Nk vs. ns plane, corresponding to
the different reheating scenarios. We allow for any Nk > 19. We note again that there is
no maximum allowed Nk. A minimum on Nk is determined by the temperature at the end
of reheating in order to solve the horizon and flatness problems. One finds that N > 24.9 if
reheating after inflation is to be above the BBN scale and N > 34.8 for reheating above the
electroweak scale in order for scales on the order of the horizon today ( i.e l = 2) to have left
the horizon during inflation. A simple estimate of the ratio of expansion scales between l = 2,
and Planck’s pivot scale, at l ≈ 685.8, if the expansion rate during Inflation were constant,
is ∆N ≈ ln(l2/l1) ≈ 6.5. However, in the large field modes we are considering, the variation
in H is not negligible and the exact ∆N = ln(k2H1

k1H2
) is closer to ∆N ≈ 5.9. This means that

for reheating greater than the BBN scale, one finds Nk ≥ 19 (or Nk ≥ 29 for reheating above
the electroweak symmetry breaking scale).

The green part of the line in Fig. 3 corresponds to the region of parameter space that
requires reheating models with wre larger than one, the yellow part corresponds to wre > 1/3,
red to wre < 1/3 and orange to wre < 0. We stress that a value of wre between 0 and 1/3 is
most likely and these solutions fall in the red band in Fig. 3.
One can see that requiring 0 ≤ wre ≤ 1/3 corresponds to respectively setting an upper and
a lower bound on the tensor-to-scalar ratio

0.05 ≤ r ≤ 0.06 for α = 2
3 ,

0.07 ≤ r ≤ 0.09 for α = 1 ,

0.14 ≤ r ≤ 0.18 for α = 2 .

(3.9)

Since it now appears that the majority of BICEP2’s signal is comprised of dust [87], it is
difficult to find a viable reheating scenario for φ2 inflation; if we loosen our restriction to just
requiring wre < 1 then one obtains a bound r ≥ 0.11, which is just inside the 2σ limit [87].

The assumption 0 ≤ wre ≤ 1/3 results in tighter constraints on r than Planck’s 2σ
bound on ns alone. For φ2, the ns 2σ bound yields 0.08 ≤ r ≤ 0.18. Restricting wre also
provides stronger constraints on Nk: for φ2, the ns 2σ bound yields 45 ≤ Nk ≤ 103, whereas
0 ≤ wre ≤ 1/3 yields 44 ≤ Nk ≤ 57.
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4 Starobinsky model

The action for the Starobinsky model [1] has the form

S =

∫
d4x
√
−g
[
M2
P

2
(R+ αR2) + Lmatter

]
, (4.1)

where R is the Ricci scalar. Performing a conformal transformation [88, 89]

g̃µν = ω2gµν , (4.2)

where ω2 = 1 + 2αR, the action (4.1) is rewritten as the canonical Einstein-Hilbert action
plus other terms which form a modified Lmatter

S =

∫
d4x
√
−g̃
[
M2
P

2

[
R̃− αφ2

(1 + 2αφ)2
− 6α2

(1 + 2αφ)2
(∂̃φ)2

]
+ Lmatter

]
, (4.3)

where what we now call φ is equal to R, the original, untransformed Ricci scalar. Notice that
∂̃α carries factors of the metric, therefore 6≡ ∂α. Next one defines φ̄, a canonically normalized
version of φ

φ̄ =

√
3

2
MP ln(1 + 2αφ). (4.4)

Rewriting the action in terms of φ̄ one finds

S =

∫
d4x
√
−g̃

[
M2
P

2

[
R̃− 1

4α

(
1− e−

√
2
3

φ̄
MP

)2
]
− 1

2
(∂̃φ̄)2 + e

−2
√

2
3

φ̄
MP Lmatter

]
. (4.5)

If one assumes that the other fields in Lmatter are subdominant during inflation and can be
ignored, then one can verify that this Einstein frame action behaves as normal gravity plus
a canonical scalar field with the potential

V =
M2
P

8α

(
1− e−

√
2
3

φ̄
MP

)2

. (4.6)

Dropping the bar on φ from now on, but continuing to work with the canonical version of
the field, one can easily compute the number of e-foldings between the horizon exit of the
pivot scale and the end of inflation

Nk =
1

M2
P

∫ φk

φend

V

V ′
dφ =

1

2M2
P

√
3

2

[
MP

√
3

2
e

√
2
3

φ
MP − φ

] ∣∣∣φk
φend

. (4.7)

With the approximations φk � φend, and MP e

√
2
3

φk
MP � φk , the previous expression simpli-

fies to

Nk =
3

4
e

√
2
3

φk
MP (4.8)

which can be inverted for φk

φk =

√
3

2
MP ln

(
4

3
Nk

)
(4.9)
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The next step is to compute εk and ηk in order to derive Nk as a function of ns using
ns = 1− 6ε+ 2η. The slow-roll parameters have the following form

εk '
3

4N2
k

, ηk = − 1

Nk
, (4.10)

where Eq. (4.9) was used along with the approximation Nk � 1. From Eq. (4.10) then one
finds

Nk =
2

1− ns
. (4.11)

Using the expressions above, one derives Hk as a function of ns and As

Hk = πMP

√
3

2
As(1− ns), (4.12)

Vend =
9

2
π2M4

PAs(1− ns)2

(
1√

3
2
+1

)2

(
1− 3

8(1− ns)
)2 (4.13)

Eqs. (4.11)-(4.13) are all that is needed to derive the results for the duration and for the
temperature of reheating.
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Figure 6: Plots of Nre and Tre, the length of reheating and the temperature at the end of
reheating respectively, for Starobinsky and Higgs inflation. All curves and shaded regions
are as for Fig. 2

Fig. 6 shows good compatibility with Planck’s 1σ bounds on ns for all the possible wre
values. Also, if one does not put any restrictions on the value of wre then any temperature
between the BBN bound and the instantaneous reheating value is allowed within the 1σ
bound.
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Figure 7: Parameter space for Starobinsky inflation. Shading is as for Fig. 3.

We plot in Fig. 7 the parameter space in the r and Nk vs. ns plane for Starobinsky inflation,
for different ranges of wre

7. For 0 < wre < 1/3, the corresponding range for the spectral
index is 0.953 < ns < 0.964. This also corresponds to the range 0.004 ≤ r ≤ 0.007 and
42 ≤ Nk ≤ 56.

5 Higgs Inflation

The idea behind Higgs inflation [90] is to allow the Standard Model Higgs field to be the
inflaton by adding a non-minimal coupling to gravity. The Jordan frame action is

S =

∫
d4x
√
−g
[
M2
P

2
R

(
1 + 2ξ

H†H

M2
P

)
+ Lmatter

]
, (5.1)

where H is the Higgs doublet. We may again perform a conformal transformation to write the
action in the form of Einstein gravity plus a modified Lmatter. The transformation is given
by g̃µν = ω2gµν with ω2 = 1 + 2ξH

†H
M2
P

. Rewriting the action in terms of the transformed

metric, we find

S =

∫
d4x
√
−g̃
[
M2
P

2
R̃− 3ξ2

ω4M2
P

(
∂̃H†H

)2
+

1

ω4
Lmatter

]
. (5.2)

Next, one extracts the kinetic and potential terms for the Higgs field contained within Lmatter.
One can use Vh = λ

4 (H†H − ν2

2 )2, dropping the ν part (we are interested in inflation scales
much larger than electroweak scale). Ignoring all the Higgs interactions with other fields,
and only considering its self coupling (which we assume is the dominant term in the Higgs
potential at inflation scales)

S =

∫
d4x
√
−g̃
[
M2
P

2
R̃− 3ξ2

ω4M2
P

(
∂̃H†H

)2
− 1

ω4

(
∂H†

)2
− λ

4ω4

(
H†H

)2
+

1

ω4
Lmatter

]
,

(5.3)

where now Lmatter comprises all the matter fields except the Higgs. Note: one needs to
convert ∂α → ω2∂̃α. The Higgs is no longer canonical because of the effect of the non-
minimal coupling. To canonically normalize all four of the Higgs degrees of freedom, one

7See also [11, 82] for ns vs r plots in the Starobinsky model for wre = 0.
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must work in unitary gauge, where three of the four degrees of freedom are equal to zero,

H = 1√
2

(
0
h

)

S =

∫
d4x
√
−g̃
[
M2
P

2
R̃− 3ξ2h2

ω4M2
P

(
∂̃h
)2
− 1

2ω2

(
∂̃h
)2
− λ

4ω4
h4 +

1

ω4
Lmatter

]
. (5.4)

The canonically normalized version of h is h̄, defined as

∂h̄

∂h
=

1(
1 + ξ

M2
P
h2
)√1 +

ξ

M2
P

h2(6ξ + 1). (5.5)

Before integrating the previous equation, it is useful to introduce a few approximations. First
one uses 6ξ � 1. To get a successful inflation model, one should require ξ ≈ 104. Next one
uses the condition (6ξ)/(M2

P )h2 � 1. h ≈ MP when inflation ends, and therefore h > MP

for the duration of inflation. This allows one to rewrite Eq. (5.5) as

h̄ =

√
6ξ

MP

∫
dh

h

1 + ξh2

M2
P

, (5.6)

which integrates to

h̄ =

√
3

2
MP ln

(
1 +

ξh2

M2
P

)
. (5.7)

Rewriting the action in terms of h̄, one finds

S =

∫
d4x
√
−g̃

[
M2
P

2
R̃− 1

2

(
∂̃h̄
)2
−
λM4

P

4ξ2

(
1− e−

√
2
3

h̄
MP

)2

+ e
−2

√
2
3

h̄
MP Lmatter

]
, (5.8)

The potential term for the canonical field takes the same form as the Starobinsky potential
with the identification (1)/(8α) = (λM2

P )(4ξ2). Since we have a canonical field evolving
in the same potential as the Starobinsky case, the Higgs inflation model gives the same
predictions for Nre and Tre (see also [11, 82]). We note Starobinsky and Higgs inflation have
different low scale behavior [91–95] and so while the allowed parameter space as a function
of wre is the same, the wre that is most likely for Starobinsky vs. Higgs inflation is likely to
differ. Tighter constraints could be obtained by considering gravitational, Planck suppressed
couplings in the Starobinsky case, and standard model couplings in the Higgs case [91–93].
Of course new physics may modify the running of the couplings or add new couplings at
these high scales (see for example [94]); in this respect, our approach of characterizing an
allowed parameter space by assuming a range of wre between 0 and 1/3 can usefully help
bracket different allowed scenarios.

6 Natural Inflation

The potential for natural inflation is [96]

V (φ) = Λ4

[
1 + cos

(
φ

f

)]
. (6.1)
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The number of e-folds Nk between the time the pivot scale modes crossed outside the horizon
and the end of inflation is given by

Nk =

(
f

MP

)2

ln

[
sin2 (χend/2)

sin2 (χin/2)

]
(6.2)

where χ ≡ φ/f . The slow-roll parameters have the following form

ε =
1

2

(
MP

f

)2 [1− cos(χ)

1 + cos(χ)

]
, η = −

(
MP

f

)2 cosχ

1 + cosχ
. (6.3)

The field value at the end of inflation can be determined by setting ε = 1; this leads to the
following equation for χend

1

2

M2
P

f2
sin2 (χend)

[1 + cos (χend)]
2 = 1. (6.4)

The solution is

cos(χend) =
−1 + b

1 + b
, b ≡

(
MP√

2f

)2

, (6.5)

The number of e-folds in Eq. (6.2) can be written as

Nk =

(
f

MP

)2

ln

[
1− cos(χend)

1− cos(χin)

]
=

(
f

MP

)2

ln

[
2

(1 + b)

1

(1− cos(χin))

]
. (6.6)

The value of the field at the pivot scale during inflation is then given by

cos(χin) = 1− z , z ≡ 2

(1 + b)
exp

[
−Nk

(
MP

f

)2
]
. (6.7)

Using (6.3) and (6.7), one finds

ns − 1 ≡ −6ε+ 2η = −
(
MP

f

)2(2 + z

2− z

)
, (6.8)

which leads to

Nk = −
(

f

MP

)2

ln

(1 +
M2
P

2f2

)(1− ns)−
M2
P

f2

(1− ns) +
M2
P

f2

 . (6.9)

Notice that the previous expression is positive and real only if the argument of the logarithm
is defined between zero and one

0 <

(
1 +

M2
P

2f2

)(1− ns)−
M2
P

f2

(1− ns) +
M2
P

f2

 < 1. (6.10)

The conditions (6.10) are equivalent to requiring that(
f

MP

)2

>
1

(1− ns)
and 3 + ns +

(
MP

f

)2

> 0. (6.11)
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The second condition in (6.11) is always true. The first condition implies a minimum f for
each ns, and the bound on f increases with increasing ns. Using the central value for the
Planck constraints on the spectral index, then (6.11) gives f > 5.6MP .

The tensor-to-scalar ratio can be expressed in terms of ns

r = 16 ε = 4

[
(1− ns)−

M2
P

f2

]
. (6.12)

Using Vin = Λ4 [1 + cos(χin)] ' 3H2M2
P , one finds

Vend = 3H2M2
P

1 + (1− ns)
(

f
MP

)2
2 + 4

(
f
MP

)2
 . (6.13)
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Figure 8: We show Nre and Tre, the length of reheating and the temperature at the end of
reheating respectively, for natural inflation, for 3 values of the coupling f . Again, shading is
as in Fig. 2

Fig. 8 shows Nre and Tre solutions for various reheating parameters wre and for various
couplings f in natural inflation. Unlike polynomial inflation, or Starobinsky/ Higgs inflation,
natural inflation has an extra free parameter, and so one no longer gets a precise prediction
for the temperature and length of reheating once a reheating model, wre, and ns are specified.
But one can get reasonable bounds on the coupling f such that a viable reheating model
exists.

One can obtain separate, and stronger constraints on f based on the requirement for
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viable reheating. These constraints likewise are functions of ns, and their effects are displayed
in Figure 98.

There is no upper limit on f . For f & 14MP the various wre lines reach an asymptotic
form. As a result even for very large f , there is a valid solution for each wre value consistent
with Planck’s 1σ bounds. The asymptotic solution for large f for 0 ≤ wre ≤ 1/3 corresponds
to a solution for the spectral index in the range 0.956 ≤ ns ≤ 0.965.
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Figure 9: Representation of the r and Nk vs. ns plane for natural inflation. The colored
region is the entire allowed parameter space that can produce the measured As value at the
pivot scale, and the ns value at the pivot scale as plotted. Shading again follows Fig. 3

Note the minimum on f increases with increasing ns, such that for larger ns, a larger f
is needed to find a solution consistent with the reheating model being considered. The top
limit in Fig. 9 A (the bottom limit in Fig. 9 B) is approached asymptotically for large f . The
bottom part of the parameter space in Fig. 9 A (top part in Fig. 9 B) corresponds to small
f . Everywhere in the figure Nk > 19, such that inflation lasts long enough to allow for BBN.

Using Planck’s 2σ bounds on ns, requiring wre ≤ 1 gives r ≥ 0.02, and requiring
wre ≤ 1/3 gives r ≥ 0.05. For wre ≤ 1/3, values of ns smaller than Planck’s central value
would be favored for any f . The weakest constraint is for large values f , for which ns ≤ 0.965.

7 Hilltop inflation

The potential is given by [4, 97]

V (φ) = M4

[
1−

(
φ

µ

)p]
. (7.1)

We begin by considering p > 2. The exact expression for the number of e-foldings
between the time the pivot scale crossed outside the horizon and the end of inflation is

Nk =
µ2

2pM2
P

[
χ2
in − χ2

end +
2

p− 2
χ2−p
in − 2

p− 2
χ2−p
end

]
. (7.2)

8See also [11, 82] for ns vs r plots in the natural inflation model for wre = 0.
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where one defines χ ≡ φ/µ.
The slow-roll parameters are

ε =
p2

2

M2
P

µ2
χ2(p−1)

(1− χp)2
, η ≡ −p(p− 1)

M2
P

µ2
χp−2

(1− χp)
. (7.3)

Setting ε = 1 at the end of inflation one derives the equation for χend

p2

2

M2
P

µ2
χ
2(p−1)
end(

1− χpend
)2 = 1. (7.4)

Let us consider the case where µ > MP and define q ≡MP /µ. For small values of q, one can
search for a solution for χend in the form of a Taylor expansion around q = 0

χend = a0 + a1 q +
1

2
a2 q

2 +O(q3). (7.5)

One can show that, up to order q2, a solution to Eq. (7.4) is (see e.g. [11])

χend = 1− 1√
2
q +

(p− 1)

4
q2. (7.6)

Similarly, one can look for a solution for the initial value of the scalar field using (7.6) and
(7.2), to find

χin = 1−
√

1 + 4Nk

2
q +O(q2). (7.7)

Using (7.6) in the expression for the slow-roll parameters, (7.3), the spectral index as a
function of Nk is

ns − 1 ' − 6

1 + 4Nk
, −→ Nk '

1

4

(
6

1− ns
− 1

)
. (7.8)

The tensor-to-scalar ratio is

r ' 8

3
(1− ns). (7.9)

Notice that (7.8) and(7.9) only apply for small values of q, more precisely for

q <

√
2

(p− 1)
√

1 + 4Nk
. (7.10)

For p ∈ (3, 8) and for Nk ∈ (30, 100), the previous condition is satisfied if q ≤ 0.01.
Within the same range of validity, the potential at the end of inflation is given by

Vend '
√

3

2
H2M2

P

√
1− ns. (7.11)

For p ≤ 2 one derives the same results as Eqs. (7.8)-(7.9) and (7.11). For p = 2, however, a
new expression for Nk is required. In this case we find

Nk =
µ2

2M2
P

[
χ2
in

2
−
χ2
end

2
− lnχin + lnχend

]
. (7.12)
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Figure 10: Plots of Nre and Tre, for hilltop inflation with p = 2 and for three different
values of µ. Shading is as in Fig. 2

The plots for hilltop inflation are derived using a numerical procedure and therefore they
convey more information than one would obtain with the above analytic results since they
cover a range in which the latter would not apply (i.e. for smaller values of µ)9.

Note that for p = 1 the potential is just a straight line, and so should give the same predic-
tions as the V ∝ φ inflation model considered above. In Figs. 10-12 we therefore plot Nre

and Tre for various reheating scenarios parametrized by wre, and various values of µ for p = 2
and larger.

Just as with natural inflation, hilltop inflation has two free parameters, in this case M and
µ. This extra freedom means for each different p value, there are µ values that are readily
consistent with Planck data and µ values that are not. One can give bounds on µ for each p
model such that reasonable reheating solutions exist, and these results are shown in Figure
13 and 14.

As with the bound on f for natural inflation, there is a minimum on µ required for p = 2
to get any solution at all, even before reheating is considered, and that bound is a function

9Notice that hilltop inflation was previously studied in the context of reheating in [11, 77, 82].
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Figure 11: Plots of Nre and Tre, for hilltop inflation with p = 3 and for three different
values of µ. Shading is as in Fig. 2

of ns. This µmin corresponds to r → 0, so in this case there is no minimum on r before
reheating is considered. For p = 3, 4 there is no such minimum on µ to get a solution in the
regime µ ≥MP . There appears to be no observational constraint from Planck for very large
values of µ.

The upper bounds in the plots in Figure 13 (the lower bounds in Figure 14) correspond
to larger µ, and the lower bounds in Figure 13 (or the upper bounds in Figure 14) correspond
to smaller µ. Using the 2σ bounds on ns and requiring wre ≤ 1/3 gives the following lower
bounds on the tensor-to-scalar ratio: r ≥ 0.02 (for p = 2) and r ≥ 0.007 (p = 3) and r ≥ 0.003
(p = 4). Using the central value of ns and requiring wre ≤ 1/3 gives the bounds: r ≥ 0.03
(for p = 2 and p = 3) and r ≥ 0.02 (p = 4). The region in parameter space that is associated
with these more likely values of wre then allows for fairly small r values.

8 Discusion and Conclusions

Inflation includes a wide variety of models that give similar predictions for the fairly small
number of available inflationary observables. The physics of reheating can provide an ad-

– 22 –



�

��

��

��

��

��

��

��

�
��

�=�� �=���

�	
� �	
� �	
� �	
� �	


�	��

���	��

���

����

����

��

� �
�
[�
��

]

�

��

��

��

��

��

��

��

�
��

�=�� �=����

�	
� �	
� �	
� �	
� �	


�	��

���	��

���

����

����

��

� �
�
[�
��

]
�

��

��

��

��

��

��

��

�
��

�=�� �=�����

�	
� �	
� �	
� �	
� �	


�	��

���	��

���

����

����

��

� �
�
[�
��

]

Figure 12: Plots of Nre and Tre, for hilltop inflation with p = 4 and for three different
values of µ. Shading is as in Fig. 2

ditional opportunity to break this degeneracy. While CMB fluctuations themselves do not
supply direct probes of the physics during the reheating era, the details of reheating affect
the predictions for inflation (and vice versa) because they determine the nature of the cosmic
thermal history after inflation (see e.g., [75–82]). Although we do not know exactly what
occurred during reheating, we can make reasonable assumptions such as that the average
equation of state during reheating was very likely between 0 and 1/3. This leads to indepen-
dent constraints on observables like ns and r, that can then be tested against CMB data.

One can parametrize our ignorance about reheating in terms of an equation of state, wre,
a length Nre (measured in terms of number of e-folds elapsed from the end of inflation), and
a final temperature, Tre. For any given inflationary model, one can write relations between
the specific model parameters, the amplitude of the scalar power spectrum As, the spectral
index ns, and the reheating parameters (wre, Nre and Tre). These relations are derived
by accounting for the total expansion history between the time the observable CMB modes
crossed outside the Hubble radius during inflation and the time of observation, and employ-
ing a continuity equation for the energy density during the different cosmological epochs.
We also assume that wre is constant. For single-field models the derivation is particularly
straightforward. The main results are summarized in Eq. (2.11) for Tre and wre (and in
Eq. (2.10) for Nre and wre) as a function of inflationary parameters and observables.
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Figure 13: Plot of the parameter space in the r vs. ns plane for the three hilltop models
with p = 2, 3, and 4. Shading is as in Fig. 3
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Figure 14: Plot of the parameter space in the Nk vs. ns plane for the three hilltop models
with p = 2, 3, and 4. Shading is as in Fig. 3
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Figure 15: We recreate a version of the Planck Figure 12 in their recent Constraints on
Inflation paper, using their 1 and 2 σ TT, TE, EE + lowP constraints on ns and r [13],
but plotting the parameter space for models such that there exists a reheating solution for
0 ≤ wre ≤ 1

3 , as opposed to Planck’s choice of parameter space for which there is a solution
with Nk between 50 and 60. Following the conventions in Planck’s version of the plot, the
green line is φ3, the black is φ2, the pink is φ4/3, the yellow φ, the red φ2/3, the orange
Starobinsky/ Higgs model, the puple region is natural inflation, and the green region is the
quartic hilltop model.

We consider a broad range for the equation of state parameter, −1/3 ≤ wre ≤ 1, and the
corresponding limits on CMB observables for different inflationary models. We notice that a
φ2 potential would favor relatively large values of r: a reheating model with wre ≤ 1 implies
r ≥ 0.11; to allow for a reheating model with wre ≤ 1/3 which is very probable, requires
r ≥ 0.14. Since it appears BICEP2’s signal is dust instead of primordial gravitational waves,
it is difficult to reconcile φ2 inflation with the data. We also consider Starobinsky/Higgs
inflation, natural inflation and the hilltop models. For Starobinsky and Higgs inflation, re-
quiring wre ≤ 1/3 corresponds to r ≥ 0.004. Because natural and hilltop inflation models
have two free parameters, there are ranges of parameter space that can fit well the data for
any value of the reheating parameter wre. For natural inflation, we find that Planck’s 2σ
bound on ns favors a tensor-to-scalar ratio r ≥ 0.05 for wre ≤ 1/3 (Fig. 9). For the same
range of wre, the hilltop model, on the other hand, allows for smaller r values, specifically
r ≥ 0.02 for p = 2, r ≥ 0.007 for p = 3, or r ≥ 0.003 for p = 4 (Fig. 13).

We show this parameter space in Fig. (15), where we recreate a version of the Planck
Figure 12 in their recent Constraints on Inflation paper, using their 1 and 2 σ TT, TE, EE
+ lowP constraints on ns and r [13]. To get their model parameter space they impose Nk

between 50 and 60. Instead here, we don’t specify Nk but plot the parameter space for which
there exists a reheating solution with 0 ≤ wre ≤ 1

3 . Constraining models in this way, using
wre, is a nice model dependent but straightforward and well motivated way of representing
the parameter space.
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To conclude we find that considering broad, well-motivated physical constraints on the
reheating equation of state indeed allows one to narrow the viable parameter space for in-
flation models, offering an improvement over merely specifying whether or not an inflation
model can reproduce the correct predictions at the pivot scale. These methods will become
increasingly effective with future more precise CMB data.

Note added:
Our analysis was initially performed considering the Planck 2013 results for the scalar power
spectrum parameters. Just after completion, but before submission, Planck released their
2015 data, so we have updated our analysis using the new observational bounds on ns and
As. All presented results are now based on the Planck 2015 data. While completing the first
version of this work, it was brought to our attention that a similar approach was carried
out by [98]. Some of the results on natural inflation were reproduced in [98] and, where
there is overlap, we find agreement if we consider the Planck 2013 bounds on the scalar
power spectrum parameters. Furthermore, when this work was near completion, two papers
concerning Higgs inflation and reheating were released [99, 100]. We find agreement with the
results of [99] if we consider their pivot scale (kp = 0.002Mpc−1 as opposed to 0.05Mpc−1).
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Abstract. DARk matter WImp search with liquid xenoN (DARWIN1) will be an experiment
for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber
at its core. Its primary goal will be to explore the experimentally accessible parameter
space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino
interactions with the target become an irreducible background. The prompt scintillation
light and the charge signals induced by particle interactions in the xenon will be observed
by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to
WIMPs above a mass of 5GeV/c2, such a detector with its large mass, low-energy threshold
and ultra-low background level will also be sensitive to other rare interactions. It will search
for solar axions, galactic axion-like particles and the neutrinoless double-beta decay of 136Xe,
as well as measure the low-energy solar neutrino flux with <1% precision, observe coherent
neutrino-nucleus interactions, and detect galactic supernovae. We present the concept of the
DARWIN detector and discuss its physics reach, the main sources of backgrounds and the
ongoing detector design and R&D efforts.
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1 Introduction

Astronomical and cosmological observations reveal that the vast majority of the matter and
energy content of our universe is invisible – or dark – and interacts neither strongly nor
electromagnetically with ordinary matter. Results from the Planck satellite [1] show that
about 68% of the overall budget is dark energy, leading to the observed accelerated expansion
of the cosmos. Another 27% is composed of dark matter, a yet-undetected form of matter
whose presence is needed to explain the observed large-scale structures and galaxies. While
dark matter interacts gravitationally with baryonic matter, any additional interactions, if
existing, must be very weak with extremely small cross sections [2]. Because the standard
model of particle physics does not accommodate dark matter, the observationally-driven need
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for its existence is one of the strongest indications for physics beyond the standard model.
The direct detection and subsequent characterisation of dark matter particles is, therefore,
one of the major experimental challenges of modern particle and astroparticle physics [3, 4].

Many theories beyond the standard model predict viable candidates; one particular
class, receiving the attention of most current and planned experiments, is that of Weakly In-
teracting Massive Particles (WIMPs) [3, 5]. Worldwide, more than a dozen experiments are
prepared to observe low-energy nuclear recoils induced by galactic WIMPs in ultra-sensitive,
low-background detectors [6–9]. Since the predicted WIMP masses and scattering cross sec-
tions are model-dependent and essentially unknown, these searches must cover a vast param-
eter space [10, 11]. Most promising are detectors based on liquefied noble gas targets such
as liquid xenon (LXe) or liquid argon (LAr). This technology is by now well-established and
can be scaled up to ton-scale, homogeneous target masses [12–14], taking data over several
years.

Two detector concepts are in use. The first uses a single-phase noble-liquid WIMP tar-
get, surrounded by photosensors to record the emitted scintillation light. Examples are the
XMASS detector, operating a 850 kg total LXe target [15], as well as DEAP-3600 [16] and
miniCLEAN [17], large LAr detectors currently under commissioning. The LAr instruments
employ the powerful rejection of electronic recoil background based on pulse shape discrim-
ination (PSD) [18]. With a 3600 kg LAr target, the larger detector DEAP-3600 aims at a
sensitivity of ∼1 × 10−46 cm2 for spin-independent WIMP-nucleon interactions at a WIMP
mass of 100GeV/c2.

The second concept is based on dual-phase noble gas time projection chambers (TPCs),
where the prompt scintillation light (S1) and the delayed proportional scintillation light signal
from the charge (S2) are measured. Both signals are employed for a precise reconstruction
of the event vertex and, thus, to suppress backgrounds by rejection of multiple-scatter inter-
actions, as WIMPs are expected to interact only once. The charge-to-light ratio, S2/S1, is
exploited to separate the expected signal, namely nuclear recoils (NR), from the dominant
electronic recoil (ER) background.

TPCs filled with LXe were pioneered by the ZEPLIN [19, 20] and XENON10 [21, 22]
collaborations. The XENON100 experiment [23, 24], a TPC with a 62 kg active target,
has reached its sensitivity goal and excluded spin-independent WIMP-nucleon cross sections
above 2× 10−45 cm2 at a WIMP mass of 55GeV/c2 [25]. These constraints were superseded
by the results from the LUX collaboration [26, 27], which operates a 250 kg TPC and excludes
spin-independent WIMP-nucleon scattering cross sections above 4× 10−46 cm2 at 33GeV/c2.
The second phase of PandaX has published first result from its run with a 500 kg active LXe
target [28]. Liquid argon dual-phase TPCs were pioneered by WArP [29] and ArDM [30]. In
addition to the S2/S1 discrimination, they also exploit the considerably more powerful PSD
rejection of ER background [18]. DarkSide-50, using 50 kg of active LAr mass, has presented
first results from a low radioactivity run [31]. The experiment reduces its target radioactivity
by using underground argon in which the radioactive 39Ar is depleted by a factor of 1.4×103

with respect to atmospheric argon.
Probing lower cross sections at WIMP masses above a few GeV/c2 requires larger detec-

tors. XENON1T, the current phase in the XENON collaboration programme, aims to reach
spin-independent cross sections of 1.6 × 10−47 cm2 after 2 years of continuous operation of
its 2 t LXe target [32]. The next phase, XENONnT, to be designed and constructed during
XENON1T operation, will increase the sensitivity by another order of magnitude, assuming
20 t×y exposure [32]. A similar sensitivity is sought by LUX-ZEPLIN (LZ), the next phase
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Figure 1. (left) The attainable bound on spin-independent WIMP nucleon cross-section as a function
of the WIMP mass of present and future nobel liquid detectors. Shown are upper limits from PandaX-
II [28], DarkSide-50 [31], XENON100 [25], and LUX [27] as well as the sensitivity projections for
DEAP3600 [16], XENON1T [32], XENONnT [32], LZ [33], DarkSide-20k [34] and DARWIN [35], for
which we also show the 1-σ (yellow band) and 2-σ (green band) regions. DARWIN is designed to
probe the entire parameter region for WIMP masses above ∼5GeV/c2, until the neutrino background
(ν-line, dashed orange [36]) will start to dominate the recoil spectrum. (right) Upper limits on the
spin-dependent WIMP-neutron cross section of ZEPLIN-III [19], XENON100 [37] and LUX [38] as
well as projections for XENON1T, XENONnT, LZ and DARWIN. DARWIN and the high-luminosity
LHC will cover a common region of the parameter space. The 14TeV LHC limits for the coupling
constants gχ = gq = 0.25, 0.5, 1.0, 1.45 (bottom to top) are taken from [39]. The LHC reach for spin-
independent couplings is above 10−41 cm2. Argon has no stable isotopes with non-zero nuclear spins
and is thus not sensitive to spin-dependent couplings. Figures updated from [35], using the xenon
response model to nuclear recoils from [27] for the DARWIN sensitivity.

in the LUX programme, which plans to operate a 7 t LXe detector with an additional scin-
tillator veto to suppress the neutron background [33]. The DarkSide collaboration proposes
a 20 t LAr dual-phase detector, with the goal to reach 9 × 10−48cm2 at 1TeV/c2, based on
extrapolations of the demonstrated PSD efficiency of the smaller detector [34, 40].

The DARk matter WImp search with liquid xenoN (DARWIN) observatory, which is the
subject of this article, aims at a ∼10-fold increase in sensitivity compared to these projects.
Figure 1 (left) summarises the status and expected sensitivities to spin-independent WIMP-
nucleon interactions as a function of the WIMP mass for noble liquid detectors including
DARWIN. Figure 1 (right) shows the situation for the spin-dependent case, assuming WIMP
coupling to neutrons only. DARWIN and the high-luminosity LHC will cover common pa-
rameter space [39] in this channel.

This article is structured as follows: After a brief introduction to the DARWIN project
in Section 2, we discuss its reach for several astroparticle and particle physics science channels
in Section 3. DARWIN’s main background sources are introduced in Section 4, followed by a
detailed discussion on design considerations and the status of the ongoing R&D towards the
ultimate WIMP dark matter detector in Section 5.

2 The DARWIN project

DARWIN will be an experiment using a multi-ton liquid xenon TPC, with the primary goal
to explore the experimentally accessible parameter space for WIMPs. DARWIN’s 50 t total
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(40 t active) LXe target will probe particles with masses above 5GeV/c2, and WIMP-nucleon
cross sections down to the few ×10−49 cm2 region for masses of ∼50GeV/c2 [35]. Should dark
matter particles be discovered by existing or near-future experiments, DARWIN will measure
WIMP-induced nuclear recoil spectra with high statistics and constrain the mass and the
scattering cross section of the dark matter particle [41, 42]. Other physics goals are the
real-time detection of solar pp-neutrinos with high statistics, detection of coherent neutrino-
nucleus interactions, searches for solar axions and galactic axion-like particles (ALPs) and the
search for the neutrinoless double beta decay (0νββ). The latter would establish whether the
neutrino is its own anti-particle, and can be detected via the double beta emitter 136Xe, which
has a natural abundance of 8.9% in xenon. The facility will also be able to observe neutrinos
of all flavours from supernova explosions [43], providing complementary information to large-
scale water-Cherenkov or LAr detectors. DARWIN is included in the European Roadmap for
Astroparticle Physics (APPEC) and additional national roadmaps.

Figure 2. Sketch of the DARWIN detector
inside a tank, operated as a water-Cherenkov
muon veto. The need for an additional liquid-
scintillator neutron veto inside the water shield,
as shown in the figure (‘inner shield’), is subject
to further studies. The dual-phase time projec-
tion chamber is enclosed within a double-walled
cryostat and contains 40 t of liquid xenon (50 t
total in the cryostat). In the baseline scenario,
the prompt and delayed VUV scintillation sig-
nals, induced by particle interactions in the sen-
sitive volume, are recorded by two arrays of pho-
tosensors installed above and below the liquid
xenon target.

The experiment will operate a large volume of liquid xenon in a low-background cryostat,
surrounded by concentric shielding structures, as shown schematically in Figure 2. Future
studies will reveal whether a liquid scintillator detector inside the water Cherenkov shield is
required for this massive detector. The core of the experiment is a dual-phase TPC containing
the active xenon mass. The high density of liquid xenon, ∼3 kg/l, results in a short radiation
length and allows for a compact detector geometry with efficient self-shielding. The fiducial
target mass is not fixed a priori: it will be defined during the analysis process, based on
the relevant backgrounds and on the studied physics case. A drift field of O(0.5) kV/cm
across the liquid target is required to drift the electrons from the interaction vertex. This
will be achieved by biasing the cathode at the bottom of the TPC with voltages on the order
of −100 kV or above. Large field shaping rings made from oxygen-free high conductivity
(OFHC) copper, optimised for such high voltages, will ensure the field homogeneity. The
main materials to be used for the TPC construction are OFHC copper as a conductor and
polytetrafluoroethylene (PTFE) as an insulator, with the latter also acting as an efficient
reflector for vacuum ultra-violet (VUV) scintillation light [44]. The TPC will be housed in a
double-walled cryostat made out of stainless steel, titanium or copper, and all the materials
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are to be selected for ultra-low intrinsic radioactivity. The structure will be suspended from
a support frame which will allow for the levelling of the TPC with ∼100µm precision once
the outer shields and the detector are filled with liquids.

In the baseline scenario, the prompt and proportional scintillation signals will be recorded
by two arrays of photosensors installed above and below the target. The photosensors could
be future versions (3” or 4” in diameter) of the photomultiplier tubes (PMTs) employed in
XENON1T (Hamamatsu R11410-21). These sensors feature a very low intrinsic radioactivity,
high quantum efficiency (QE) at 178 nm, high gain and low dark count rate at low tempera-
tures [45–47]. However, albeit a proven and reliable technology, PMTs are bulky, expensive
and generate a significant fraction of the radioactive background in a dark matter detector,
especially in terms of radiogenic nuclear recoils [35]. Thus, several alternative light readout
schemes are under consideration. In addition, new challenges may arise in scaling up the ‘tra-
ditional’ dual-phase scheme to the multi-ton regime. To meet these potential challenges the
DARWIN R&D programme further incorporates feasibility studies of other, non-traditional,
light and charge readout concepts and novel TPC configurations, as outlined in Section 5.

3 Science channels

This section outlines the science capabilities of the DARWIN facility. Due to its low energy
threshold, ultra-low ER and NR-induced background and large target volume, DARWIN will
not only be sensitive to WIMP dark matter, but also to a wide variety of other rare-event
searches including solar pp-neutrinos, supernova neutrinos, coherent neutrino scattering, ax-
ions and axion-like-particles, and neutrinoless double beta decay [48]. Section 3.1 summarises
the WIMP dark matter sensitivity reach, which we have investigated under various assump-
tions [35, 42]. The additional physics channels are described in Section 3.2.

3.1 WIMP dark matter

The primary purpose of DARWIN is to investigate dark matter interactions and a large part of
our activity is focused on optimising the sensitivity for WIMP dark matter. We have shown in
a recent study [35] that one can exploit the full discovery potential of this technique with a 40 t
LXe TPC (50 t total, and 30 t in the fiducial target), considering all known backgrounds listed
in Section 4. These include backgrounds from detector construction materials (γ-radiation,
neutrons), β-decays of 85Kr (0.1 ppt of natKr) and the progeny of 222Rn (0.1µBq/kg) in the
liquid target, two-neutrino double beta-decays (2νββ) of 136Xe, electronic recoil interactions
from low energy solar neutrinos (pp, 7Be), as well as higher energy neutrino interactions with
xenon nuclei in coherent neutrino-nucleus scattering (CNNS). Under these assumptions and
with an exposure of 200 t×y, we find that a spin-independent WIMP sensitivity of 2.5 ×
10−49 cm2 can be reached at a WIMP mass mχ = 40GeV/c2, as shown in Figure 1 (left) on
page 3. Increasing the exposure to 500 t×y improves this sensitivity to ∼1.5 × 10−49 cm2,
under identical assumptions.

Natural xenon includes two isotopes with non-zero total nuclear angular momentum,
129Xe and 131Xe, at a combined abundance of ∼50%. For spin-dependent WIMP-neutron cou-
plings and WIMP masses up to ∼1TeV/c2, the searches that can be conducted by DARWIN
will be complementary to those of the future high-luminosity LHC, at 14TeV center-of-mass
energy [39], as shown in Figure 1 (right). If the WIMP-nucleus interaction is indeed spin-
dependent, DARWIN can also probe inelastic scattering, where the 129Xe and 131Xe nuclei
are excited into low-lying states, with subsequent prompt deexcitation [49].

– 5 –



The projected sensitivity critically depends on the ability to discriminate NR signals from
ER background, as the background from low-energetic solar neutrinos cannot be mitigated
by other methods. Our study assumes an ER rejection level of 99.98% at 30% nuclear recoil
acceptance, which is a factor 5 above the one of XENON100 [25] and has already been achieved
by ZEPLIN-III [50]. Crucial requirements for reaching this rejection level include a uniform
and high light yield for S1 and an S2 signal detection with uniform electron extraction and
gas amplification. The statistical fluctuations in the S1 signal close to threshold significantly
affect the width of the electronic and nuclear recoil distributions. Uniformity in S1 and
S2 signal detection minimises any instrument-related fluctuations affecting the width of the
S2/S1 distributions and hence the ER rejection power. While an increased light yield will also
reduce the energy threshold, the dominating CNNS background will render thresholds below
5 keV nuclear recoil energy (5 keVnr) less relevant for the WIMP search at spin-independent
cross sections below ∼10−45cm2. A further consideration is that the steeply falling CNNS
spectrum requires the best possible energy resolution also at threshold. An energy scale
derived from the charge signal or from a combination of light and charge is therefore necessary
to optimise the sensitivity, as discussed in Section 5.7.

We have studied the reconstruction of WIMP properties, namely mass and scattering
cross section, from the measured recoil spectra. In a numerical model, we have incorporated
realistic detector parameters, backgrounds and astrophysical uncertainties [42]. Our primary
study was directed towards spin-independent WIMP-nucleon interactions; however, given
DARWIN’s excellent sensitivity to spin-dependent interactions, especially for 129Xe [51], it
can be extended to axial vector couplings as well. Figure 3 (left) shows the reconstructed
parameters for three hypothetical particle masses and a fixed cross section of 2× 10−47 cm2,
assuming an exposures of 200 t×y [42]. The corresponding number of events are 154, 224
and 60, for WIMP masses of 20GeV/c2, 100GeV/c2 and 500GeV/c2, respectively. Us-
ing the same exposure, Figure 3 (right) shows the reconstructed mass and cross section

Figure 3. The 1σ and 2σ credible regions of the marginal posterior probabilities for simulations of
WIMP signals assuming various masses and spin-independent (scalar) cross sections with DARWIN’s
LXe target. The width and length of these contours demonstrate how well the WIMP parameters
can be reconstructed in DARWIN after a 200 t×y exposure. The ‘×’ indicate the simulated bench-
mark models. (left) Reconstruction for three different WIMP masses of 20GeV/c2, 100GeV/c2 and
500GeV/c2 and a cross section of 2× 10−47 cm2, close to the sensitivity limit of XENON1T. (right)
Reconstruction for cross sections of 2 × 10−46 cm2, 2 × 10−47 cm2 and 2 × 10−48 cm2 for a WIMP
mass of 100GeV/c2. The black curve indicates where the WIMP sensitivity will start to be limited
by neutrino-nucleus coherent scattering. Figure adapted from [42].
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values for a 100GeV/c2 WIMP and several cross sections. The study applies a conser-
vative nuclear recoil energy threshold of 6.6 keVnr, a Helm nuclear form factor [52] and a
Maxwell-Boltzmann distribution for the WIMP speed. The uncertainties on the dark mat-
ter halo parameters ρ0=(0.3±0.1)GeV cm−3, v0=(220±20) km s−1 and vesc=(544±40) km s−1

have been marginalised over, and lead to extended regions in the mass-cross section param-
eter space [53, 54]. The parameter reconstructions were performed on a representative data
set, where the number of observed events was equal to the expected number of events for
the given WIMP and detector parameters. A real experiment would be subject to realisation
noise, which would induce a shift in the reconstructed regions from the underlying ground
truth, as quantified in [55].

The tightest constraints are obtained for WIMP masses up to a few hundred GeV/c2.
We also find that for masses ≥500GeV/c2 only lower limits on the WIMP mass can be
derived due to the fact that the shape of the nuclear recoil spectra depends on the WIMP-
nucleus reduced mass. Figure 3 shows that, even with a large exposure such as 200 t×y, a
substantial uncertainty on the reconstruction of the WIMP properties remains, depending
on the mass and cross section. The extraction of dark matter properties is complicated by
the astrophysical uncertainties, in particular from the underlying phase space distribution in
our Galactic halo and the local normalisation – both of which can induce systematic errors if
not properly accounted for. This systematic bias can be converted into a more manageable
statistical error by introducing a parametric astrophysical model and marginalising over its
parameters [53].

3.2 Other rare event searches

In this section we describe several other searches for rare events which can be pursued by
multi-ton liquid xenon experiments. Due to the expected low background of electronic recoils,
DARWIN will be sensitive not only to WIMPs, but also to some additional, hypothetical
particles which are expected to have non-vanishing couplings to electrons. It will also be
able to detect solar neutrinos, which constitute part of the background for the WIMP search
channel, and neutrinos from supernova explosions in the galaxy or the Magellanic Clouds.

3.2.1 Axions and axion-like particles

Galactic axions and axion-like particles (ALPs) are well-motivated dark matter candidates [4,
56]. Even if axions do not represent the majority of the dark matter in our Universe, they
could still exist and be abundantly produced in the Sun. By exploiting the axio-electric
effect [57, 58], DARWIN can search for galactic and solar axions. In this process, axions
couple to the electrons of the xenon atoms in the target and lead to atomic ionisation. They
can thus be detected in the electronic recoil channel, down to energies of a few keV. The
process is analogous to that of the photoelectric effect, and the expected signature would be a
mono-energetic peak at the axion mass, spread only by the energy resolution of the detector.

XENON100 was the first to report results on solar axions and galactic ALPs using
a dual-phase xenon detector [59]. It excluded axion-electron couplings gALP

Ae & 2 × 10−12

(90% CL) for galactic ALPs in a mass range of 1 < mA < 40 keV/c2. In the case of solar
axions, it excluded axion-electron couplings gsolar

Ae > 7.7× 10−12 (90% CL) in a mass range of
10−5 < mA < 1 keV/c2, as shown in Figure 4.

The sensitivity of large liquid xenon detectors to axion signals was first studied in [65].
Extrapolating from these results, and assuming the total ER background estimated in [35], a
similar energy threshold, a 30% superior energy resolution to XENON100, and an exposure
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Figure 4. Sensitivity of DARWIN to solar axions (left) and axion-like-particles (ALPs) (right)
which could constitute the entire galactic dark matter. While the increase in sensitivity compared
to the XENON100 result [59] is only moderate for solar axions, due to the very weak dependence
on the exposure (x−1/8), DARWIN could improve the sensitivity to galactic ALPs by almost two
order of magnitude in a 200 t× y exposure. Direct upper limits from the dark matter experiments
XMASS [60], EDELWEISS [61] and CDMS [62], indirect limits from solar neutrinos and red giants,
as well as two generic axion models, DFSZ [63] and KSVZ [64], are also shown.

of 200 t×y, we find that DARWIN could improve the sensitivity of XENON100 for galactic
ALPs by almost two orders of magnitude, as shown in Figure 4, right. For solar axions, the
sensitivity improvement will be more modest, equaling about one order of magnitude, see Fig-
ure 4, left. This is due to the rather weak dependence of the coupling on the exposure (target
mass M × time T ), with gALP

Ae ∝ (M T )−1/4 for galactic ALPs and gsolar
Ae ∝ (M T )−1/8 for

solar axions. The dominating background for these searches will come from irreducible solar
neutrino interactions and from the 2νββ of 136Xe, see Sections 3.2.2 and 3.2.3, respectively.

3.2.2 Solar neutrinos

The most restrictive background for DARWIN’s dark matter physics program will come from
solar neutrino interactions, see Section 4.3. On the other hand, the DARWIN detector can also
study neutrinos, and this capability opens up another relevant physics channel, as detailed
in [48]. A precise measurement of the pp-neutrino flux would test the main energy production
mechanism in the Sun, since the pp- and 7Be-neutrinos together account for more than 98%
of the total neutrino flux predicted by the Standard Solar Model. A total 7Be-neutrino flux
of (4.84 ± 0.24) × 109 cm−2s−1 has been measured by the Borexino experiment [66], assum-
ing MSW-LMA solar oscillations, a flux which was confirmed by KamLAND [67]. However,
the most robust prediction of the Standard Solar Model is for the pp-neutrino flux, which is
heavily constrained by the solar luminosity in photons. A high-precision real-time comparison
between the solar photon luminosity and the luminosity inferred by the direct measurement of
the solar pp-neutrino flux would therefore severely limit any other energy production mech-
anism, besides nuclear fusion, in the Sun. Borexino has recently reported the first direct
measurement of the pp-flux, (6.6± 0.7)× 1010 cm−2s−1, with ∼10% precision [68].

The detection of low-energy solar neutrinos is through elastic neutrino-electron scatter-
ing ν + e− → ν + e−. We estimated the potential of the DARWIN detector to measure their
spectrum in real time [48]. Figure 5 (left) shows the recoil spectrum from pp and 7Be neutri-
nos. (Figure 7 (left) on page 13 focuses on the low energy region.) The total expected number
of events above an energy threshold of 2 keVee (electronic recoil equivalent) and below an up-
per limit of 30 keVee, imposed by the rising 2νββ spectrum of 136Xe, is npp = 7.2 events/day
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Figure 5. (left) Differential electron recoil spectra for pp- (blue) and 7Be neutrinos (red) in liquid
xenon. The sum contribution (solid line) is split into the contributions from νe (dashed) and the
other flavours (dotted). Figure adapted from [48]. (right) Survival probability of solar, electron-
neutrinos. The expected sensitivity of DARWIN (red) is shown together with existing measurements
from Borexino and the MSW neutrino oscillation prediction (±1σ, green) for the large mixing angle
scenario [68]. The precise measurement of the pp-flux with sub-percent precision with DARWIN will
allow for testing neutrino and solar models.

and n7Be = 0.9 events/day. These numbers assume a fiducial target mass of 30 tons of natural
xenon and take into account the most recent values for the neutrino mixing angles [69]. More
than 2×103 pp-neutrino events will be observed per year, allowing for a measurement of the
flux with 2% statistical precision. A precision below 1% would be reached after 5 years of
data taking. DARWIN would therefore address one of the remaining experimental challenges
in the field of solar neutrinos, namely the comparison of the Sun’s neutrino and electro-
magnetic luminosities with a precision of <1% [70]. The high statistics measurement of the
pp-neutrino flux would open the possibility to test the solar model and neutrino properties,
see Figure 5 (right). For example, non-standard neutrino interactions [71, 72] can modify the
survival probability of electron neutrinos in the transition region around 1MeV but also at
pp-neutrino energies.

3.2.3 Neutrinoless double-beta decay

The question about whether neutrinos are Majorana fermions (i.e., their own antiparticles) is
of intense scientific interest [73]. The most practical investigation of the Majorana nature of
neutrinos, and of lepton number violation, is through the search for neutrinoless double-beta
decay (0νββ). 136Xe is an interesting 0νββ-decay candidate and has an abundance of 8.9%
in natural xenon. Its Qββ-value is at 2.458MeV, well above the energy-range expected from
a WIMP recoil signal.

Two experiments, EXO-200 [74] and KamLAND-Zen [75, 76], have already reported very
competitive lower limits on the half-life using a few hundred kilograms of 136Xe. Even with-
out isotopic enrichment, DARWIN’s target contains more than 3.5 t of 136Xe and can be used
to perform a search for its 0νββ-decay in an ultra-low background environment. The main
challenge for this measurement will be to optimise the detector’s sensors and readout elec-
tronics to perform at both the O(10) keV energy-scale and at the O(1)MeV scale relevant for
the expected 0νββ-decay peak. Once a resolution σ/E∼ 1-2% at ∼2.5MeV is achieved and
the background is reduced by a strong fiducialisation or the selection of ultra-low radioactiv-
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Figure 6. Expected sensitivity for the
effective Majorana neutrino mass. The
sensitivity band widths reflect the uncer-
tainties in the nuclear matrix element of
the 136Xe 0νββ-decay. The ‘DARWIN’
sensitivity assumes a 30 t×y exposure of
natural xenon and a background dom-
inated by γ-rays from detector materi-
als. The ’ultimate’ case with 140 t×y
exposure assumes this background being
absent, thus only 222Rn, 2νββ and 8B
solar neutrinos contribute. For details,
see [48]. Also shown are the expected re-
gions for the two neutrino mass hierarchy
scenarios.

ity detector materials, DARWIN’s 0νββ sensitivity will become comparable to other future
ton-scale experiments. In Figure 6, we show its reach for the effective Majorana neutrino
mass |mββ | versus the mass of the lightest neutrino, as calculated in [48]. The correspond-
ing sensitivities to the half-life of the decay are T0ν

1/2 > 5.6×1026 y and T0ν
1/2 > 8.5×1027 y (at

90% C.L.) for assumed natural xenon exposures of 30 t×y and 140 t×y, respectively. The
latter value assumes that the material backgrounds can be completely mitigated and that
the only background sources are 0.1µBq/kg of 222Rn, 2νββ-decays and interactions of solar
8B neutrinos. The width of the bands reflect the uncertainties in the nuclear matrix element
calculations of the 136Xe 0νββ-decay. We expect smaller exposures compared to the WIMP
search, caused by a more stringent fiducialisation to reach the required background level at
Qββ . Other rare nuclear processes, such as the double-beta decays of 134Xe, 126Xe and 124Xe,
might be observable as well [77].

3.2.4 Coherent neutrino-nucleus scattering

The rate of low-energy signals in all multi-ton WIMP detectors will eventually be dominated
by interactions of cosmic neutrinos via coherent neutrino-nucleus scattering (CNNS) [78].
DARWIN will be able to detect and study this yet-unobserved standard model process, which
produces a nuclear recoil signal like the WIMP. (For the implications on the WIMP search, see
Section 4.3.) The largest CNNS rate comes from the relatively high-energy 8B solar neutrinos
which produce nuclear recoils ≤3 keVnr. Neutrinos from the solar hep-process induce a similar
maximal recoil energy but their flux is much lower. Events from neutrinos created in the upper
atmosphere and from the diffuse supernova neutrino background will extend to slightly higher
energies of O(10) keVnr, however at significantly lower rates.

Because LXe detectors operate at low energy thresholds, even the low-energy CNNS
signal from 8B neutrinos is readily accessible. LUX has demonstrated an energy threshold of
1.1 keVnr in a re-analysis of their data [27], and XENON10 reached a threshold of 1.4 keVnr
using an energy scale based on the S2 signal only [79]. Such thresholds would lead to an
observed rate of ∼90 events t−1y−1 from 8B neutrinos. The rate from atmospheric neutrinos
will be much lower, around 3×10−3 events t−1y−1 [78]. Being a standard model process, the
cross section of coherent neutrino-nucleus scattering can be calculated to a high precision [80,
81]. A deviation of the experimentally measured value from the expectation is thus a clear
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sign of new physics, e.g., from oscillations into sterile neutrino states or from electromagnetic
interactions of the neutrino [82].

3.2.5 Galactic supernova neutrinos

Neutrinos and anti-neutrinos of all flavours are emitted by core-collapse supernovae in a
burst lasting a few tens of seconds [83]. The measurement of their energy spectrum and time
structure can provide information about supernovae properties, but also about the intrinsic
properties of neutrinos [84].

One avenue to detect such neutrinos is via their coherent scattering off xenon nuclei in
DARWIN. In contrast to large water Cherenkov or liquid scintillator detectors, where the
most significant interaction is from νe via inverse β-decay on free protons, νe + p→ e+ + n,
DARWIN would be sensitive to all six neutrino species νx via neutral current interactions.
The measured recoil spectrum would provide direct information about the neutrino energy
spectrum, which is important to study neutrino oscillations etc. [84]. The expected nuclear
recoil event rate in a LXe detector depends on the distance of the supernova explosion, the
progenitor mass, the neutrino emission spectrum and on the differential neutrino-nucleus
scattering cross section. It also depends on the detector properties, such as its fiducial mass,
energy threshold, and detection efficiency for nuclear recoils.

The XMASS collaboration has calculated the expected event rates in their detector [85]
and finds results consistent with those of [43]. However, XMASS is a single-phase detector and
thus greatly limited in its sensitivity to this channel due to the higher energy threshold com-
pared to an S2-based analysis. For DARWIN, we expect between 10 and 20 events t−1 from a
supernova at a distance of 10 kpc, depending on the supernova neutrino emission model and
progenitor mass [86]. Due to the extremely transient nature of a neutrino burst, lasting only a
few seconds, the background in the low-energy S2 range can be expected to be negligible and
will allow us to use a larger fiducial target [79, 87]. Thus, with O(100) neutrino events from
a Galactic supernova, DARWIN will be a supernova neutrino detector that can contribute to
the Supernova Early Warning System SNEWS [88]. By looking at the time evolution of the
event rate from a nearby supernova, DARWIN could possibly distinguish between different
supernova models [86] and provide complementary neutrino flavour-independent information
to supernova physics.

4 Expected backgrounds

As a detector searching for rare events, DARWIN requires a very good understanding of
all possible background sources and an extremely low absolute background level. The inner
detector will hence be surrounded by a large, instrumented water shield, which passively
reduces the environmental radioactivity as well as muon-induced neutrons, and acts as an
active Cherenkov muon veto. Massive shields made from lead and copper are neither prac-
tical nor cost-effective at this scale. Typical ambient γ-ray and radiogenic neutron fluxes
of 0.3 cm−2s−1 and 9 × 10−7 cm−2s−1 [89] are reduced by a factor of 106 after 3m and 1m
of water shield, respectively [90], and can therefore be considered negligible. The γ-induced
background from the radioactivity of detector materials is also irrelevant for WIMP searches
at the DARWIN mass-scale [35].

Here we discuss the most important background sources for DARWIN, namely the back-
grounds related to cosmogenic and radiogenic neutrons, background sources intrinsic to the
target material, and finally neutrino-induced backgrounds.
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4.1 Neutron backgrounds

A major background source for the WIMP search, where the expected signature is nuclear re-
coils from elastic WIMP-nucleus collisions, are neutron-induced nuclear recoils. The neutrons
mainly originate from (α,n) reactions and spontaneous fission of heavy isotopes in detector
materials, and can also be generated by interactions of cosmic ray muons that penetrate
deep underground. Single-scatter nuclear recoils are in principle indistinguishable from a
WIMP signal, hence the absolute neutron fluxes from all sources must be minimised a priori,
e.g., by selecting materials with low intrinsic radioactive contamination [91]. Remaining neu-
tron backgrounds will be reduced by self-shielding and by efficient multiple-scatter rejection,
thanks to the large size and the excellent position resolution of the detector. DARWIN will
reduce the muon-induced nuclear recoil background by its underground location and by using
an active Cherenkov muon veto. We estimate that at the depth of the LNGS laboratory
(3600meters water equivalent) an active water shield of ∼14m diameter will reduce the rate
of cosmogenic neutrons to negligible levels. Most critical are interactions from (α, n) and
fission neutrons from 238U and 232Th decays in detector components close to the LXe, such
as PTFE reflectors or photosensors.

The expected neutron background was studied for a 40 t target mass, where the detector
is mostly made of copper, PTFE, and photosensors [35]. The neutron energy spectra and
yields in these materials were calculated taking into account their composition and reference
levels of 238U and 232Th. Because secular equilibrium in the primordial decay chains is
usually lost in processed materials, the 238U and 232Th activities are often determined via
mass spectrometry or neutron activation analysis, while the activities of the late part of
these chains, 226Ra, 228Ac, 228Th, are determined via gamma spectrometry using ultra-low
background high-purity germanium (HPGe) detectors [91–95]. With the detector material and
radioactivity assumptions from [35], we obtain an expected single-scatter nuclear recoil rate of
about 3.8×10−5 events t−1 y−1 keV−1

nr , in the central detector region of 30 t. This background
level is sufficiently low for an exposure of 200 t×y at ∼30% nuclear recoil acceptance, but it
requires us to identify materials with reduced radioactivity compared to currently measured
levels. This is particularly true of the light reflector PTFE. This material contributes to the
background significantly through (α, n) reactions due to the presence of 19F. The neutron
background could be further reduced by stronger fiducialisation, as well.

4.2 Xenon-intrinsic backgrounds

In dark matter detectors based on liquefied noble gases, radioactivity intrinsic to the WIMP
target, such as 39Ar, 85Kr and 222Rn provide sources of ER backgrounds. The activation
of the xenon gas itself by exposure to cosmic rays becomes irrelevant after underground
storage for a few months [96]. As 39Ar is absent in LXe, the main challenges for DARWIN
are 85Kr and 222Rn. 85Kr is an anthropogenic radioactive isotope present in noble liquids
extracted from air. Currently achieved natKr-levels after purification using krypton distillation
or gas chromatography are (1.0±0.2) ppt by XENON100 [97], with a gas chromatography and
mass spectrometry detection limit of 0.008 ppt, (3.5±1.0) ppt by LUX [98] and <2.7 ppt by
XMASS [15]. The new natKr-removal apparatus of XENON1T has recently delivered a sample
with a concentration of <0.03 ppt in a test run [99, 100]. This is a factor of 3 below the 0.1 ppt
assumed for the WIMP sensitivity study presented in Section 3.1. Even at such low natKr
concentrations, the background from 2νββ decays of 136Xe in a natural xenon target only
contributes at a much lower level [35], with a spectrum that decreases towards the threshold
(see Figure 7, left).
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222Rn is part of the 238U natural decay chain and constantly emitted by detector surfaces,
which therefore have to be selected for low Rn-emanation [101, 102]. The 222Rn concentrations
in LXe achieved so far are 65µBq/kg in XENON100 [25], 32µBq/kg in LUX [98], 22µBq/kg
in PandaX-I [103], 9.8µBq/kg in XMASS [15], and (3.65± 0.37)µBq/kg in EXO [104]. With
the exception of EXO, none of these experiments was particularly optimised for low radon
emanation. The target concentration for XENON1T is ∼10µBq/kg, and the smaller surface-
to-volume ratio will further help with the reduction in larger detectors. Nonetheless, we
anticipate that achieving a low radon level will be the largest background reduction challenge.
Concentrations of ∼0.1µBq/kg must be achieved to probe WIMP-nucleon cross sections down
to a few 10−49cm2, assuming an S2/S1-based rejection of ERs at the 2 × 10−4 level at 30%
NR acceptance [35]. Such rejection levels have already been achieved [19]. The emanation
of 220Rn, a part of the 232Th chain, could lead to similar backgrounds. However, it has a
considerably shorter half-life than 222Rn and is observed to be less abundant in existing LXe
detectors, hence its impact is considered sub-dominant.

At DARWIN’s current background goal of 0.1 ppt of natKr in Xe, 0.1µBq/kg of 220Rn and
a target of natural 136Xe abundance, a total Xe-intrinsic background rate of∼17 events t−1 y−1

is expected in a 2-10 keVee WIMP search energy interval [35]. An ER rejection efficiency of
2× 10−4 reduces this rate to 3.5× 10−3 events t−1 y−1.

4.3 Neutrino backgrounds

Neutrino signals in DARWIN will provide important science opportunities (see Sections 3.2.2,
3.2.4 and 3.2.5). However, they will also constitute the ultimate background source for many
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Figure 7. (left) Summed differential energy spectrum for pp and 7Be neutrinos (red) undergoing
neutrino-electron scattering in a LXe detector. Also shown are the electron recoil spectrum from the
double-beta decay of 136Xe (blue), as well as the expected nuclear recoil spectrum from WIMPs for a
spin-independent WIMP-nucleon cross section of 6×10−49 cm2 (solid black) and 4×10−49 cm2 (dashed
black) and WIMP masses of 100GeV/c2 and 40GeV/c2, respectively. A 99.98% discrimination of ERs
at 30% NR acceptance is assumed and the recoil energies are derived using the S1 signal only (see [48]).
(right) The differential nuclear recoil spectrum from coherent scattering of neutrinos (red) from the
Sun, the diffuse supernova background (DSNB), and the atmosphere (atm), compared to the one from
WIMPs for various masses and cross sections (black). The coherent scattering rate will provide an
irreducible background for low-mass WIMPs, limiting the cross section sensitivity to ∼4× 10−45 cm2

for WIMPs of 6GeV/c2 mass, while WIMP masses above ∼10GeV/c2 will be significantly less affected.
No finite energy resolution but a 50% NR acceptance is taken into account. Figure from [48].

– 13 –



searches, especially for dark matter, as the neutrino flux can neither be shielded nor avoided
by the design of the experiment. Solar pp-neutrinos (and 7Be-neutrinos at the ∼10% level)
will contribute to the electronic recoil background via neutrino-electron scattering at the level
of ∼26 events t−1y−1 in the low-energy, dark matter signal region of the detector [48]. Solar
neutrinos will thus become a relevant background source at WIMP-nucleon cross sections
below 10−48cm2 and electronic recoil rejection levels around 99.98% are required to reach
the envisaged ultimate WIMP sensitivity [35], reducing the solar neutrino background to
5.2× 10−3 events t−1 y−1 in a 2-10 keVee WIMP search region. Figure 7 (left) compares the
combined background from pp and 7Be solar neutrinos with two WIMP spectra.

Neutrino-induced nuclear recoils from coherent neutrino-nucleus scatters cannot be dis-
tinguished from a WIMP-induced signal, if no additional (statistical) discriminants such
as track directionality are taken into account [105]. The 8B solar neutrinos yield up to
103 events t−1y−1 for heavy targets such as xenon [78], however, all the events are at very low
recoil energies below 4 keV, see Figure 7 (right). About 90 events t−1y−1 are expected above
1 keVnr. Nuclear recoils from atmospheric neutrinos and the diffuse supernovae neutrino back-
ground will yield event rates which are orders of magnitude lower but at slightly higher recoil
energies. These will dominate the measured spectra at WIMP-nucleon cross sections around
10−49 cm2 for WIMP masses above ∼10GeV/c2 [35, 36, 48, 78, 106, 107]. The total observed
rates will strongly depend on the detector’s energy threshold and energy resolution.

5 Design considerations and associated research and development

DARWIN will incorporate techniques which were successfully probed in the current genera-
tion of liquid xenon detectors and which will be tested in upcoming dual-phase dark matter
experiments. At the same time, new design features will be evaluated and possibly imple-
mented. Some of these were demonstrated with the XENON1T Demonstrator [108]. It estab-
lished the ability to drift electrons over distances of 1m in LXe, high-speed purification up
to 100 standard liters per minute (slpm) [109], and high-voltage capabilities beyond −100 kV.
Valuable input is also obtained from projects pursued outside the DARWIN consortium which
employ TPCs filled with LXe to address various physics questions [26, 74]. In addition to
these full-scale TPCs, several smaller instruments, with an R&D program focused at specific
questions, are in place at various DARWIN institutions. The detailed design of DARWIN
is not yet finalised, and further R&D towards such an ultimate WIMP detector is needed.
In the following sections, we discuss potential designs based on state-of-the art concepts and
technologies, and introduce some non-standard concepts as well.

5.1 Cryostat and time projection chamber

To reach the desired WIMP sensitivity within a reasonable timescale, DARWIN requires a
total (target) LXe mass of ∼50 (40) tons, and hence a cylindrical detector with linear dimen-
sions >2.5m [35]. The WIMP search target after fiducialisation would be around 30 tons.
The vacuum-insulated cryostats must be constructed from materials with a very low specific
radioactivity level, where the cleanest available metal is copper. However, it imposes tight
mechanical constraints, and, given the excellent self-shielding capabilities of LXe, it might be
beneficial to use alternatives such as titanium or stainless steel instead, as in the XENON,
LUX/LZ and PandaX projects.

All dual-phase LXe TPCs in current dark matter projects utilise the same concepts
and mostly differ from each other in the details (high-voltage generation, aspect ratio, PMT
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Figure 8. A possible realisation of
a ∼50 t (40 t) total (target) LXe mass
DARWIN detector, inside a double-
walled stainless steel cryostat. The TPC
is surrounded by highly reflective PTFE
walls, closed by the cathode and anode
electrodes on bottom and top, respec-
tively. The sketch shows a TPC with
two photosensor arrays made of circular
PMTs with 3” diameter. The final sensor
type, however, is not yet defined and all
details regarding the cryostat and TPC
are subject to R&D.

granularity, liquid level control, etc.). DARWIN, in its baseline configuration, will feature
this well-established dual-phase TPC design scheme with light detected by photosensor arrays
above and below the LXe target, see Figure 8. The light collection efficiency is constant for a
fixed height-diameter ratio. With an optimal design of the reflecting inner TPC surfaces, it is
only affected by the LXe absorption length. The working hypothesis of DARWIN’s baseline
design is that the absorption length can be kept much larger than the TPC diameter by
continuous purification of the xenon, see Section 5.3. Under this assumption, with state-
of-the-art PMTs, it is expected that the currently achieved thresholds of ∼1 keVnr [27] can
also be established with DARWIN. To cope with the possibility of smaller values for the
absorption length – or, alternatively, to further increase the light collection efficiency – a
potential scheme with the TPC surrounded by photosensors in ∼4π, similar to a single-phase
detector, is being evaluated as part of the DARWIN R&D program. This option is outlined
in Section 5.4, which also discusses alternative photosensor technologies. A novel scheme
relying on the concept of liquid hole multipliers (LHMs), with a potentially significant light
yield improvement, is discussed in Section 5.4, as well.

Insulating materials are essential to construct the TPC, as components biased with
very high voltages above −100 kV (cathode, field shaping electrodes) must be supported
and insulated from grounded components. The primary choice is PTFE providing excellent
insulation, good UV reflectivity [44], reasonable mechanical strength, and low radioactivity.
A possible cylindrical DARWIN TPC of 260 cm diameter and height, enclosing a target mass
of 40 t of xenon, is illustrated in Figure 8.

The type and dimension of the light sensors installed on the two arrays, above and
below the target are still an active part of the DARWIN study. Under the assumption that
the charge signal is detected via proportional scintillation in the gas phase, the 40 t LXe
TPC would require ∼1800 sensors of 3” diameter (∼1000 of 4”) assuming the use of identical,
circular photosensors on both arrays. If available, larger low-radioactivity photosensors on
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the bottom array could reduce the number of channels, as discussed in Section 5.4. A finite
detector granularity on the top array is required for the xy-vertex identification.

5.2 High voltage system

To create an electron drift field of ∼0.5 kV/cm across the TPC, the cathode must be biased
by a high, negative voltage. The field homogeneity is ensured by a set of circular field shaping
rings, interconnected with high-ohmic resistors, realising a voltage divider which is gradually
approaching ground potential. For a TPC of 2.6m length, a cathode potential of 130 kV is
required to establish the design field. We note that the TPC can be successfully operated
at lower fields, as well (LUX: 0.18 kV/cm [98]); this reduces the field quenching, resulting in
larger S1 signals. On the other hand, the lower electron drift velocity increases the pile-up
rate during calibration runs and there are indications that the S2/S1 discrimination power
deteriorates for reduced drift fields [50].

While the field shaping rings, which are made from massive copper with a smooth surface,
do not impose a problem for the high voltage, the cathode electrode and the HV-feedthrough
must withstand the high operation potentials. In order to optimise the optical transparency,
the cathode will be made of single wires of ∼100µm diameter, spot-welded to a sturdy, low-
background metal frame. The cathode currently operated in XENON1T can be seen as a
first prototype. A low-radioactivity feedthrough with demonstrated stable operation in LXe
up to ∼130 kV has been built for XENON1T. As noted above, it would allow for reaching
the design drift field of ∼0.5 kV/cm, similar to the one in XENON100 [25]. The extraction
field across the liquid-gas interface requires a moderate, positive anode bias voltage for 100%
electron extraction efficiency [110], which is typically between +5 and +10 kV, depending
on the distance between the gate electrode, at ground potential, and the anode. The main
challenge is to keep the anode, with a diameter of ∼2.6m, parallel to the liquid surface,
and to maintain a constant gap between gate and anode. This is required for achieving a
homogenous S2 response across the detector’s surface. The LHM-based TPC scheme discussed
in Section 5.4 may provide a non-traditional solution.

The electrostatic configuration of DARWIN’s TPC field cage, which is composed of very
large (grid electrodes diameter) and small (wire diameter) elements, is being designed with
KEMField [111]. This simulation tool, developed within the KATRIN collaboration, has been
adapted for dual-phase TPCs. Optimised for the simulation of electric fields in large-scale
geometries with small-scale structures, it takes advantage of the Boundary Element Method
(BEM) to compute electric fields and potentials with the highest precision. For DARWIN-
type geometries, BEM performs superior to Finite Element Methods (FEM), that require
large computer memory for the meshing of the 3D-space.

5.3 Cryogenic and purification systems

The cryogenic system will consist of several sub-systems, which are required to initially liquefy
the xenon target, maintain its constant low temperature during operation (∆T/T < 0.05%),
store it during down-time, and cleanse it of electronegative impurities which affect the light
and charge yields, as well as from radioactive backgrounds. On-line measurements of the
xenon purity will be performed by various diagnostic systems.

Cooling system The cooling system will have to maintain a stable cryogenic environment
for many years. It can be accomplished by means of cryocoolers, such as pulse tube refrigera-
tors (PTRs) [112] used in XENON, XMASS and PandaX, or by liquid nitrogen cooling [113],
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as chosen for LUX/LZ. The design of the vacuum-insulated cryostat will be optimised in order
to avoid heat leaks, and it will be equipped with super-insulation radiation shields. Given
that the surface-to-volume ratio improves with the detector size, the cooling power required
to keep the target cold will only be a few hundred Watts. Assuming similar cryogenics as
in XENON1T, several redundant PTR cold-heads will be installed far away from the target
volume, outside of the water shield. Xenon gas evaporated from the liquid target will be
liquefied there, collected and returned into the main cryostat.

Storage The storage of the noble liquid inventory of a multi-ton liquid xenon detector
requires a dedicated solution. In addition, the purity must be maintained, thus continuous
storage in a closed system is essential. The system must also be able to store and purify
the noble gas before the detector is available, in order to considerably shorten the time
required for detector filling as well as for initial gas purification. It should allow for quick
recuperation of the noble gas in liquid form in case of emergency or in case of maintenance
operations, as transfer to the gas phase and storage in bottles would take several weeks.
The solution developed for XENON1T is a new storage system, ReStoX, which satisfies all
these requirements [114]. ReStoX consists of a vacuum-insulated stainless steel sphere of 2.2m
diameter, capable of holding 7.6 tons of xenon in liquid phase. Xenon is kept in liquid form by
means of a liquid nitrogen-based cooling system and can be constantly purified during storage.
As the system is designed to withstand pressures of up to 72 bar, the xenon can also be stored
in gaseous phase at room temperature in case of longer shut-downs or emergency situations
(longer power loss, etc.). Thus, a series of 7 interconnected ReStoX units is sufficient to store
the full xenon inventory.

Purification from electronegative impurities To achieve a low energy threshold, good
signal-background discrimination, and small signal corrections, the light and charge yields
ought to be maximised. This requires a leak-tight detector and gas systems (metal seals) and
constant purification of the noble-gas target from electronegative impurities such as N2, O2,
H2O, etc., which mainly stem from outgassing of material surfaces. During operation, the
purification system constantly extracts gas from the detector and returns it after purification.
While the MEG experiment [115] purifies its LXe target very efficiently in liquid form, this
approach is not feasible for dark matter searches, due to the radioactive background induced
by the recirculation pump for the liquid and due to radioactive contamination of the molecular
sieves used for the cleaning. However, purification in the gas phase by means of hot zirco-
nium getters at flow rates reaching up to ∼100 slpm (corresponding to 880 kg/day) has been
achieved in the XENON1T R&D programme, using effective heat exchangers [116]. Different
recirculation pumps suitable for noble gases have been investigated, specifically addressing
their performance in terms of gas purity. Since the entire xenon inventory will be in contact
with the pump during the purification process, it must be leak tight and not emanate 222Rn.
Standard diaphragm pumps, which were used for gas transport in previous experiments, do
not fulfil the leak-tightness requirement. Thus, novel ultra-clean magnetically driven piston
pumps with hermetically sealed pumping volumes based on the design of [117] are being de-
veloped and optimised. The performance of the purification system will be monitored online
with dedicated purity monitors [118] and commercial systems, based on light absorption.

Purification from radioactive contaminants Another aspect of purity is the cleanliness
of the target with respect to radioactive noble gas isotopes, see also Section 4.2, which can
easily mix with LXe. Sub-ppt purification of xenon from krypton (necessary due to the
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radioactive isotope 85Kr) was already achieved [97, 119] by an ultra-clean cryogenic distillation
column developed within the XENON project [100, 119, 120] together with a method to use
the short-lived metastable 83mKr as a tracer to optimise the process [99, 100, 119, 121].
Another problematic isotope is 222Rn, a daughter of the 238U chain which is present in the
underground environment and also continuously emanated from the surfaces of the inner
detector and cryostat itself. While metal seals mitigate the external 222Rn completely, all
materials which are in contact with the target (liquid or gas) have to be specially selected
for low Rn-emanation [101, 102]. Removing their topmost surface layer by electropolishing or
etching can help to reduce this contribution. 220Rn, a daughter in the 232Th chain, could in
principle also lead to backgrounds. However, due to its shorter half-life and lower abundance,
it is less problematic. In addition, all efforts to reduce 222Rn are expected to also work for
220Rn.

Due to the minute amounts of radioactive impurities, separate online monitoring of the
contamination level is not possible. Instead, the science data must constantly be checked
for characteristic signatures of the contaminants. This is possible while the search regions
for new physics remain blind. 222Rn (220Rn) can be tagged efficiently using high-energy α-
events or the delayed β − α coincidence from the 214Bi-214Po (212Bi-212Po) decay, and 85Kr
can be identified using delayed β − γ coincidence in 85Kr → 85mRb → 85Rb. Due to the low
branching ratio of 0.454%, the latter signature has a low efficiency and is thus not practical for
low concentrations. For this reason, several off-line diagnostic methods were developed such
as rare gas mass spectrometry (RGMS) [97, 100] and atom trap trace analysis (ATTA) [122].
These have sensitivities below the 1 ppt level and detect natKr rather than the radioactive
isotope 85Kr itself, which is present at the 2×10−11 level in natKr. A less precise (40 ppt) but
on-site and approximately on-line method using a quadrupole mass spectrometer following a
cold-trap has been established as well [123, 124].

5.4 Signal readout

The sensitivity of liquid xenon detectors to dark matter is closely related to the detector’s
light collection and detection efficiency, as the expected WIMP scattering spectra show an
exponential rise towards low nuclear recoil energies. As also explained in Section 5.7, the
relevant quantity to be optimised is the light yield (LY), which depends on the photon de-
tection efficiency (PDE) of the photosensors and on the detector’s light collection efficiency;
the latter is determined by the photocathode and light-reflector coverage, the transparency
of the TPC electrodes, the reflectivity of the TPC walls, and the VUV photon absorption
length. The detector configurations (single- or dual-phase), with their different geometrical
photon detector coverage (4π for single-phase detectors, top and bottom in present dual-phase
detectors), have a large impact on the light yield as well. This is because a large fraction
of the emitted light can be absorbed if multiple reflections of VUV photons are required to
reach the sensors.

A common reference for the light yield is the detector response to the full absorption of
122 keV gamma rays at zero drift field: XENON100 has a light yield of 4.3 PE/keV [24], LUX,
which has superior PMTs and a higher PTFE reflectivity, reaches 8.8PE/keV [98], and the
single-phase XMASS detector, where 62% of the spherical surface is covered by PMTs with a
QE of 28%, has reached 14.7PE/keV [15]. In the following, we review the relevant aspects for
the light readout as studied within the DARWIN project, in order to achieve a design light
yield around 8PE/keV.
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5.4.1 Photomultipliers

At the operating cryogenic temperatures, standard bialkali photocathodes used in PMTs can
have extremely low saturation currents due to the increase in resistivity of the photosensitive
material. This problem was solved with Hamamatsu’s Bialkali LT (Low Temperature) pho-
tocathode, which operates down to liquid nitrogen temperatures with high saturation current
and high QE. This photocathode is available with 3” diameter metal bulb photomultipliers.
The Hamamatsu R11410 PMT with 12 dynode stages, optimised for use in liquid xenon with
a mean QE of 35% at 178 nm, reaching up to ∼40% in some cases, and a collection efficiency
(CE) of >90%, has been investigated in setups relevant for the next-generation dark-matter
search experiments using LXe [45, 46]. The results show a stable gain of ∼5×106 at ∼1500V
and an excellent peak-to-valley ratio around 3 or higher. A subset has been operated contin-
uously in LXe for several months and repeated cooling cycles from room temperature to LXe
temperatures were performed successfully, without damage to the PMTs and without changes
in their response. The PMTs underwent several successful high-voltage tests in xenon gas and
in strong electric fields [45]. After several iterations, and collaborative efforts of Hamamatsu
with XENON, the radioactivity of these 3” tubes was reduced to levels of <0.4mBq/unit
from 238U, 0.02mBq/unit from 226Ra, and 0.01mBq/unit from 228Th [47].

We note that the high QE of bialkali PMTs comprises a significant contribution (∼20%)
of events where a single VUV photon releases two photoelectrons from the photocathode [125].
Thus, for a PMT with QE=35% and CE=90%, the PDE for photons impinging on the
photocathode is ∼25% (i.e., ∼80% of the product QE×CE). With ∼55% of the instrumented
area covered by a photocathode (fill factor), the overall PDE for a densely-packed PMT array
is thus ∼14% for state-of-the-art PMTs. However, this number is increased if the area between
the PMTs is covered by efficient VUV-light reflectors.

5.4.2 Novel photosensors

PMTs, even if they are still the only photosensors used in current noble liquid dark matter
detectors, have several important shortcomings: the residual radioactivity levels (although
less relevant for very large detectors), cost, bulkiness, and stability at cryogenic conditions.
Thus several alternative technologies are under consideration for DARWIN. The final choice of
photosensors will be made during the design phase of the project, based on the technological
maturity, performance characteristics (PDE, dark count rate, stability), radiopurity and cost
of the different alternatives.

SiPM The silicon photomultiplier (SiPM) technology is rapidly developing and may become
viable for readout of large detectors, offering very low radioactivity levels, compact geometry
and low operation voltages. SiPMs may allow us to increase the photosensitive area coverage
of the TPC and could in principle be suitable for 4π coverage. Arrays of SiPMs sensitive
to visible light and suitable for operation in LAr are becoming commercially available on
surface-mount boards with >75% fill factors over a 50×50mm2 area and are considered for
the DarkSide-20k experiment [34]. Several vendors are also developing VUV-sensitive SiPMs
suitable for operation in LXe, and PDE values >10% at 175-178 nm have been reported [126].
However, photon detection in large-volume dark matter LXe detectors by means of SiPM
arrays still requires significant optimisation. In particular, their present best dark count rate
(&1Hz/mm2 at LXe temperatures [126]), should be reduced by ∼2 orders of magnitude to
keep accidental coincidence low enough for the desired detection thresholds. Improvements are
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further required in the array PDE and correlated noise. The total correlated noise probability,
namely the after-pulse and cross-talk probability, requires further studies as well.

SiGHT Another solution could come from the development of novel vacuum photosensors
with reduced radioactivity and a simpler internal structure than a multi-stage PMT. A new
photosensor concept, the Silicon Geiger Hybrid Tube (SiGHT), is under development [127].
SiGHT, a descendant of the QUPID detector [128], consists of a 3” diameter cylindrical tube
with a hemispherical photocathode biased at −3 kV. A SiPM is placed on a pillar within
the cylinder. The entire structure is made from ultra-clean synthetic fused silica to ensure
very low levels of radioactivity. Electrons released from the photocathode are focused and
accelerated onto the SiPM. A photoelectron hits a single pixel of the SiPM, yielding an output
signal analogous to a single-photon hit on the SiPM. The SiPM pixels allow for excellent charge
resolution, which translates to the device’s ability to count integer numbers of photoelectrons.
Good linearity can be achieved by using SiPMs with a high number of pixels. The SiGHT
photosensor was designed to operate at low temperatures, expecting dark count rates of the
same order as PMTs at LXe temperatures (tens of Hz per tube). Although the diameter of
the photosensor currently being developed is 3”, future developments may include larger 4”
or 5” versions. The SiGHT photosensor could thus be well suited for ton- and multi-ton scale
direct dark matter detection experiments.

Gaseous Photomultipliers Cryogenic Gaseous Photomultipliers (GPMs) [129] could be-
come an economic alternative to PMTs for DARWIN, offering superior spatial resolution,
compact geometry and similar overall PDE. GPMs combine a high-QE CsI-photocathode
and cascaded gas-avalanche multipliers, e.g, Gas Electron Multipliers (GEMs) [130] or Thick
Gas Electron Multipliers (THGEMs) [131]) coupled to an anode segmented into small pixels.
Modular units, with a typical size of &20×20 cm2, equipped with UV-windows and embedded
readout electronics, can be shaped to provide filling factors of ∼90% (compared to present
∼55% with circular PMTs), with comparable low radioactivity. For a nominal QE of ∼25%
at 175 nm [132] and optimised choice of hole geometry and counting gas (Ne/CH4 or Ar/CH4

mixtures), an overall PDE of ∼15% over the entire instrumented area can be expected, similar
to PMT arrays. While the superior granularity is not an a priori critical requirement, it may
prove to be useful for precise event topology reconstruction.

The electron multipliers would be either cascaded THGEMs or hybrid structures, e.g.,
CsI-coated THGEM followed by thin-mesh multipliers [133, 134] with high gains (>105),
allowing for high single-photon detection efficiency at LXe temperatures. Such GPMs, with
reflective CsI photocathode, are suitable for the top photosensor array. GPMs could be also
deployed at the TPC walls to provide ∼4π coverage with a considerable improvement in the
S1 photon detection due to the reduction in multiple reflections (the degree of improvement
will depend on the ratio between the absorption length and TPC diameter). The wall GPM
should include an additional semi-transparent photocathode, on the inner window surface, to
prevent loss of photons by total internal reflection. Stable operation of a 4” triple-THGEM
GPM with a reflective CsI photocathode, coupled to a dual-phase LXe TPC, was recently
demonstrated. It displayed a broad dynamic range, namely the capability to detect both single
photons and massive α-induced S2 signals under the same conditions [135]. The feasibility of
the 4π concept and the GPM PDE optimisation are subject to ongoing studies.
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5.4.3 Liquid Hole-Multipliers: charge and light readout in a single-phase TPC

The Liquid Hole-Multiplier (LHM) is a new, “non-traditional”, detection concept [136]. It
originated from the concern that it may be quite difficult to maintain the liquid-gas interface,
anode and gate completely parallel to each other across the diameter of a large dual-phase
TPC; this may result in degraded S2 resolution and, as a possible consequence, reduced S2/S1-
based background discrimination capability. This problem could be solved, in principle, if
S2 light were to be generated in a high-field region within the liquid itself rather than in the
vapour phase [137]. Some groups studied the possibility of generating S2 light around thin
wires immersed in LXe [137–139], following works from the 1970s [140]. Parallel efforts focus
on immersed THGEM and GEM electrodes. First experiments with a THGEM immersed
in LXe demonstrated large S2 signals for alpha-particle induced ionisation electrons [141].
Subsequent studies [142, 143] proved that the light was in fact generated at the bottom part
of the THGEM hole, in a xenon gas bubble trapped below the electrode, see Figure 9 (left).
It was shown that the process can be controlled and maintained stable over many days. An
S2 resolution (σ/E) of ∼7.5% was demonstrated for ∼6000 ionisation electrons, significantly
better than in XENON100 (∼10-12%) [24]. Similar results were reached with immersed GEM
electrodes [144]. With an appropriate field configuration the process can yield up to a few
hundred photons per electron. Coating the electrode with CsI permits the detection of S1
photons in addition to ionisation electrons for the same field configuration, with a drift field of
∼0.5–1 kV/cm in the liquid [145]. Immersed GEMs are preferable over THGEMs for photon
detection, as they allow for higher electric fields at the CsI photocathode surface and thus
better photoelectron extraction. Based on a previous study, which indicated that the QE of
CsI immersed in LXe is ∼30% at 175 nm for a sufficiently large field on the photocathode
surface [146], the PDE across the CsI-coated GEM electrode is expected to be >15%.

Looking forward, GEM-based LHM modules with individual heating elements to gener-
ate the trapped bubbles, may be tiled to form a large instrumented surface sensitive to both

Figure 9. The liquid hole multiplier concept: (left) A single LHM element, coated with CsI to allow
for the detection of S1 photons in addition to ionisation electrons. Controlled bubble formation can
be achieved by ohmic heating of resistive wires below the electrode. (right) Schematic design of a
liquid-only single-phase TPC with bubble-assisted LHMs at the bottom. S2 signals are created by
electrons drifting down towards the LHM. Accurate S2-based position reconstruction is permitted by
an array of photosensors below the LHMs. Figure adapted from [142].
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ionisation electrons and S1 photons. This configuration, with an inverted drift field, is shown
schematically in Figure 9 (right). It has two potential merits: first, it allows for a high S2
resolution over the entire area, by local control of the liquid-gas interface inside the module;
second, it can considerably boost the TPC’s light yield by the removal of three grids (gate,
anode and screening electrode) as well as the liquid-gas interface itself. Even if the absorption
length is not much larger than the TPC diameter, the loss of S1 photons is prevented by the
effective elimination of multiple reflections: photons will typically reflect only once off the
TPC PTFE wall before being detected by either the PMT array or the LHM array. Light
readout of such LHM modules can be performed by PMTs, SiPMs or GPMs (the latter with
reflective CsI photocathodes); the high dark count rate of SiPMs will be of no concern in this
case as each primary S1 photon will produce a ‘flash’ of light comprising dozens of secondary
photons inside the LHM module. While the basic LHM configuration comprises a bubble
trapped below the electrode (and thus requires using LHMs horizontally at the bottom of the
TPC), ongoing studies look into the possibility of trapping a gas layer above the electrode –
opening the possibility of using LHMs at the top of the TPC.

5.5 Calibration

The signal response of liquid xenon detectors to particle energy deposits in the active volume
are determined through regular calibration campaigns. The first generation of experiments
has mainly relied on the use of external γ-sources (such as 137Cs, 60Co, 228Th) and broad-
band (241AmBe, 252Cf) or mono-energetic (generators) neutron sources for detector calibra-
tion. The considerably larger ton-scale detectors and in particular the multi-ton instrument
DARWIN render calibration more challenging, as the effective background reduction by self-
shielding also suppresses the detection of the majority of particles from external sources. It
is however the innermost, central detector region which is used for new physics searches and
thus must be calibrated precisely.

Several groups have started to investigate the use of sources dissolved in the liquid
target, so-called internal sources. Only isotopes with a very short half-life can be employed
for regular calibrations, followed by science runs. Some of these sources are neutron-activated
xenon, providing rather high-energy γ-lines at 164 keV (131mXe, T1/2 = 11.8d) and 236 keV
(129mXe, T1/2 = 8.9 d) [147]. However, the half-lives of the activated Xe isotopes are too long,
and their energies too high, to be useful for ton-scale detectors.

The best-studied example of a short-lived internal source is 83mKr [149, 150], a daughter
of 83Rb. It has been demonstrated that no long-lived Rb-isotopes were emitted into a 83mKr-
sample for calibration [151]. 83mKr has a half-life of 1.83 h, and decays via 32.1 keV and
9.4 keV conversion electrons, where the intermediate state has a lifetime of 154 ns. The second
low-energy process takes place close to the first one and has an increased light signal due

Figure 10. Scintillation light from the 9.4 keV line
of 83mKr, following the initial 32.1 keV γ-ray. The
half-life of the intermediate state is 154 ns. The light
signal depends on the time difference ∆t between the
two events, due to the presence of ionisation from the
first interaction. Therefore only 9.4 keV events with
large ∆t can be used for calibrations. Figure adapted
from [148].
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to an additional supply of ions and electrons that failed to recombine from the preceding
transition. This limits the use of the 9.4 keV line to the tail of the time distribution where
the effect becomes irrelevant [148], see also Figure 10. 83mKr has been successfully used in
DarkSide-50 [152], XENON100 and LUX [98].

The LUX collaboration has also successfully employed tritiated methane (CH3T) as
an internal calibration source [153]. With T1/2 = 12.3 y, the half-life of tritium is too long
to leave it to decay in the detector, however, the collaboration has demonstrated that it
can be efficiently removed by a hot zirconium getter [154], designed to remove gases (N2,
O2, H2O, etc.) and other electronegative impurities from the liquid noble gas target (see
Section 5.3). The XENON collaboration has used tritiated methane in XENON100, and is
currently performing R&D towards the use of 220Rn, emanated from a 228Th source [155].
The use of the same source was also studied by XMASS [156]. It exploits the short half-life of
220Rn and the subsequent β-decays of its daughters 212Pb and 208Tl, which are in radioactive
equilibrium with the rest of the chain.

The light and charge response of dual-phase TPCs for dark matter searches must be
calibrated for various reasons:

Energy calibration The use of the relative scintillation efficiency Leff(Enr) and the charge
yield Qy(Enr), which describe the size of the signal from a nuclear recoil of energy Enr with
respect to a fixed-energy γ-source, requires a calibration of the detector with mono-energetic
γ-lines. The traditionally used response to 122 keV γ’s from a 57Co source was recently
replaced by the intrinsic standard 32.1 keV line from 83mKr. This single line allows for the
light/charge calibration of a DARWIN detector using the relative efficiencies measured in ded-
icated experimental setups, under tightly controlled conditions, as elaborated in Section 5.6.

For the characterisation of the electronic recoil background up to several MeV, an energy
scale set by the full absorption peaks of various γ-sources is desirable. Intrinsic sources are
mandatory to populate the inner detector regions with a sufficient number of events. One
possibility is using the various decay lines seen in 220Rn and its daughters [155]. Another
possibility is the known shape of β-spectra from intrinsic contaminations and sources, e.g.,
the 2νββ-spectrum from 136Xe.

Nuclear recoil band (signal-like events) The detector response to single-scatter nu-
clear recoils down to lowest energies (∼1 keVnr) must be known precisely. Neutron-induced
recoil spectra generated by broad-spectrum sources such as 241AmBe and 252Cf, or by mono-
energetic MeV-neutrons from generators, are representative for WIMP-generated spectra of
mχ & 50GeV/c2. The correct light and charge distribution for lower-mass WIMPs is to be
determined by feeding the results from these calibrations into Monte Carlo codes, which take
into account the signal resolutions [157, 158].

A direct calibration of the signal distribution with external neutron sources, preferen-
tially mono-energetic neutrons from a generator in order to exploit the kinematics of multiple-
scatter processes, is still feasible for DARWIN, thanks to the rather long mean-free path of
neutrons in LXe. A direct calibration of the low-energy nuclear recoil response with an
88YBe-source, as recently proposed by [159] and currently studied in XENON100, will be
only possible in much smaller experimental setups.

Electronic recoil band (background-like events) To establish a background model
for the WIMP dark matter search, the distribution of the ER signal in the TPC must be
well understood. The same holds for all searches using the ER signal itself, such as solar
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neutrinos and axions, see Section 3.2. This background is mostly due to target-intrinsic β-
contaminations. Line sources, such as 83mKr, cannot be used for calibration as a continuous
spectrum is required. We thus expect to use intrinsic sources such as tritiated-methane and
220Rn. These provide a continuous spectrum of low energy recoils through ground-state to
ground-state beta decays either directly (TCH3) or through their daughters (220Rn). The
comparison of signal and background calibration samples allows for the determination of the
background discrimination level. The charge-to-light ratio exploits the different (position-
corrected and energy-dependent) mean values of the S2/S1-ratio for signal and background,
thanks to the different energy loss mechanisms of the recoils [160].

5.6 Light and charge yield of electronic and nuclear recoils

The response of LXe to particle interactions with energy depositions around the detection
threshold is of high relevance, as the differential nuclear recoil spectrum induced by WIMP-
nucleus elastic scattering is exponentially decreasing. In particular, WIMPs with masses
below 10GeV/c2 could potentially leave signatures only in the lowest energy bins of a liquid
xenon detector. Such measurements have been performed within the DARWIN consortium
in the last years [157, 161, 162] and new measurements are currently ongoing.

The response of large LXe detectors to low-energy nuclear recoils can be measured in situ
using monoenergetic neutrons from deuterium-deuterium (D-D) fusion generators, as shown
by LUX [27] and planned for the XENON1T experiment. Such a measurement, in combination
with an empirical response model that is fitted to the data, allows for the determination of
the charge and light yields down to 1 keVnr energy, or even below [27].

To date, estimates of the dark matter sensitivity of LXe TPCs assume that electric
fields have a small effect on the light yield from nuclear recoils. This assumption is sup-
ported by initial measurements [163], indirect analyses [157] as well as semi-empirical models
(NEST) [164, 165]. Direct measurements in small LXe detectors are nonetheless ongoing.

For standard WIMP searches, electronic recoils are expected to stem from background
events, however, for axion searches, leptophilic dark matter models or low-energy neutrino
measurements, ERs turn into the expected signal (see also Sections 3.2.1 and 3.2.2). The
scintillation yields of ERs in liquid xenon were measured with small cryogenic cells using
Compton-scattered photons from collimated, high-activity 137Cs sources in coincidence with
HPGe and NaI detectors placed under various scattering angles, corresponding to energies
down to 1.5 keV [148, 166]. Results from data at zero electric field show a decrease of the
yield of recoiling electrons below 20 keV, to a level of ∼ 40% of its value at higher energies
at around 1.5 keV. Measurements of the light quenching in an electric field have also been
performed [148]. The results have been used to set an energy scale for axion searches with
XENON100 [59], to test leptophilic dark matter models [167], and for the first search for an
annual modulation signal with a LXe TPC [168].

5.7 Detector resolution

The light and charge signals are both employed in the data analysis process. While the en-
ergy scale can be derived either using one of these [25] or from their linear combination [98],
background discrimination via the S2/S1 ratio always requires the precise knowledge of both
quantities. The smaller and hence more-difficult-to-detect S1 signal sets the energy threshold
of the detector. The energy resolution is derived from the individual signals or their combi-
nation, and is related to the number of detected physical quanta. For the S1 channel, this is
the number of photons recorded by the photosensors, giving rise to signals measured in PE.
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Because of the finite quantum efficiency (∼35% for state-of-the-art PMTs), photoelectron col-
lection efficiency (∼90%) and light collection efficiency (LCE), which describes the fraction of
primary photons reaching a photosensitive area, the detected number of PE is considerably
smaller than the number of initially generated photons. The LCE depends on the target
purity, the reflectivity of the inner TPC surfaces, the transparency of the TPC electrodes,
the photocathode coverage of the detector, as well as on the TPC height-to-diameter ratio.
All these parameters can be optimised for a given detector. The light yield of the LUX de-
tector, 8.8 PE/keVee for a 122 keV line (electron recoil equivalent) at zero-field [98], is about
2× higher than the one of XENON100 (4.3PE/keVee [24]), mainly due to an improved PTFE
reflectivity, optimised TPC electrodes transparency and a higher collection efficiency of the
PMTs. Typically, PTFE is used as an efficient reflector for the scintillation light of LXe at
178 nm, with a reflectivity above 90% [44].

Due to electron-ion recombination effects, the light yield (LY) is always highest for
zero-field and decreases (in an energy-dependent way) with increasing drift field, see for
example [150]. The numbers for XENON100 and LUX quoted above reduce to 2.3PE/keVee
and ∼4.6PE/keVee at 122 keVee and | ~E| ∼ 0.5 kV/cm, respectively. Figure 11 (left) illustrates
this situation for a nuclear recoil signal of 5 keVnr: a higher light yield will improve the S1-
resolution at a given nuclear recoil energy Enr. However, current dark matter TPCs are
already highly optimised, hence not much improvement beyond values of 4 − 5PE/keVee at
a 0.5 kV/cm drift field (about 8− 10PE/keVee at zero field) can be realistically expected for
DARWIN, leading to an anticipated S1-resolution of around 40% at the detector threshold.

Due to the larger number of quanta involved, the resolution of the proportional S2 signal
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Figure 11. (left) Mean size of the S1 light signal in a dual-phase LXe TPC, expected from a
nuclear recoil of 5 keVnr (left axis), plotted against the detector’s light yield for a 122 keV γ-line at
a drift field of ∼500V/cm. The relative scintillation efficiency Leff of LXe for this study is taken
from [23]. Also shown is the relative resolution (σ/S1) at 5 keVnr, assuming that it is dominated by
a Poisson process (right axis). The LXe TPCs XENON100 [24] and LUX [169] have achieved light
yields of ∼2.3PE/keVee and ∼4.6PE/keVee at this drift field, respectively, as indicated by the green
lines. (right) Mean charge signal in electrons, before gas amplification, for a 5 keVnr recoil signal as
a function of the electron lifetime τe. A drift field of ∼500V/cm is assumed. The charge yield Qy for
LXe is taken from [157]. The right axis shows the relative Gaussian resolution for 1.3m and 2.6m
electron drift, corresponding to the central and the maximal value in a DARWIN detector. Lifetimes
of 2ms have already been achieved in LXe detectors (green line). In both cases, it is unrealistic
that DARWIN can improve significantly with respect to the numbers already achieved, leading to S1
resolutions of about 40% for 5 keVnr recoil signals and to charge resolutions of about 20%.
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(from the ionisation electrons) is superior to the S1 resolution. The W -value, describing the
energy required to create an electron-ion pair, is 15.6 eV in xenon [170]. The number has to
be corrected for recombination effects in the non-zero electric field, leading to a somewhat
larger effective W -value. However, the total number of electrons liberated by low-energy
interactions is still rather high. As the typical electron extraction fields of >9 kV/cm lead to
100% extraction efficiency [110], the main loss mechanism is the effective electron lifetime,
τe, due to capture of electrons by electronegative impurities in the target. Electron lifetimes
of 2ms have been demonstrated in large LXe detectors [108] and its impact on the resolution
is illustrated in Figure 11 (right): for τe ≥ 2ms and 100% extraction efficiency, the charge
resolution is better than 24% for 5 keVnr recoils throughout the TPC. For τe = 5ms, the
resolution improves to 20%. The number of photoelectrons detected by the PMT arrays is
typically about 20PE/e− [110], and depends on the gas pressure, the distance between liquid-
gas interface and anode as well as the extraction field. Due to the much larger number of
quanta, the fluctuations in the number of PE are subdominant compared to the fluctuations
in the number of electrons.

The linear combination of light and charge signals, exploiting an anti-correlation between
the two in ERs [171], allows for energy resolutions similar to NaI crystals (σ/E = 1.53% has
been reached at 2480 keV [74]). Such a resolution would be relevant for many of the non-
WIMP searches which focus on ERs, such as searches for neutrinoless double beta-decays or
for axions and ALPs. For low-energy nuclear recoils, no strong anti-correlation is expected in
LXe because the recombination-fluctuations are sub-dominant compared to the uncorrelated
S1 and S2 fluctuations [160, 172]. The resolution of a combined light and charge signal close
to threshold is therefore simply given by the sum of the physical quanta. It is dominated by
the charge signal and therefore only leads to a minor improvement of the resolution compared
to an S2-only scale [35]. As charge and light signals are both smaller for NRs compared to
ERs, due to quenching effects, the energy resolution of an ER signal will always be superior
to the one of a NR of the same energy, regardless of how the energy scale is reconstructed.

5.8 Data acquisition and trigger schemes

This section addresses issues regarding the electronics and data acquisition (DAQ). While the
total number of channels in DARWIN is still moderate compared to accelerator-based physics
experiments, the small, keV-sized signal in the dark matter channel requires an extremely low
energy threshold and excellent noise conditions. The digitized waveform of every channel is
recorded in order to use the maximum amount of information for further data analysis. The
DAQ system must also be able to handle the different data taking rates in science mode and
during calibration runs.

The DAQ system of a large dual-phase TPC has to address several challenges. The num-
ber of channels, ≥1000 photosensors, depending on the sensor size, will be several times higher
than in present (e.g., XENON100: 242 [24], LUX: 122 [26], PandaX-II: 110 [28], XENON1T:
248 [32]) or upcoming (e.g., LZ: 488 [33]) detectors. The maximum time difference between
the S1 and S2 signals will be of the order of one millisecond. The detailed waveforms, at
O(2 − 10) ns resolution, must be digitised as they contain information for the S2/S1 back-
ground discrimination, noise rejection, etc. However, there is little information stored in the
comparatively long time between the S1 and S2 peaks and already present-day detectors do
not digitize this part of the waveforms to reduce the amount of data [24, 26].

The causal connection between S1 and S2 signals limits the maximum achievable detector
rate due to the possibility of event pile-up. While conservatively high trigger rates of ∼10Hz
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in dark matter mode would only lead to ∼1.5% of events suffering from pile-up in DARWIN,
large LXe detectors with their excellent self-shielding capabilities will generally require very
large amounts of calibration data to reach a sufficient number of calibration events within the
fiducial volume, hence a high calibration rate, see Section 5.5. In a “classical” event-based
readout using a common trigger, the events will overlap and a constant acquisition window
will lead to information loss. Finally, the trigger threshold must be as low as possible to
ensure a low energy threshold.

The increased number of channels in DARWIN can be handled through parallelisation,
the level of which can be increased according to the actual requirements of the experiment.
All readout channels will operate independently from one another, they are not triggered
globally but run in “self-triggering”-mode. The data from all channels will be correlated and
reconstructed in real-time on commodity computing hardware, which only keeps the informa-
tion associated with an event for storage. Such a flexible software trigger can also be further
parallelised in order to increase the computation speed. It will allow for detector calibration
in pile-up mode, as overlapping events can be accepted while the correlation analysis of the
S1 and S2 peaks is postponed. This analysis could be based on the reconstructed xy-positions
of the S1 and the S2 signals, as well as on the size of the S2/S1 ratio.

Since the data is fully reconstructed before making a storage decision, more sophisti-
cated filtering algorithms can be used to enhance DARWIN’s physics capabilities. Examples
are: (i) xy-position reconstruction to only store events reaching the central volume during
calibration runs, (ii) a relatively small, random subset of events can be stored to study high-
energy and background events, and (iii) specialised triggers can be used to study specific
background topologies (e.g., delayed coincidence triggers to select 214Bi-Po events to study
222Rn backgrounds).

A DAQ system designed according to this concept was developed for the XENON1T
detector. Because of its scalability by increasing the level of parallelisation, it can be regarded
as the first step towards a DAQ system for DARWIN.

6 Summary and Outlook

DARWIN will be the ultimate liquid xenon dark matter detector with a sensitivity for spin-
independent WIMP-nucleon cross sections down to ∼10−49 cm2 capable to detect or exclude
WIMPs with masses above ∼5GeV/c2. With its large target mass, low energy threshold,
and ultra-low background level, DARWIN will also provide a unique opportunity for other
rare event searches such as axions and other weakly interacting light particles. It will address
open questions in neutrino physics, e.g., by measuring the low-energy solar neutrino spectrum
with better than 1% precision or by searching for the neutrinoless double beta decay of 136Xe.
At its lowest energies, the DARWIN detector will provide the possibility to observe coherent
neutrino-nucleus interactions from solar 8B neutrinos, to precisely test the standard solar
model flux-prediction, and to detect neutrinos from galactic supernovae.

DARWIN will employ a time projection chamber filled with 40 t of liquid xenon; the
full instrument will require about 50 t of liquid xenon. A vigorous R&D and design effort is
ongoing within the international DARWIN consortium. It comprises technical aspects such
as the design and prototyping of the time projection chamber, Monte Carlo studies of the ex-
pected radiogenic and cosmogenic backgrounds, investigation of new light and charge readout
schemes and of novel sensors to operate in liquid xenon, selection of low-background con-
struction materials by means of high-purity germanium spectroscopy and other techniques,
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radon emanation measurement and removal, new data acquisition and trigger schemes, data
analysis and also addresses the scientific reach of the facility. Charge and light yield measure-
ments of nuclear and electronic recoils at lowest energies, necessary to define accurate energy
scales in a LXe dark matter detector, are ongoing at several institutions. In parallel to the
baseline dual-phase detector geometry, single-phase TPC concepts are being evaluated and
prototyped. The R&D and design phase will end by 2019, after which the construction of
the various sub-systems will start. Following detector installation and commissioning in the
underground laboratory, a first science run could start by 2023. To fully exploit its WIMP
sensitivity, the facility would be operated for at least 7 years.

In summary, DARWIN has a unique discovery potential in the areas of astroparticle and
low-energy neutrino physics.
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Abstract. Generalized fluid equations, using sound speed c2
eff and viscosity c2

vis

as effective parameters, provide a convenient phenomenological formalism for testing
the relic neutrino “null hypothesis,” i.e. that that neutrinos are relativistic and free-
streaming prior to recombination. In this work, we relax the relativistic assumption and
ask “to what extent can the generalized fluid equations accommodate finite neutrino
mass?” We consider both the mass of active neutrinos, which are largely still relativistic
at recombination m2/T 2 ∼ 0.2, and the effect of a semi-relativistic sterile component.
While there is no one-to-one mapping between mass/mixing parameters and c2

eff and
c2

vis, we demonstrate that the existence of a neutrino mass could induce a bias to
measurements of c2

eff and c2
vis at the level of 0.01m2/T 2 ∼ 10−3.

Keywords: relic neutrinos, sterile neutrino, sound speed, viscosity, cosmic mi-
crowave backgroundar
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1 Introduction

Precision measurements of the cosmic microwave background (CMB) and large scale
structure (LSS) are providing a wealth of information about the early universe and
its constituents. This information is particularly valuable in the neutrino sector where
a number of fundamental questions have yet to be answered: What is the absolute
neutrino mass scale? Are some neutrinos sterile? Do neutrinos self-interact through
a long range force? The next-generation of CMB and LSS experiments will bring
dramatic improvements in sensitivity and the promise of new insight into the physics
of neutrinos [1].

To address the questions listed above in a model-independent way, it is customary
to use phenomenological parameters. These parameters are introduced “by hand” into
the equations of motion (Einstein or Boltzmann equations). They are not defined by
any underlying fundamental parameters, such as Lagrangian couplings or masses.

The most familiar phenomenological parameters are the effective number of neu-
trino species Neff and the total neutrino mass

∑
mν . Since the relic neutrinos are

decoupled at the time of recombination and structure formation, their effect on the
CMB and LSS are only gravitational. Thus, the phenomenological parameters encode
how much the neutrinos contribute to the energy densities (see [1, 2] for notation)

ρrad = ργ +Neff
7

8

(
4

11

)4/3

ργ and Ωνh
2 =

∑
mν

93.1 eV
. (1.1)

Since Neff and
∑
mν are not defined from fundamental parameters, there does not

necessarily exist a one-to-one mapping from any specific microphysical model onto the
parameters (Neff ,

∑
mν). Rather, the phenomenological parameters are most useful
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as a test of the “null hypothesis.” A combination of the concordance cosmology and
Standard Model of particle physics predicts Neff = 3.046 and

∑
mν = m1 +m2 +m3 >

0.05 eV where mi are the three neutrino mass eigenvalues. Measurements compiled by
the Planck collaboration [3] (Planck, TT + lensing + ext),

Neff ' 3.15± 0.40 and
∑

mν < 0.234 eV at 95% CL , (1.2)

are consistent with the null hypothesis.

Two additional phenomenological parameters affect the evolution of neutrino den-
sity inhomogeneities. These are the effective sound speed c2

eff and viscosity c2
vis [4, 5].

The effective sound speed sets the sound horizon, which in turn controls the growth
of neutrino density perturbations, and the viscosity parameter leads to an anisotropic
stress and the damping of neutrino density perturbations. (See Refs. [6] for a discussion
of these effects on the CMB.) Once again, the phenomenological parameters provide
a model-independent formalism to test the null hypothesis: if the relic neutrinos are
relativistic and free-streaming then one expects c2

eff = 1/3 and c2
vis = 1/3. The Planck

collaboration furnishes the measurements [3] (Planck, TT, TE, EE + lowP + BAO)

c2
eff ' 0.3242± 0.0059 and c2

vis ' 0.331± 0.037 , (1.3)

which are consistent with the null hypothesis.

As measurements of the four phenomenological parameters improve with the next
generation of CMB and LSS experiments, we must be mindful of any deviation from
the null hypothesis, as this would indicate the presence of new physics. In order to
probe the nature of the new physics, we must understand how a specific microphysical
model maps onto the phenomenological parameters. For instance, many studies have
investigated how eV-scale sterile neutrinos (motivated in part by the short baseline and
reactor anomalies [7, 8]) manifest themselves in the CMB and LSS (for one such recent
paper see Ref. [9]). This provides a mapping from the sterile mass and abundance to
Neff and

∑
mν . We seek to extend that correspondence to the perturbation parameters

c2
eff and c2

vis.

In Sec. 2 we study the formalism (generalized fluid equations) in which the phe-
nomenological parameters c2

eff and c2
vis arise. While this formalism is convenient for

testing the null hypothesis, we will see that it cannot generally accommodate realistic
deviations from the null hypothesis. Specifically, if the neutrinos are assumed to be
free-streaming but allowed to be semi-relativistic (such is the case for sterile neutrinos)
then the fluid equations describing their evolution cannot be mapped onto the gener-
alized fluid equations. In Sec. 3 we estimate the dependence of c2

eff and c2
vis on neutrino

mass, and we calculate the predicted deviations from the null hypothesis, 1/3 − c2
eff

and 1/3 − c2
vis, for a model of sterile neutrinos that saturates the Planck limits in

Eq. (1.2). We summarize our results and discuss directions for future work in Sec. 4.
The main paper is accompanied by Appendix A, where we derive the fluid equations for
a free-streaming species from the Boltzmann hierarchy. Appendix B contains formulas
relevant to a semi-relativistic Fermi-Dirac phase space distribution.
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Figure 1. The equation of state w (solid) and squared adiabatic sound speed c2
adi (dashed)

for a Fermi-Dirac distribution of relic neutrinos with mass m and temperature T . The shaded
regions indicates the epoch of recombination, Trec ≈ 0.1−0.2 eV, for m = 0.08 eV and 0.5 eV.

2 Fluid Equations for Semi-Relativistic, Free-Streaming Neu-
trinos

We are interested in the background of relic neutrinos at temperatures T . 3 MeV
when the weak interactions have frozen out and the neutrinos are decoupled from the
plasma. Standard Model neutrinos experience no additional interactions, and they are
free-streaming. Later we will extend the model to include eV-scale sterile neutrinos,
which are also assumed to be free-streaming.

To leading order, the medium is homogeneous with energy density ρ̄(τ) and pres-
sure P̄ (τ). The corresponding equation of state and adiabatic sound speed are w = P̄ /ρ̄

and c2
adi = ˙̄P/ ˙̄ρ, where the dot indicates differentiation with respect to conformal time

τ . After decoupling the neutrino background maintains its Fermi-Dirac distribution
with temperature T . Using the notation established in Appendix A we calculate w
and c2

adi in Appendix B and present the result in Fig. 1. For simplicity we assume
that the neutrino spectrum is in the degenerate regime, and the common neutrino
mass is m ≈ (1/3)

∑
mν . Initially the neutrino temperature is high, m � T , and

w, c2
adi ≈ 1/3 for the relativistic neutrinos. As the temperature is lowered, the devi-

ations ∆w = 1/3 − w and ∆c2
adi = 1/3 − c2

adi start to grow as the neutrinos become
semi-relativistic. For a Fermi-Dirac distribution we find

∆c2
adi ≈

∆w

2
≈ 5

21π2

m2

T 2
(2.1)

for small m/T . The anomalously small prefactor, 5/21π2 ' 0.02, invalidates the naive
dimensional analysis prediction ∆c2

adi ∼ m2/T 2.

During recombination, the photon temperature is Tγ ≈ 0.2 − 0.3 eV and the
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` ε q q2/ε q3/ε2 q4/ε3 · · ·
0 δ Π Π̃ · · ·
1 θ θ̃ · · ·
2 σ σ̃ · · ·
3 χ · · ·
...

...
...

...
...

...
. . .

Table 1. The perturbation variables discussed in the text can be organized according the
multipole moment ` of the phase space distribution function from which they were calcu-
lated, and the factors of energy ε and momentum q that were included in the momentum
integral. Numerical factors of 1/3, etc., are not shown; see Eqs. (A.12) and (A.13) for detailed
expressions.

neutrino temperature is smaller by a factor of (4/11)1/3, which corresponds to Trec ≈
0.1 − 0.2 eV. Taking a fiducial neutrino mass of m = 0.08 eV, which saturates the
Planck bound in Eq. (1.2), the deviations fall into the range 0.4% . ∆c2

adi . 2% at
the time of recombination. For a heavier eV-scale sterile neutrino, the deviation is
(10− 20)% (assuming the phase space distribution function is also Fermi-Dirac). The
observation that ∆w/w � 1 and ∆c2

adi/c
2
adi � 1 has two implications for our analysis.

It indicates that we can study deviations from the relativistic relic neutrino background
by perturbing in the small quantities ∆w/w and ∆c2

adi/c
2
adi. Additionally it suggests

that the effects of finite neutrino mass will be at most ∼ 0.02m2/T 2 in magnitude.

Let us now consider perturbations to the homogenous Fermi-Dirac distribution.
The details of this calculation appear in Appendix A. Since the inhomogenous phase
space distribution function depends on both momentum q and position (or wavevec-
tor k in Fourier space), it is convenient to organize the perturbations into multipole
moments with index `. Each moment of the phase space distribution function can be
integrated over momentum q = |q|. It is possible to include additional factors of the
momentum-to-energy ratio q/ε in the integrand. For the lowest order multipole mo-
ments (` = 0, 1, 2) one obtains the energy density contrast δ(k, τ), energy flux θ(k, τ),
and anisotropic stress σ(k, τ). Other combinations of ` and q/ε lead to a doubly-
infinite tower of perturbation variables, shown in Table 1; see Eqs. (A.12) and (A.13)
for detailed expressions. Specifically, Π(k, τ) is the pressure perturbation. In the non-
relativistic limit, T/m � 1, the perturbation variables constructed from additional
factors of q/ε are suppressed by powers of T/m. In the relativistic limit, T/m � 1,
additional factors of the momentum-to-energy ratio simplify q/ε ≈ 1 leading to

Π̃ ≈ Π ≈ δ/3 , θ̃ ≈ θ , and σ̃ ≈ σ . (2.2)

The evolution of perturbations in a system of freely streaming particles is described
by the collisionless Boltzmann equation [10]. Upon performing the multipole expansion
described above, the Boltzmann equation yields a hierarchy of coupled first order
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differential equations describing the evolution of each moment. See Appendix A for
details of this calculation. Focusing on the first few multipole moments, we perform
the momentum integrals to obtain

δ̇ = −(1 + w)
(
θ +

1

2
ḣ
)

+ 3
ȧ

a

(
wδ − Π

)
(2.3a)

θ̇ = −3
ȧ

a

(1

3
− c2

adi

)
θ + k2 Π

1 + w
− k2σ (2.3b)

σ̇ =
4

15
θ + (3c2

adi)
2

15

(
ḣ+ 6η̇

)
− 3

5
kχ

− 3
ȧ

a

(1

3
− c2

adi

)
σ +

ȧ

a

(
σ̃ − σ

)
+

4

15

(
θ̃ − θ

)
(2.3c)

Π̇ = −3
ȧ

a

(1

3
− w

)
Π +

ȧ

a

(
Π̃− Π

)
− 1

3
(1 + w)θ̃ − 1

6
ḣ
(
5w − w̃

)
, (2.3d)

which we call the collisionless fluid equations1. We are working in the synchronous
gauge where the metric perturbations are denoted as h(k, τ) and η(k, τ), and their
evolution is given by Einstein’s equations. The equations for δ̇ and θ̇ are the familiar
continuity and Euler equations2. Note that k = |k| and a(τ) is the FRW scale factor.
The parameter w̃ is the pseudo-equation of state, defined in the appendix. The equation
for σ̇ depends on the next moment (` = 3) in the multipole expansion χ(k, τ). This is
the familiar result for the Boltzmann hierarchy: the evolution of lower-order multipole
moments depends on the higher-order moments. In addition, the equations for σ̇ and
Π̇ also depend on the tilde’d variables θ̃, σ̃, and Π̃. Consequently the equations shown
in Eq. (2.3) do not form a closed system. However, we are only interested in comparing
the form of these equations with the generalized fluid equations below, and for that
purpose we do not require the rest of the hierarchy.

In the ultra-relativistic regime, m � T , we can approximate w ≈ c2
adi ≈ 1/3.

Additionally, the perturbation variables reduce as in Eq. (2.2). Then Eq. (2.3) becomes

δ̇ = −4

3

(
θ +

1

2
ḣ
)

(2.4a)

θ̇ =
1

4
k2δ − k2σ (2.4b)

σ̇ =
4

15
θ +

2

15

(
ḣ+ 6η̇

)
− 3

5
kχ , (2.4c)

and Π = δ/3, which are the fluid equations for free-streaming, relativistic particles.

A phenomenological generalization of the fluid equations was proposed in Ref. [4, 5].
By introducing the sound speed and the viscosity parameters, c2

eff and c2
vis, one can write

1This name is something of an oxymoron. In a perfect fluid, collisions occur frequently and tend to
isotropize the perturbations. This enforces a vanishing of the anisotropic stress σ and higher multipole
moments. One should view Eq. (2.3) as the analog of the fluid equations for a free-streaming species.

2These can also be derived from the conservation of stress-energy [10].
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[11]3

δ̇ = −4

3

(
θ +

1

2
ḣ
)

+ 3
ȧ

a

(1

3
− c2

eff

)
δ + 12

( ȧ
a

)2(1

3
− c2

eff

) θ
k2

(2.5a)

θ̇ = −3
ȧ

a

(1

3
− c2

eff

)
θ +

1

4
(3c2

eff)k2δ − k2σ (2.5b)

σ̇ = (3c2
vis)

4

15
θ + (3c2

vis)
2

15

(
ḣ+ 6η̇

)
− 3

5
kχ , (2.5c)

which we call the generalized fluid equations (GFE). The rest of the Boltzmann hier-
archy, e.g. the equation for χ̇, is unmodified. Relativistic and free-streaming neutrinos
obey the fluid equations in Eq. (2.4), which corresponds to the limit c2

eff = c2
vis = 1/3

in the GFE. Therefore, measuring a deviation from 1/3 would refute the “null hy-
pothesis,” i.e. that the relic neutrinos are relativistic and free-streaming. A number
of studies have investigated the effects of c2

eff and c2
vis on the cosmic microwave back-

ground [6, 12–22], and recently the Planck collaboration reported the measurements in
Eq. (1.3) using a combination of CMB and BAO data. These measurements illustrate
the utility of the generalized fluid equations for testing – and thus far confirming – the
null hypothesis of relativistic and free-streaming neutrinos.

However, it is not clear the extent to which the GFE is able to capture specific mod-
els when we relax the assumptions of relativistic free-streaming particles. For instance,
it is often said that (c2

eff , c
2
vis) = (1/3, 0) corresponds to a relativistic perfect fluid, and

therefore this limit has been used to model the effect of neutrino self-interactions [23–
28] (see also [29]). However, while c2

vis = 0 allows for solutions in which the anisotropic
stress and higher moments vanish as in a perfect fluid, it also allows for solutions where
they are nonzero and static, which is not the case for a perfect fluid. These criticisms
were recently raised by Refs. [21, 28, 30].

In this work, we consider the effect of finite neutrino mass either arising from the
active neutrinos themselves or a heavier sterile neutrino component. This problem has
been investigated recently in Ref. [6] by numerically solving the Boltzmann hierarchy,
and it was found that there is no clear degeneracy between neutrino mass and the sound
speed parameters. Our goal is to develop an analytic understanding of this result while
also deriving a parametric relationship between the parameters of the GFE and the
neutrino mass.

If we relax the assumption of relativistic neutrinos but maintain the assumption of
free-streaming neutrinos, then the density perturbations satisfy the collisionless fluid
equations of Eq. (2.3). Clearly it is not possible to put the GFE of Eq. (2.5) into
the form of Eq. (2.3) even with a judicious choice of the parameters (c2

eff , c
2
vis); the

equations have different structures. However, the neutrinos are still semi-relativistic
at the time of recombination, see Fig. 1, and this observation motivates us to expand

3In comparing with Eqs. (2–4) of Ref. [11], note that qν(k, τ) = 4θ(k, τ)/(3k) and πν(k, τ) =
2σ(k, τ) and Fν,3(k, τ) = 2χ(k, τ) in the massless limit.
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around the relativistic limit. Using the results of Appendix B the equation of state,
pseudo-equation of state, and sound speed are written as

w =
1

3
− 2∆c2

adi , w̃ =
1

3
− 4∆c2

adi , and c2
adi =

1

3
−∆c2

adi (2.6)

where all of the perturbations are proportional to m2/T 2 and we have used Eq. (2.1).
We can similarly expand the perturbation variables around Eq. (2.2) as4

Π = δ/3−∆Π , Π̃ = δ/3− 3∆Π ,

θ̃ = θ −∆θ̃ , and σ̃ = σ −∆σ̃ (2.7)

where the deviations are O(m2/T 2). Making these replacements the collisionless fluid
equations Eq. (2.3) become

δ̇ = −4

3

(
θ +

1

2
ḣ
)

+ 2∆c2
adi

(
θ +

1

2
ḣ
)
− 3

ȧ

a

(
2∆c2

adiδ −∆Π
)

(2.8a)

θ̇ = −3
ȧ

a
∆c2

adiθ +
1

4
k2δ − k2σ +

3

16
k2
(
2∆c2

adiδ − 4∆Π
)

(2.8b)

σ̇ =
4

15
θ +

(
1− 3∆c2

adi

) 2

15

(
ḣ+ 6η̇

)
− 3

5
kχ− 3

ȧ

a
∆c2

adiσ −
ȧ

a
∆σ̃ − 4

15
∆θ̃ . (2.8c)

Here we keep only terms up to linear order in the deviations. In summary, a system
of free-streaming particle obeys the collisionless fluid equations of Eq. (2.3), and if the
particles are semi-relativistic these equations can be approximated as in Eq. (2.8).

Now we seek to compare Eq. (2.8) with the generalized fluid equations of Eq. (2.5).
To facilitate the comparison we difference the two sets of equations to obtain

δ̇ : 3
ȧ

a

(1

3
− c2

eff + 2∆c2
adi

)
δ + 12

( ȧ
a

)2(1

3
− c2

eff

) θ
k2
− 2∆c2

adi

(
θ +

1

2
ḣ
)
− 3

ȧ

a
∆Π

(2.9a)

θ̇ : − 3
ȧ

a

(1

3
− c2

eff −∆c2
adi

)
θ +

3

4

(
c2

eff −
1

3
− ∆c2

adi

2

)
k2δ +

3

4
k2∆Π (2.9b)

σ̇ :
(
c2

vis −
1

3

)4

5
θ +

(
c2

vis −
1

3
+ ∆c2

adi

)2

5

(
ḣ+ 6η̇

)
+ 3

ȧ

a
∆c2

adiσ +
ȧ

a
∆σ̃ +

4

15
∆θ̃ .

(2.9c)

Evidently, there is no choice of c2
eff and c2

vis that brings the two expressions into the
same form, i.e. causes the three lines of Eq. (2.9) to vanish. The generalized fluid
equations thus fail to capture even this minor deviation from the null hypothesis.

3 Estimate Deviations from Null Hypothesis

While we have shown that there is no choice of c2
eff and c2

vis for which the generalized
fluid equations reduce to the collisionless fluid equations, nevertheless, it is reasonable

4Explicit calculation using Eqs. (A.12) and (A.13) reveals that δ/3 − Π̃ ≈ 3(δ/3 − Π) to leading
order in m2/T 2.
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to ask the following question. Suppose that the neutrinos have a small mass and are
semi-relativistic at the time of recombination. This affects the evolution of their density
perturbations according to Eq. (2.8) and ultimately impacts the CMB temperature
anisotropies. However, suppose one (naively) analyzes the observed CMB data using
the generalized fluid equations, Eq. (2.5), which do not capture the physics of the
semi-relativistic neutrinos. How will the best fit parameters c2

eff and c2
vis depend on the

neutrino mass?

Inspecting Eq. (2.9), we ask what choice of the phenomenological sound speed and
viscosity parameters would give the best agreement between the GFE and collisionless
fluid equations. Taking c2

vis = 1/3 − ∆c2
adi causes the gravitational source term to

vanish from the equation for σ̇, and taking c2
eff = 1/3−∆c2

adi causes a number of other
terms to exactly or partially cancel. This observation suggests that as the neutrinos
start becoming semi-relativistic, the sound speed and viscosity will deviate from the
null hypothesis, (c2

eff , c
2
vis) = (1/3, 1/3), according to5

c2
eff ≈ c2

adi and c2
vis ≈ c2

adi . (3.1)

While the identification of c2
eff and c2

vis with the adiabatic sound speed is not rigorous,
we propose here that it quantitatively reflects the correct parametric behavior and
order of magnitude of the effect.

It is interesting to note that both c2
eff and c2

vis begin to deviate from 1/3 as the
neutrinos become semi-relativistic. This is somewhat surprising, because if we relax
only the free streaming assumption, it is possible to describe a relativistic perfect
fluid with (c2

eff , c
2
vis) = (1/3, 0) in which only c2

vis deviates from its value in the null
hypothesis.

One additional comment is in order. Whereas c2
adi is temperature dependent, see

Fig. 1, the phenomenological parameters c2
eff and c2

vis are assumed to be static. Thus
we should interpret Eq. (3.1) to mean that c2

eff and c2
vis are derived from a weighted

time average of c2
adi between the epoch of neutrino decoupling and recombination.

Our analytic approximation does not determine which function will appear in the
time averaging. However, since c2

adi decreases monotonically from 1/3, any arbitrarily
weighted time average must satisfy

∆c2
eff , ∆c2

vis ≤ ∆c2
adi(Trec) , (3.2)

where the deviation in the adiabatic sound speed is evaluated at the time of recombi-
nation when the neutrino temperature was Trec ' 0.2 eV. The largest effect of finite
neutrino mass on the phenomenological parameters occurs if the inequality is satu-
rated. We will make this assumption for determining our upper limits in numerical
estimates below.

5A similar identification was employed in the mixed dark matter scenario of Ref. [4].
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Using the analytic expression for ∆c2
adi from Eq. (2.1) we estimate

∆c2
eff ≈ ∆c2

vis . 0.01
m2

T 2
rec

. (3.3)

The sum of the relic neutrino masses is constrained as in Eq. (1.2) using Planck data.
If the limit is saturated, the neutrinos are in the degenerate regime, and we can take
m ∼ 0.08 eV as a reference point. For this mass, the anticipated deviation in the sound
speed and viscosity parameters at the time of recombination are

∆c2
eff ≈ ∆c2

vis . 0.002
( m

0.08 eV

)2
(

Trec

0.2 eV

)−2

. (3.4)

Comparing with Eq. (1.3), we see that the expected deviation is smaller than Planck’s
sensitivity to c2

eff and c2
vis. If the sensitivity to c2

eff improves by an order of magni-
tude, the estimate of Eq. (3.4) suggests that the effect of finite neutrino mass could
become relevant. In that case, a more detailed numerical analysis would be necessary
to determine actual constraints..

Next we consider the possibility that the relic neutrino background contains a sub-
dominant component of eV-scale sterile neutrinos. The fact that the neutrinos are
sterile, i.e. not weakly interacting, will not actually be relevant for this discussion.
Rather, it only matters that they are semi-relativistic and free-streaming at the time
of recombination. Once again we ask the question: suppose that the CMB sky gener-
ated in this model is studied (naively) using the generalized fluid equations, which do
not explicitly account for the sterile neutrino component. How will the best fit phe-
nomenological parameters, c2

eff and c2
vis, depend on the sterile mass and abundance?

To study this model, one writes down two sets of collisionless fluid equations with
each taking the form of Eq. (2.3) but labeled by subscripts “a” for active and “s”
for sterile. This significantly complicates the analysis, but we now proceed to argue
that one can reduce the system to a single dynamical degree of freedom in the limit
where both active and sterile neutrinos are relativistic. Since the neutrinos are free-
streaming, they only influence the densities of other species (e.g., photons) through
their gravitational effect on the metric perturbations. Einstein’s equations, which
govern the evolution of the metric perturbations, only depend on the diagonal linear
combinations, e.g. ρ̄a + ρ̄s and δρa + δρs (see Ref. [10] for complete expressions). Thus,
as far as Einstein’s equations are concerned, we do not need to know the separate
evolution of the active and sterile neutrino perturbation variables, but only their sums
are relevant:

ρ̄ν = ρ̄a + ρ̄s , P̄ν = P̄a + P̄s , δρν = δρa + δρs (3.5)

and so on for the other perturbation variables, θν , σν , etc. In this way, we can model
the combined active and sterile neutrino background as a two-component fluid. The
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corresponding adiabatic sound speed is given by

c2
adi,ν =

˙̄Pν
˙̄ρν

=
c2

adi,a(1 + wa)ρ̄a + c2
adi,s(1 + ws)ρ̄s

(1 + wa)ρ̄a + (1 + ws)ρ̄s

(3.6)

where we have used Eq. (A.8). In the subsequent analysis we will assume, as above,
that the effective sound speed and viscosity will follow the adiabatic sound speed as
the neutrinos become semi-relativistic.

Note that while the sound speed formula bears a similarity to the baryon-photon
fluid, the physics is very different. Before recombination the baryons and photons are
tightly coupled due to frequent Thompson scattering [10]. Consequently, the baryon
perturbation variables tend to track the photon perturbation variables, e.g. θγ ≈ θb

and σγ ≈ σb ≈ 0, and the single coupled fluid evolves as if it had an adiabatic sound
speed given by the analog of Eq. (3.6). In the case of free-streaming neutrinos, on the
other hand, the active and sterile perturbations are not directly coupled. However, in
the relativistic regime, ma,ms � T , the two sets of Boltzmann equations describing
the evolution of the active and sterile neutrinos are reduced to the same form, i.e.
wa ≈ ws ≈ 1/3 and c2

adi,a ≈ c2
adi,s ≈ 1/3. If the isocurvature modes vanish initially, e.g.

θa ≈ θs, then they remain vanishing as long at the both species are ultra-relativistic.
Consequently the active and sterile neutrino perturbations evolve in the same way, even
through they are not directly coupled, and they can be modeled as a single fluid6. Once
the sterile neutrinos become non-relativistic, the isocurvature modes will grow, and
the two species will start evolving differently. Until that time, in the semi-relativistic
regime, the sound speed given in Eq. (3.6) is appropriate.

Further, we assume that the sterile neutrinos have a phase space distribution func-
tion of the Fermi-Dirac form with the same temperature as the active neutrinos but a
different overall normalization:

f0,a(q) =
g

(2π)3

1

eq/aT + 1
and f0,s(q) = α f0,a(q) . (3.7)

The proportionality constant α controls the relative number densities, n̄s = α n̄a. In
the relativistic limit this proportionality implies ρ̄s/ρ̄a ≈ α, and Eq. (1.1) gives

∆Neff ≈
8

7

(
11

4

)4/3
ρ̄s

ργ
≈ 3α . (3.8)

In the non-relativistic limit the proportionality implies

∆
∑

mν ≈ ms
n̄s

n̄a

≈ αms . (3.9)

The effective number of neutrinos is measured with an error of δNeff ≈ 0.4, see Eq. (1.2),
which implies ρ̄s/ρ̄a = α . δNeff/3 ≈ 0.1. Similarly, imposing the bound on

∑
mν

implies ms . (0.2 eV)/α ≈ 2 eV for α ≈ 0.1.

6One makes a similar reduction when modeling the Standard Model relic neutrino background as
a single fluid, even though it is composed of three non-interacting components, corresponding to the
three neutrino mass eigenstates.
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Figure 2. The relic neutrino adiabatic sound speed from Eq. (3.6). Varying the sterile
neutrino mass, ms, affects the equation of state and sound speed, ws and c2

adi,s, which appear
in Eq. (3.6). The three lines correspond to different values of the sterile-to-active energy
ratios, ρ̄s/ρ̄a = 1, 10−1, 10−2, and 10−3 from top to bottom, which is a proxy for ∆Neff/3.

We evaluate the relic neutrino adiabatic sound speed using Eq. (3.6). The active
neutrinos are still relativistic at recombination, and we can set wa ≈ c2

adi,a ≈ 1/3. The
sterile equation of state and sound speed, ws and c2

adi,s, are calculated from Eq. (3.7);
they vary with the sterile neutrino mass ms as shown in Fig. 1. Figures 2 and 3 show
how the sound speed deviation ∆c2

adi,ν = 1/3−c2
adi,ν varies with the sterile neutrino mass

ms and relative abundance ρ̄s/ρ̄a. If the sterile neutrino is sufficiently light, then it is
still relativistic at recombination, and its effect on the sound speed is small. Similarly,
if the relative sterile abundance is small, α = ρ̄s/ρ̄a � 1, then it also has a suppressed
impact on the sound speed. As the sterile neutrino mass is increased, the sound speed
begins to deviate further from the null hypothesis value, c2

adi,ν = 1/3. However, if the
mass is so large that the sterile neutrino is non-relativistic at recombination, then the
approximations used in our calculation are no longer valid, which is why we cut off
Figures 2 at ms/T ≈ 20. Fig. 3 also indicates the parameter space that is excluded by
bounds on

∑
mν and ∆Neff as the red and blue shaded regions, respectively. Focusing

on ms ≈ Tν ' 0.2 eV we see that the sound speed can deviate from the null hypothesis
by as much as O(10−3) before running into the bound on Neff .

4 Conclusion and Discussion

Generalized fluid equations (GFEs) provide a phenomenological formalism for testing
the relic neutrino “null hypothesis,” i.e. that the neutrinos are both relativistic and
free-streaming in the epoch prior to recombination. This formalism has two key advan-
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Figure 3. The relic neutrino adiabatic sound speed from Eq. (3.6). The figure is calculated in
the same way as Fig. 2, but we hold T = 0.2 eV fixed. Curves of constant ∆c2

adi,ν = 1/3−c2
adi,ν

are shown. The red shaded region is excluded by the bound on
∑
mν , and the blue shaded

region is excluded by the bound on ∆Neff .

tages: it requires only minimal modifications to the fluid equations, which are easily
implemented in a numerical Boltzmann solver; and these modifications are captured
by just two parameters, the effective sound speed c2

eff and the viscosity c2
vis, which

quantify deviations from the null hypothesis. However, as we have demonstrated in
Sec. 2, where we consider the effects of finite neutrino masses, specific microphysical
models that deviate from the null hypothesis cannot always be accommodated into the
GFE formalism.

One can nevertheless investigate how the presence of a finite neutrino mass would
affect the best fit values of c2

eff and c2
vis if the CMB sky were analyzed using a GFE

analysis. In Sec. 3 we propose that one can use the adiabatic sound speed at recom-
bination, c2

adi(Trec), to gauge the magnitude of deviations in c2
eff and c2

vis from 1/3, the
null hypothesis prediction. Taking this as our measure, we estimate that a value of
the neutrino mass saturating the Planck limit, m ' 0.08 eV, could induce a deviation
in the effective sound speed and viscosity by as much as 0.2%. If the relic neutrino
background contains a sterile component, similar estimates suggest that deviations
could be as large as ∆c2

eff ≈ ∆c2
vis ≈ 10−3 if Plank’s limits on ∆Neff and

∑
mν are

saturated. Since Planck’s error bars on the phenomenological parameters are relatively
large, δc2

eff ' 0.0059 and δc2
vis ' 0.037 respectively, the effect of finite neutrino mass

is currently imperceptible. However, if the next generation of CMB telescopes achieve
an order of magnitude improvement in sensitivity to the GFE parameters, then our
estimates suggest that the effect of finite neutrino mass cannot be neglected, and ana-
lytical and phenomenological approximations will need to be supplemented by detailed
numerical estimates.
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In this regard we conclude by noting that our numerical estimates of Sec. 3 rely
on the plausible argument that the best fit values of c2

eff and c2
vis will begin to deviate

from 1/3 in the same way as c2
adi. If experimental sensitivities improve sufficiently

one could test this ansatz in detail using a numerical Boltzmann solver and the fol-
lowing algorithm7: for a particular neutrino mass solve the full Boltzmann hierarchy,
Eq. (A.4), to generate realizations of the CMB sky; then for a particular (c2

eff , c
2
vis) solve

the generalized fluid equations Eq. (2.5); using MCMC techniques find the values of
(c2

eff , c
2
vis) that best fit the sky generated from the Boltzmann hierarchy.
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A Derivation of Fluid Equations

In this appendix we derive the fluid equations from the Boltzmann hierarchy. Our
notation mostly follows Ma & Bertschinger [10]: a(τ) is the scale factor, dτ = dt/a(τ)
is the conformal time, dx = dr/a(τ) is the comoving coordinate, k is the corresponding
wave vector, q = a(τ)p is the comoving momentum, and ε(τ) =

√
q2 + a(τ)2m2 is a(τ)

times the proper energy measured by a comoving observer.

The phase space distribution function is written as

f(k, q, τ) = f0(q, τ)
(
1 + Ψ(k, q, τ)

)
. (A.1)

For freely streaming particles, f satisfies the collisionless Boltzmann equation. For the
homogenous term8 this is simply ∂f0(q, τ)/∂τ = 0, and the perturbations satisfy

∂Ψ

∂τ
+ i

qk

ε
(k̂ · q̂)Ψ +

d ln f0

d ln q

(
η̇ − ḣ+ 6η̇

2
(k̂ · q̂)2

)
= 0 , (A.2)

7The algorithm we outline here is similar in spirit to the approach taken by Refs. [31, 32] to infer
the effect of neutrino mass on Neff .

8The analysis in this appendix does not assume any specific form for f0(q, τ).
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which has been written here in synchronous gauge (with η(k, τ) and h(k, τ) the metric
perturbations). The perturbation is decomposed onto the Legendre polynomials as

Ψ(k, q, τ) =
∞∑
l=0

(−i)l(2l + 1) Ψl(k, q, τ)Pl(µ) (A.3)

with µ = k̂ · q̂. The Boltzmann equation resolves to the set of coupled, first-order
differential equations

Ψ̇0 = −qk
ε

Ψ1 +
1

6

d ln f0

d ln q
ḣ (A.4a)

Ψ̇1 =
qk

3ε

(
Ψ0 − 2Ψ2

)
(A.4b)

Ψ̇2 =
qk

5ε

(
2Ψ1 − 3Ψ3

)
− 1

15

d ln f0

d ln q

(
ḣ+ 6η̇

)
(A.4c)

Ψ̇l =
1

2l + 1

qk

ε

(
lΨl−1 − (l + 1)Ψl+1

)
for l ≥ 3 , (A.4d)

which are collectively known as the Boltzmann hierarchy.

If one is not interested in the momentum dependence of the perturbations, it
would seem that the problem is simplified by integrating Eq. (A.4) over q. In the case
of massless particles (ε = q) one can identify a new dynamical variable Fl(k, τ) ∝∫∞

0
q2dq qf0(q, τ)Ψl(k, q, τ) for each original Ψl, and in fact, the problem is simplified.

However in the massive case (ε 6= q) the number of dynamical variables increases. For
instance, Eq. (A.4a) gives the evolution of A0 =

∫
εΨ0 in terms of B1 =

∫
qΨ1 (written

schematically), but Eq. (A.4b) gives the evolution of B1 in terms of C0 =
∫

(q2/ε)Ψ0.
This second moment of Ψ0 requires its own evolution equation, and thus it is typically
easier to solve Eq. (A.4) directly. Nevertheless, the first few equations obtained by
integrating Eq. (A.4) correspond to the familiar fluid equations, and we now proceed
to derive them.

First we define the spatially averaged energy density, pressure, and pseudo-pressure:

ρ̄(τ) = 4πa(τ)−4

∫ ∞
0

q2dq f0(q, τ) ε(q, τ) (A.5)

P̄ (τ) = 4πa(τ)−4

∫ ∞
0

q2dq f0(q, τ)
q2

3ε(q, τ)
(A.6)

P̃ (τ) = 4πa(τ)−4

∫ ∞
0

q2dq f0(q, τ)
q4

3ε(q, τ)3
. (A.7)

For freely streaming particles (∂f0/∂τ = 0), the energy density satisfies the homoge-
nous continuity equation

˙̄ρ(τ) = −3
ȧ

a

(
ρ̄+ P̄

)
, (A.8)
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and the pressure satisfies

˙̄P (τ) = − ȧ
a

(
5P̄ − P̃

)
. (A.9)

We define the equation of state, pseudo-equation of state, and adiabatic sound speed,

w(τ) =
P̄ (τ)

ρ̄(τ)
, w̃(τ) =

P̃ (τ)

ρ̄(τ)
, and c2

adi(τ) =
˙̄P (τ)
˙̄ρ(τ)

. (A.10)

They obey the useful relations

ẇ

1 + w
= 3

ȧ

a

(
w − c2

adi

)
and c2

adi =
5w − w̃
3(1 + w)

. (A.11)

Next we define a few of the lower order moments of Ψl as9

δρ(k, τ) = 4πa(τ)−4

∫ ∞
0

q2dq f0(q, τ)Ψ0(k, q, τ) ε(q, τ) (A.12a)

δP (k, τ) = 4πa(τ)−4

∫ ∞
0

q2dq f0(q, τ)Ψ0(k, q, τ)
q2

3ε(q, τ)
(A.12b)

δP̃ (k, τ) = 4πa(τ)−4

∫ ∞
0

q2dq f0(q, τ)Ψ0(k, q, τ)
q4

3ε(q, τ)3
(A.12c)

δQ(k, τ) = 4πa(τ)−4

∫ ∞
0

q2dq f0(q, τ)Ψ1(k, q, τ) qk (A.12d)

δQ̃(k, τ) = 4πa(τ)−4

∫ ∞
0

q2dq f0(q, τ)Ψ1(k, q, τ)
q3k

ε(q, τ)2
(A.12e)

δS(k, τ) = 4πa(τ)−4

∫ ∞
0

q2dq f0(q, τ)Ψ2(k, q, τ)
2q2

3ε(q, τ)
(A.12f)

δS̃(k, τ) = 4πa(τ)−4

∫ ∞
0

q2dq f0(q, τ)Ψ2(k, q, τ)
2q4

3ε(q, τ)3
(A.12g)

δC(k, τ) = 4πa(τ)−4

∫ ∞
0

q2dq f0(q, τ)Ψ3(k, q, τ)
2q3

3ε(q, τ)2
. (A.12h)

These correspond to perturbations in the energy density δρ, pressure δP , pseudo-
pressure δP̃ , energy flux δQ, anisotropic stress δS, etc. We can also write

δρ(k, τ) = ρ̄(τ) δ(k, τ) (A.13a)

δP (k, τ) = ρ̄(τ) Π(k, τ) (A.13b)

δP̃ (k, τ) = ρ̄(τ) Π̃(k, τ) (A.13c)

δQ(k, τ) =
(
1 + w(τ)

)
ρ̄(τ) θ(k, τ) (A.13d)

δQ̃(k, τ) =
(
1 + w(τ)

)
ρ̄(τ) θ̃(k, τ) (A.13e)

δS(k, τ) =
(
1 + w(τ)

)
ρ̄(τ)σ(k, τ) (A.13f)

δS̃(k, τ) =
(
1 + w(τ)

)
ρ̄(τ) σ̃(k, τ) (A.13g)

δC(k, τ) =
(
1 + w(τ)

)
ρ̄(τ)χ(k, τ) , (A.13h)

9Here our notation diverges from that of Ma & Bertschinger [10].

– 15 –



which defines the dimensionless perturbation variables δ, Π, etc. For massless particles
(ε = q) we have w = w̃ = c2

adi = 1/3, and the higher order moments simplify to the
lower order ones, e.g. δQ̃ = δQ, θ̃ = θ, P̃ = P , and so on.

Finally we are prepared to derive the fluid equations from the Boltzmann hierar-
chy. Taking the appropriately-weighted momentum integral of Eq. (A.4a) leads to the
inhomogenous continuity equation, which can be written in three equivalent forms:

δ̇ρ = −δQ− 1

2
ḣ
(
ρ̄+ P̄

)
− 3

ȧ

a

(
δρ+ δP

)
(A.14a)

δ̇ = −(1 + w)
(
θ +

1

2
ḣ
)

+ 3
ȧ

a

(
wδ − Π

)
(A.14b)(

δ

1 + w

)·
= −

(
θ +

1

2
ḣ
)

+ 3
ȧ

a

(
c2

adi

δ

1 + w
− Π

1 + w

)
. (A.14c)

The relation Π = (δP/δρ)δ puts the second equation into a more familiar form. Using
a different weighting in the momentum integral yields,

˙δP = −5
ȧ

a
δP +

ȧ

a
δP̃ − 1

3
δQ̃− 1

6
ḣ
(
5P̄ − P̃

)
(A.15a)

Π̇ = −3
ȧ

a

(1

3
− w

)
Π +

ȧ

a

(
Π̃− Π

)
− 1

3
(1 + w)θ̃ − 1

6
ḣ
(
5w − w̃

)
(A.15b)(

Π

1 + w

)·
= −3

ȧ

a

(1

3
− c2

adi

) Π

1 + w
+
ȧ

a

Π̃− Π

1 + w
− 1

3
θ̃ − 1

2
c2

adiḣ , (A.15c)

which gives the evolution of the momentum perturbation. Integrating Eq. (A.4b) leads
to the Euler equation,

˙δQ = −4
ȧ

a
δQ+ k2δP − k2δS (A.16a)

θ̇ = −3
ȧ

a

(1

3
− c2

adi

)
θ + k2 Π

1 + w
− k2σ , (A.16b)

and integrating Eq. (A.4c) gives the shear equation,

˙δS = −5
ȧ

a
δS +

ȧ

a
δS̃ +

4

15
δQ̃+

2

15
(ḣ+ 6η̇)

(
5P̄ − P̃

)
+

3

5
kδC (A.17a)

σ̇ = −3
ȧ

a

(1

3
− c2

adi

)
σ +

ȧ

a

(
σ̃ − σ

)
+

4

15
θ̃ +

2

5
c2

adi(ḣ+ 6η̇)− 3

5
kχ . (A.17b)

Equations (A.14)–(A.17) do not form a closed system, since the evolution of Π̃, θ̃, σ̃,
and χ are undetermined.
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B Fermi-Dirac Distribution

For the relic neutrinos, which decoupled while they were relativistic, f0(q, τ) maintains
the Fermi-Dirac distribution

f0 =
g

(2π)3

1

eq/aT + 1
(B.1)

where aT = a0T0 is independent of τ and g = 6 counts the two spin and three flavor
degrees of freedom. The energy density, pressure, and pseudo-pressure are calculated
from Eqs. (A.5), (A.6), and (A.7) with ε =

√
q2 + a(τ)2m2. In the limit m2/T 2 � 1

the integrals can be evaluated analytically, and we find

ρ̄(τ) ≈ 7

240
gπ2T 4 +

g

48
m2T 2 (B.2)

P̄ (τ) ≈ 7

720
gπ2T 4 − g

144
m2T 2 (B.3)

P̃ (τ) ≈ 7

720
gπ2T 4 − g

48
m2T 2 (B.4)

up to terms that are O(m4). The equation of state, pseudo-equation of state, and adi-
abatic sound speed are calculated using Eq. (A.10). The exact expressions, determined
numerically, are shown in Fig. 1. In the limit m2/T 2 � 1 we can approximate

w ≈ 1

3
− 10

21π2

m2

T 2
(B.5)

w̃ ≈ 1

3
− 20

21π2

m2

T 2
(B.6)

c2
adi ≈

1

3
− 5

21π2

m2

T 2
, (B.7)

up to terms of order O(m4/T 4). These expressions give Eq. (2.1).
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Abstract
Beginning with a set of simplified models for spin-0, spin-1

2 , and spin-1 dark matter candidates

using completely general Lorentz invariant and renormalizable Lagrangians, we derive the full set of

non-relativistic operators and nuclear matrix elements relevant for direct detection of dark matter,

and use these to calculate rates and recoil spectra for scattering on various target nuclei. This

allows us to explore what high energy physics constraints might be obtainable from direct detection

experiments, what degeneracies exist, which operators are ubiquitous and which are unlikely or sub-

dominant. We find that there are operators which are common to all spins as well operators which

are unique to spin-1
2 and spin-1 and elucidate two new operators which have not been previously

considered. In addition we demonstrate how recoil energy spectra can distinguish fundamental

microphysics if multiple target nuclei are used. Our work provides a complete roadmap for taking

generic fundamental dark matter theories and calculating rates in direct detection experiments.

This provides a useful guide for experimentalists designing experiments and theorists developing

new dark matter models.
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I. INTRODUCTION

The existence of non-baryonic dark matter has been inferred from measurements includ-

ing galactic rotation curves [1], large scale structure surveys [2–4], X-ray observations [5],

gravitational lensing [6, 7], and cosmic microwave background anisotropy measurements [8],

spanning cosmological eras from the present day to the remote past. This widespread and

robust data has led to cold dark matter models with a cosmological constant, labeled ΛCDM

becoming entrenched as the standard cosmological model.

Nevertheless, this impressive array of observations has only been sensitive to the grav-

itational influence of dark matter and constrained its relic abundance, leaving its particle

nature as one of the most important open questions in physics. The search for dark matter

includes indirect astrophysical searches ([9–13]), collider production efforts (for some exam-

ples of dark matter searches at the LHC, see [14–18]) which will examine new territory soon

with LHC run 2 which will commence this year, and attempts to observe dark matter inter-

actions with Standard Model (SM) particles via dark matter-nucleus scattering processes in

direct detection experiments, to which we now turn.

The search for dark matter via direct detection goes back at least three decades [19, 20]

and has been particularly vigorous over the last decade or so with experiments such as LUX

[21], Xenon100 [22], CDMS II (Ge) [23], CDMS I (Si) [24], DAMA/LIBRA [25], COGENT

[26], and CRESST [27] pushing ever deeper into weakly interacting dark matter mass and

scattering cross-section parameter space, but has thus far failed to yield a convincing signal.

In the near future detectors such as Super CDMS [28] (which has recently released its first

results on low mass dark matter searches [29, 30]), XENON1T [31], and DARWIN [32] are

expected to push the limits of direct detection orders of magnitude below the current levels.

In order to connect observations to microphysical models one needs a general framework

within which to interpret the observations of direct detection experiments. For quite some

time the prevailing method of analyzing dark matter-nucleus interactions has been to assume

that dark matter is a weakly interacting massive particle (WIMP), and then to categorize the

interactions as elastic and isospin conserving and either spin-independent or spin-dependent

[33, 34]. For some well studied models of dark matter, such as the weakly interacting

Majorana neutralino found in supersymmetry models, this assumption is reasonable.

With an absence of observed dark matter signals, there has of late been a surge in

2



interest in exploring more general types of interactions between dark matter and nuclei.

Generalizations include inelastic and momentum dependent interactions, which may arise

due to additional structure in the dark sector including excited dark matter states, or dark

gauge bosons giving rise to electric and magnetic form factors [35–42].

The formalism of choice for many of these investigations is relativistic effective field

theory, which provides a model independent framework to analyse dark matter-SM inter-

actions [43–45]. It has been shown that these effective theories break down when applied

to high-momentum transfer experiments, such as the LHC [46]. Therefore analyses moved

beyond this framework and have moved to what are labeled as ‘simplified models’ in-

stead [47–49]. Simplified models are field theories which extend the SM by a single dark

matter particle and a single mediator particle which allows the WIMP to communicate with

quarks and/or leptons. The newly added dark matter content is assumed to be a singlet

under the SM gauge groups (we will consider some cases where the particles mediating

the interaction have SM charge). In this context it is then possible to calculate collider

amplitudes valid at the high energies of interest in such experiments. Given this simple dark

sector, one can write down an exhaustive list of every combination of WIMP and mediator

spins, and all possible tree level interactions. These simplified models have now gained

popularity for analyzing indirect detection signals [50, 51], allowing connections to be made

with the growing body of literature which make use of them.

Another step towards placing dark matter-nucleus interactions on a general footing has

been accomplished recently by utilizing a non-relativistic effective field theory (EFT) ap-

proach [52–55]. Since the interactions in direct detection scenarios are assumed to take

place due to an incoming dark matter particle with a typical velocity O(100km/s), the

recoil momenta in such an interaction will be O(. 100keV). The particle masses involved,

including the nucleons of roughly GeV scale, the dark matter particles, which typically range

from the GeV region to several orders of magnitude above, and mediators that can also be

quite heavy compared to the typical interaction momenta, produce a situation where an

EFT treatment is quite natural.

In order to circumvent as much model dependence as possible, one can construct general

interactions which obey Galilean invariance, T -symmetry, and Hermiticity. These operators
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will take the standard effective four-particle interaction form, reminiscent of Fermi’s original

model of weak interactions. The non-relativistic interactions can be shown to be functions of

only four parameters including the nucleon spin SN , the dark matter spin Sχ, the momentum

transfer, ~q, and a kinematic variable ~v⊥ which is a function of the relative incoming (~vχ,in−

~vN,in) and outgoing velocities ~vχ,out − ~vN,out

~v⊥ = 1
2 (~vχ,in − ~vN,in + ~vχ,out − ~vN,out) = ~vχ,in − ~vN,in + ~q

2µN
(1)

which obeys ~v⊥ · ~q = 0. It was demonstrated in [53] that there exist fifteen such non-

relativistic interactions which arise from twenty possible bi-linear combinations of dark

matter and nucleons.

The formalism developed in [53] is unique in being the only analysis to comprehensively

develop the nuclear physics of direct detection experiments. From this general framework it

is now apparent that there are interactions beyond the standard spin independent/dependent

type. The origins of these ‘new’ interactions are not necessarily exotic and it has been shown,

in the context of relativistic EFT, how many of them can be generated [56].

What has been lacking to date however, is a completely general and comprehensive treat-

ment that connects high energy microphysics with low-energy effective nuclear matrix ele-

ments in a model independent way. It is possible, for example, that the various interactions

listed in [53] can give rise to degeneracies where different fundamental dark matter La-

grangians, describing dark matter and interaction mediators of various spins, can produce

the same interaction types. This will obviously pose problems for attempts to discern the

properties of dark matter when interpreting the results of experimental data. Furthermore,

dark matter may not be spin-1
2 , which creates a need for extending the parametric frame-

work from the four descriptors listed above. In particular, as we shall show, this allows the

existence of new non-relativistic operators to appear in the low energy effective theory.

Motivated by the above we present here a general analysis covering a broad spectrum

of particle and interaction types, starting from the microphysics, which will enable one to

link experiment with fundamental theory while incorporating the new nuclear responses

described in [53].

In this work we build upon the NR-EFT description by examining simplified models which

incorporate the most general renormalizable Lagrangians for scalar, spinor, and vector dark

matter interacting with nucleons via scalar, spinor, and vector mediators, consistent with
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Lorentz invariance and hermiticity while imposing stability of the dark matter candidates.

We integrate out the heavy mediator and obtain effective relativistic interaction Lagrangians.

Next, we take the non-relativistic limit of these Lagrangians, and identify them with the NR

operators from [53], which are reproduced below, in Table 1. Using these, we identify which

electroweak nuclear responses are excited by a given fundamental interaction model and

determine the relative importance of various models within the context of direct detection

experiments consisting of xenon and germanium targets by exploring the relative magnitude

of coefficients of these operators, and also their energy dependence.

The paper is organized as follows; in section II the EFT formalism of [53] is summarized,

in section III we build the generalized relativistic Lagrangians and in section IV we out-

line the signatures and distinguishability of these models in the context of direct detection

experiments, providing a framework for both experimentalists and theorists to base their

future analyses.

II. EFFECTIVE FIELD THEORY OF DIRECT DETECTION

Conventionally, coherent WIMP-nucleus scattering has been considered to come from two

types of interactions; spin-independent (SI) and spin-dependent (SD). SI interactions couple

to the charge/mass of the nucleus while SD couples to the spin. The nuclear cross section

is generally written in terms of the nucleon cross section at zero momentum transfer, σ0,

and a form factor, F (q), to take into account the loss of coherence over the finite size of the

nucleus,

dσ

dEr
= M

2πµχMv2

(
σSI0 F 2

SI(q) + σSD0 F 2
SD(q)

)
. (2)

where M is the mass of the target nucleus and µχM is the WIMP-nucleus reduced mass.

This picture has recently been shown to be incomplete, as it is also possible for the WIMP

to couple to the nucleus through additional nuclear responses [53]. Working in the language

of a non-relativistic (NR) effective field theory Fitzpatrick et al. identified 15 operators

to characterize the ways in which a WIMP can couple to the various nuclear responses.

These operators are constructed from combinations of non-relativistic vectors which respect

Galilean invariance, T symmetry and which are Hermitian. We list them in table I. The
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Hermitian vectors are:

i
~q

mN

, ~v⊥ = ~v + ~q

2µN
, ~Sχ, ~SN , (3)

where ~q = ~p′− ~p = ~k− ~k′ is the momentum transfer, ~v is the velocity of WIMP with respect

to the nucleus of the detector, µN is the reduced mass of the system and ~Sχ and ~SN are the

WIMP and nuclear spins respectively. Throughout the paper, we denote by ~p and ~p′ the

incoming and outgoing WIMP momenta and by ~k and ~k′ the incoming and outgoing nuclear

momenta respectively. Energy-momentum conservation implies the orthogonality condition

~q ·~v⊥ = 0. Here we will briefly outline the procedure employed in [53] in going from the NR

operators to the final differential WIMP-nucleus cross section.

TABLE I. List of NR effective operators described in [53]

O1 1χ1N

O2 (~v⊥)2

O3 i~SN · ( ~q
mN
× ~v⊥)

O4 ~Sχ · ~SN

O5 i~Sχ · ( ~q
mN
× ~v⊥)

O6 ( ~q
mN
· ~SN )( ~q

mN
· ~Sχ)

O7 ~SN · ~v⊥

O8 ~Sχ · ~v⊥

O9 i~Sχ · (~SN × ~q
mN

)

O10 i ~q
mN
· ~SN

O11 i ~q
mN
· ~Sχ

O12 ~Sχ · (~SN × ~v⊥)

O13 i(~Sχ · ~v⊥)( ~q
mN
· ~SN )

O14 i(~SN · ~v⊥)( ~q
mN
· ~Sχ)

O15 −(~Sχ · ~q
mN

)
(
(~SN × ~v⊥) · ~q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑
α=n,p

15∑
i=1

cαi Oαi , (4)
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where the coefficients cαi are given by the microphysics of the interaction and in general one

could allow for isospin violation by having different couplings to neutron and proton inside

the nucleus. This can be rewritten in 2-component isospin space as

LNR =
∑
τ=0,1

15∑
i=1

cτiOitτ (5)

where t0 and t1 are the identity matrix and the Pauli matrix σ3 respectively. The nucleus is

composed of nucleons, and these can individually interact with the WIMP. This is incorpo-

rated by considering the operator O(j) as an interaction between a single nucleon, j, and

the WIMP, and then summing over the nucleons.

∑
τ=0,1

15∑
i=1

cτiOitτ →
∑
τ=0,1

15∑
i=1

cτi

A∑
j=1
Oi(j)tτ (j) (6)

where A is the atomic mass number given by the total number of neutrons and protons.

One can do the same reduction with ~v⊥,

~v⊥ → {~vχ − ~vN(i), i = 1, ..., A}

≡ ~v⊥T − {~̇vN(i), i = 1, ..., A− 1} (7)

where ~vχ and ~vN(i) are the symmetrized combination of incoming and outgoing velocities

for the WIMP and nucleons respectively. ~v⊥T (here T stands for target, i.e., the nuclear

center-of-mass) is defined as

~v⊥T = ~vχ −
1

2A

A∑
i=1

[~vN,in(i) + ~vN,out(i)] (8)

This allows for a decomposition of the nucleon velocities into internal velocities ~̇vN(i) that

act only on intrinsic nuclear coordinates and ‘in’ and ‘out’ velocities that evolve as a WIMP

scatters off the detector. As an example, the dot product between ~v⊥N and ~SN can be

rewritten as

~v⊥ · ~SN →
A∑
i=1

1
2 [~vχ,in + ~vχ,out − ~vN,in(i)− ~vN,out(i)] · ~SN(i) (9)

= ~v⊥T ·
A∑
i=1

~SN(i)−
{

A∑
i=1

1
2 [~vN,in(i) + ~vN,out(i)] · ~SN(i)

}
int

(10)

The second term in the curly brackets is internal to the nucleus and acts as an operator on

the ‘in’ and ‘out’ nucleon states. ~vN,in can be replaced by ~pN,in/M acting on the incoming

state, which can in turn be replaced by i
←−
∇/M , and similarly ~pN,out/M by −i−→∇/M on the

7



outgoing nuclear state. Finally, since the nucleus is non-zero in size and individual nucleons

locally interact with the WIMP, nuclear operators built from Oi are accompanied by an addi-

tional spatial operator e−i~q·~x(i) where x(i) is the location of the ith nucleon inside the nucleus.

Starting from Eqn. 6 and using the substitution rules for ~v⊥ and including a factor of

e−i~q·~xi , the interaction Lagrangian can be written as a sum of five distinct terms (nuclear

electroweak operators) that only act on internal nucleon states. Their coefficients, on the

other hand, act on WIMP ‘in’ and ‘out’ states. The WIMP-nucleus interaction can then be

written as ∑
τ=0,1

{
lτ0S + lAτ0 T +~lτ5 · ~P +~lτM ·Q+~lτE · ~R

}
tτ (i) (11)

where

S =
A∑
i=1

e−i~q·~xi

T =
A∑
i=1

1
2M

[
−1
i

←−
∇ i · ~σ(i)e−i~q·~xi + e−i~q·~xi~σ(i) · 1

i

−→
∇ i

]

~P =
A∑
i=1

~σ(i)e−i~q·~xi

~Q =
A∑
i=1

1
2M

[
−1
i

←−
∇ ie

−i~q·~xi + e−i~q·~xi
1
i

−→
∇ i

]

~R =
A∑
i=1

1
2M

[←−
∇ i × ~σ(i)e−i~q·~xi + e−i~q·~xi~σ(i)×−→∇ i

]
(12)

and

lτ0 = cτ1 + icτ5
~Sχ ·

(
~q

mN

× ~v⊥T

)
+ cτ8(~Sχ · ~v⊥T ) + icτ11

~q · ~Sχ
mN

lAτ0 = −1
2

[
cτ7 + icτ14

(
~Sχ ·

~q

mN

)]

~l5 = 1
2

cτ3i
(
~q × ~v⊥T

)
mN

+ cτ4
~Sχ + cτ6

(~q · ~Sχ)~q
m2
N

+ cτ7~v
⊥
T + icτ9

(~q × ~Sχ)
mN

+ icτ10
~q

mN


cτ12(~v⊥T × ~Sχ) + icτ13

(Sχ · ~v⊥T )~q
mN

+ icτ14

(
~Sχ ·

~q

mN

)
~v⊥T + cτ15

(~q · ~Sχ)(~q × ~v⊥T )
m2
N


~lM = cτ5

(
i
~q

mN

× ~Sχ

)
− ~Sχc

τ
8

~lE = 1
2

cτ3 ~q

mN

+ icτ12
~Sχ − cτ13

(~q × ~Sχ)
mN

− icτ15
(~q · ~Sχ)~q
m2
N

 (13)
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The WIMP-nucleus amplitude, M, can then be succinctly written as

M =
∑
τ=0,1
〈jχ,Mχ; jN ,MN |

{
lτ0S + lAτ0 T +~lτ5 · ~P +~lτM ·Q+~lτE · ~R

}
tτ (i)|jχ,Mχ; jN ,MN〉.

(14)

By using spherical decomposition, the internal nuclear operators S, T, P,Q and R can be

further rewritten in terms of standard nuclear electroweak responses as follows:

M =
∑
τ=0,1
〈jχ,Mχf ; jN ,MNf |

(∑
J=0

√
4π(2J + 1)(−i)J

[
lτ0MJ0;τ − ilAτ0

q

mN

Ω̃J0;τ (q)
]

(15)

+
∑
J=1

√
2π(2J + 1)(−i)J

∑
λ±1

(−1)λ
{
lτ5λ[λΣJ−λ;τ (q) + iΣ′

J−λ;τ (q)]

−i q

mN

lτMλ[λ∆J−λ;τ (q)]− i
q

mN

lτEλ[λΦ̃J−λ;τ (q) + iΦ̃′

J−λ;τ (q)]
}

+
∞∑
J=0

√
4π(2J + 1)(−i)J

[
ilτ50Σ′′

J0;τ (q) + q

mN

lτM0∆̃′′

J0;τ (q) + q

mN

lτE0Φ̃′′

J0;τ (q)
])
|jχ,Mχi; jN ,MNi〉

Where there is an implicit sum over the nucleons,

OJM ;τ (q) ≡
A∑
i=1
OJM(q~xi)tτ (i), (16)

and the various electroweak responses are defined as

MJM(q~x) ≡ jJ(qx)YJM(Ωx)
~MM
JL ≡ jJ(qx)~YJLM(Ωx)

∆JM ≡ ~MM
JJ(qxi) ·

1
q
~∇i

Σ′

JM ≡ −i
{

1
q
~∇i × ~MM

JJ(q~xi)
}
· ~σ(i)

Σ′′

JM ≡
{

1
q
~∇iMJM(q~xi)

}
· ~σ(i)

Φ̃′

JM ≡
[

1
q
~∇i × ~MM

JJ(q~xi)
]
·
[
~σ(i)× 1

q
~∇i

]
+ 1

2
~MM
JJ(q~xi) · ~σ(i)

Φ′′

JM ≡ i

[
1
q
~∇iMJM(q~xi)

]
·
[
~σ(i)× 1

q
~∇i

]
ΣJM ≡ ~MM

JJ(q~xi) · ~σ(i)

Ω̃JM ≡ ΩJM(q~xi) + 1
2Σ′′

JM(q~xi)

Φ̃JM ≡ ΦJM(qxi)−
1
2Σ′

JM(qxi)

∆̃′′

JM ≡ ∆′′

JM(qxi)−
1
2MJM(qxi) (17)
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where YJM and ~YJLM are spherical harmonics and vector spherical harmonics respectively.

We are only considering elastic transitions, and assuming parity and CP as symmetries of the

nuclear ground state. This eliminates some of the responses, and only M,Φ′′
,Σ′

,∆,Σ′′
, Φ̃′

survive. To calculate cross-sections, one needs to square the amplitude, average over initial

spins and sum over final spins. The matrix element squared for the nuclear portion of the

amplitude has been made available by Fitzpatrick et al. [53], and codes have been supplied

to calculate the full amplitude and rate [54].

As we shall describe, in the following analysis we discovered that two additional NR

operators are required to fully describe the scattering of spin-1 WIMPs off nuclei,

O17 ≡ i
~q

mN

· S · ~v⊥,

O18 ≡ i
~q

mN

· S · ~SN , (18)

where S is the symmetric combination of polarization vectors. Appendix A contains the

details required to include these new operators in the above formalism.

III. SIMPLIFIED MODELS FOR DIRECT DETECTION

From a model building perspective, one would like to know how relevant the novel nuclear

responses are in interpreting direct detection data. Previous work [56] demonstrated that

using only the SI/SD form factors (even with additional momentum dependence taken into

account) can lead one to infer wildly incorrect values of the WIMP mass and cross sections.

Here we go further by starting with simplified models at the Lagrangian level, where

‘simplified model’ means a single WIMP with a single mediator coupling it to the quark

sector. This is useful for two reasons; it allows us to better explore which NR operators

arise from a broad set of UV complete theories, and also make connection with the growing

body of literature which use simplified models for indirect detection and collider searches.

When it comes to interpreting signals, knowing comprehensively how different interac-

tions with different nuclei arise from different UV complete models will allow us to identify

degeneracies between competing models. Further, it can also help optimize target selection

for maximum discrimination of the UV model parameter space.
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In building these simplified models we remain agnostic about the WIMP’s spin, and

consider dark matter spins of 0, 1
2 and 1. We do however only consider renormalizable inter-

actions between quarks and WIMPs. To ensure a stable WIMP, we assume that the WIMP

is either charged under some internal gauge group or a discrete symmetry group (for example

Z2). However, we assume that this gauge charge is not shared by quarks. We will couple

the WIMP to the quarks via a heavy mediator in two distinct ways: charged and uncharged

mediators, each with all possible spins consistent with angular momentum conservation.

The mediator mass is chosen to be the heaviest scale in the problem (and certainly much

greater than the momentum exchange which characterizes the scattering process) so that we

can integrate it out (see appendix B for details). This leads to relativistic effective WIMP-

nucleon interactions, whose NR limit can then be examined. In the uncharged mediator case

we will consider mediators that are neutral under all SM and WIMP gauge charges, while

in the charged case, the mediator must have both WIMP and SM gauge charges. Given the

above as a guide, our Lagrangian construction is then constrained only by gauge invariance,

Lorentz invariance, renormalizability and hermiticity. In certain cases which follow, the re-

quirement of hermiticity demands coupling constants be complex. Unless explicitly noted,

the coupling constants are dimensionless and can be assumed to be real.

A. Uncharged-mediator Lagrangians

1. Scalar Dark Matter

We begin with a spin-0 scalar WIMP, S, which has some internal charge to ensure sta-

bility, and S† is its Hermitian conjugate. To have renormalizable interactions, the neutral

mediator can only be a scalar or a vector. We denote the scalar mediator by φ and the

vector mediator by Gµ with field strength tensor Gµν .

The most general renormailzable Lagrangian for scalar mediation consistent with the
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above assumptions is given by

LSφq = ∂µS
†∂µS −m2

SS
†S − λS

2 (S†S)2

+1
2∂µφ∂

µφ− 1
2m

2
φφ

2 − mφµ1

3 φ3 − µ2

4 φ
4

+iq̄D/ q −mq q̄q

−g1mSS
†Sφ− g2

2 S
†Sφ2 − h1q̄qφ− ih2q̄γ

5qφ, (19)

where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector

mediation (up to gauge fixing terms) is

LSGq = ∂µS
†∂µS −m2

SS
†S − λS

2 (S†S)2

−1
4GµνG

µν + 1
2m

2
GGµG

µ − λG
4 (GµG

µ)2

+iq̄ /Dq −mq q̄q

−g3

2 S
†SGµG

µ − ig4(S†∂µS − ∂µS†S)Gµ

−h3(q̄γµq)Gµ − h4(q̄γµγ5q)Gµ. (20)

2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by χ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable

interactions for the scalar (φ) and vector mediator (Gµ) cases respectively are given below,

Lχφq = iχ̄ /Dχ−mχχ̄χ

+1
2∂µφ∂

µφ− 1
2m

2
φφ

2 − mφµ1

3 φ3 − µ2

4 φ
4

+iq̄D/ q −mq q̄q

−λ1φχ̄χ− iλ2φχ̄γ
5χ− h1φq̄q − ih2φq̄γ

5q, (21)
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LχGq = iχ̄ /Dχ−mχχ̄χ

−1
4GµνG

µν + 1
2m

2
GGµG

µ

+iq̄D/ q −mq q̄q

−λ3χ̄γ
µχGµ − λ4χ̄γ

µγ5χGµ

−h3q̄γµqG
µ − h4q̄γµγ

5qGµ. (22)

3. Spin-1 Dark Matter

If the WIMP is a massive spin-1 particle, uncharged mediation to the quark sector can

occur via a heavy scalar or a vector particle. For the case of vector mediation, there are

many possible interactions because the Lorentz indices on the vectors afford a more diverse

set of terms. The general interaction Lagrangian for the scalar mediation case is

LXφq = −1
2X

†
µνX µν +m2

XX
†
µX

µ − λX
2 (X†µXµ)2

+1
2(∂µφ)2 − 1

2m
2
φφ

2 − mφµ1

3 φ3 − µ2

4 φ
4

+iq̄ /Dq −mq q̄q

−b1mXφX
†
µX

µ − b2

2 φ
2X†µX

µ − h1φq̄q − ih2φq̄γ
5q. (23)

For the case of vector mediation, there are many possible interactions because the Lorentz

indices on the vectors afford a more diverse set of terms. The Lagrangian is given by

LXGq = −1
2X

†
µνX µν +m2

XX
†
µX

µ − λX
2 (X†µXµ)2

−1
4GµνG

µν + 1
2m

2
GG

2
µ −

λG
4 (GµG

µ)2

+iq̄ /Dq −mq q̄q

−b3

2 G
2
µ(X†νXν)− b4

2 (GµGν)(X†µXν)−
[
ib5X

†
ν∂µX

νGµ

+b6X
†
µ∂

µXνG
ν + b7εµνρσ(X†µ∂νXρ)Gσ + h.c.

]
−h3Gµq̄γ

µq − h4Gµq̄γ
µγ5q (24)

where, for the Lagrangian to be Hermitian, b6 and b7 are complex (this implies a new source

of CP violation, which will not be considered further here).
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A. Charged-mediator Lagrangians

Here we consider the simplest case of mediators that are charged under both the DM

internal symmetry group and SM gauge groups. This is motivated by the absence of spin-
1
2 mediators (s-channel processes) in the previous section. Such a mediator, if neutral, is

forbidden by simultaneous requirements of gauge invariance and renormalizability. Dark

Matter models with mediators endowed with charges from both DM and SM side have been

considered in the literature before [57, 58]. The case of a spin-1
2 mediator carrying SU(3)c

is also motivated by studies of heavy quark models. This allows unique interactions as we

show below. In particular they necessitate a direct interaction between quarks and WIMPs

at the level of the Lagrangian.

1. Scalar Dark Matter

Scalar WIMPs with a charged scalar or vector mediator do not lead to any Lorentz

invariant interactions. This is easy to see since both the scalars (or scalar and vector) and

the quark are required in the (gauge invariant) interaction, but there is no way to contract

the spinor indices consistently if the mediating particle is a scalar or vector. Therefore, the

only possibility is that of a spin-1/2 mediator, Q, which acts like a heavy quark. The general

renormalizable action is given by

LSQq = ∂µS
†∂µS −m2

SS
†S − λS(S†S)2

+iQ̄ /DQ−mQQ̄Q

+iq̄ /Dq −mq q̄q

−(y1SQ̄q + y2SQ̄γ
5q + h.c.), (25)

where y1 and y2 are again complex.

2. Spin-1
2 Dark Matter

For a spin-1/2 WIMP, both a charged scalar and charged vector mediator exchange can
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lead to novel interactions. The charged scalar is denoted by Φ and the charged vector by Vµ

LχΦq = iχ̄ /Dχ−mχχ̄χ

+(∂µΦ†)(∂µΦ)−m2
ΦΦ†Φ− λΦ

2 (Φ†Φ)2

+iq̄ /Dq −mq q̄q

−(l1Φ†χ̄q + l2Φ†χ̄γ5q + h.c.), (26)

LχV q = iχ̄ /Dχ−mχχ̄χ

−1
2V
†
µνVµν +m2

V V
†
µV

µ

+iq̄ /Dq −mq q̄q

−(d1χ̄γ
µqV †µ + d2χ̄γ

µγ5qV †µ + h.c.), (27)

where l1, l2, d1 and d2 are complex.

3. Vector DM

Here again we only have the case of a spin-1
2 mediated interaction between vector DM

and quarks (again scalar and vector charged mediators aren’t possible because they don’t

lead to Lorentz invariant and renormalizable interactions). The general Lagrangian is given

by

LXQq = −1
2X

†
µνX µν +m2

XX
†
µX

µ − λX
2 (X†µXµ)2

+iQ̄ /DQ−mQQ̄Q

+iq̄ /Dq −mq q̄q

−(y3XµQ̄γ
µq + y4XµQ̄γ

µγ5q + h.c.), (28)

where y3 and y4 are complex.

IV. NON-RELATIVISTIC REDUCTION OF SIMPLIFIED MODELS

After integrating out the heavy mediator we replace quark operators with nucleon oper-

ators (see appendix C), take the non-relativistic limit (see appendix B), and match onto the

operators given in table I. The results of this calculation are presented in terms of the ci
coefficients from [54], described in section II, facilitating a straightforward computation of
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amplitudes and rates. The ci’s are given for each of the WIMP spins in tables II, III and IV.

With this general framework in place we can now easily find the leading order NR operators

for each distinct WIMP-nucleus interaction. One can imagine a series of minimal scenarios

in which a combination of two Lagrangian couplings that give rise to a direct detection

signal is non-zero with all others set to zero, and then proceeding in this manner for the

entire set. Each of these scenarios is listed with its leading operators in table V and with

all operators generated in table VI. Note that in the case of a complex coupling constant

we consider purely real and purely imaginary values as separate cases since they produce a

distinct set of operators.

TABLE II. Non-zero ci coefficients for a spin−0 WIMP

Uncharged Mediator Charged Mediator

c1
hN1 g1
m2
φ

y†
1y1−y†

2y2
mQmS

fNT

c10
−ihN2 g1
m2
φ

+ 2ig4hN4
m2
G

mN
mS

i
y†
2y1−y†

1y2
mQmS

∆̃N

TABLE III. ci coefficients for a spin-1
2 WIMP

Uncharged Mediator Charged Mediator

c1
hN1 λ1
m2
φ
− hN3 λ3

m2
G

(
l†2l2−l

†
1l1

4m2
Φ

+ d†
2d2−d†

1d1
4m2

V

)
fNT +

(
− l†2l2+l†1l1

4m2
Φ

+ d†
2d2+d†

1d1
8m2

V

)
NN

c4
4hN4 λ4
m2
G

l†2l2−l
†
1l1

m2
Φ

δN −
(
l†1l1+l†2l2
m2

Φ
+ d†

2d2−d†
1d1

2m2
V

)
∆N

c6
hN2 λ2mN
m2
φ
mχ

( l
†
1l1−l

†
2l2

4m2
Φ

+ d†
2d2−d†

1d1
4m2

V
)mNmχ ∆̃N

c7
2hN4 λ3
m2
G

( l
†
1l2−l

†
2l1

2m2
Φ

+ d†
1d2+d†

2d1
4m2

V
)∆N

c8 −2hN3 λ4
m2
G

( l
†
1l2−l

†
2l1

2m2
Φ
− d†

1d2+d†
2d1

4m2
V

)NN

c9 −2hN4 λ3mN
mχm2

G
− 2hN3 λ4

m2
G

( l
†
1l2−l

†
2l1

2m2
Φ
− d†

1d2+d†
2d1

4m2
V

)NN − ( l
†
1l2−l

†
2l1

2m2
Φ
− d†

1d2+d†
2d1

4m2
V

)mNmχ ∆N

c10
hN2 λ1
m2
φ

i( l
†
1l2−l

†
2l1

4m2
Φ

+ d†
2d1−d†

1d2
4m2

V
)∆̃N − i l

†
1l2−l

†
2l1

m2
Φ

δN

c11 −hN1 λ2mN
m2
φ
mχ

i( l
†
2l1−l

†
1l2

4m2
Φ

+ d†
2d1−d†

1d2
4m2

V
)mNmχ f

N
T + i

l†1l2−l
†
2l1

m2
Φ

mN
mχ

δN

c12 0 l†2l1−l
†
1l2

m2
Φ

δN

As described earlier, we find that it is important to consider operators beyond those

incorporated into the standard spin-independent and spin-dependent formalism, i.e. simple

models exist in which one would infer an incorrect rate in current experiments by not in-

cluding these effects. Also importantly, not all of the NR operators are actually generated at
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TABLE IV. ci coefficients for a spin-1 WIMP

Uncharged Mediator Charged Mediator

c1
b1hN1
m2
φ

y†
3y3−y†

4y4
mQmX

fNT

c4
4Im(b7)hN4

m2
G

+ i q
2

m2
X

Re(b7)hN4
m2
G
− q2

mXmN

Re(b6)hN3
m2
G

2y
†
3y3−y†

4y4
mQmX

δN

c5
Re(b6)hN3

m2
G

mN
mX

0

c6
Re(b6)hN3

m2
G

mN
mX
− iRe(b7)hN4

m2
G

m2
N

m2
X

0

c8
2Im(b7)hN3

m2
G

0

c9 −2Re(b6)hN4
m2
G

mN
mX

+ 2Im(b7)hN3
m2
G

0

c10
b1hN2
m2
φ
− 3b5hN4

m2
G

mN
mX

i
y†
4y3−y†

3y4
mQmX

∆̃N

c11
Re(b7)hN3

m2
G

mN
mX

i
y†
4y3−y†

3y4
mQmX

δN

c12 0 2iy
†
3y4−y†

4y3
mQmX

δN

c14 −2Re(b7)hN4
m2
G

mN
mX

0

c17 −4Im(b6)hN3
m2
G

mN
mX

0

c18
4Im(b6)hN4

m2
G

mN
mX

−2iy
†
4y3−y†

3y4
mQmX

δN

leading order; for example, the operators O2, O3, O13 and O15 are missing at leading order.

Note that we only consider renormalizable Lagrangians, higher order non-renormalizable

operators, which are presumably further suppressed. We have also not considered the case

of kinetic mixing, which could be used to generate anapole interactions [56], because the

effective interaction doesn’t arise from one mediator exchange.

While spin independent interactions are a generic feature of direct couplings to quarks

in our charged mediator cases, it is sometimes possbile to suppress them. In the scalar (and

vector) WIMP with charged mediator cases, it is possible to suppress the spin independent

interaction by ensuring that |y1| = |y2|(|y3| = |y4|) while keeping their relative phases non-

zero (or π). While these non-minimal scenarios require some fine tuning we include it for

completeness and label them y1, y2 and y3, y4.

Aside from scalar WIMPs, each particular spin produces some non-relativistic operators

that are unique to that spin. Also, importantly, the operators O1 and O10 are generic to

all spins. In five cases relativistic operators generate unique non-relativistic operators at
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leading order. Therefore distinguishing WIMP scenarios in these cases reduces to experi-

mentally discerning between these operators (see also [59]). Given the likely low statistics

of any detection in upcoming direct detection experiments, sub-leading operators are not

likely to contribute enough to provide any further discriminating power.

V. OBSERVABLES

The principle observable in direct detection experiments is the differential event rate.

Since the incoming WIMPs originate in the galactic halo, one must average over the WIMP

velocity distribution, f(v), which we assume for the purposes of this paper to be Maxwell-

Boltzmann,

dR

dER
= NT

ρχM

2πmχ

∫
vmin

f(v)
v

Ptotdv (29)

where we use the value ρχ = 0.3GeV/cm3 for the local dark matter density, NT is the number

of nuclei in the target and Ptot can be calculated from the amplitude M in Eq. 14

Ptot = 1
2jχ + 1

1
2jN + 1

∑
spins

|M|2. (30)

Thoughout this work we use the mathematica package supplied in [54] to calculate rates. To

determine the leading order operator which arises from a given relativistic scenario we first

plot the rate for each of the NR operators in xenon-131. To simply compare the operators

we set the ci coefficients to be the same and normalized the overall rate to that of O1,

see Fig. 1. Since operators are either zero, first or second order in momentum transfer q

or velocity ~v⊥, the relative strengths of the operators span 16 orders of magnitude. This

is an important point to keep in mind when finding the leading operator, as sometimes a

term which appears to be higher order in q can dominate the non-relativistic reduction. For

example in the bRe
7 h4 scenario, one finds that q2O4 dominates over the O6 and O14 which

contain powers of q within the operators.

Since the Lagrangians we have considered are not tied to specific complete and consistent

particle physics models, the mediator masses are not fixed in advance and thus specific

event rates are not predicted in advance. Clearly one requires a rate that is low enough
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FIG. 1. The relative strength of event rates for a 50GeV spin-1
2 WIMP in xenon for each of the

non-relativistic operators in table I, where the coefficients of each operator are set to be equal

to evade the current experimental constraints. For example, a 50 GeV WIMP producing

10 events per tonne per year is sufficiently low to evade the bounds from LUX [21]. For

demonstration purposes we set the couplings to 0.1 (or 0.1i for imaginary) in the various

Lagrangians and find a mediator mass that will produce 10 events/t/y in the signal region

for xenon (5− 45keV). The calculated masses are given in table V. It is perhaps telling that

the mediator masses span 6 orders of magnitude, from just a few GeV up to a PeV. While

it is unlikely that a full model of thermal relic dark matter could be built around all of

these Lagrangians, it is nevertheless a useful metric to estimate the relative strength of the

different nuclear responses to each of the operators.

In Figs. 2, 3, 4 and 5 we have plotted rates for two common targets. For simplicity and

again for demonstration purposes, we only plot the rates for a single isotope of both ger-

manium and xenon. The choice of isotopes, 73Ge and 131Xe, was made to ensure sensitivity

to spin-dependent responses. As can be seen in the figures, many operators produce rates

with similar recoil energy dependence in the same target, but different nuclei can have very

different responses to the various operators [53]. Thus a complementary choice of nuclear

targets can provide important discriminating information.

To illustrate this discriminating power we plot the ratio of the rates in xenon and ger-

manium in Fig. 5 and 6. We choose to only present ratios for the uncharged mediator

cases of spinor and vector WIMPs since the other cases produce trival results (all operators

being spin independent). To estimate the effect astrophysical uncertainties will have on

discriminating between operators, we plot the rate for a range of astrophysical parame-
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ters from v0 = 200m/s, and vesc = 500m/s (lower) to v0 = 240m/s and vesc = 600m/s

(upper). The uncertainty in the dark matter density does not appear since we are con-

sidering the ratio of rates. Given the vastly different energy dependence of the ratio of

rates of each scenario the astrophysical errors do not completely inhibit their identification.

Furthermore, operators O9 and O14, produced in scenarios h4b
Re
7 and h4b

Re
6 respectively,

remain indistingushable when considering the ratio of rates. While it appears that in prin-

ciple almost every operator is discernible, in practice isotopically impure targets and low

statistics will further complicate the situation and provide limits on practical discrimination.
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FIG. 2. Rates for a 50GeV spin-0 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.
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FIG. 3. Rates for a 50GeV spin-1
2 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.
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FIG. 4. Rates for a 50GeV spin-1 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.
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FIG. 5. Rates (left) for a 50GeV spin-1 WIMP in xenon (solid) and germanium (dashed) with

uncharged mediators and imaginary couplings, assuming mediator mass of 1TeV and O(1) coupling

constants. Also shown is the ratio of rates in xenon and germanium (right).

VI. CONCLUSION

The analysis we have given here builds on previous analyses to provide, in generality, a

roadmap to use event rates in direct dark matter detectors to constrain fundamental dark

matter models. We have outlined the steps needed to go from fundamental Lagrangians, first

to relativistic operators, then to non-relativistic operators, and finally to produce nuclear

matrix elements. In the process several significant facts have been elaborated.

• Not all possible non-relativistic operators contributing to nuclear matrix elements in

direct detection will arise from simple UV complete dark matter models.

• Aside from scalar WIMPs each particular spin produces some non-relativistic operators

that are unique to that spin.
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FIG. 6. Ratio of rates in xenon and germanium, illustrating the discriminating power of having

multiple nuclear targets. For a 50GeV spin-1
2 WIMP with uncharged mediator (left) and a 50GeV

spin-1 WIMP with uncharged mediator (right), the shaded regions show the upper and lower

bounds due to the astrophysical parameters

• Two non-relativistic operators, O1 and O10, are ubiquitous and arise for all WIMP

spins we have explored.

• In 5 scenarios, relativistic operators generate unique non-relativistic operators at lead-

ing order.

• Two new non-relativistic operators not previously considered within the context of

the full array of allowed nuclear responses arise at low energies if spin-1 WIMP dark

matter is allowed for.

• While the different operators that can contribute to event rates in detectors using

specific elements or isotopes cannot be distinguished on the basis of their impact on the

differential event rates in these detectors, they can produce radically different energy

dependence for scattering off different nuclear targets. Thus, a complementary use

of different target materials will be necessary to reliably distinguish between different

particle physics model possibilities for WIMP dark matter.

While current detectors have only yielded upper limits, with new generations of larger

detectors with greater energy resolution and lower thresholds coming online, the search for

WIMP dark matter has never been so vibrant and promising. The tools we have provided

here should help experimenters to probe the most useful parameter space, to interpret any

non-zero signals in terms of constraints on fundamental models, and should allow theorists
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who build fundamental models to frame predictions in an accurate and simple way so that

they might be directly compared with experiment.
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TABLE V. Leading order operators which can arise from the relativistic Lagrangians considered in

this work, the column ‘L terms’ gives the non-zero couplings for that scenario. Each row represents

a possible leading order direct detection signal. A ‘†’ indicates that the mediator is charged. The

’Eqv. Mm’ column gives the mediator mass required for each scenario to produce ∼10 events

t−1yr−1keV −1 in xenon, with couplings set to 0.1.

WIMP spin Mediator spin L terms leading NR operator Eqv. Mm

0 0 h1, g1 O1 13 TeV

0 0 h2, g1 O10 14 GeV

0 1 h4, g4 O10 8 GeV

0 1
2
†

y1 O1 3.2 PeV

0 1
2
†

y2 O1 3.2 PeV

0 1
2
†

y1, y2 O10 41 GeV
1
2 0 h1, λ1 O1 12.7 TeV
1
2 0 h2, λ1 O10 293 GeV
1
2 0 h1, λ2 O11 14 GeV
1
2 0 h2, λ2 O6 1.9 GeV
1
2 1 h3, λ3 O1 6.3 TeV
1
2 1 h4, λ3 O9 6.4 GeV
1
2 1 h3, λ4 O8 180 GeV
1
2 1 h4, λ4 O4 135 GeV
1
2 0† l1 O1 7.1 TeV
1
2 0† l2 O1 5.5 TeV
1
2 1† d1 O1 5.9 TeV
1
2 1† d2 O1 6.7 TeV

1 0 h1, b1 O1 13 TeV

1 0 h2, b1 O10 10 GeV

1 1 h4, b5 O10 5.1 GeV

1 1 h3, b
Re
6 (bIm6 ) O5(O17) 5.5 GeV(23 GeV)

1 1 h4, b
Re
6 (bIm6 ) O9(O18) 3 GeV(4.6 GeV)

1 1 h3, b
Re
7 (bIm7 ) O11(O8) 186 GeV(228 GeV)

1 1 h4, b
Re
7 (bIm7 ) O4(O4) 78 MeV (172 GeV)

1 1
2
†

y3 O1 3.2 PeV

1 1
2
†

y4 O1 3.2 PeV

1 1
2
†

y3, y4 O11 120 TeV
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TABLE VI. List of scenarios with leading operators colored by which are distinguishable via the

ratio dRXe
dE /dRGedE .

O1 O2 O3 O4 q2O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O17 O18

(h1, g1) 3

(h2, g1) 3

(h4, g4) 3

Sp
in

-0
W

IM
P

(y1) 3 3

(y2) 3 3

(y1, y2) 3

(h1, λ1) 3

(h2, λ1) 3

(h1, λ2) 3

(h2, λ2) 3

(h3, λ3) 3

(h4, λ3) 3 3

(h3, λ4) 3 3

Sp
in

-1 2
W

IM
P

(h4, λ4) 3

(l1) 3 3 3

(l2) 3 3 3

(d1) 3 3 3

(d2) 3 3 3

(h1, b1) 3

(h2, b1) 3

(h4, b5) 3

(h3, b6) 3 3 3 3*

(h4, b6) 3 3*

Sp
in

-1
W

IM
P

(h3, b7) 3* 3* 3

(h4, b7) 3* 3 3 3

(y3) 3 3 3 3 3 3

(y4) 3 3 3 3 3 3

(y3, y4) 3 3 3 3

a

a * indicates the purely imaginary scenario for that coupling
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Appendix A: Vector Dark Matter

If the WIMP has spin 1, we find two extra operators that haven’t been considered pre-

viously. Specifically, the operators depend on the symmetric combination of polarization

vectors, Sij = 1
2

(
ε†iεj + ε†jεi

)
. This necessitates a modification to the WIMP response func-

tions by first modifying the ` coefficients given in Eq. 13. Based on our non-relativistic

reduction for vector dark matter, the Lagrangian for vector dark matter and the nucleus,

interacting via an uncharged scalar or vector mediator can be written in general as:

Lvector = c1O1 + c4O4 + c5O5 + c8O8 + c9O9 + c10O10 + c11O11 + c14O14 + c17O17 + c18O18

(A1)

where we’ve defined O17 ≡ i~q
mN
· S · ~v⊥ and O18 ≡ i~q

mN
· S · ~SN and the ci’s are given in

table IV. To decompose these new operators we replace ~v⊥ with the target velocity and the

internucleon velocities and sum over nucleons. O17 can then be put into the form

O17 →
i~q

mN

.S.
[
~v⊥T e

−i~q.~xi −
A∑
i=1

1
2M

(
−1
i

←−
∇ ie

−i~q·~xi + e−i~q·~xi
1
i

−→
∇ i

)
int

]
. (A2)

O18 can be expanded as

O18 →
1
2
i~q

mN

· S · ~σ (A3)

Together, all the terms of Lvector give rise to the following ` factors from Eq. 13,

`τ0 = cτ1 + i

(
~q

mN

× ~v⊥T

)
· ~Sχcτ5 + (~v⊥T · ~Sχ)cτ8 + i

(
~q

mN

· ~Sχ
)
cτ11 + i

(
~q

mN

· S · ~vT⊥

)
cτ17

lAτ0 = −i
(

~q

2mN

· ~Sχ
)
cτ14

~lτE = 0 (A4)

~lτM = i

(
~q

mN

× ~Sχ

)
cτ5 − ~Sχc

τ
8 − i

(
~q

mN

· S
)
cτ17

~lτ5 = 1
2
~Sχc

τ
4 + i

(
~q

mN

× ~Sχ

)
cτ9 + 1

2

(
i
~q

mN

)
cτ10 + 1

2~v
⊥
T

(
~q

2mN

· ~Sχ
)
cτ14 + 1

2

(
i
~q

mN

· S
)
cτ18

Based on the `’s above, the coefficients of the various nuclear responses are found by squaring

the amplitude and then summing over spins. To simplify calculations, we choose a convenient

basis for polarization vectors, εsi = δsi . Recall that the spin can then be written as the anti-

symmetric combination iSk = εijkε
†
iεj. The WIMP responses unique to the vector case are
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then given by:

Rττ ′

M = cτ1c
τ ′

1 + 2
3

(
~q2

m2
N

v⊥2
T cτ5c

τ ′

5 + v⊥2
T cτ8c

τ ′

8 + q2

m2
N

cτ11c
τ ′

11 + q2v⊥2
T

4m2
N

cτ17c
τ ′

17

)
Rττ ′

Φ′′ = 0

Rττ ′

Φ′′M = 0

Rττ ′

Φ̃′ = 0

Rττ ′

Σ′′ = 1
6c

τ
4c
τ ′

4 + q2

4m2
N

cτ10c
τ ′

10 + q2

12m2
N

cτ18c
τ ′

18

Rττ ′

Σ′ = 1
6c

τ
4c
τ ′

4 + q2

6m2
N

cτ9c
τ ′

9 + q2v⊥2
T

2m2
N

cτ14c
τ ′

14 + q2

24m2
N

cτ18c
τ ′

18

Rττ ′

∆ = 2
3

(
~q2

m2
N

cτ5c
τ ′

5 + cτ8c
τ ′

8

)
+ q2

6m2
N

cτ17c
τ ′

17

Rττ ′

∆Σ′ = 2
3
(
cτ5c

τ ′

4 − cτ8cτ
′

9

)
. (A5)

Appendix B: Non-relativistic Reduction

We find effective relativistic interaction Lagrangians by integrating out heavy mediators.

We only keep the leading order interactions (suppressed by m or m2). To the right of each

operator is their non-relativistic reduction expressed in terms of the operators in table I with

the coefficient derived from the Lagrangian parameters along with the relevant nucleon form

factor. As multiple operators can have the same non-relativistic limit, it is important to

include the nucleon form factor at the relativistic level. If this is not performed, erroneous

cancellations can occur.

For free spinors we use the Bjorken and Drell normalization and γ matrix conventions.

In the non-relativistic limit we make the following replacements:

S → 1S√
mS

Xµ →
εsµ√
mX

χ→
√
E +mχ

2mχ

 ξ

~σ·~p
E+mχ ξ

 (B1)

where s = 1, 2, 3 are the different polarization states of the vector. ξ = (1 0)T is the left
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handed Weyl spinor. The following Fierz transformation and gamma matrix identites were

useful in the charged mediator cases, (a sign difference was found in the final identity when

compared with [60]):

(q̄χ)(χ̄q) =−1
4

[
q̄qχ̄χ+ q̄γµqχ̄γµχ+ 1

2 q̄σ
µνqχ̄σµνχ− q̄γµγ5qχ̄γµγ

5χ+ q̄γ5qχ̄γ5χ
]

(q̄γ5χ)(χ̄γ5q) =−1
4

[
q̄qχ̄χ+ q̄γ5qχ̄γ5χ− q̄γµqχ̄γµχ+ q̄γµγ5qχ̄γµγ

5χ+ 1
2 q̄σ

µνqχ̄σµνχ
]

(q̄χ)(χ̄γ5q) =−1
4
[
q̄qχ̄γ5χ+ q̄γ5qχ̄χ− q̄γµqχ̄γµγ5χ+ q̄γµγ5qχ̄γµχ+ iεµναβ q̄σ

µνqχ̄σαβχ
]

(q̄γµχ)(χ̄γµq) =−
[
q̄qχ̄χ− q̄γ5qχ̄γ5χ− 1

2 q̄γ
µqχ̄γµχ−

1
2 q̄γ

µγ5qχ̄γµγ
5χ
]

(q̄γµγ5χ)(χ̄γµγ5q) =−
[
−q̄qχ̄χ+ q̄γ5qχ̄γ5χ− 1

2 q̄γ
µqχ̄γµχ−

1
2 q̄γ

µγ5qχ̄γµγ
5χ
]

(q̄γµχ)(χ̄γµγ5q) =−
[
q̄qχ̄γ5χ− q̄γ5qχ̄χ+ 1

2 q̄γ
µqχ̄γµγ

5χ+ 1
2 q̄γ

µγ5qχ̄γµχ
]

(B2)

σµνγ5 = i

2ε
µνρσσρσ (B3)

All of the following operators are collected in terms of the coefficients of the NR operators,

ci, in tables II,III and IV.

TABLE VII. Non-relativistic reduction of operators for a spin-0 WIMP

Scalar Mediator

(S†S)(q̄q) −→
(
hN1 g1
m2
φ

)
O1

(S†S)(q̄γ5q) −→
(
hN2 g1
m2
φ

)
O10

Vector Mediator

i(S†∂µS − ∂µS†S)(q̄γµq) −→ 0

i(S†∂µS − ∂µS†S)(q̄γµγ5q) −→
(

2ig4hN4
m2
G

mN
mS

)
O10

Charged Spinor Mediator

(S†S)(q̄q) −→ y†
1y1−y†

2y2
mQmS

fNT O1

(S†S)(q̄γ5q) −→ i
y†
2y1−y†

1y2
mQmS

∆̃NO10
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TABLE VIII. Operators for a spin-1
2 WIMP via a neutral mediator

Scalar Mediator

χ̄χq̄q −→
(
hN1 λ1
m2
φ

)
O1

χ̄χq̄γ5q −→
(
hN2 λ1
m2
φ

)
O10

χ̄γ5χq̄q −→
(
−hN1 λ2mN

m2
φ
mχ

)
O11

χ̄γ5χq̄γ5q −→
(
hN2 λ2mN
m2
φ
mχ

)
O6

Vector Mediator

χ̄γµχq̄γµq −→
(
−hN3 λ3

m2
G

)
O1

χ̄γµχq̄γµγ
5q −→

(
−2hN4 λ3

m2
G

)(
−O7 + mN

mχ
O9
)

χ̄γµγ5χq̄γµq −→
(
−2hN3 λ4

m2
G

)
(O8 +O9)

χ̄γµγ5χq̄γµγ
5q −→

(
4hN4 λ4
m2
G

)
O4
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TABLE IX. Non-relativistic reduction of operators for a spin-1
2 WIMP via a charged mediator

(after using Fierz identities)

Charged Scalar Mediator

χ̄χq̄q −→ l†2l2−l
†
1l1

4m2
Φ

fNTqO1

χ̄χq̄γ5q −→ i
l†1l2−l

†
2l1

4m2
Φ

∆q̃NO10

χ̄γ5χq̄q −→ i
l†2l1−l

†
1l2

4m2
Φ

mN
mχ

fNTqO11

χ̄γ5χq̄γ5q −→ l†1l1−l
†
2l2

4m2
Φ

mN
mχ

∆q̃NO6

χ̄γµχq̄γµq −→ − l†1l1+l†2l2
4m2

Φ
NN
q O1

χ̄γµγ5χq̄γµq −→ l†1l2+l†2l1
2m2

Φ
NN
q (O8 +O9)

χ̄γµχq̄γµγ
5q −→ l†1l2+l†2l1

2m2
Φ

∆N
q (O7 − mN

mχ
O9)

χ̄γµγ5χq̄γµγ
5q −→ − l†1l1+l†2l2

m2
Φ

∆N
q O4

χ̄σµνχq̄σµνq −→ l†2l2−l
†
1l1

m2
Φ

δNq O4

εµναβχ̄σ
µνχq̄σαβq −→ l†2l1−l

†
1l2

m2
Φ

δNq (iO10 − imNmχ O11 + 4O12)

Charged Vector Mediator

χ̄χq̄q −→ d†
2d2−d†

1d1
4m2

V
fNTqO1

χ̄χq̄γ5q −→ i
d†

2d1−d†
1d2

4m2
V

∆q̃NO10

χ̄γ5χq̄q −→ i
d†

2d1−d†
1d2

4m2
V

mN
mχ

fNTqO11

χ̄γ5χq̄γ5q −→ d†
2d2−d†

1d1
4m2

V

mN
mχ

∆q̃NO6

χ̄γµχq̄γµq −→ d†
2d2+d†

1d1
8m2

V
NN
q O1

χ̄γµγ5χq̄γµq −→ −d†
2d1+d†

1d2
4m2

V
NN
q (O8 +O9)

χ̄γµχq̄γµγ
5q −→ d†

2d1+d†
1d2

4m2
V

∆N
q (O7 − mN

mχ
O9)

χ̄γµγ5χq̄γµγ
5q −→ −d†

2d2+d†
1d1

2m2
V

∆N
q O4

30



TABLE X. Non-relativistic reduction of operators for a spin-1 WIMP

Scalar Mediator

X†µX
µq̄q −→

(
b1hN1
m2
φ

)
O1

X†µX
µq̄γ5q −→

(
b1hN2
m2
φ

)
O10

Vector Mediator

(X†ν∂µXν − ∂µX†νXν)(q̄γµq) −→ 0

(X†ν∂µXν − ∂µX†νXν)(q̄γµγ5q) −→
(
−3b5hN4
m2
G

mN
mX

)
O10

∂ν(Xν†Xµ +X†µX
ν)(q̄γµq) −→

(
Re(b6)hN3

m2
G

mN
mX

)
(O5 +O6 − q2

m2
N
O4)

∂ν(Xν†Xµ +X†µX
ν)(q̄γµγ5q) −→

(
−2Re(b6)hN4

m2
G

mN
mX

)
O9

∂ν(Xν†Xµ −X†µXν)(q̄γµq) −→
(
−4Im(b6)hN3

m2
G

mN
mX

)
O17

∂ν(Xν†Xµ −X†µXν)(q̄γµγ5q) −→
(

4Im(b6)hN4
m2
G

mN
mX

)
O18

εµνρσ
(
Xν†∂ρXσ +Xν∂ρXσ†

)
(q̄γµq) −→

(
Re(b7)hN3

m2
G

mN
mX

)
O11

εµνρσ
(
Xν†∂ρXσ +Xν∂ρXσ†

)
(q̄γµγ5q) −→

(
Re(b7)hN4

m2
G

mN
mX

)
(i q2

mXmN
O4 − imNmXO6 − 2O14)

εµνρσ
(
Xν†∂ρXσ −Xν∂ρXσ†

)
(q̄γµq) −→

(
2Im(b7)hN3

m2
G

)
(O8 +O9)

εµνρσ
(
Xν†∂ρXσ −Xν∂ρXσ†

)
(q̄γµγ5q) −→

(
4Im(b7)hN4

m2
G

)
O4

Charged Spinor Mediator

(X†µXν)(q̄γµγνq) −→
(
y†
3y3−y†

4y4
mQmX

)(
fNTqO1 + 2δNq O4

)
(X†µXν)(q̄γµγνγ5q) −→

(
y†
4y3−y†

3y4
mQmX

)
(i∆N

q̃ O10 + iδNq O11 − 2iδNq O12 − 2iδNq O18)

Appendix C: Quarks to Nucleons

To go from the fundamental interactions of WIMPs with quarks to scattering from point-

like nucleons, one must evaluate the quark (parton) bilinears in the nucleons. For a full

discussion see the appendix of [60] and [61]. We write the nucleon couplings in terms of the

quark couplings times a form factor (in the limit of zero momentum transfer): The scalar

bilinear for light quarks can be evaluated from

〈N |mq q̄q |N〉 = mNf
N
Tq (C1)
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〈No|mq q̄q |Ni〉 −→ fNTqN̄N

〈No| q̄γ5q |Ni〉 −→ ∆q̃N N̄γ5N

〈No| q̄γµq |Ni〉 −→ NN
q N̄γ

µN

〈No| q̄γµγ5q |Ni〉 −→ ∆N
q N̄γ

µγ5N

〈No| q̄σµνq |Ni〉 −→ δNq N̄σ
µνN

while for the heavy quarks

〈N |mq q̄q |N〉 = 2
27mNF

N
TG = 2

27mN

1−
∑

q=u,d,s
fNTq

 . (C2)

Summing over all the quarks one finds

hN1 =
∑

q=u,d,s
hq1
mN

mq

fNTq + 2
27f

N
TG

∑
q=c,b,t

hq1
mN

mq

(C3)

The psuedo-scalar bilinear was recently revisited in [61]:

hN2 =
∑

q=u,d,s
hq2∆q̃N −∆G̃N

∑
q=c,b,t

hq2
mq

(C4)

The vector bilinear essentially gives the number operator:

hN3 =

 2hu3 + hd3 N = p

hu3 + 2hd3 N = u
(C5)

The psuedo-vector bilinear counts the contributions of spin to the nucleon (note that

sometimes this coupling has a GF factored out to make it dimensionless)

hN4 =
∑

q=u,d,s
hq4∆N

q (C6)

Throughout this paper the following values are used (it should be noted that there are
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large uncertainties in these values) [60, 61]:

fnTu = 0.014 fpTu = 0.02

fnTd = 0.036 fpTd = 0.026

fnTs = 0.118 fpTs = 0.118

∆n
u = − 0.427 ∆p

u = 0.842

∆n
d = 0.842 ∆p

d = −0.427

∆n
s = − 0.085 ∆p

s = −0.085

∆ũn =− 108.03 ∆ũp = 110.55

∆d̃n = 108.60 ∆d̃p = −107.17

∆s̃n = − 0.57 ∆s̃p = −3.37

∆G̃n =35.7MeV ∆G̃p = 395.2MeV

(C7)

Assuming a universal coupling of the mediators to all quarks, the nucleon level couplings

can then be written as,

hN1 = fNT h1

hN2 =∆̃Nh2

hN3 =NNh3

hN4 =∆Nh4

(C8)

where we have defined,

fnT = 11.93 fpT = 12.31

∆̃n =− 0.07 ∆̃p = −0.28

N n = 3 N p = 3

∆n = 0.33 ∆p = 0.33

δn = 0.564 δp = 0.564

. (C9)
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This introduces a small amount of isospin violation, and it is known that relaxing the assump-

tion of universal couplings to quarks can lead to interesting isospin violating effects [61, 62].
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Abstract.
We initially consider two simple situations where inflationary slow roll parameters are

large and modes no longer freeze out shortly after exiting the horizon, treating both cases
analytically. By modes, we refer to the comoving curvature perturbation R. We then consider
applications to transient phases where the slow roll parameters can become large, especially
in the context of the common ‘fast-roll’ inflation frequently used as a mechanism to explain
the anomalously low scalar power at low l in the CMB. These transient cases we treat
numerically. We find when ε, the first slow roll parameter, and only ε is large, modes decay
outside the horizon, and when δ, the second slow roll parameter, is large, modes grow outside
the horizon. When multiple slow roll parameters are large the behavior in general is more
complicated, but we nevertheless show in the ’fast-roll’ inflation case, modes grow outside
the horizon.ar
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1 Introduction

The simplest inflaton models assume that slow roll is valid during the whole period from
when current CMB scales first exited the horizon up to the time just before inflation ends.
There are reasons one might suppose this isn’t the case. Obviously the slow roll parameters
must become large as inflation is ending, but since the modes we do observe were far outside
the horizon when inflation ended, we can presumably ignore this complication. We know the
slow roll parameters couldn’t have been large during the whole of inflation because either: (a)
inflation wouldn’t have lasted long enough, or (b) the observed ns would look substantially
different from what has been observed (ns � 1 if ε is close to 1 during much of inflation, or
ns ≈ 1 in the ultra flat δ ≈ 3 case. More on these below.) It would be phenomenologically
interesting, however, if the slow roll parameters became large for transient periods during
which scales that are currently observable today first left the horizon. For example, something
along the lines of [1] where the potential is comprised of a small amplitude, high frequency
trig function superimposed on a larger amplitude smaller frequency function would naturally
lead to oscillations in the slow roll parameters. One can get oscillations with large amplitudes
in the higher order slow roll parameters like δ and ξ2 while ε remains small and inflation last
long enough. In [1] this was used as a possible explanation for signs of negative running in
SPT data [2], signs that haven’t been replicated in Planck data [3].

A second possibility is that the slow roll parameters started out large at the time
the largest CMB scales were exiting the horizon, which might be possible if these scales
corresponded to the beginning of inflation. There might even be a hint for this found in
the CMB in the anomalously low scalar power at low l. There are various reasons one
might suppose inflation didn’t last much longer than necessary to solve the horizon, flatness
problem, etc. For example, one might suppose it’s unnatural for a field to end up too far offset
from its minimum. If inflation were preceded by a symmetry breaking event, one wouldn’t
assume the separation between the old and new minima to be arbitrarily large, especially
if one assumes the breaking happened below the Planck scale. In another common picture
where inflation started from a random quantum fluctuation, small quantum fluctuations
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should be exponentially more common than large ones, and many small fluctuations stacking
up in the same direction are also disfavored, leading to the inflaton likely not ending up much
further offset from its minimum than necessary.

The significance of the low l power anomaly is around 2.5 − 3σ [4]. The anomaly was
first discovered in the COBE data [5], and has since persisted in the WMAP and Planck
data [3, 4, 6, 7]. It might just be an effect of cosmic variance, for example see [8]. Moreover,
since the CMB comprises so many independent measurements, it would be surprising if
none of those measurements ended up deviating in a significant way from the theoretical
expectation [9]. Alternatively, it could be a hint of non-slow roll behavior at those scales,
possibly providing insight into the beginning of inflation. If large tensors are observed in the
future, this will increase the significance of the anomaly. The reason is that tensors as well
as scalars contribute to 〈TT 〉 at low l before around l ≈ 100 after which tensors drop off
substantially. Therefore, the fact that 〈TT 〉 at low l is already smaller than expected based
on the rest of the power spectrum, observing large tensors and inferring their contributions
to 〈TT 〉 would mean the scalar contribution would have to be even more suppressed at those
l than previously thought.

For these reasons, it’s interesting to see how large slow roll parameters affect the power
spectrum. In particular, when slow roll no longer holds, modes no longer necessarily freeze
out shortly after exiting the horizon [32–36]. By modes, we refer to the spatial curvature
pertrubation R evaluated in comoving gauge, though one could just as well consider ζ, the
gravitational potential evaluated in the gauge without density perturbations. This has a di-
rect impact on the power spectrum which can be defined by: P = k3

2π2 lim k
aH
→0 |Rk|

2. R (or

ζ) typically asymptote to a constant shortly after a k mode leaves the horizon. This is the
case when the perturbations are largely adiabatic, with an irrelevant entropy perturbation.
However, there are situations were modes don’t immediately freeze out, even for single field
inflation. This can be understood as due to an entropy perturbation staying relevant com-
pared to the adiabatic perturbation. We find that the gauge invariant metric perturbations
can actually grow (or shrink) exponentially outside the horizon if they exit the horizon when
the slow roll parameters are large. Therefore, for these modes, it is important to evaluate
them after slow roll is reached and not at horizon crossing, or one will underestimate (or
overestimate) the amplitude of the predicted power spectrum for these modes.

The papers [32, 33] gave a particularly useful way of understanding why modes grow in
the δ ≈ 3 case. Note the equation of motion for the comoving curvature perturbation R:

Rττ + 2
zτ
z
Rτ + k2R = 0 (1.1)

where τ is conformal time and z = aφτ
H . The 2 zτz Rτ acts as a friction term, and when it

becomes negative, R grows on super horizon scales. zτ
z can be written as 1−δ+ ε, and note ε

is always less than 1 if the universe is inflating, so if during inflation, δ is positive and larger
than 1 + ε, then the friction term is negative.

[34–36] consider connections of superhorizon evolution to the low power at low l anomaly.
[34] considers superhorizon evolution for DBI inflation, and [35, 36] considers potentials which
lead to temporary breaks in inflation leading to dips followed by enhancement of the power
spectrum. They show that if such a dip in the power spectrum aligned with the lowest l
scales, this helps alleviate the anomaly.

We will need the slow roll parameters written as derivatives of the Hubble parameter
since the common definition in terms of derivatives of only the potential assumes slow roll in
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the derivation and also doesn’t account for different choices of initial conditions. We use the
standard definition for ε

ε = 2M2
P

H2
φ

H2
(1.2)

(where subscript φ = d
dφ , H is the Hubble parameter, and MP , the reduced Planck mass)

and then follow the prescription in [10] for the higher slow roll parameters. These are defined
such that the order n parameter is given by

nβ = 2M2
P

(
Hn−1
φ ( d

dφ)n+1H

Hn

) 1
n

(1.3)

where n = 1 gives δ and n = 2 gives ξ and so on. While in principle there is an infinite number
of slow roll parameters incorporating higher order derivatives of the Hubble parameter, only
the first three, ε, δ and ξ2, appear in the general Mukhanov-Sasaki (MS) equation, and are
the only ones we will use here. The above prescription gives for δ and ξ2:

δ = 2M2
P

Hφφ

H
(1.4)

and

ξ2 = 4M4
P

HφHφφφ

H2
. (1.5)

It will be convenient to work with these equations with time derivatives instead, where
the slow roll parameters can be rewritten:

ε =
φ2N

2M2
P

δ =
φNN
φN

+
φ2N

2M2
P

ξ2 =
3

2M2
P

φNNφN +
1

4M4
P

φ4N +
φNNN
φN

−
φ2NN
φ2N

(1.6)

in efolding time (N), or in conformal time (τ):

ε =
1

2M2
P

φ2τ
H2

δ = 1− φττ
Hφτ

ξ2 = − φττ
Hφτ

+
1

H2

φτττ
φτ
− 1

H2

φ2ττ
φ2τ

+
φ2τ

2M2
PH2

, (1.7)

where H = aτ
a . These can then be applied to the Mukhanov-Sasaki equation. The familiar

form of the equation: uττ +u(k2− zττ
z ) = 0 with z = aφτ

H is general and doesn’t assume slow
roll. It is at the stage of expanding out zτ and zττ that one generally drops higher order slow
roll terms, but one can easily leave them in to obtain:

uττ + u

(
k2 − φτττ

φτ
− 2

φττφτ
M2
PH

+
φ2τ

2M2
P

− φ4τ
2M4

PH2

)
= 0 . (1.8)
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The derivative of φ terms can then be traded for slow roll parameters:

uττ + u(k2 −H2(2− 3δ + 2ε+ ξ2 + δ2 − 4εδ + 2ε2)) = 0 , (1.9)

or equivalently in efolding time:

uNN + uN (ε− 1) + u

(
k2

H2
e2N − 2 + 3δ − 2ε− ξ2 − δ2 + 4εδ − 2ε2

)
= 0 . (1.10)

In section 2 we consider a simple case where ε ≈ 1 and stays ≈ 1 for the duration of
inflation, and show there is a delayed freeze out effect. In section 3 we explore a simple case
of δ ≈ 3 for the duration of inflation, and determine how modes actually grow outside the
horizon. This case has been considered before, [11–17] but is included here for completeness,
and for relevance to transient situations where the slow roll parameters become large. In
section 4 we consider numerical studies of modified freeze out with transient periods of large
fast roll parameters. In section 5 we consider a simple analytic approximation of one of the
transient phases that well approximates the final power spectrum. In section 6 we present
our conclusions.

2 ε Large

Suppose ε is close to but slightly less than one such that the universe still inflates. Note that

ε =
φ2N
2M2

P
, using efolding time, N . Thus for ε ≈ 1, φN ≈

√
2MP . One can always start with

initial conditions with ε this large, but generally this will lead to φN decreasing exponentially
until a slow roll solution is reached. The quintessential example for ε large is to inflate on a
potential such that the asymptotic solution has φN ≈

√
2MP .

The equation of motion of φ using efolding time is given by:

φNN + (−3 + ε)φN +
1

H2
∂φV = 0 . (2.1)

For an example where ε ≈ 1 is maintained for a long period, we need to maintain φN ≈
√

2MP ,
and this requires a solution with φNN ≈ 0. Since ε ≈ 1, the equation of motion becomes:

2H2φN = ∂φV (2.2)

Next we use the Friedmann equation in efolding time: H2 = V

3M2
P−

φ2
N
2

and plug this into the

equation of motion to give:

V =
MP√

2
∂φV . (2.3)

So a potential that maintains ε ≈ 1 requires V ∝ ∂φV . This is obviously satisfied by
exponentials, so suppose
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V = Λ4e
φ
f . (2.4)

Plugging this into V = MP√
2
∂φV , we find

f =
MP√

2
. (2.5)

Thus if V = Λ4e
φ
f with f = MP√

2
, this allows for inflation with ε ≈ 1. In order that ε is

actually a little less than 1, f should be slightly larger that MP√
2

.

We consider the other slow roll parameters for this potential (equation 1.6). We find
φNN
φN
≈ 0, but δ ≈ 1 since δ = φNN

φN
+ ε. Similarly we find φNNN

φN
≈ 0, but ξ2 ≈ 1 since

ξ2 = φNNN
φN

+ 5εδ − 3ε2 − δ2. Note that it is the large ε value that makes δ and ξ2 ≈ 1. We
will use these to solve the full Mukhanov-Sasaki equation without slow roll approximations
(equation 1.9). Let ε = 1− α, so α is positive and α� 1. The MS equation becomes:

uττ + u
(
k2 −H2(1 + α)

)
= 0 (2.6)

Since φNN ≈ 0, ε ≈ constant, then α ≈ constant. We plug in for H using the definition
for ε in conformal time: HτH2 = 1− ε:

∫
1

H2
dH =

∫
αdτ . (2.7)

After choosing to define τ such that the integration constant is 0, this integrates to:

H =
1

−ατ
. (2.8)

Then the MS equation becomes:

uττ + u

(
k2 − 1

α2τ2
(1 + α)

)
= 0 , (2.9)

which can be solved:

u = c1
√
−τH(1)

1
α
+ 1

2

(−kτ) + c2
√
−τH(2)

1
α
+ 1

2

(−kτ) . (2.10)

We recognize this is the standard slow roll result except with ν → 1
α + 1

2 , and so matching
onto Bunch-Davies (BD) initial conditions gives:

u =

√
π

2

√
−τH(1)

1
α
+ 1

2

(−kτ) . (2.11)
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This can be rewritten using τ = −1
αaH :

u =

√
π

2

√
1

αaH
H

(1)
1
α
+ 1

2

(
k

αaH

)
. (2.12)

Normally during slow roll ν ≈ 3
2 , and there are only small deviations from 3

2 which
produce a tilt in the power spectrum. Here we have ν ≈ 1

α where α� 1, which will create an
extremely red power spectrum. The closer ε gets to one, the more tilted the power spectrum
becomes.

Also note that, as always, modes exit the horizon when k = aH but now the long
wavelength limit of the mode function only becomes valid when k � αaH, and since α� 1,
this occurs well after a mode has exited the horizon. This means the amplitude for modes
will continue to decay for a long period after they have exited the horizon, but freeze out will
eventually occur when k � αaH. The closer ε is to one, the longer it takes for freeze-out to
eventually happen.

We next calculate the power spectrum approximated for modes with k � αaH. Using

the gauge invariant perturbation |R|2 = |u|2
a2φ2N

and Pζ = k3

2π2 lim k
αaH
→0 |R|

2:

Pζ =
22νΓ2(ν)

8π3φ2N
(αH)2

(
αaH

k

) 2
α
−2

. (2.13)

We find Pζ ∝ ( 1k )large number giving an extremely red power spectrum.
To show that the power spectrum does eventually freeze out, we plug H and φN into

Pζ to better see the N dependence. Using the equation of motion above:

φN =
M2
P

f
. (2.14)

Let N0 define the initial value for N with N counting down towards 0 at the end of inflation.
Then integrating the above gives:

φ =
M2
P

f
(N −N0) + φ0 . (2.15)

We use the Friedmann equation to obtain:

H =
Λ2√

3M2
P −

1
2
M4
P

f2

e
1
2f

(φ0+
M2
P
f

(N−N0)) . (2.16)

We will focus only on the time dependent part:

Pζ ∝ e
M2
P
f2

N

(
e
N

(
M2
P

2f2
−1

)) 2
α
−2

. (2.17)
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Next, we determine f as a function of α. We use ε =
φ2N
2M2

P
and φN =

M2
P
f which gives

f2 =
M2
P

2(1− α)
. (2.18)

This yields the power spectrum:

Pζ ∝ e2N(1−α)
(
eN((1−α)−1)

) 2
α
−2

. (2.19)

We find the N dependence cancels out. So, as expected, the modes do freeze out, but not
until k � αaH.

One can then determine how much longer it takes for modes to freeze out after they
exit the horizon, or more specifically how many efolds pass between the period when k = aH
and when k = αaH.

e−N1
Λ2√

3M2
P −

1
2
M4
P

f2

e
1
2f

(
φ0+

M2
P
f

(N1−N0)

)
= αe−N2

Λ2√
3M2

P −
1
2
M4
P

f2

e
1
2f

(
φ0+

M2
P
f

(N2−N0)

)

(2.20)

Using f2 =
M2
P

2(1−α) we find:

∆N = − lnα

α
. (2.21)

So for example, for ε = 0.95, this corresponds to ∆N = 60. The closer ε is to one,
the longer the freeze out time. This means when inflation ends, there will be modes which
haven’t reached the long wavelength limit, and these modes will have more power than they
would otherwise have.

Of course this model produces an entirely wrong ns and can’t describe our actual power
spectrum. As we shall explore, more realistic models could contain transient periods where
ε becomes large, which is almost certainly true at least at the end of inflation but possibly
elsewhere too, and this model can give useful insights for those cases.

We find this behavior numerically in the arctan potential example below which passes
through a period with ε ≈ 1. There, as we shall see, the behavior is more complicated because
as ε returns to the slow roll value, some modes actually grow outside the horizon rather than
decay, leading to oscillations in the power spectrum. Solving analytically in these scenarios is
very difficult because not only are the slow roll parameters large, their derivatives are large,
and one can no longer approximate them as constant in the MS equation.

3 ε Small but η Large

When the Vφ term in the equation of motion during inflation is subdominant, one enters a
regime where δ ≈ 3 until enough kinetic energy is redshifted that Vφ starts to balance the
other terms. Then δ will transition to δ � 1 and slow roll will be reached. If one also starts
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with ε ≈ 1, and the potential isn’t as steep as in the last example, the kinetic energy will
drop off, and there will frequently be an in-between regime, where ε starts to drop off, but
δ ≈ 3 until enough kinetic energy is lost that δ too becomes small and slow roll is reached.
This case will be seen in the φ2 and R2 examples in section 4. The flatter the potential, the
longer the δ ≈ 3 regime. We start from the equation of motion in efolding time:

φNN + (−3 + ε)φN +
1

H2
∂φV = 0 . (3.1)

If ε has already become small, or was never large to begin with, but the field has enough
kinetic energy such that ∂φV is much smaller than the other terms, we find:

φNN = 3φN . (3.2)

Note from equation 1.6 δ = φNN
φN

+ ε. After ε has become small, then δ = φNN
φN

so that
δ = 3.

The flatter the potential, the longer the Vφ term will stay irrelevant and δ = 3. So the
quintessential example of trying to keep δ large would be a perfectly flat potential, Vφ = 0.

This has been worked out in the past [11–17]. It has been found that freeze out never
occurs for the duration of inflation and modes actually grow exponentially outside the horizon.
In spite of this, the final power spectrum is perfectly flat, without features.

One can derive this by solving the background/ classical equations, including first the
Friedmann equation:

H =

√
V√

3M2
P −

φ2N
2

. (3.3)

In the regime where ε is small,
φ2N
2 � 3M2

P , and with a potential where V is constant:

H ≈

√
V0

3M2
P

, (3.4)

the Hubble parameter is also essentially constant. Then we solve the the equation of motion
for φ, equation 3.2, which gives:

φ = φ0 +
φN 0

3

(
e3(N−N0) − 1

)
. (3.5)

Next we solve the full Mukhanov-Sasaki equation, equation 1.9, where we have both ε,
ξ2 ≈ 0, and δ = 3 is constant:

uττ + u(k2 − 2H2) = 0 . (3.6)

We choose initial conditions for τ such that H = − 1
τ :
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uττ + u(k2 − 2

τ2
) = 0 . (3.7)

This gives the normal slow roll mode function equation which has solution:

u =

√
π

2

√
−τH(1)

3
2

(−kτ) . (3.8)

So a potential with δ = 3 actually generates the same mode functions as a power
spectrum with δ = 0, assuming ε and ξ2 ≈ 0. However, the evolution of the metric perturba-
tions outside the horizon is very different. We use the gauge invariant metric perturbation

|R|2 = |u|2
a2φ2N

and Pζ = k3

2π2 lim k
aH
→0 |R|

2. The difference comes from the behavior of the φN

which is approximately constant during slow roll, but is decaying exponentially when δ = 3.
This means the behavior of |R|2 for a particular k mode grows exponentially outside the
horizon since |R|2 ∝ 1

φ2N
. The power spectrum is:

Pζ =
22νΓ2(ν)

8π3
H2

φ2N
, (3.9)

which is the form of the slow roll power spectrum except all the k dependence of the power
spectrum drops out.

To explore the time dependence, we insert values of H and φN . H is approximately
constant, but φN = φN 0e

3(N−N0).

Pζ =
22νΓ2(ν)

8π3
H2

0

φ2N 0e
6(N−N0)

(3.10)

Thus Pζ ∝ e−6N . Since we are using conventions where N counts down towards the
end of inflation, this means the power spectrum is growing exponentially in time. Note
that typically inflation doesn’t end in this scenario so that one imagines some coupling with
another field forces inflation to end at some particular point. Then the power spectrum
should freeze out at the transition to reheating (because super-horizon modes are frozen
during matter and radiation dominance). The amplitude for the power spectrum should be
the amplitude of these modes evaluated at the point inflation ends. Importantly, since there
is such a strong time dependence in the power spectrum, changing the time inflation ends in
this model by a small amount has a large effect on the amplitude of the power spectrum.

This model, as with the large ε one, would give a totally wrong ns (in this case ns of
exactly one), so this model can’t describe our universe. Again, however, there could have
been periods, especially early on, or following a sharp transition from a steeper to a flatter
potential, when δ ≈ 3 for some time. This situation is seen in two of the numerical examples
below which do produce a growth of modes outside the horizon until slow roll is reached.

In this case the power spectrum had to come out scale independent because there was
essentially no scale to the potential. In more realistic models, scale dependence will appear
both in the δ large, and slow roll regimes. The fact that modes grow outside the horizon is
independent of this and is a generic feature of large δ evolution.

– 9 –



4 Transient Periods of Fast Roll

It’s been pointed out [18] that in situations where not only the slow roll parameters are large,
but also their derivatives are large, it becomes extremely difficult to find analytic solutions to
the Mukhanov-Sasaki equation. We found an analytic solution for the case of a φ2 potential
as inflation is ending, but since the slow roll parameters are only large for about 1/2 an
efolding before inflation ends, this case isn’t particularly enlightening. Instead we consider
numerically cases where the slow roll parameters become large earlier on during inflation, at
observable scales, and then become small again.

Situations where one starts the inflaton with extra kinetic energy have been considered
in [9, 19–25]. Others have considered possibilities where the shape of the potential changes
such that it was steeper initially and then gets flatter to give suppression at low l, but without
breaking slow roll throughout the observable part of the CMB spectrum, often considered in
the context of tunneling [26–31]. The latter cases where one considers slow roll on a steeper
potential and then slow roll on a more shallow potential are much easier to implement since
slow roll approximations hold throughout,1 and because since inflation continues for some
time, the Bunch-Davies initial conditions are valid. Both situations tend to give suppressed
power at low l.

The question of BD initial conditions becomes an issue if one assumes inflation lasts
‘just long enough’ such that the largest CMB scales represent the start of inflation, and some
non-inflation period came before. We first consider numerically an arctan potential, this
way there is a period of slow roll inflation where BD initial conditions are valid, and then
a smooth transition to a period where the slow roll parameters become large, followed by
another slow roll regime. Next we consider the familiar φ2 potential, but start with initial
conditions such that φ starts with the maximum kinetic energy such that it’s still inflating,
1/2 the potential. In this case, assuming a non-inflating period came before, BD initial
conditions are at best a rough approximation which allows us to obtain a power spectrum
that can be considered a lower bound. This is because the BD initial conditions imply that the
amplitude of the different modes has been reduced down to it’s minimum allowed quantum
value. Therefore, initial conditions set up by a non-inflating regime will likely give modes a
larger initial amplitude. For example, consider [23, 32] where they find that modes which
are close to horizon size during a break in inflation are typically associated with enhanced
power.

4.1 Arctan Potential

For the arctan example we take:

V = Λ4

(
arctan

(
−φ
µ

)
+ C

)
(4.1)

where the +C is added to make sure there is positive potential slow roll behavior after the
steepening. One can choose to make the potential as steep as one wishes when φ = 0. We
choose to keep ε < 1 so inflation never actually stops. Figure 1 shows the potential and the
evolution of the slow roll parameters around the transition. N stands for number of efolding
where we fix N = 0 to be the time where ε is maximized, and N counts down such that

1Except perhaps for a brief period immediately following the transition if the transition isn’t smooth.
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larger N means earlier time. Figure 2 A shows the ratio of the power spectrum evaluated
during the final slow roll regime to the power spectrum evaluated at horizon crossing in
order to show the amount that modes either grow or decay outside the horizon during the
fast roll regime. In plotting the power spectrum as a function of N , we are plotting different
k modes, with N designating the horizon crossing time for each k mode. The figure shows
the same information as the more traditional power spectrum plots as a function of k, but
with a redefined x-axis. We show the latter in Figure 3 for reference, where the normalization
of k is arbitrary in this case, since this isn’t meant to represent the actual physical power
spectrum. Plotting the power spectrum as a function of N is meant to visually show how
long the effects last. Note in the early and late times in the figure, standard slow roll is
taking place, and modes decay by about a factor of 2 outside the horizon. The vertical red
lines bracket the region ε ≥ 0.25, the green the region δ ≥ 0.25, and the blue the region
ξ2 ≥ 0.25. We find initially when ε is large, the modes decay outside the horizon, but as δ
gets large the modes grow. There are also the oscillations/ wiggles one typically finds in the
power spectrum following sharp transitions.
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Figure 1: The figure depicts the potential and the three slow roll parameters, which appear
in the Mukhanov-Sasaki equation for the arctan potential, plotted in the region where the
potential becomes steep. N = 0 is taken to be where ε is maximized.
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Figure 2: The top left figure depicts the ratio of the final power spectrum amplitude evalu-
ated during the last slow roll regime to the power spectrum amplitude if evaluated at horizon
crossing for the arctan potential. This shows how much modes either grow or decay while
outside the horizon during the fast roll phase. The top right figure depicts the power spec-
trum amplitude evaluated at horizon crossing. The bottom left figure depicts the power
spectrum amplitude evaluated during the final slow roll regime. N = 0 is taken to be where
ε is maximized. The red vertical lines bracket the region ε ≥ 0.25, the green the region
δ ≥ 0.25, and the blue the region ξ2 ≥ 0.25.
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Figure 3: This figure shows the same results as the last figure but plotting in the more
traditional way as a function of k.

Just tracing whether modes are growing or shrinking outside the horizon isn’t enough
to reproduce the full power spectrum. The amplitude of the modes as they reach horizon size
is also changing in time, as depicted in Figure 2 B. The modes that start with the smallest
amplitude at horizon crossing subsequently grow the most outside the horizon. Incorporating
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both of these factors yields the power spectrum evaluated at late times, well into slow roll
regime in Figure 2 C.

4.2 φ2 Potential with Fast Roll Initial Conditions

In this example we take a standard φ2 potential but start the field off with extra kinetic
energy such that there is a smooth transition from kinetic dominance, with energy loss due
to Hubble friction, transitioning to fast roll inflation as ε drops to 1, and then eventually
slow roll inflation as the kinetic energy continues to diminish and the attractor solution
is reached. In this way the background equations are well defined. The difficulty comes
in choosing initial conditions for the metric perturbations for the modes that are leaving
the horizon shortly after inflation starts. Here as we have described, BD initial conditions
are not necessarily valid. Nevertheless, approximating the power spectrum using BD initial
conditions should yield an underestimate for the final amplitude. Thus the plots we display
should be considered as a minimum for the power spectrum from this fast roll period.

In Figure 4 we show the evolution of the three slow roll parameters appearing in the
Mukhanov-Sasaki equation in the fast roll regime, where we define N = 60 as the start of
inflation when ε = 1, and define N so it’s counting down towards the end of inflation. In
Figure 5 A we show the ratio of the power spectrum evaluated in the late time limit, after
slow roll has been established, to the power spectrum evaluated at horizon crossing, to show
the evolution of the modes outside the horizon. Again, instead of displaying k on the x-axis,
we show N as the time each k mode reached horizon size, to visually show in efolds how
long the effects of the fast roll initial conditions last. We show the more traditional power
spectrum in Figure 6 for reference. In the slow roll limit, the familiar factor of 2 drop in
the power spectrum after a mode leaves the horizon is restored, but initially we find modes
grow outside the horizon as for the δ large example above. In Figure 5 B we show the power
spectrum at horizon crossing and in Figure 5 C, the power spectrum in the late time limit for
reference. We find that although modes initially grow outside the horizon, they start from
such a suppressed initial value that the final power spectrum for these initial modes is still
smaller than for modes that exit the horizon during slow roll.
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Figure 4: The figure depicts the three slow roll parameters which appear in the Mukhanov-
Sasaki equation for the φ2 potential, plotted in the region where the potential is steep.
N = 60 corresponds to the onset of inflation with N counting down.
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Figure 5: The top left figure depicts the ratio of the final power spectrum amplitude eval-
uated during the following slow roll regime to the power spectrum amplitude if evaluated
at horizon crossing for the φ2 potential. This shows how much modes either grow or decay
while outside the horizon during the fast roll phase. The top right figure depicts the power
spectrum amplitude evaluated at horizon crossing. The bottom left figure depicts the final
power spectrum evaluated during the slow roll regime. The red vertical line marks the region
ε ≥ 0.25, the green the region δ ≥ 0.25, and the blue the region ξ2 ≥ 0.25.
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Figure 6: This figure shows the same results as the last figure but plotting in the more
traditional way as a function of k. Note the l axis is approximate as Pζ for each l is really
an integral over k. Also we assume the first modes to freeze out with the onset of inflation
correspond to the largest observable scales.
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4.3 R2 Potential with Fast Roll Initial Conditions

In this final numeric example we explore the effect of fast roll initial conditions for a flatter
potential, the R2 potential. We again give the field extra kinetic energy initially, and define
N = 60 as the start of inflation when ε = 1. Figure 7 shows the evolution of the slow roll
parameters for this case right around the fast roll transition. We find the flatter potential
means that the δ ≈ 3 region lasts for a longer period of time. As mentioned above, this is
because it takes longer for the Vφ term in the equation of motion to become relevant. Figure
8 shows the resultant power spectrum, where Figure 8 A shows the ratio of the late time
to horizon crossing power spectra, displaying how much modes evolve outside the horizon in
this case. Again, we find growth outside the horizon for a period until slow roll is reached.
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Figure 7: The figure depicts the three slow roll parameters which appear in the Mukhanov-
Sasaki equation for the R2 potential, plotted in the region where the potential is steep.
N = 60 corresponds to the onset of inflation with N counting down.
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Figure 8: The top left figure depicts the ratio of the final power spectrum amplitude eval-
uated during the following slow roll regime to the power spectrum amplitude if evaluated
at horizon crossing for the R2 potential. This shows how much modes either grow or decay
while outside the horizon during the fast roll phase. The top right figure depicts the power
spectrum amplitude evaluated at horizon crossing. The bottom left figure depicts the final
power spectrum amplitude evaluated during the slow roll regime. The red vertical line marks
the region ε ≥ 0.25, the green the region δ ≥ 0.25, and the blue the region ξ2 ≥ 0.25.
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Figure 9: This figure shows the same results as the last figure but plotting in the more
traditional way as a function of k. Note the l axis is approximate as Pζ for each l is really
an integral over k. Also we assume the first modes to freeze out with the onset of inflation
correspond to the largest observable scales.
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5 Analytic Approximation

Others [9, 23] have considered an analytic approximation where one takes a de Sitter solution
in one region, a kinetic dominated solution in another range, and then just matches boundary
conditions for H, τ , u, and uτ between the regions where u is the MS mode function. As we
show below, this method approximates well the late time suppression of the power spectrum,
but doesn’t reproduce the behavior of the modes outside the horizon.

First during the kinetic dominated period, one takes the equation of motion and Fried-
mann equations without the potential terms:

φττ + 2Hφτ = 0 (5.1)

and

H2 =
φ2τ

6M2
P

. (5.2)

During kinetic dominance, ε ≈ δ ≈ 3 and ξ2 ≈ 9 and all three slow roll parameter’s
time derivatives are negligible. The general MS equation (eq. 1.9) then reduces to:

uττ + u(k2 +
1

4τ2
) = 0 . (5.3)

This gives the standard slow roll solution but now with ν = 0. If we wish to match onto BD
initial conditions, this gives:

uKD =

√
π

2

√
−τH(1)

0 (−kτ) . (5.4)

Next we take the traditional slow roll equations, making sureH, u and uτ are continuous
across the transition. Figure 10 shows the results where we used slow roll parameters from
the φ2 potential.
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Figure 10: This figure shows power spectra results for a kinetic dominated phase immedi-
ately transitioning to slow roll using the φ2 potential. The top left figure shows the ratio of
the final amplitude to the horizon crossing amplitude. The top right figure shows the horizon
crossing amplitude, and the bottom figure shows the late time amplitude.

This simple analytic approach does well approximate the final power spectrum ampli-
tude when evaluated at late times, almost exactly replicating the power spectrum for the φ2

potential as can be seen by comparing Figure 10 to Figure 5, but the approach doesn’t well
characterize the evolution of the modes as they are passing outside the horizon.

����� ����� ����� ����� �����

����

����

����

����

����

��� �� ���� ��� ���� ��� ���� ��� ����

� [���-�]

�
ζ
(�
≪
�
�
)
/
�
ζ
(�
=
�
�
)

ℓ

Figure 11: This figure shows the same results as the last figure but plotting in the more
trandiational way as a function of k. Note the l axis is approximate as Pζ for each l is really
an integral over k. Also we assume the first modes to freeze out with the onset of inflation
correspond to the largest observable scales.
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6 Conclusions

We investigate the growth of the comoving metric perturbations outside the horizon in two
simple test cases where the slow roll parameters ε or δ become large. In the first case where
ε becomes large, freeze out eventually occurs, but takes longer the closer ε is to 1. During
the whole period that modes are evolving outside the horizon, they decay exponentially in
efolding time. In the second case, when δ ≈ 3, freeze out doesn’t occur until inflation ends,
and the modes instead grow exponentially in efolding time outside the horizon. Neither case
can provide the correct ns and so by itself can’t describe what actually occurred during
inflation. However, it is possible that during inflation there could be transient periods where
the slow roll parameters become temporarily large. In these cases one has to be careful to
evaluate modes after slow roll has been reached rather then at horizon crossing, as we have
shown.

It is also worth noting that there could even be hints of such transient behavior in the
CMB data, given the anomalously low power at low l in the scalar power spectrum. We show
that if one uses BD initial conditions and starts inflation with maximum kinetic energy (1/2
the potential), then one obtains a power spectrum that is suppressed at horizon crossing.
The modes grow outside the horizon, but the final power spectrum is still suppressed for
those initial modes, with the effect lasting for a few efolds. The growth in the modes outside
the horizon lasts until δ returns to its slow roll value, which takes longer for flatter potentials.

Such cases, where the initial suppression at low l can be linked to the earliest stages
of inflation, are therefore phenomenologically interesting, but there is an open question as
to what to use for initial conditions, which is therefore an important issue when trying to
compare to actual data. We used BD initial conditions in this case for convenience, but as
we have noted, this should only be viewed as a lower bound.

For the one transient case where initial conditions are unambiguous (an arctan poten-
tial), where there is an initial and final slow roll regime, and the slow roll parameters get
large in-between, we find suppression when ε is large, followed by oscillations, typical when
there are sudden transitions in power spectra.
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SNO+ is a large liquid scintillator-based experiment located 2 km underground at SNOLAB, Sudbury, Canada. It
reuses the Sudbury Neutrino Observatory detector, consisting of a 12 m diameter acrylic vessel which will be filled with
about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of
SNO+ is a search for the neutrinoless double-beta decay (0νββ) of 130Te. In Phase I, the detector will be loaded with
0.3% natural tellurium, corresponding to nearly 800 kg of 130Te, with an expected effective Majorana neutrino mass
sensitivity in the region of 55-133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying
up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep
into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure
reactor antineutrino oscillations, low energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos,
and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator
phase expected to start after a few months of water data taking. The 0νββ Phase I is foreseen for 2017.

1. Introduction

SNO+ is a large-scale liquid scintillator experiment lo-
cated at a depth of 5890 ± 94 meter water equivalent
(m.w.e.) in Vale’s Creighton mine in Sudbury, Canada.
The deep underground location, the high purity of ma-
terials used, and the large volume make SNO+ an ide-
ally suited detector to study several aspects of neutrino
physics.

The main goal of SNO+ is a search for the neutrino-
less double-beta decay (0νββ) of 130Te. 0νββ-decay is
a rare nuclear process that will happen if neutrinos are
Majorana-type particles, that is, they are their own an-
tiparticles. Understanding the Majorana nature of neu-
trinos is one of the most active areas of research in mod-
ern neutrino physics. The observation of the 0νββ-decay
would demonstrate lepton number violation, a key ingre-
dient in the theory of leptogenesis. The process can be
seen as two simultaneous β-decays, in which two neutrons
are converted into two protons and two electrons, as the
neutrinos from the two weak vertices mutually annihilate.
The signature is a peak at the Q-value of the process in
the summed energy spectrum of the two electrons. The
measured quantity is the half-life of the decay. The effec-
tive Majorana neutrino mass, mββ , which is highly de-
pendent on the nuclear matrix elements, is derived from
the half-life as described in [1]. A half-life of the order
of 1025 years corresponds to a neutrino mass range of
about 200–400 meV. The large mass and low background
of SNO+ allow the investigation of such a rare event.

The large volume and the high radio-purity are also the
reason why SNO+ can explore several other physics top-
ics. Observation of geo-neutrinos will help in understand-
ing the mechanisms for heat production in the Earth. Re-
actor antineutrino measurements constrain the neutrino
oscillation parameters. Neutrinos and antineutrinos com-
ing from supernova explosions would help to answer many
unresolved questions in neutrino astronomy. Addition-
ally, SNO+ has the potential to search for exotic physics
like axion-like particles and invisible nucleon decay.

The depth of SNOLAB also provides the opportunity
to measure low energy solar neutrinos, like pep and
CNO neutrinos. The pep neutrinos are monoenergetic,

with an energy of 1.44 MeV and a very well predicted
flux, with an uncertainty of 1.2%, constrained by the
solar luminosity [2]. A precise measurement of the
flux can probe the Mikheyev, Smirnov and Wolfenstein
(MSW) effect of neutrino mixing as well as alternate
models like Non Standard Interactions [3]. Another
open question in the solar neutrino field is related to
the solar metallicity. The Standard Solar Model was
always in excellent agreement with helioseismology
until recent analyses suggested a metallicity about
30% lower than the previous model. This raised the
question of the homogeneous distribution of elements
heavier than helium in the Sun. The measurement of the
CNO neutrino flux could be used to solve the problem [4].

This paper is structured as follows. In Sections 2 and 3
the SNO+ experiment is described, including the current
status and detector upgrades. The expected background
sources are presented in Section 4. In Sections 5 to 9 the
broad physics program of SNO+ is described: the neu-
trinoless double-beta decay search (Section 5), the mea-
surement of low energy solar neutrinos (Section 6), the
measurements of geo and reactor antineutrinos (Section
7), the supernova neutrino watch (Section 8), and the
exotic physics searches (Section 9). A brief conclusion
follows at the end.

2. The SNO+ Experiment

The SNO+ experiment [5] is located in the underground
laboratory of SNOLAB, Sudbury, Canada. A flat over-
burden of 2092 m of rock provides an efficient shield
against cosmic muons corresponding to 5890 ± 94 m.w.e.
[6]. The resulting muon rate through a 8.3 m radius cir-
cular area is 63 muons per day. SNO+ will make use of
the SNO detector structure [7, 8] consisting of a spheri-
cal acrylic vessel (AV) of 6 m radius and 5.5 cm thickness
located within a cavity excavated in the rock. The vessel
will be filled with about 780 tonnes of liquid scintilla-
tor and will be viewed by ∼9300 PMTs supported by
a geodesic stainless steel structure (PSUP) of approxi-
mately 8.9 m radius. The volume between the AV and
the PSUP, as well as the rest of the cavity, will be filled
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Figure 1: The SNO+ detector, figure from [9]. The
12 -m diameter acrylic vessel (blue) is viewed by ∼9300
PMTs supported by a ∼18 -m diameter geodesic struc-
ture (green) and is held by a system of high purity ropes
(purple). The AV and the PSUP are within a volume
of highly purified water. A rope net (red) will be used
to offset the buoyancy of the liquid scintillator contained
within the AV.

with about 7000 tonnes of ultra-pure water, which acts
as a shield for the radioactivity coming from the rock
(cavity walls) and the PMT array. A system of hold-up
ropes suspends the acrylic vessel inside the PSUP. Ad-
ditionally, in order to balance the buoyant force due to
the lower density of the liquid scintillator compared to
the external water, a new system of hold-down ropes has
been installed on the top part of the AV and anchored
at the cavity floor. A sketch of the detector is shown in
Figure 1.

The major detector upgrades, including the liquid scin-
tillator process systems, are described here.

2.1. Liquid Scintillator. The SNO+ liquid scintillator
(LS) is composed of an aromatic hydrocarbon, linear
alkylbenzene (LAB), as a solvent, and a concentration
of 2 g/L 2,5-diphenyloxazole (PPO) as a fluor. LAB was
selected as the liquid scintillator for SNO+ because of (1)
its long time stability, (2) compatibility with the acrylic,
(3) high purity levels directly from the manufacturer,
(4) long attenuation and scattering length, (5) high light
yield, and (6) linear response in energy. Additionally, it

has a high flash point and is environmentally safe. LAB
will be produced very close to the detector location (at
the Cepsa plant in Becancour, Quebec, less than 900 km
away), allowing short transport times which are impor-
tant to reduce the possibility of cosmogenic activation.

2.2. Te-Loading. One of the main advantages of using
LAB as liquid scintillator is the possibility of dissolving
heavy metals with long term stability and good optical
properties. For the 0νββ-decay phase of the experiment,
SNO+ will load tellurium into the liquid scintillator. An
innovative technique has been developed to load tellurium
at concentration levels of several percent into LAB main-
taining good optical properties and reasonably high light
emission levels [10]. Telluric acid, Te(OH)6, is first dis-
solved in water and then, adding a surfactant, loaded into
the scintillator. To better match the PMT quantum effi-
ciency a secondary wavelength shifter will also be added
to the mixture. Currently, we are investigating two dif-
ferent secondary wavelength shifters: perylene and bis-
MSB. The former shifts the emission peak’s range from
350–380 nm to ∼450–480 nm with a predicted light yield
in SNO+ of about 300 Nhits (detected photoelectron hits)
per MeV of energy. The latter shifts the emission peak to
∼390–430 nm with a light yield of 200 Nhits/MeV. The
final choice will depend on the timing optical properties,
the light yield, and the scattering length of the full scin-
tillator mixture.

2.3. Emission Timing Profiles and Optical Properties.
The emission timing profile and the optical properties of
the LAB-PPO and the Te-loaded scintillator have been
thoroughly investigated. The timing profile of scintil-
lation pulses depends on the ionization density of the
charged particles, with signals caused by electrons being
faster than those from protons or alpha particles. This
property allows the discrimination among particle types,
which is very important for background rejection. The
timing profile of electron and alpha particles in the un-
loaded scintillator has been measured in [11]. Results
show that, for a LAB-PPO sample, a peak-to-total ratio
analysis allows us to reject > 99.9% of the alpha particles
while retaining > 99.9% of the electron signal.

The measurement of the timing profiles in the 0.3%
Te-loaded scintillator is described in [12]. The presence
of water and the surfactant in the cocktail reduces the
long tail of the alpha decay (slow component) with re-
spect to the unloaded scintillator, resulting in a poorer
discrimination between α-like and β-like signals.

The light yield of the unloaded LAB-PPO scintillator
has been measured in bench top tests and extrapolated
for the full SNO+ volume using Monte Carlo (MC) sim-
ulations, leading to 520 Nhits/MeV.

The energy response to the electron energy deposi-
tion, the index of refraction, and the absorption length
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of the LAB-PPO liquid scintillator are investigated in
[13, 14]. The energy response is linear in the region from
0.4 MeV to 3.0 MeV, while below 0.4 MeV the linearity is
lost due to reemission effects and the loss of Cherenkov
light (threshold of ∼0.2 MeV).

Finally, the quenching of proton and alpha particles
for the unloaded scintillator and the Te-loaded cock-
tail has been measured in [15, 16]. The nonlinear
energy–dependent proton/alpha light output is typically
parametrized by Birks’ parameter kB [17]. Its measure-
ment is extremely important for the development of back-
ground rejection techniques as described in Section 4.
For protons in the unloaded SNO+ scintillator, the value
measured in [15] is kB = 0.0098 ± 0.0003 cm·MeV−1.
The measured value for alpha particles is kB = 0.0076
± 0.0003 cm·MeV−1, corresponding, approximately, to a
quenching factor of 10 for energies between 5 MeV and
9 MeV.

2.4. Process Plant. The scintillator purification plant
of SNO+ is fully described in [18, 19]. It will use the same
techniques and has the same cleanliness requirements as
the Borexino experiment, by which we expect to reach
a purity level of about 10−17 g/gLAB for both the 238U
and 232Th chain [20], corresponding to 9 counts per day
(cpd) for the 238U chain and 3 cpd for the 232Th chain.
Similar background levels have also been achieved by the
KamLAND experiment [21]. A multistage distillation (to
remove heavy metals and optical impurities) and a high
temperature flash vacuum distillation are initially used
to separately purify LAB and PPO. Then the PPO is
combined with the LAB, and the scintillator is further
purified by a N2/steam gas stripping process to remove
gases, such as Rn, Ar, Kr, O2, and residual water.

After the detector fill, the entire scintillator volume can
be recirculated in about 4 days to enable quasi-batch re-
purification and ex-situ radio-assaying. A rotating-stage
liquid-liquid extraction column (water-LAB) and metal
scavengers are used to effectively remove metals (K, Pb,
Bi, Th, and Ra). Finally, microfiltration is used for re-
moval of suspended fine particles.

During the neutrinoless double-beta decay phase, the
tellurium, the water, and the surfactant will be purified
prior to addition to the LAB-PPO scintillator. The pu-
rification technique for tellurium is described in [22]. It
has been designed to remove both the U- and Th-chain
impurities and the isotopes produced by cosmogenic neu-
tron and proton spallation reactions while handling and
storing tellurium on surface. It consists of a double-pass
acid-recrystallization on the earth’s surface, for which the
overall purification factor reached in U/Th and cosmo-
genic induced isotopes is >104. Since the tellurium purifi-
cation is expected to happen at the above ground facilities
and some isotopes can be cosmogenically replenished even
with short time exposures, a second purification stage is
needed underground. In this stage telluric acid is dis-

Figure 2: Sketch of the hold down rope system on the
top of the acrylic vessel to compensate for the buoyant
force that the scintillator produces on the AV.

solved in water at 80◦C and left to cool to recrystallize
without further rinsing. A further purification of about
a factor 100 is obtained. Currently, we are investigating
the possibility of moving the above ground purification
underground, in order to reduce potential recontamina-
tion.

The water purification plant at the SNOLAB under-
ground laboratory is based on the SNO light water pu-
rification plant, which has been upgraded to improve its
performance.

Spike tests have shown that some of the isotopes pro-
duced by cosmogenic activation of the surfactant are
harder to remove by purification than in the case of tel-
luric acid. The procedure to obtain pure surfactant will
therefore be based on its chemical synthesis in a dedicated
underground plant.

2.5. AV Rope System. The SNO+ liquid scintillator
has a lower density (ρ = 0.86 g/cm3 for LAB-PPO at
T = 12◦C) compared to the surrounding light water, re-
quiring a new hold-down rope system (see Figure 2) to
compensate the buoyant force, anchoring the acrylic ves-
sel to the cavity floor. The new hold-down rope system
consists of very high purity, high-performance polyethy-
lene fiber (Tensylon) ropes of 38 mm diameter. The orig-
inal hold-up rope system has also been replaced with new
Tensylon ropes of 19 mm diameter in order to reduce the
radioactivity contamination.

2.6. PMTs and Electronics. SNO+ uses the original 8
inch SNO photomultiplier tubes (Hamamatsu R1408).
Each PMT is equipped with a 27 cm diameter concen-
trator, increasing the effective photocathode coverage to
about 54%. Faulty PMT bases have been repaired and
replaced, and about 9400 PMTs (90 of which are facing
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Table 1: Calibration sources that are considered for use by the SNO+ experiment.

Source AmBe 60Co 57Co 24Na 48Sc 16N 220Rn/222Rn
Radiation n, γ γ γ γ γ γ α, β, γ

Energy [MeV] 2.2, 4.4 (γ) 2.5 (sum) 0.122 4.1 (sum) 3.3 (sum) 6.1 various

outwards) are expected to be in operation at the start of
the SNO+ experiment data taking.

In SNO+ the use of liquid scintillator as target volume
greatly increases the light yield in contrast to the SNO
heavy water, allowing the measurement of very low en-
ergy signals, like pp solar neutrinos (0.4 MeV end-point
energy). Moreover, some of the background event types
have high rates of several hundred Hz. For these rea-
sons, the SNO readout boards and the data acquisition
system were replaced with new ones capable of a higher
bandwidth. New utilities have been added to the SNO+
trigger system which will allow for a more sophisticated
use, a flexible calibration interface, and new background
cuts to improve the physics sensitivity. The SNO+ trig-
ger window is 400 ns long, during which time information
and charge are collected from every PMT that fired. A
dead-time of 30–50 ns separates two trigger windows [9].

In 2012 and 2014, the new electronics and trigger sys-
tem were tested in runs with the detector empty and
nearly half-filled with ultra-pure water (UPW).

2.7. Cover Gas System. As long-lived radon daughters
are a potential background for the physics goals of SNO+
(see Section 4), the original SNO cover gas system has
been upgraded to prevent radon ingress in the detector
during operation. It consists of a sealed system filled with
high purity nitrogen gas which acts as a physical barrier
between the detector and the ∼130 Bq/m3 of radon in
the laboratory air. A new system of radon tight buffer
bags has been designed and installed to accommodate
the mine air pressure changes, with the aim of reaching
a factor 105 in radon reduction.

2.8. Calibration Systems. The SNO+ detector will be
calibrated using both optical sources (LEDs and lasers
coupled to optical fibers) and radioactive sources (beta,
gamma, alpha, and neutron). The optical sources are
used to verify the PMT response and to measure in situ
the optical properties of the detector media, while the
radioactive sources are used to check the energy scale,
the energy resolution, the linearity of the response, and
the detector asymmetries, and to determine the system-
atic uncertainties and the efficiency of all reconstructed
quantities (i.e., energy, position, and direction). Addi-
tionally, a system of cameras in underwater enclosures
will be used to monitor the position of the acrylic ves-
sel and the hold-down rope system, and to triangulate

the positions of the calibration sources inserted into the
detector.

The SNO+ calibration hardware has been designed to
match the purity requirements of SNO+ and the need
to have materials compatible with LAB. The calibration
sources will be attached to an umbilical and moved by a
system of high purity ropes in order to scan the detector
off the central axis in two orthogonal planes.

The set of radioactive sources that are considered for
the SNO+ experiment is shown in Table 1, covering the
energy range from 0.1 MeV to 6 MeV. In addition, the in-
ternal radioactivity can be used to calibrate the detector
and check any energy shift or variation of the response
during data taking. Typical calibration references are
210Po-alpha, 14C-beta, delayed 214Bi-Po (238U chain) and
212Bi-Po (232Th chain) coincidences and muon followers.

The optical calibration hardware consists of internally
deployable sources – a laserball (light diffusing sphere)
and a Cherenkov source for absolute efficiency measure-
ments – and an external system consisting of sets of opti-
cal fibers attached to the PSUP in fixed positions, send-
ing pulses from fast LEDs or lasers into the detector.
This system allows frequent calibrations of the PMTs re-
sponse, time, and gain [23], and measuring the scatter-
ing and attenuation length of the scintillator without the
need for source insertion.

2.9. Simulation and Analysis. A Geant4-based soft-
ware package RAT (RAT is an Analysis Tool) has been
developed to simulate the physics events in the SNO+
detector in great detail, and to perform analyses such
as vertex reconstruction. The RAT simulation includes
full photon propagation, from generation via scintillation
and Cherenkov processes, through to absorption and de-
tection on the PMTs. The detailed data acquisition and
trigger systems are also part of the simulation. Sev-
eral particle generators have been developed to simulate
0νββ-decay events, solar neutrinos, geoneutrinos, reac-
tor antineutrinos, supernova neutrinos and antineutrinos.
The decay schemes of all relevant background isotopes are
also part of the simulation tool. RAT communicates with
a database that contains calibration constants and pa-
rameters describing the detector status during each run.
This includes the optical properties of the various com-
ponents of the scintillator cocktail, PMT calibration con-
stants, and detector settings such as channel thresholds.
Algorithms have been developed to reconstruct event in-
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formation such as the vertex position, event direction
(where relevant), and deposited energy. The SNO+ MC
tool is continuously tuned to match newly available mea-
surements.

For all SNO+ physics topics we have run a full Monte
Carlo simulation to predict the fraction of background
events in the corresponding region of interest (ROI), from
which we have evaluated our sensitivities.

3. Physics Goals, Current Status,
and Run Plan

The primary goal of SNO+ is to search for the neutri-
noless double-beta decay of 130Te. However, it has the
potential to explore other physics including the follow-
ing.

• Low Energy pep and CNO Solar Neutrinos
The pep-neutrinos can be used to constrain new
physics scenarios on how neutrinos couple to mat-
ter, while the CNO-neutrino flux can shed light on
unresolved questions regarding solar metallicity.

• Geoneutrinos
They are produced by the decay of U and Th chains
in the Earth’s crust and mantle. They can help to
understand the heat production mechanisms of the
Earth itself.

• Reactor Antineutrinos
These can be used to better constrain the ∆m2

12

neutrino oscillation parameter.

• Supernova Neutrinos and Antineutrinos
The ability to detect a galactic supernova provides
the potential for improving models of supernova ex-
plosions.

• Exotic Physics
The low background expected in SNO+ allows
searches for processes predicted by physics beyond
the standard model (other than 0νββ-decay), like
invisible nucleon decay, and solar axion or axion-like
particle searches.

Currently, the SNO+ cavity is partially filled with
ultra-pure water. The upgrades to the SNO+ detector
are nearly completed with a few items to be finished
before the start of data taking. The detector parts that
need to be finalized are the installation of the calibration
system, underwater cameras, and the calibration optical
fibers in most of the positions above the SNO+ equator,
and the replacement of the PMTs. The installation will
proceed along with the rise of the water level in the
cavity. The scintillator plant is nearly completed. The
newly installed electronic and trigger system and part
of the optical calibration system have been tested in air
and with the partially water-filled detector.

The data taking period of SNO+ will be divided into
three main phases:

Water phase: In this phase, the acrylic vessel will be
filled with about 905 tonnes of ultra-pure water and
data taking will last for a few months. The main
physics goals will be a search for exotic physics, in-
cluding solar axion-like particles and invisible nu-
cleon decay in 16O, the watch for supernova neutri-
nos, and the detection (potentially) of reactor an-
tineutrinos. During this phase, the detector perfor-
mance, the PMT response and the data acquisition
system characteristics will be tested. Optical cali-
brations to test the response of the PMT concen-
trators and the attenuation of the external water
and the acrylic will be performed. The backgrounds
coming from external sources, like external water,
PMT array, hold-down ropes, and the acrylic vessel,
will be characterized.

Pure scintillator phase: In this phase, the detector
will be filled with about 780 tonnes of LAB-PPO
liquid scintillator and data taking will last for a few
months. The physics topics covered are the mea-
surement of the low energy solar neutrinos, the mea-
surement of geo and reactor antineutrinos, and the
supernova neutrino watch. This phase will also be
used to verify the optical model and the detector re-
sponse and to characterize the backgrounds due to
internal and external radioactive sources.

Te-loading phase: This phase is foreseen to start in
2017 and last for about 5 years. In this phase, also
called Phase I, about 2.3 tonnes of natural tellurium
(0.3% loading by weight) will be added to the de-
tector for the search for the 0νββ-decay of 130Te.
Simultaneously, geo and reactor neutrinos can be
observed, and the detector will be live to a poten-
tial supernova.

The physics program and capabilities of SNO+ will be
discussed in Sections 5 to 9.

4. Backgrounds

The background sources of the SNO+ experiment can
be divided into two main categories: internal and exter-
nal. Internal backgrounds are all the non-signal inter-
actions that occur inside the AV (R < 6 m). External
backgrounds are the interactions that are produced in
the region outside the target volume but that can prop-
agate or are reconstructed within it. Full Monte Carlo
simulations, along with ex-situ assays are used to explore
the different background sources and develop rejection
techniques.

In the following subsections the various background
sources are presented: internal 238U chain (Section 4.1),
210Bi and 210Po decays (Section 4.2), internal 232Th chain
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Figure 3: Part of 238U-decay chain relevant for SNO+
with Q-values (total kinetic energy released in the ground
state - ground state transition), half-life and decay modes
[24]. The red squares highlight the nuclides of most con-
cern: 214Bi, 210Tl, and 210Bi. The decays used for α-β
and β-α coincidence techniques are shown with a blue
arrow (dash-dotted line).

(Section 4.3), internal 40K, 39Ar, and 85Kr decays (Sec-
tion 4.4), cosmogenically induced isotopes (Section 4.5),
(α,n) reactions (Section 4.6), pile-up events (Section 4.7),
and external backgrounds (Section 4.8).

4.1. Internal 238U Chain. 238U (T1/2 = 4.47×109 yr)
is a naturally occurring radioisotope present in the liq-
uid scintillator. The part of the decay chain relevant for
SNO+ is shown in Figure 3. The 238U daughters of most
concern are 214Bi, 210Tl, and 210Bi (see Section 4.2). Sec-
ular equilibrium with the top part of the chain is assumed
through the paper unless otherwise noted.

214Bi (T1/2 = 19.9 min) beta-decays to 214Po with a
Q-value of 3.27 MeV in 99.979% of the cases. This de-
cay can be tagged using the 214Po alpha-decay (T1/2 =
164.3µs, Eα = 7.7 MeV), during both the pure scintillator
and the Te-loaded phase. In the pure scintillator phase,
the β–α delayed coincidence will be used to measure the
concentration of the 238U-chain contaminants. 214Bi is
expected to be in secular equilibrium with the top part
of the 238U chain for most of the data taking period. This
equilibrium can be broken by radon ingress into the de-
tector during calibration campaigns, or from emanation

by the calibration hardware materials. However, for non-
continuum sources of radon, due to the short half-life of
214Bi, equilibrium will be restored in a few weeks’ time.
In SNO+ the presence of the cover gas on the top of the
detector provides an efficient barrier against laboratory
air, highly reducing the radon ingress into the detector
(see Section 2.7). Additionally, most of the radon short-
lived daughters decay in the cover gas region or in the
detector neck; thus they do not reach the fiducial vol-
ume.

During the Te phase, the delayed coincidence technique
will be used to reject 214Bi events that fall into the region
of interest (ROI) for the 0νββ-decay search.

Usually, Bi-β and Po-α are separated by more than
250 ns and the SNO+ detector records them as two sepa-
rate events. The secondary events (alpha candidates) are
identified by applying an energy cut around the alpha
energy, shifted due to quenching to ∼0.8 MeV electron
equivalent energy, and by the short time separation from
the preceding event. To reduce the misidentification of
the events due to other decays occurring in the same en-
ergy region during the coincidence window, a position
cut can also be applied. An α-β classification algorithm
has been developed to further reduce the misidentifica-
tion by classifying the events as α-like or β-like based on
the hit-time distribution.

Occasionally, the beta and the alpha decays are sepa-
rated by less than 250 ns and they may be recorded as a
single event by the SNO+ detector. These events are im-
portant for the 0νββ-decay phase as they may fall into
the ROI. In this case, the rejection technique is based
on the distortion in the time distribution of the light de-
tected by the PMTs compared to the case of a single in-
teraction. This rejection technique is enhanced if a pulse
shape analysis can be applied to distinguish beta from
alpha events.

In 0.021% of the cases 214Bi alpha-decays to 210Tl
(T1/2 = 1.3 min), which beta-decays to 210Pb with a
Q-value of 5.5 MeV. Due to the small branching ratio
this route is less important than the previous one. An
α–β delayed coincidence, similar to the β–α one, can be
applied. However, due to the longer half-life of 210Tl,
the mis-tagging probability is larger with respect to the
214Bi-Po one which may result in a larger signal sacrifice.

Based on Borexino Phase-I achievements [20], the pu-
rity level aimed (target level) in the LAB-PPO scintillator
for the 238U chain is 1.6×10−17 g/g (see Table 2). Dur-
ing the Te-loaded phase, the addition of the isotope, the
water, and the surfactant to LAB will worsen the mix-
ture purity, but we will maintain a strict target level of
2.5×10−15 g/g (see Table 2).

4.2. 210Bi and 210Po Backgrounds. The ingress of
222Rn into the SNO+ detector can break the secular-
equilibrium in the 238U chain at 210Pb (T1/2 = 22.2 yr,
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Table 2: Target levels, in g/g, and corresponding decay
rates for the internal 238U- and 232Th-chain contaminants
in the various SNO+ phases. Secular equilibrium has
been assumed for all the isotopes except 210Pb, 210Bi, and
210Po. The levels of 210Bi and 210Po during the pure scin-
tillator phase and the Te-loaded phase are expected to be
out of secular equilibrium due to the intrinsic scintillator
contamination and the leaching off of the AV surface. For
the 0.3% Te-loaded scintillator the tellurium/polonium
affinity component is also included in the 210Po decays/yr
(see text).

Source Target [g/g] Decays/yr

Internal H2O, water phase
238U chain 3.5×10−14 1.2×107

232Th chain 3.5×10−15 4.1×105

LAB-PPO, pure scintillator phase
238U chain 1.6×10−17 4900

232Th chain 6.8×10−18 700
210Bi - 7.6×108 a

210Po - 7.8×108 a

0.3% Te-loaded scintillator, Te phase
238U chain 2.5×10−15 7.6×105

232Th chain 2.8×10−16 2.8×104

210Bi - 7.9×109 b

210Po - 9.5×109 b

aExpected number of events in the first year after 9 months of
water phase.

bExpected number of events in the first year after 9 months of
water phase followed by 6 months of pure scintillator phase.

Q-value = 0.06 MeV), resulting in a higher concentration
of this isotope. Even if 210Pb is not a direct background
for the SNO+ experiment, its daughters 210Bi (T1/2 =
5.0 d, Q-value = 1.16 MeV) and 210Po (T1/2 = 138.4 d,
Eα = 5.3 MeV, shifted to ∼0.5 MeV electron equivalent
energy) are potentially relevant for the various physics
searches. 210Bi-beta decays are the main background for
the CNO-ν measurement, as they have similar spectral
shapes, while the 210Po-alpha decay is a background for
the β–α and α–β delayed coincidences, resulting in mis-
tagging and potential signal sacrifice. Additionally, the
emitted alphas can interact with the atoms in the scin-
tillator producing neutrons as described in Section 4.6.
The cover gas system placed at the top of the acrylic ves-
sel greatly reduces the radon ingress into the detector.
Furthermore, the majority of short-lived daughters de-
cay before reaching the fiducial volume. However, due to
its long half-life, 210Pb is not attenuated by the presence
of the detector neck and reaches the target volume.

210Pb and its daughters may also leach from materi-
als that are in contact with the liquid scintillator. Radon
daughters deposited on the material’s surface can implant
by alpha recoil to a depth of a few hundred nm, where
they eventually decay to 210Pb. 210Pb, 210Bi, and 210Po

atoms might then leach off when the liquid scintillator
mixture is in contact with the surface. This process can
happen, for instance, during the handling and storing of
the liquid scintillator, resulting in rates of 210Pb, 210Bi,
and 210Po out of equilibrium with the 238U chain. Con-
centrations of 210Bi and 210Po different from each other
and the rest of the 238U chain have been seen by the
Borexino experiment [25]. The levels initially measured
by Borexino for these two isotopes are included in Table 2.

An additional source of 210Pb, 210Bi, and 210Po is
leaching from the internal surface of the AV, where radon
daughters have implanted during the construction of SNO
and when the detector was empty after draining the
heavy water. This may create a continuous source of
210Pb, 210Bi, and 210Po during the data taking period for
all SNO+ phases. Leaching rates depend on several fac-
tors, like temperature, implantation depth, type of liquid
in contact with the surface, and initial surface activity.
The leaching rate of 210Pb and its daughters for all the
scintillator mixtures and the ultra pure water at differ-
ent temperatures have been measured in bench top tests.
With a measured activity of about 1 kBq on the inner
AV surface, the activity of 210Pb daughters leached in
the scintillator media might be as high as a few hundred
Bq depending on the duration of the data taking period.
The activity of the backgrounds leached in the scintilla-
tor is expected to increase with time, while that of inner
surface events is expected to decrease.

In the Te-loaded phase, an additional source of 210Po
is the tellurium itself. The CUORE collaboration has
shown [26] that due to the chemical affinity between tel-
lurium and polonium this element may still be present
in tellurium after the crystal production process. In our
background estimations we assume an additional 210Po
activity of 0.06 Bq/kgTe, based on CUORE measure-
ments. These decays, however, are not supported by
210Pb and are considerably reduced, to about 16% of
the initial activity, in a year after tellurium production.
This contribution is included in the purity levels of 210Po
shown in Table 2.

4.3. Internal 232Th Chain. 232Th (T1/2 = 1.4×1010 yr)
is also a naturally occurring radioisotope present in the
liquid scintillator. The daughters of most concern are
212Bi and 208Tl (see Figure 4).

212Bi (T1/2 = 60.6 min) beta-decays to 212Po (T1/2 =
300 ns) with a Q-value of 2.25 MeV in 64% of the cases.
As for the 214Bi→214Po decay, many events can be se-
lected using a β–α delayed coincidence, which is used
to extract the concentration of the 232Th-chain contami-
nants in equilibrium in the pure scintillator. Nearly 45%
of the 212Bi→212Po decays fall in the same trigger win-
dow and are a potential background for the 0νββ-decay
search. These can be rejected using the PMT timing dis-
tribution.

In the remaining 36% of the cases 212Bi alpha-decays
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64% β-decay
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Figure 4: Part of 232Th-decay chain relevant for SNO+
with Q-values, half-life and decay modes [24]. The red
squares highlight the most important nuclides: 212Bi and
208Tl. The decays used for α-β and β-α coincidence tech-
niques are shown with a blue arrow (dash-dotted line).

to 208Tl (T1/2 = 3.0 min), which beta-decays to 208Pb
with a Q-value of 5.0 MeV. An α–β delayed coincidence
can be applied to identify the 208Tl events as for the
210Tl case.

The LAB-PPO scintillator target level for the 232Th
chain is 6.8×10−18 g/g (based on [20]), while the target
level for the Te-loaded scintillator is 2.8×10−16 g/g (see
Table 2).

4.4. Internal 40K, 39Ar, and 85Kr Backgrounds. Other
internal backgrounds are important for solar neutrino and
other measurements.

40K (T1/2 = 1.248×109 yr) has a very distinctive en-
ergy spectrum, having both a beta component and a
gamma peak at 1.46 MeV. Due to the long half-life, it
is naturally present in the scintillator and detector mate-
rials.

39Ar (T1/2 = 269 yr), and 85Kr (T1/2 = 10.8 yr) decay
with a Q-value of 0.565 MeV and of 0.687 MeV, respec-
tively. The amount of these isotopes can be reduced by
minimising the contact time of LAB with air and thor-
oughly degassing the scintillator.

4.5. Cosmogenically Induced Backgrounds. Besides the
natural radioactivity present in the scintillator, LAB can
be activated by cosmic ray neutrons and protons while
it is above ground. The main expected background is
7Be (T1/2 = 53.2 d, EC-decay with a 0.48 MeV gamma),
with a maximum production rate at sea level (neutron
and proton flux from [27, 28]) of about 1 kHz for 780 t of
liquid scintillator. More than 99% of the produced 7Be
can be efficiently removed by the scintillator purification
plant.

14C (T1/2 = 5700 yr, Q-value = 0.16 MeV) is natu-
rally present in the liquid scintillator. It is a direct back-
ground for the very low energy pp neutrino measurements
and may contribute to pile-up backgrounds (see Section
4.7). In SNO+, we expect a 14C/12C ratio of the order

of 10−18, similar to what was observed in the Borexino
test facility [29], corresponding to a decay rate of a few
hundred Hz. This is a reasonable assumption as in both
cases the liquid scintillator is obtained from old oil fields,
in which most of the 14C has decayed away. The amount
of 14C produced by cosmogenic activation of LAB during
transport to site is negligible in comparison.

11C (T1/2 = 20 min, Q-value = 1.98 MeV) is mainly
produced by muon interactions with the carbon nu-
clei of the liquid scintillator. We expect a total of
(1.14± 0.21)×103 decays/kt/yr during operation, extrap-
olated from KamLAND data in [30]. This is about a
factor 100 less than what was observed in Borexino [31]
due to the deeper underground location. A threefold co-
incidence tagging technique, like the one developed by
Borexino [32], together with an electron-positron discrim-
ination analysis [33], will further reduce these events.

Other muon induced backgrounds are generally very
short lived (milliseconds to seconds half-life) and can be
rejected by vetoing the detector for a few minutes after
each muon event.

Important cosmogenic-induced backgrounds are iso-
topes produced by spallation reactions on tellurium
while it is stored on surface [34], like 124Sb (T1/2 =
60.2 d, Q-value = 2.90 MeV), 22Na (T1/2 = 950.6 d, Q-
value = 2.84 MeV), 60Co (T1/2 = 1925 d, Q-value =
2.82 MeV), 110mAg (T1/2 = 249.8 d, Q-value = 2.89 MeV,
Eparent(level) = 0.118 MeV) and 88Y (T1/2 = 106.6 d,
Q-value = 3.62 MeV). We have developed a purification
technique [22] (see Section 2.4) that, together with un-
derground storage, reduces the cosmogenic-induced back-
ground on tellurium to a negligible level.

4.6. (α,n) Backgrounds. Neutrons can be produced
in the liquid scintillator by (α,n) reactions on 13C or
18O atoms, muon interactions in the scintillator volume,
238U fission, and (γ,n) reactions for Eγ > 3 MeV. Ex-
cluding the muon induced neutrons, the most promi-
nent neutron source inside the scintillator volume is the
α+13C→16 O+n reaction (Ethr. = 0.0 keV), which is a
potential background for both the 0νββ-decay search and
the antineutrino measurement. The main source of al-
pha particles in the various scintillator mixtures is 210Po.
Other U- and Th- chain’s alpha emitters form a negligi-
ble contribution, as they are expected to be ∼4 orders of
magnitude less abundant.

Neutrons produced in (α,n) reactions will scatter from
protons during the thermalization process, resulting in
recoils emitting scintillation light. The visible proton
energy together with the energy lost by the alphas be-
fore interaction is the prompt signal. If the isotope is
in an excited state, the emitted deexcitation gammas are
also part of the prompt signal. The thermalized neu-
trons in >99% of the cases are eventually captured by
hydrogen atoms with the emission of the characteristic
2.22 MeV γ. In the remaining ∼1% of the cases the
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Table 3: 238U- and 232Th-chain levels for external background sources. Shown are measured levels and expected
decay rates.

Source Measured levels Decays/yr
Internal ropes 214Bi: (2.8± 5.4)× 10−10gU/g [37] 4966

208Tl: < 2.0× 10−10gTh/g [37] < 418
Hold-down ropes 214Bi: (4.7± 3.2)× 10−11gU/g [37] 4.06× 106

208Tl: (2.27± 1.13)× 10−10gTh/g[37] 2.32× 106

Hold-up ropes 214Bi: (4.7± 3.2)× 10−11gU/g [37] 8.34× 105

208Tl: (2.27± 1.13)× 10−10gTh/g [37] 4.78× 105

Water Shielding 214Bi: 2.1× 10−13gU/g [38] 1.32× 108

208Tl: 5.2× 10−14gTh/g [38] 3.92× 106

Acrylic Vessel 214Bi: < 1.1× 10−12gU/g a[7] 1.28× 107

208Tl: < 1.1× 10−12gTh/g a[7] 1.50× 106

Acrylic Vessel External Dustb 214Bi: (1.1± 0.1)× 10−6gU/g [39] 7.8× 105

208Tl: (5.6± 0.5)× 10−6gTh/g [39] 4.6× 105

Acrylic Vessel Internal Dust 214Bi: (1.1± 0.1)× 10−6gU/g [39] 4.15× 104

208Tl: (5.6± 0.5)× 10−6gTh/g [39] 2.48× 104

PMTs 214Bi: 100×10−6gU/PMT [7] 3.7× 1011

208Tl: 100×10−6gTh/PMT [7] 4.4× 1010

aAssumed 1.0 × 10−12g/g
bIt is assumed that the top hemisphere of the external AV surface is not cleaned, while the bottom hemisphere is at target level

thermal neutron is captured either on tellurium isotopes,
producing mainly a 0.6 MeV gamma, or on 12C, produc-
ing a 4.95 MeV gamma. The prompt and the delayed
signal can be used to reject the (α,n) background using
a delayed coincidence technique similar to that of β-α
events.

4.7. Pile-Up Backgrounds. A pile-up event occurs when
two or more decays (signal or background or a mixture)
happen in the same trigger window and thus are poten-
tially detected as a single event with energy equal to the
sum of the single energies. Pile-up events become impor-
tant when the event rate of one or all of the contributing
decays is very high (hundreds of Hz), like 14C decays
or 210Bi or 210Po. A rejection technique, using the dis-
tortion of the timing, is used to efficiently reduce these
backgrounds [35, 36].

4.8. External Backgrounds. Sources of external back-
ground include the hold-down and hold-up ropes, the
PMT array, the AV bulk, and the external water (see
Table 3). Radioactive decays occur outside the scintilla-
tor volume, so the main concerns for the signal extraction
analysis are the high energy gammas and betas emitted
by 214Bi, 208Tl, and 40K decays. External background
events reconstructing inside the AV can be greatly re-
duced by applying a fiducial volume cut. Events can be
further reduced using the PMT time distribution. In-
situ analysis during the water phase and the pure liquid
scintillator phase will help to constrain the external back-
grounds for the Te-loaded phase.

5. 130Te Neutrinoless Double-Beta
Decay

The main goal of the SNO+ experiment is the search
for neutrinoless double-beta decay of 130Te (Q-value =
2527.518 ± 0.013 keV [40]) by loading large quantities of
the isotope into the liquid scintillator volume. This ap-
proach has several advantages: (1) external backgrounds
can be removed by fiducialization, (2) internal and ex-
ternal background levels can be measured before and af-
ter the isotope deployment, allowing identification and
removal of possible contamination, (3) internal back-
grounds can be tagged by coincidences or particle identi-
fication, (4) the detector response can be tested with and
without the isotope, (5) the spatial distribution of most
background isotopes in a liquid is known to be uniform,
(6) the loading can be easily and affordably scaled up
or (7) changed to another isotope, and (8) tellurium and
scintillator can be removed and repurified if high levels
of backgrounds are found.

The choice of 130Te as the preferred 0νββ candidate
is the result of an extensive investigation by the SNO+
collaboration. The decision was based on several factors,
including the following points:

1. 130Te has a large natural abundance of 34.08%,
which allows loading of several tonnes of isotope
without enrichment.

2. The measured half-life of the 130Te 2νββ decay is
(7.0± 0.9(stat)± 1.1(syst))× 1020 yr [41], one of the
longest of all the 0νββ isotopes. This is particularly
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Figure 5: TeLS samples from the investigation of higher
tellurium loading in LAB scintillator. The samples in-
crease in loading from 0.3% (by weight) on the left to 5%
on the right.

important for liquid scintillator-based experiments,
as the energy resolution is usually some hundreds of
keV.

3. An innovative loading technique has been developed,
which enables deployment of up to 5% (by weight)
of natural tellurium while maintaining good light
transmission, minimal scattering, and an acceptable
light yield (see Section 2.2). The 0.3% tellurium
scintillator cocktail (TeLS) has been proven to be
stable for a period of over two years. In Figure 5,
various SNO+ loaded cocktails are shown. Cock-
tails with higher loading still maintain good optical
transparency.

4. The TeLS does not present inherent optical absorp-
tion lines in the visible wavelength range, such that
a secondary wavelength shifter may be added to the
cocktail to better match the SNO+ PMT response.

5.1. Backgrounds. For the 130Te 0νββ search, an asym-
metric region of interest (ROI) is defined, which extends
from −0.5σ to 1.5σ around the Gaussian signal peak.
For the 0.3% Te-loaded cocktail with a light yield of
200 Nhits/MeV (see Section 2.2) the energy resolution at
2.5 MeV is ∼270 keV (FWHM), while the averaged posi-
tion resolution at the same energy is ∼15 cm at the de-
tector’s center. An asymmetric ROI retains most of the
0νββ decays but considerably reduces the backgrounds
from 2νββ and low energy 238U- and 232Th-chain de-
cays. Most external backgrounds are rejected by a 3.5 m
fiducial radius cut, which preserves 20% of signal events.
Inside the 3.5 m fiducial volume (FV) and 2.47 MeV to
2.70 MeV energy ROI, the main background sources are:

8B solar neutrinos: flat continuum background from
the elastically scattered (ES) electrons normalized
using the total 8B flux and published solar mixing
parameters [42].

2νββ: irreducible background due to the 2νββ decays
of 130Te: these events appear in the ROI due to the
energy resolution of SNO+.

External Backgrounds: 208Tl and 214Bi nuclides con-
tained in the AV, hold-down rope system, water
shielding, and PMT glass are the major contribu-
tors in the defined ROI. The FV cut of 20% reduces
these background events by several orders of mag-
nitude. The PMT hit-time distribution cut reduces
the external background events falling in the FV by
an additional factor of two.

Internal 238U- and 232Th-chain Backgrounds: the
dominant backgrounds in the signal ROI are due
to 214Bi-Po and 212Bi-Po decays. Currently, we
have achieved approximately 100% rejection of
separately triggered 214Bi-Po and 212Bi-Po decays
falling inside the ROI and FV using the β-α delayed
coincidence. For 212Bi-Po and 214Bi-Po pile-up
decays, cuts based on PMT hit timing achieve a
rejection factor of ∼50 for events that fall in the
ROI and FV. Other minor contributions in the ROI
are due to 234mPa (238U chain), 210Tl (238U chain)
and 208Tl (232Th chain).

Cosmogenic Backgrounds: The most relevant iso-
topes are 60Co, 110mAg, 88Y, and 22Na (see Section
4.5). The developed purification techniques together
with a long period of underground storage will re-
duce the cosmogenically induced background to less
than one event per year in the FV and ROI.

(α,n) Backgrounds: both the prompt signal and the
delayed 2.22 MeV-γ produced by (α,n) reactions can
leak into the 0νββ ROI. Coincidence-based cuts
have been developed that remove more than 99.6%
of the prompt and ∼90% of delayed events that fall
in the FV and ROI.

Pile-up Backgrounds: the most important pile-up
backgrounds for the 0νββ search are due to high-
rate 210Po+2νββ and 210Bi+2νββ, with bismuth
and polonium coming from both the TeLS and the
vessel surface. Timing-based cuts have been devel-
oped that reduce the pile-up backgrounds to a neg-
ligible level.

We have estimated the fraction of each background
that falls in the ROI and FV based on our Monte Carlo
simulations. A summary of the various background
sources in the ROI and FV is shown in Table 4. The main
contributions are due to 8B ν ES and to 2νββ. A total
of about 22 events/yr in the FV and ROI are expected.
The scale of the external background events within the
ROI can be checked by fitting events outside the fidu-
cial volume. Internal U- and Th-chain residuals can be
checked via the 214Bi-Po and the 212Bi-Po delayed coin-
cidences, whose tagging efficiency can be tested during
the pure LAB-PPO scintillator phase. In addition, some
of the cosmogenic-induced backgrounds, like 124Sb and
88Y, can be constrained using their relatively short half-
life, while 8B-ν and 2νββ decays can be constrained by
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Table 4: Expected background counts in the signal ROI
and 3.5 m FV in SNO+ for the first year (Year 1) and
in 5 years of the 0.3% Te loading phase. A light yield
of 200 Nhits/MeV has been assumed. Cuts have been
applied as decribed in the text.

Isotope 1 Year 5 Years
2νββ 6.3 31.6
8B ν ES 7.3 36.3
Uranium Chain 2.1 10.4
Thorium Chain 1.7 8.7
External 3.6 18.1
(α, n) 0.1 0.8
Cosmogenics 0.7 0.8
Total 21.8 106.8

Tββ (MeV)

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

C
o
u
n
ts
/5

y
r/
2
0
ke
V

b
in

0

10

20

30

40

50

Tββ (MeV)

2.2 2.4 2.6 2.8C
ts
/5

y
r/
12
2
ke
V

0
20
40
60
80

100
120 0νββ (200 meV)

2νββ

U Chain

Th Chain

(α, n)

External
8B ν ES

Cosmogenic

Residuals

Figure 6: Summary stacked plot of all backgrounds
and a hypothetical 0νββ signal corresponding to a mass
mββ = 200 meV for 5 years data taking. Events are
shown in the FV of 3.5 m, for 0.3% natural tellurium
loading and 200 Nhits/MeV light yield. Tββ is the effec-
tive kinetic energy.

their known value. Furthermore, the detector response
will be tested through a detailed calibration (see Section
2.8).

The expected signal and background spectrum for a
five-year live-time is shown in Figure 6 for the 0.3% load-
ing. A fiducial volume cut is applied at 3.5 m, >99.99%
rejection for 214Bi-Po and >98% for 212Bi-Po are as-
sumed, and the light yield is 200 Nhits/MeV. The 0νββ
signal shown is for a mββ = 200 meV, which corresponds

to T 0νββ
1/2 ∼ 1 × 1025 yr using the IBM-2 nuclear matrix

element [43].

5.2. Sensitivity. The expected number of 0νββ events
occurring in the SNO+ detector is given by:

S = ε ·N130 · ln 2 · t

T 0νββ
1/2

(1)

where ε is the signal detection efficiency, N130 is the num-
ber of 130Te atoms in the detector, t is the live-time, and
T 0νββ

1/2 is the half-life of 130Te 0νββ. To compute the

SNO+ sensitivity, we assume that the number of observed
events in the FV and ROI is equal to the expected back-
grounds. In this case the numerical value of the derived
bound on the number of signal events is similar for either
a Bayesian or a frequentist definition of 90% confidence
level. With the natural tellurium concentration of 0.3%
(by weight) in Phase I, corresponding to about 800 kg of
130Te, a 20% FV cut, and five years of data taking, SNO+
can set a lower limit on the half-life of T0νββ

1/2 > 9×1025 yr

at 90% CL (T0νββ
1/2 > 4.8×1025 yr at 3σ level). This cor-

responds to a limit on the effective Majorana neutrino
mass, mββ , of 55 – 133 meV, using a phase space factor
G = 3.69× 10−14 yr−1 [44] and gA = 1.269; the range
is due to differences in nuclear matrix element calculation
methods [43, 45, 46, 47, 48].

5.3. Higher Tellurium Concentration in the Future.
One of the main advantages of the SNO+ technique is
the possibility of moving toward higher sensitivities by
increasing the loading. R&D efforts have demonstrated
that, with 3% (by weight) tellurium loading, a light yield
of 150 Nhits/MeV can be achieved using perylene as a
secondary wavelength shifter. In SNO+ Phase II, this
loss in light yield will be compensated by an upgrade
to high quantum efficiency PMTs and improvements to
PMT concentrators. These improvements will increase
the light yield by a factor of ∼ 3. A preliminary study
shows that SNO+ Phase II can set a lower limit on the
0νββ half-life of T 0νββ

1/2 > 7× 1026 years (90% CL), for a

mββ range of 19–46 meV.

6. Solar Neutrino Physics

SNO+ has the opportunity to measure low energy solar
neutrinos with unprecedented sensitivity. This is due to
the reduced production rate of cosmogenic isotopes at
the SNOLAB depth and requires that the intrinsic back-
ground sources are low enough.

At scintillator purity levels similar to that of Borex-
ino Phase I [20, 25], the unloaded scintillator phase of
SNO+ provides excellent sensitivity to CNO, pep, and
low energy 8B neutrinos. With the scintillator sourced
from a supply low in 14C, SNO+ could also measure pp
neutrinos with a sensitivity of a few percent. Due to
the relatively high end-point of the spectrum, 8B νs with
energy above the 130Te end-point can also be measured
during the 0νββ-decay phase.

The first measurement of the flux of neutrinos from
the subdominant CNO fusion cycle would constrain the
metallicity of the solar interior and thus provide criti-
cal input to the so-called solar metallicity problem: the
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current disagreement between helioseismological observa-
tions of the speed of sound and model predictions, due
to uncertainties in the heavy element (metal) content of
the Sun. Historically, model predictions for the speed of
sound were in excellent agreement with observation, one
of the primary reasons for confidence in the Standard So-
lar Model during the period of uncertainty surrounding
the solar neutrino problem. However, recent improve-
ments in solar atmospheric modeling, including transi-
tioning from one-dimensional to fully three-dimensional
models, and including effects such as stratification and in-
homogeneities [49], produced a lower value for the heavy
element abundance of the photosphere and, thus, changed
the prediction for the speed of sound. The theoretical
prediction for the CNO flux depends linearly on the core
metallicity and can be further constrained by a precision
measurement of the 8B flux, due to their similar depen-
dence on environmental factors. A measurement of CNO
neutrinos would thus resolve this uncertainty and also ad-
vance our understanding of heavier mass main-sequence
stars, in which the CNO cycle dominates over the pp fu-
sion chain.

Precision measurements of the pep flux and the low
energy 8B spectrum offer a unique opportunity to probe
the interaction of neutrinos with matter and to search
for new physics. The shape of the νe survival probabil-
ity in the transition region between vacuum oscillation
(≤ 1 MeV) and matter-enhanced oscillation (≥ 5 MeV) is
particularly sensitive to new physics effects, such as flavor
changing neutral currents or mass-varying neutrinos, due
to the resonant nature of the MSW interaction. The pep
neutrinos are a line source at 1.44 MeV, thus offering the
potential for a direct disappearance measurement part-
way into this vacuum-matter transition region. However,
due to their production region closer to the core of the
Sun, the effect of new physics on the 8B neutrino spec-
trum is significantly more pronounced. Thus, the most
powerful search combines a precision measurement of the
pep flux with a 8B spectral measurement.

Borexino has published the first evidence for pep neu-
trinos [33], with a significance of just over 2σ from zero.
In order to distinguish different models, a precision of
at least 10% is required. A number of experiments have
extracted the 8B spectrum [42, 50, 51, 52, ?], and there
is some weak evidence for non-standard behaviour in the
combined data set [54] but the significance is low (roughly
2σ). The theoretical uncertainty on pep neutrinos is very
small, and well constrained by solar luminosity measure-
ments. The 8B flux is well measured by the SNO experi-
ment [42]. Precise oscillation measurements are therefore
possible.

Should the SNO+ scintillator be sourced from a sup-
ply naturally low in 14C, similar to or within an order of
magnitude or so of the level observed in Borexino, there
also exists the potential for a precision measurement of
pp neutrinos. Borexino has produced the first direct de-

tection of these neutrinos, with a precision of a little over
10% [55]. A percent level measurement would allow a
test of the so-called luminosity constraint, thus testing
for additional energy loss or generation mechanisms in
the Sun, and allowing us to monitor the Sun’s output
using neutrinos.

6.1. Backgrounds. The sensitivity of the SNO+ solar
phase will depend critically on the leaching rate of 210Bi.
As described in Section 4.2, radon daughters, implanted
on the internal AV surface, are expected to leach off dur-
ing the various SNO+ phases with a rate that depends
both on the temperature and on the liquid in contact
with the vessel. We will be able to evaluate the levels
of these backgrounds both during the initial water fill
and during the scintillator fill itself. We are also inves-
tigating mitigation techniques to be applied in case the
background levels are initially too high to perform the
solar measurement. These techniques include in–situ re-
circulation, further purification, and the use of a balloon
to shield from external backgrounds.

Other backgrounds for the measurements of pep and
CNO neutrinos are the levels of 214Bi (238U chain), 212Bi
(232Th chain), and 11C in the pure scintillator. 238U
and 232Th levels in the scintillator can be effectively con-
strained using the β-α delayed coincidence, as described
in Section 4. 11C decays, which were the main back-
ground for the measurement of pep neutrinos in Borexino
[32], can be identified by a three-fold coincidence algo-
rithm (see Section 4.5).

Another muon-induced isotope that is a potential
background for low energy 8B neutrino searches is 10C
(T1/2 = 19.3 s, Q-value = 3.65 MeV). However, due to the
isotope’s short half-life and the low cosmic muon rate at
SNOLAB depth, it can be removed by cutting events that
occur within a few minutes from each muon event.

6.2. Sensitivity. Sensitivity studies were performed as-
suming one year of unloaded scintillator data, which
could be either prior to or following the Te-loaded phase.
An extended maximum likelihood fit was performed in
energy, with a conservative 50% fiducial volume, in order
to reduce external background contributions to negligible
levels. A two-dimensional fit would allow an increase in
fiducial volume and thus improve sensitivity. Thirty-four
signals were included in the fit: the four neutrino signals
(8B, 7Be, CNO, and pep) as well as thirty background
event types. Backgrounds expected to be in equilibrium
were constrained to a single fit parameter; 210Po, 210Pb,
and 210Bi were treated independently, that is, not as-
sumed to be in equilibrium with the parent decays. Back-
ground parameters included in the fit were the normali-
sations of: 7Be, 39Ar, 40K, 85Kr, 210Po, 210Pb, 14C, 238U
chain, and 232Th chain. 210Bi was linked to CNO in the
fit due to the similarity of the energy spectra; the sepa-
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ration is best achieved by imposing an ex–situ constraint
on the level of 210Bi decays, or by using observables other
than energy.

The nominal background levels assumed were those
achieved by Borexino during their initial running. It was
assumed that purification techniques (in particular, dis-
tillation) can reduce 7Be contamination to negligible lev-
els. Gaussian constraints were applied to backgrounds
where an ex–situ or independent in–situ measurement of
the rate is anticipated. α tagging is expected to reduce
the 210Po peak by 95%, with an uncertainty of 20% on
the remaining 5% of the events. Coincidence decays pro-
vide a 50% constraint on 85Kr, 25% on the 232Th-chain
backgrounds, and 7% on the portion of the 238U chain
that is treated as being in equilibrium.

The fit range was between 0.2 MeV and 6.5 MeV, with
10 keV bins in visible energy. Extending the fit to higher
energies would improve the accuracy on the 8B flux mea-
surement. Bias and pull tests show that the fit is stable
and accurate, and robust to changes in bin size or energy
range (to within changes in statistics, e.g. 8B flux accu-
racy is reduced if the energy range of the fit is reduced).

The simulations suggest that, with one year of data,
the uncertainty on the pep flux will be less than 10%.
The uncertainty on the linked CNO+210Bi flux is 4.5%,
into which we fold a conservative uncertainty for separat-
ing the two signals, resulting in a 15% predicted uncer-
tainty on the CNO flux. The 7Be flux can be measured to
4%, and 8B to better than 8%. The uncertainty on the
neutrino flux measurements is dominated by statistics,
and by correlations between the neutrino signals them-
selves. A study of energy scale and resolution systematics
shows that these parameters can be floated as nuisance
parameters in the fit, and the data will constrain them to
better than the required precision, with sub-percent level
impact on the neutrino flux uncertainties. Calibration
sources will be deployed in order to measure effects such
as any non-Gaussianity of the resolution function, and
any potential nonlinearity in the energy scale. In Fig-
ure 7 the full solar neutrino signals as detected by SNO+
are shown together with the main background sources
for the LAB-PPO scintillator. A fiducial volume cut is
applied at 5.5 m.

214Bi-214Po events are reduced by 95% using the β-α
delayed coincidence as described in Section 4.1. A 95%
rejection is applied to the 210Po events and the remain-
ing 214Po events via alpha tagging. There is no rejection
applied to the 212Bi and 212Po events. This is a conserva-
tive approach as we expect to reject the majority of these
events using a β-α delayed coincidence as for the 0νββ
search (see Section 5).

Studies show that the precision with which the pp neu-
trinos could be observed depends critically on the levels
of backgrounds such as 14C and 85Kr in the scintillator.
If these backgrounds are low, within 10–50 times that
seen in Borexino, SNO+ could achieve a few-percent level
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Figure 7: Expected solar neutrino fluxes as detected by
SNO+ and the corresponding main backgrounds. Back-
grounds levels are assumed to be equal to those ini-
tially achieved by Borexino [20, 25] (see text). Events
are shown for the LAB-PPO scintillator, 400 Nhits/MeV
light yield, and a fiducial volume cut of 5.5 m. A 95%
reduction is applied to the 214Bi-Po backgrounds via de-
layed coincidence tagging, and a 95% reduction on the
210Po and the remaining 214Po events via alpha tagging.

measurement of the pp neutrino flux with just 6 months
of solar neutrino data.

7. Antineutrino Studies

Antineutrino events in SNO+ will include geoneutrinos
from the Earth’s radioactive chains of uranium and tho-
rium, antineutrinos from nuclear reactors, and the an-
tineutrinos emitted by a supernova burst (which are con-
sidered in detail in Section 8). The measurement of
geoneutrinos will constrain the radiogenic heat flow of
the Earth for geophysics studies, while the measurement
of reactor antineutrinos, with a known energy spectrum
and a precise propagation distance, can better constrain
the neutrino oscillation parameters [56].

7.1. Signal Detection. Antineutrinos are detected in
SNO+ via inverse beta decay (IBD): νes with energy
greater than 1.8 MeV interact with the protons in the liq-
uid scintillator, producing a positron and a neutron. The
antineutrino energy is measured by the scintillation light
emitted by the positron as it slows down and annihilates:

Eν̄e ' Eprompt + (Mn −Mp)−me ' Eprompt + 0.8 MeV
(2)

where Mn, Mp, and me are the neutron, proton, and elec-
tron masses. The neutron emitted in the reaction will
first thermalize and then be captured by hydrogen, lead-
ing to the characteristic 2.22 MeV delayed gamma from
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the deuterium formation. The prompt+delayed signal
allows the identification of the antineutrino event. The
coincidence time interval is defined by the period elapsed
from neutron emission to its capture, generally about
200µs, while the spatial separation between the prompt
and the delayed event depends on the distance travelled
by the delayed gamma before scintillation light is emitted.
The exact values to use for the time and distance coinci-
dence tag, to identify the νe events, depend crucially on
the correct simulation of the neutron propagation in the
scintillator mixture being used (unloaded or Te-loaded
scintillator). Neutron propagation in each of the scintil-
lator cocktails planned by SNO+ will be checked with
a detailed calibration program using an AmBe source.
This source, already extensively used by SNO, has a well-
known neutron energy spectrum, extending to energies
higher than those of the expected antineutrino signals.
The calibration results will be cross-checked with a de-
tailed Monte Carlo simulation.

7.2. Backgrounds. As the antineutrino signal is identi-
fied as a delayed coincidence in SNO+, the main back-
grounds are true or random coincidences in the detec-
tor with the identified neutron capture. Most of the
background neutrons are expected to come from external
background sources and are therefore captured and recon-
structed in the external regions of the detector. Events
that reach the region inside the vessel can be mitigated
by a fiducial volume cut, or by a radius-dependent anal-
ysis. The major source of neutrons inside the scintillator
is the (α,n) reactions, which are mainly caused by 210Po-
alpha leached off the vessel surface and are expected to
increase with time, as described in Section 4.6. The asso-
ciated prompt signal, mainly due to the proton recoil, will
be at energies lower than 3.5 MeV or, in case the prod-
uct nucleus is in an excited state, in definite gamma peaks
which will allow the study of the (α,n) background’s time
evolution.

7.3. Reactor Antineutrinos and Oscillations. In SNO+
we expect around 90 reactor antineutrino events per year.
The total flux is obtained summing 3 components: (1)
40% of it comes from one reactor complex in Canada at
a baseline of 240 km, (2) 20% is from two other complexes
at baselines of around 350 km, and (3) 40% is divided be-
tween reactors in the USA and elsewhere at longer base-
lines. The signals from the first two sources (1 and 2) in-
duce a very clear oscillation pattern (see Figure 8), which
lead to a high sensitivity to the ∆m2

12 neutrino oscilla-
tion parameter. For E< 3.5 MeV the geoneutrino signals
and reactor signals overlap. Most of the backgrounds are
concentrated in the energy region of the geoneutrinos.
For a preliminary study of the reactor neutrino oscilla-
tion sensitivity, we conservatively exclude the region be-
low 3.5 MeV. Assuming a light yield of 300 Nhits/MeV,

Figure 8: Expected visible antineutrino energy spec-
trum in SNO+, for 1032 proton-years per MeV. The
nonoscillated reactor spectrum (dashed line) is shown to-
gether with the geoneutrino spectrum (solid line, arbi-
trary normalization). The stacked oscillated reactor spec-
trum is shown with different colors, each corresponding
to a reactor complex: reactor at 240 km in blue (top),
reactors at 350 km in red (middle), and other reactors in
yellow (bottom). See text for details.

expected for the Te-loaded phase with perylene as sec-
ondary wavelength shifter, and a 5.5 m FV cut, we expect
to reach a sensitivity in ∆m2

12 of 0.2×10−5 eV2, similar to
the KamLAND result [56] in about 7 years of data tak-
ing. The full analysis will take the complete antineutrino
spectrum into account, using constraints for the back-
grounds, and measuring simultaneously the geoneutrino
flux.

Generally, the νe flux from the Canadian reactors
(CANDU-type) is expected to be stable in time due to
the continuous refuelling process. However, in the next
few years there are expected upgrades in which differ-
ent reactor cores will be turned off, with only one reactor
core switched off at a time in each of the complexes. This
will cause changes in the reactor spectrum, with an ex-
pected total flux reduction below 10% at each moment.
This time evolution can be used to identify the very clear
oscillation pattern in the reactor spectrum for each of
the two identified baselines (240 km and 350 km) and to
distinguish them from other antineutrino sources.

The oscillation patterns from the more distant reac-
tors are less evident after they are combined. There is
still a visible feature at antineutrino energies of 4.5 MeV
from an accumulation of reactors at distances of the or-
der of 550 km. A detailed description of the spectrum at
this energy is still under discussion [57]. A preliminary
study shows that the combined systematic uncertainties
associated with the unoscillated spectrum description are
below 5%. These uncertainties can be reduced using, for
the distant reactors (source 3), direct measurements at
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close-by detectors, like those of Daya Bay [57].

7.4. Geoneutrinos and Earth Studies. Interest in
geoneutrinos has increased in the last few years with sig-
nificant collaborations between neutrino physicists and
geo-physicists. Joint results may finally explain the ra-
diogenic heat flow of the Earth.

In SNO+ the geoneutrinos from the uranium and tho-
rium chains can be detected. These antineutrinos come
mainly from thick continental crust, with increases due
to variations in local crust components [58].

The energy spectra of geoneutrinos are well-known for
each of the standard decay chains [59]. The effect of neu-
trino oscillations is largely averaged out due to the long
range in production distances, leading to a total survival
probability of:

〈Pee〉 = cos4 θ13·
(

1− sin2(2θ12)

2

)
+sin4 θ13 ' 0.547 (3)

where θ13 = 9.1◦and θ12 = 33.6◦[42]. Detailed studies of
the impact of the MSW effects on the energy spectrum
are in progress.

As a first analysis step, we will fix the total U/Th ra-
tio according to standard geological models [60], and fit
for the total flux assuming a precise shape for the en-
ergy spectrum of geoneutrinos. The possible effect of
local variations of this ratio is being quantified together
with that from the low energy reactor spectrum. System-
atic uncertainties in the energy scale and energy resolu-
tion and from the constraints on the alpha-n backgrounds
will vary for each of the data taking phases. Overall, the
SNO+ sensitivity to the total flux is expected to be dom-
inated by statistical uncertainties. The accuracy will be
close to that of Borexino for similar data-taking periods:
the larger volume of the SNO+ detector compensates for
the higher rate reactor background. We expect a simi-
lar rate of geoneutrinos and reactor antineutrinos in the
1.8 MeV–3.5 MeV energy region. However, the reactor
spectrum extends up to much higher energies and con-
tains features that can help in establishing the oscillation
parameters. The time evolution analysis will also help to
separate the reactor background (Section 7.3). In the Te-
loaded phase the low energy backgrounds are expected to
be about 50–150 times higher than in the pure scintillator
phase, which can make the extraction of the geoneutrino
signal more difficult.

We aim to additionally separate both the uranium and
thorium contributions and the mantle and crust contri-
butions in a global analysis of the geoneutrino spectrum
including data from KamLAND [61] and Borexino [62].

Table 5: Supernova neutrino interaction channels in
LAB-PPO. The event rates, per 780 tonnes of material,
assume the incoming neutrino time-integrated flux de-
scribed in the text. No flavor changing mechanisms are
considered. The uncertainties on the event rates only
include the cross section uncertainties [16].

Reaction Number of Events
NC: ν + p→ ν + p 429.1± 12.0 a

CC: ν̄e + p→ n+ e+ 194.7± 1.0
CC: ν̄e + 12C → 12Bg.s. + e+ 7.0± 0.7
CC: νe + 12C → 12Ng.s. + e− 2.7± 0.3
NC: ν + 12C→ 12C∗(15.1 MeV) + ν ′ 43.8± 8.7
CC/NC: ν + 12C → 11C or 11B + X 2.4± 0.5
ν–electron elastic scattering 13.1b

a118.9±3.4 above a trigger threshold of 0.2 MeV visible energy.
bThe Standard Model cross section uncertainty is < 1%.

8. Supernova Neutrino Observa-
tion

The era of neutrino astronomy commenced with the ob-
servation of 24 events, all associated with the inverse beta
decay of ν̄e, from the collapse of supernova SN 1987A at
∼ 50 kpc [63]. SNO+, with its large high purity liquid
scintillator volume and the deep location underground,
is one of the most promising experiments for the detec-
tion of neutrinos from core collapse supernovae (CCSNe),
offering a rich sample of detection channels, low back-
grounds, and a large number of target particles and nu-
clei. CCSNe are an exceptional source of neutrinos of all
flavors and types, and a measurement is expected to shed
light on the explosion mechanism. The shape of the indi-
vidual supernova (SN) να (να = νe, ν̄e, νx, where in this
context νx is the sum of νµ, νµ, ντ and ντ ) energy spec-
tra is expected to approximate a thermal spectrum [64]
in the absence of neutrino flavor changing mechanisms.
At postbounce times t < 1 s, before shock revival, the fla-
vor changes are expected to be reduced to those induced
by the well–known MSW effect in a quasi–static environ-
ment [65, 66]. At later times, many further effects in-
terfere, significantly modifying the spectral shape. These
effects are nontrivial and still lack a full understanding
and a consistent analytical treatment. At present, sen-
sitivity studies to thermal spectral parameters are only
meaningful for at most the first second of the burst. It
is estimated that half of all neutrinos are emitted in this
time span [67].

8.1. Signal Detection in SNO+. For the detection po-
tential of SNO+ presented in this paper, we assume that
the distance from the SN to Earth is d = 10 kpc – known
from, for example, the detection of the electromagnetic
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radiation released in the SN event, and that 3×1053 erg
of binding energy (εν) are released in the form of neutri-
nos, equally partitioned amongst all six flavors and types.
The mean energies used are 12 MeV for νe, 15 MeV for
ν̄e and 18 MeV for νx [68], which are generic mean SN
neutrino energies [69] consistent with the findings from
SN 1987A.

The possible SN neutrino interaction channels during
the SNO+ pure scintillator phase are listed in Table 5
together with the expected event rates. Several events
due to ν̄e are expected, because of the comparatively large
cross section for the IBD reaction [70]. This process, seen
during SN 1987A, is the only interaction of SN neutrinos
observed to date. Additionally, SNO+ can measure the
flux of νx and νe. As the mean neutrino energy is below
about 30 MeV, νes and νes will be detected mainly by
the charged current (CC) interactions, while supernova
νxs can only be detected by the more challenging neutral
current (NC) reactions. One NC reaction is neutrino–
proton elastic scattering (ES), ν + p→ ν + p [71], which
is the only channel that provides spectral information
about the νxs. The total cross section of this process [72]
is about a factor of three smaller than the cross section of
IBD; however, the reaction is possible for all six neutrino
types yielding a similar number of events for a detector
threshold above ∼0.2 MeV.

8.2. SNO+ Sensitivity to the νx Spectral Shape. In the
preliminary estimations of the SNO+ sensitivity to νx
spectral shape through ν–p ES we conservatively assume
a spatial radius cut of 5 m and a 0.2 MeV threshold,
corresponding to a minimal neutrino energy of Emin

ν ≈
21.9 MeV. This is close to the threshold we expect to
use for events that will be permanently stored. We are
currently discussing other settings for the trigger thresh-
olds to avoid any loss of potential low energy supernova
events.

In Figure 9 the reconstructed energy spectrum of all
neutrinos emitted in the first second of the SN (νe, ν̄e
and νx) and detected in SNO+ via the ν–p ES reaction
is shown together with the true neutrino spectrum. The
reconstructed energy spectrum is obtained from the de-
tected proton energy unfolded using the TUnfold algo-
rithm [73], on the basis of binned data. The strongly
nonlinear quenching of the proton energy, which shifts
most of the scattering events below ∼ 0.5 MeV electron–
equivalent energy, and the finite detector resolution are
taken into account. The number of events in the lowest
bin is slightly overestimated, due to bin–to–bin migra-
tions caused by the finite energy resolution. The statisti-
cal and total systematic uncertainties are also shown. A
fit to the νx spectrum is only possible if the νe and ν̄e
spectra are measured independently. SNO+ is sensitive
to the spectral shape of νes via the IBD reaction, while
in the case of νes it has to be assumed that an indepen-
dent detector, with, for example, a Pb target like HALO
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Figure 9: True, reconstructed, and best fit SN neu-
trino energy distribution of the ν–p ES detection chan-
nel within the FV and above the detector threshold [16].
Shown are the sum of the νe, ν̄e and νx spectra, con-
sidering their time-integrated flux in the first second of
the reference SN. The statistical uncertainties are shown
in black, while the total uncertainties are shown in blue.
The contribution from systematic uncertainty is too small
to be resolved.

[74] or a LAr target [70], provides the necessary spectral
information.

The resulting best fit Eν spectrum is also shown
in Figure 9 and is in excellent agreement. The sys-
tematic uncertainties propagated within the fit are
the ν-p ES cross section, the number of target pro-
tons, Np, the ionization quenching parameter, the spec-
tral νe and ν̄e parameters, and the energy resolution
of the detector. The corresponding best fit values
are 〈Eνx〉 = 17.8+3.5

−3.0(stat.)+0.2
−0.8(syst.) MeV and ενx =

(102.5+82.3
−42.2(stat.)+16.2

−13.0(syst.))×1051 erg [16], while the re-
spective expectation values are 18 MeV and 100×1051 erg.

8.3. SNEWS. SNO+ is preparing to participate in
the inter–experiment Supernova Early Warning System
(SNEWS) [75], which has the goal to provide a fast and
reliable alert using the coincident observation of burst sig-
nals in several operating detectors. As neutrinos escape
from the SN tens of minutes up to several hours before
the first photons, their detection offers the possibility of
alerting the astronomical community to the appearance
of the next SN light signal.

9. Exotic Physics Searches

Due to its location deep underground, which significantly
reduces the cosmogenic background, and the high radio-
purity of the materials used, SNO+ has a unique sensitiv-
ity to search for exotic physics, including certain modes
of nucleon decay and axion or axion-like particle searches.
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Table 6: Expected backgrounds in the 5.4–9 MeV energy
region during six months of water fill. A fiducial volume
cut of 5.5 m is applied to all events. The events after the
cos θsun > −0.8 cut are also shown. ε(n) and ε(p) are the
neutron and proton decay-mode detection efficiencies in
the 5.5 m FV and energy window.

Decay source Events in six months
cos θsun > −0.8 Cut

214Bi 0 0
208Tl 0.6 0.6

Solar-neutrinos 86.4 17.7
Reactor antineutrinos 1.5 1.3
External 214Bi-208Tl 9.2 8.9

Total 97.7 28.5
ε(n) 0.1089 0.1017
ε(p) 0.1264 0.1129

9.1. Invisible Nucleon Decay. Nucleon decay modes to
a final state undetected by the experiment, for example,
n→ 3ν, can be searched for by detecting the decay prod-
ucts of the remaining unstable nucleus as it deexcites.
This process has been previously investigated by some
experiments such as SNO [76] by searching for the decay
of 16O nuclei, and Borexino [77] and KamLAND [78] by
looking for the decay of 12C nuclei. We plan to search for
the invisible nucleon decay of 16O during the initial water
phase of the experiment. In the case of a decaying neu-
tron, the resulting 15O will deexcite emitting a 6.18 MeV
gamma 44% of the time. For a decaying proton, the nu-
cleus is left as 15N which in 41% of the decays de-excites
emitting a 6.32 MeV gamma [79]. Both these signals will
be in a favorable region of the SNO+ energy spectrum
(5.4 MeV–9 MeV) in which few backgrounds are expected.
These are: (1) internal and external 208Tl and 214Bi de-
cays, (2) solar neutrinos, and (3) reactor and atmospheric
antineutrinos. The expected contribution of each back-
ground in the 5.4–9 MeV energy region, in six months of
running, is shown in Table 6. The targeted purity for the
SNO+ internal water is the average of the SNO collab-
oration’s H2O and D2O levels (see Table 2). The purity
can be measured in situ using events below 5 MeV and
cross checked using water assays. Solar neutrino events
can be reduced by placing a cut on the direction of the
event, which is reconstructed using the topology of the
detected Cherenkov light. Reactor antineutrino events
can be tagged using a delayed coincidence. The back-
ground due to atmospheric neutrinos is expected to be
small based on SNO data [76].

The events in Table 6 are given for a fiducial volume
cut of 5.5 m, which helps in reducing the external back-
grounds. An additional cut at cosθsun > −0.8 relative
to the solar direction further reduces the dominant solar
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Figure 10: Expected energy spectrum for the water
phase backgrounds. The signal from invisible proton [76]
and neutron [78] decay is also shown. A fiducial radius
cut of 5.5 m and a cut on cos θsun > −0.8 are applied.

background, removing ∼80% of the events with a sacri-
fice of∼10% on the signals and the isotropic backgrounds.
Figure 10 shows the energy spectrum of the water phase
backgrounds: solar neutrinos, reactor antineutrinos, and
radioactive decays from the uranium and thorium chains,
after the two cuts are applied. It also shows the shapes
based on the current best limits of the signal gammas
from invisible proton [76] and neutron [78] decay.

Using a Poisson method [80] we can set the lower limit,
at 90% C.L., on the invisible nucleon decay lifetime τ by:

τ >
Nnucleons × ε× fT

S90%
(4)

where Nnucleons = 2.4×1032, ε is the efficiency of detect-
ing the decay in the signal window from Table 6, S90%

is the expected signal events at 90% C.L., and fT is the
live-time of 0.5 years. Assuming we reach the expected
background, a limit of τn >1.25×1030 and τp >1.38×1030

years for the decay of neutrons and protons, respectively,
can be set. This is an improvement over the existing limit
set by KamLAND, τ > 5.8×1029 years, by a factor of ∼2
with just six months of running time. A likelihood ap-
proach is in development which is expected to provide a
further improvement on the limit.

9.2. Axion-Like Particle Search. An axion-like particle
(ALP) is defined as a neutral pseudoscalar particle that
exists as an extension to the QCD Lagrangian [81].

A possible reaction channel for ALP production in the
Sun is p+d→3He+A, where A is the ALP with an en-
ergy of 5.5 MeV [82]. In SNO+ the couplings of ALPs to
electrons, gAe, photons, gAγ , and nucleons, gAN , can be
observed mainly through Compton conversion (A+e− →
e− + γ) and the axioelectric effect (A + e−+ ZX → e−

+ ZX , with ZX the charge of the involved nucleus X ). In
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both cases, for low ALP masses the signature is monoen-
ergetic at ∼5 MeV electromagnetic energy deposition.

Different strategies for different phases of SNO+ are
used for the detection of ALPs. In the water phase, the
most likely interaction is the Compton conversion, which
produces a Cherenkov ring with topology similar to that
of 8B-neutrinos. The main background events are very
similar to those described for the invisible nucleon decay
search (see Section 9.1) as the two signals have similar
energies. However, since the Compton conversion has a
strong directional bias, we expect to remove a significant
amount of isotropic backgrounds, leaving 8B-neutrinos as
the dominant one. With 6 months of water data, due to
the deeper location and larger fiducial volume, we expect
to approach the current limit set by Borexino [82].

The BGO collaboration proposed a separate limit on
the ALP couplings without having to assume axions in-
teract via Compton conversion [83]. In this case, the
detection of solar ALPs via the axioelectric effect, which
depends on the nucleus charge as Z5

X , could be particu-
larly interesting during the Te-loaded phase. Due to the
significantly large tellurium mass, SNO+ has the possibil-
ity of improving the limit on the axion-electron coupling
constant set by the BGO collaboration by several orders
of magnitude.

10. Conclusions

In this paper the broad physics program of the SNO+
experiment is presented. Three main data taking phases
are planned: one with the detector filled with ultra-pure
water, one with unloaded liquid scintillator, and one with
2.34 tonnes of tellurium loaded into the detector.

The primary physics goal of SNO+ is a sensitive search
for 0νββ-decay of 130Te. We expect to set a lower limit
on the half-life of this process of T0νββ

1/2 > 9×1025 yr (90%

CL) in 5 years of data taking. This limit corresponds to
an effective Majorana mass ranging from 55 to 133 meV,
at the top of the inverted neutrino mass hierarchy. The
possibility of loading 10 times more tellurium in order
to cover the majority of the inverted hierarchy region is
under investigation.

Along with the 0νββ-decay search, SNO+ also has
the potential to measure the low energy solar neutrinos,
like pep-neutrinos. If the same purity levels as initially
achieved by Borexino are reached, SNO+ can measure
the pep-neutrinos with an uncertainty less than 10% in
one year of data taking with pure liquid scintillator. Ad-
ditionally, if the background is low enough SNO+ can
measure CNO neutrinos.

Another physics topic that can be explored by SNO+ is
the measurement of geoneutrinos in a geologically inter-
esting location, which will be complementary to the mea-
surements done by Borexino and KamLAND. Further-
more, SNO+ can measure reactor antineutrinos, which

will help in reducing the uncertainty on the oscillation
parameters.

With its depth and low background, SNO+ has an
extraordinary opportunity to measure the supernova νx
energy spectrum for the first time. This measurement
provides valuable information in order to probe and con-
strain supernova dynamics. Participation in SNEWS will
further support a reliable early warning to the astronom-
ical community in the event of a nearby supernova.

During the water fill, SNO+ can search for exotic
physics and set competitive limits in the invisible nucleon
decay of 16O.

We expect to start operation with the water fill phase
soon, followed by the liquid scintillator fill phase after
a few months of data taking. The Te-loaded phase is
foreseen in 2017.
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[48] T. R. Rodŕıguez and G. Mart́ınez-Pinedo, “Energy
density functional study of nuclear matrix elements
for neutrinoless ββ decay”, Physical Review Letters,
vol. 105, no. 25, Article ID 252503, 2010.

[49] M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott,
“The chemical composition of the Sun”, Annual Re-
view of Astronomy and Astrophysics, vol. 47, pp.
481–522, 2009.

[50] KamLAND Collaboration, S. Abe et al., “Measure-
ment of the 8B solar neutrino flux with the Kam-
LAND liquid scintillator detector”, Physical Review
C, vol. 84, no. 3, Article ID 035804, 2011.

http://arxiv.org/abs/1505.00247
http://indico.cern.ch/event/130734/contribution/21/material/slides/0.pdf
http://indico.cern.ch/event/130734/contribution/21/material/slides/0.pdf


Advances in High Energy Physics 23

[51] Borexino Collaboration, G. Bellini et al., “Measure-
ment of the solar 8B neutrino rate with a liquid scin-
tillator target and 3 MeV energy threshold in the
Borexino detector”, Physical Review D, vol. 82, no.
3, Article ID 033006, 2010.

[52] M. Smy, Talk at XXIV international conference on
neutrino physics and astrophysics, Neutrino 2012, in
Proceedings of the 25th International Conference on
Neutrino Physics and Astrophysics (Neutrino ’12),
Kyoto, Japan, June 2012.

[53] A. Renshaw, “Solar neutrino results from Super-
Kamiokande”, arXiv:1403.4575 [hep-ex], 2014.

[54] R. Bonventre, A. LaTorre, J. R. Klein, G. D. Orebi
Gann, S. Seibert, and O. Wasalski, “Nonstandard
models, solar neutrinos, and large θ13”, Physical Re-
view D, vol. 88, no. 5, Article ID 053010, 2013.

[55] Borexino Collaboration, G. Bellini et al., “Neutrinos
from the primary proton-proton fusion process in the
Sun”, Nature, vol. 512, pp. 383–386, 2014.

[56] KamLAND Collaboration, A. Gando et al., “Con-
straints on θ13 from a three-flavor oscillation analy-
sis of reactor antineutrinos at KamLAND”, Physical
Review D, vol. 83, no.5, Article ID 052002, 2011.

[57] Daya Bay Collaboration, F. P. An et al., “Spectral
measurement of electron antineutrino oscillation am-
plitude and frequency at Daya Bay”, Physical Re-
view Letters, vol. 112, no. 6, Article ID 061801, 2014.

[58] H.K.C. Perry, J.-C. Mareschal, and C. Jaupart,
“Enhanced crustal geo-neutrino production near the
Sudbury Neutrino Observatory, Ontario, Canada”,
Earth and Planetary Science Letters, vol. 288, pp.
301–308, 2009.

[59] S. Enomoto, “Using Neutrinos to study the Earth:
Geo-Neutrinos”, NeuTel 2009 Conference, Venice,
Italy, March 2009.

[60] A. M. Dziewonski and D. L. Anderson, “Preliminary
reference Earth model”, Physics of the Earth and
Planetary Interiors, vol. 25, no. 4, pp. 297–356, 1981.

[61] KamLAND Collaboration, A. Gando et al., “Par-
tial radiogenic heat model for Earth revealed by geo-
neutrino measurements”, Nature Geoscience, vol. 4,
pp. 647–651, 2011.

[62] Borexino Collaboration, G. Bellini et al., “Measure-
ment of geo-neutrinos from 1353 days of Borexino”,
Physics Letters B, vol. 722, no. 4–5, pp. 295–300,
2013

[63] I. V. Krivosheina, “SN 1987A Historical view about
registration of the neutrino signal with BAKSAN,
KAMIOKANDE II and IMB detectors”, Interna-
tional Journal of Modern Physics D, vol. 13, no. 10,
Article ID 2085, 2004, and references therein.

[64] M. T. Keil, G. G. Raffelt, and H. -T. Janka, “Monte
Carlo study of supernova neutrino spectra forma-
tion”, The Astrophysics Journal, vol. 590, no. 2, pp.
971–991, 2003.

[65] X. Jing, H. Ming-Yang, H. Li-Jun, G. Xin-Heng, and
Y. Bing-Lin, “Detection of Supernova neutrinos on
the Earth for large θ13”, Communication in Theoret-
ical Physics, vol, 61, no. 2, pp. 226–234, 2014, and
references therein.

[66] S. Sarikas, G. G. Raffelt, L. Hüdepohl, and H.-T.
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If local supersymmetry is the correct extension of the standard model of particle physics, then following In-
flation the early universe would have been populated by gravitinos produced from scatterings in the hot plasma
during reheating. Their abundance is directly related to the magnitude of the reheating temperature. The grav-
itino lifetime is fixed as a function of its mass, and for gravitinos with lifetimes longer than the age of the
universe at redshift z ' 2 × 106 (or roughly 6 × 106s), decay products can produce spectral distortion of the
cosmic microwave background. Currently available COBE/FIRAS limits on spectral distortion can, in certain
cases, already be competitive with respect to cosmological constraints from primordial nucleosynthesis for some
gravitino decay scenarios. We show how the sensitivity limits on µ and y distortions that can be reached with
current technology would improve constraints and possibly rule out a significant portion of the parameter space
for gravitino masses and Inflation reheating temperatures.

I. INTRODUCTION

The cosmic microwave background (CMB) temperature
and polarization anisotropies represent an invaluable source
of information about the origin and evolution of the Universe.
They are and have been, for the past few decades, one of the
main targets of investigation for cosmology [1]. The CMB,
however, presents us with an additional and independent cos-
mological probe: its energy/frequency spectrum. The fre-
quency spectrum is compatible with a blackbody distribution
with an average temperature of 2.726 K [2]. Deviations from a
blackbody distribution are potentially generated by any physi-
cal process that entails an exchange of energy between matter
and radiation [3] or the modification of the CMB photon num-
ber [4]. As such, spectral distortions allow to constrain mech-
anisms that are within the standard framework of cosmology
(including, for instance, recombination [5], reionization and
structure formation [6], Silk damping of small-scale fluctua-
tions [7]) as well as more exotic possibilities, including ones
inherent to beyond-the-standard model particle physics (see
[8] for some examples).

At redshifts z > 2 × 106, any produced distortion is
quickly erased: double Compton emission, Bremsstrahlung
and Compton scattering are efficient enough to immediately
restore thermal equilibrium in the primordial plasma. At
lower redshifts, 2 × 106 & z & 5 × 104, Compton scattering
between photons and electrons is still very rapid whereas dou-
ble Compton and Bremsstrahlung are no longer efficient. As
a result, a distortion is predominantly produced in the form of
a non-vanishing chemical potential (µ distortion) at high fre-
quencies. Moving down to z . 5 × 104, Compton scattering
also becomes inefficient at restoring kinetic equilibrium and

a y-type distortion is created. The latter can be pictured as a
high-z version of the Sunyaev-Zeldovish (SZ) effect in galaxy
clusters [9]. During the transition between µ and y eras, ad-
ditional (r-type) spectral distortions are produced that cannot
be described as a superposition of µ and y distortions [10].
The r-type distortion is crucial if one wants to constrain the
time-dependence of phenomena generating spectral distortion
around z ≈ 104 − 105 [11].

Current observational bounds on spectral distortions date
back to the COBE/FIRAS measurements: these placed upper
bounds |µ| . 9 × 10−5 and |y| . 1.5 × 10−5 [12]. Modern tech-
nology could yield an improvement of more than three orders
of magnitude in sensitivity [13], a threshold that would allow
one to place meaningful bounds on a vast ensemble of pro-
cesses of relevance for astrophysics and cosmology [14].

Spectral distortions from particle annihilations or decays at
z . 2 × 106 can be used to place constraints on their masses,
abundance and interactions [15]. One such particle, the grav-
itino, is of particular interest and for this reason we focus on
gravitinos in this paper.

Gravitinos are spin 3/2 superpartners of the graviton, pre-
dicted in the context of supergravity theories (see e.g. [17]
for a review). They are expected to acquire a mass (m3/2) via
the super-Higgs mechanism. Because of their gravitational
strength interactions one might expect that, if inflation [19]
occurred, any initial abundance of gravitinos would be diluted
by the expansion. Nevertheless, gravitinos can be produced
after the end of inflation: thermal production from interac-
tions in the hot plasma during reheating as well as non-thermal
effects related to the rapid oscillations of the inflaton, can effi-
ciently replenish the gravitino population [20]. Because their
interactions are fixed to be of gravitational strength, their post-
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Inflation abundance is fixed by the reheating scale alone [16].
Severe constraints on gravitino abundances arise from cos-

mology [18]. Gravitinos (or their decay products) surviving
until the present time, for instance, would overclose the Uni-
verse if their mass density were to exceed the critical density.
For unstable gravitinos, decays occurring after big-bang nu-
cleosynthesis (BBN) may ruin the successful predictions of
BBN. Decays of gravitinos into neutrinos may affect the ef-
fective number (Neff) of relativistic degrees of freedom (see
e.g. [21]), which is also constrained by large scale structure
and CMB polarization observations [22]. Because gravitinos
lifetime is determined in terms of their mass, sufficiently light
gravitinos will decay after z ≈ 106. If gravitino decays occur
during the µ or the y distortion eras and result into transfer
of energy into the photon plasma, they will produce a distor-
tion of the CMB spectrum, in addition to affecting BBN. Both
BBN and spectral distortion bounds would result in exclusion
regions in the (Trh, m3/2) plane. Constraining gravitino abun-
dances in this way can therefore put important new constraints
on both the scale of supersymmetry breaking and the scale of
Inflation in supersymmetric scenarios.

In this paper, we employ current CMB spectral distor-
tion bounds and sensitivity limits for future measurements
such as the ones proposed with a PIXIE-like experiment to
place upper limits on the reheating temperature, in connec-
tion with supersymmetry and the thermal production of un-
stable gravitinos. This is especially important given that the
reheating temperature is otherwise poorly constrained. Re-
heating only leaves indirect imprints on cosmological observ-
ables, which are often dependent on inflationary and reheat-
ing model-dependent uncertainties (as e.g. in [23]). The
only model-independent bounds on Trh arise from the require-
ment that reheating should precede BBN [24] (Trh > 1 MeV).
Current bounds on the energy scale of inflation indicate that
Trh . O(1016) GeV [25], leaving a very large unconstrained
parameter space in general.

This paper is organized as follows: in Sec. II we briefly
review gravitinos thermal production during reheating along
with the implications of an unstable gravitino for BBN; in
Sec. III we compute the effects of gravitino decay on the CMB
frequency spectrum; in Sec. IV we offer our conclusions and
propose possible future improvements.

II. RELIC GRAVITINOS FROM REHEATING

In local supersymmetric theories (supergravity), when
SUSY is spontaneously broken, the gravitino acquires a mass
by absorbing the Goldstino (Goldstone fermion associated
with the broken symmetry). The gravitino mass and the scale
(F) of SUSY breaking are related by F ≈

√
m3/2 MP, where

MP ≈ 2.4 × 1018 GeV is the Planck mass.
During reheating, interactions in the hot plasma lead to

gravitino production. The relic density is given by [26]

n3/2 = Y3/2 s(T ) , Y3/2 ≈ 10−12 Trh

1010 GeV
. (1)

Here s(T ) ≡ (2π2/45)g∗(T )T 3 is the entropy density of the
plasma, with g∗ the total number of relativistic degrees of free-
dom. The numerical coefficient in Y3/2 can vary depending
on the specific value of the cross sections for production pro-
cesses, but typically results in variations at most of a few in
the overall value of the gravitino number density after infla-
tion.
The gravitino decay rate is fixed as a function of the mass and
of the effective number of decay channels (Ndec) [27]:

Γ3/2 =
Ndec

(2π)

m3
3/2

M2
P

. (2)

The beginning of the µ distortion era (z ' 2 × 106) is sub-
sequent to the time frame of BBN (ranging from an initial
temperature of 1 MeV down to 10 keV). The transfer of en-
ergy from decaying gravitinos into the CMB photons is most
efficient if the decay products are energetic photons [36] or
charged particles. As a result, for unstable gravitinos whose
decays are relevant to spectral distortion, one also expects im-
portant effects on BBN [28]. Predictions of BBN theory for
the current abundances of the light elements (mainly D, T,
3He, 4He) involve a main parameter, the baryon-to-photon ra-
tio (ηB). Agreement between theory and the observed abun-
dances calls for ηB ≈ 3× 10−10. The outcome of BBN may be
entirely different in the presence of gravitinos (or other relic
particles decaying after T ≈ 1 MeV). Specifically, there are
three main consequences on BBN: (i) the presence of massive
gravitinos may affect the expansion rate, leading to an over-
production of 4He; (ii) radiative decays of gravitinos may lead
to a suppression of ηB; (iii) energetic decay products (such as
photons or charged particles) may destroy the light elements.
The third class of processes has been shown to represent the
dominant effect on BBN for relic particles in the range of
masses that we will be concerned with in this work.

In the next section we will compute the CMB distortion
from gravitino decay and present our results along with some
constraints from the literature on (iii).

III. IMPLICATIONS FOR SPECTRAL DISTORTION

The first step is to compute the rate of energy release from
gravitino decay

dEdec

dt
= ε3/2m3/2

1
a(t)3

d
dt

[
a(t)3N3/2(t)

]
. (3)

Here ε3/2 is a dimensionless parameter quantifying the frac-
tion of energy from the decay products that contributes to
heating of the CMB photon bath via Comptonization, m3/2
is the gravitino mass, a the scale factor and N3/2 is the number
density of gravitinos. Following the parametrization in [29],
Eq. (3) can be rewritten as∥∥∥∥∥dEdec

dt

∥∥∥∥∥ = f3/2 NH Γ3/2 e−Γ3/2t , (4)

where the quantity f3/2 collects all of the information about
the decaying particle (its mass/lifetime as well as its abun-
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dance) and about the decay process (e.g. the number of chan-
nels or the number of effective relativistic degrees of freedom
produced from the decay). In Eq. (4), NH is the number den-
sity of hydrogen nuclei and Γ3/2 the decay rate of gravitinos.
It can be shown that f3/2 (or f3/2/z3/2, where z3/2 indicates the
redshift at which the decay occurs) factors out of the integrals
in the definitions of the effective µ and y distortion parame-
ters, thus proving a very convenient choice for parametrizing
spectral distortion signals from decaying particles. With the
above definitions, and using Eqs. (1) and (2), one arrives at

f3/2
z3/2
' ε3/2

10−6

N1/2
dec

( Trh

GeV

) ( m3/2

GeV

)−1/2
eV , (5)

where we used NH ≈ 1.9 × 10−7 (1 + z)3 cm−3 for the number
density of hydrogen atoms. The relation between gravitino
mass and lifetime is t3/2 ' (2.4 × 1013/Ndec)

(
m3/2/GeV

)−3 s.
We use a conventional time-temperature relation, t ≈

[
√

45 MP]/[
√

2π2 g∗(T )T 2], and time-redshift relation, z ≈
4.9 × 109/

√
t/s throughout.

The r-distortion appearing at intermediate redshifts (104 .
z . few × 105) normally requires a numerical treatment [10].
In this paper, we wish to retain analytic control over our cal-
culations. We will therefore focus on µ and y distortions, for
which simple analytic approximations have been found, leav-
ing the study of any intermediate-type distortion for future
work. It is also well known that, at smaller redshifts, another
contribution to the y-distortion arises, namely that due to the
inverse Compton scattering of CMB photons off free electrons
(thermal Sunyaev-Zeldovich, tSZ, effect) [6, 30]. Thus, limits
derived from the y-parameter should be interpreted as conser-
vative upper limits.

We write the fractional variation of the energy density of
CMB photons as the sum of µ and y distortion contributions

∆ργ

ργ
≈

[
∆ργ

ργ

]
µ

+

[
∆ργ

ργ

]
y
, (6)

where the effective distortion parameters are given by [31][
∆ργ

ργ

]
µ

≡
µ

1.401
,

[
∆ργ

ργ

]
y
≡ 4 y . (7)

For pure µ and y distortion one has

µ ≈ 1.4
∫
JbbJµ

1
ργ

(
dE
dt

)
dt , y ≈

1
4

∫
JbbJy

1
ργ

(
dE
dt

)
dt .

(8)
where the thermal response of the medium to the energy injec-
tion has been parametrized with the visibility functions [32]

Jbb(z) ≈ exp
[
−(z/zµ)5/2

]
, (9)

Jy(z) ≈

1 +

(
1 + z

6.0 × 104

)2.58−1

, Jµ(z) ≈ 1 − Jy(z) .

Here Jbb accounts for the fact that thermal equilibration pro-
cesses are highly efficient at zµ ≈ 2 × 106. The definition of
Jµ follows from enforcing energy conservation according to

FIG. 1: Limits placed by FIRAS (dashed lines) and sensitivity pro-
jections for PIXIE (solid lines) from y and µ distortions on the ef-
fective energy input per hydrogen atom normalized to the redshift
at decay, f3/2/z3/2, and the lifetime, t3/2. The range of values of t3/2

encompasses the whole µ-distortion era and the y distortion-era un-
til around recombination (green band). The areas above the dashed
lines have been excluded by FIRAS.

Eq. (6) andJy was found to approximate the branching of en-
ergy eventually appearing as y-distortion [32]. In Eq. (8), we
set the lower bound in redshift in the integral for y-distortion
to z ≈ 1000. The y-distortion is in principle produced down
to z ≈ 200 (at z < 200 the rate of baryons-photons interac-
tions becomes too low for thermodynamic equilibrium to be
maintained). However, at z < 103 a more detailed treatment
of the energy exchange between matter and radiation may be
required as the plasma recombines.

From the observed limits on µ and y from COBE/FIRAS
and from the forecast sensitivity of an experiment like PIXIE
(|µ| . 2 × 10−8 and |y| . 4 × 10−9), one obtains the bounds in
Fig. 1 in the ( f3/2/z3/2 , t3/2) plane. Red lines are from y, blue
lines from µ distortions. Dashed lines denote the lower con-
tours of the exclusion regions defined by FIRAS observations.
Solid lines show the sensitivity limits of PIXIE.

The joint bounds on Trh and m3/2 are derived from the ones
on ( f3/2/z3/2, t3/2)

Trh

GeV
'

(
f3/2

z3/2 eV

) 106 N1/2
dec

ε3/2

( m3/2

GeV

)1/2
, (10)

m3/2

GeV
'

(
2.4 × 1013

Ndec

)1/3 ( t3/2
s

)−1/3
. (11)

For given values of the gravitino mass, Ndec and ε3/2, the tem-
perature given in Eq. (10) represents: (i) the maximum reheat-
ing temperature currently allowed by FIRAS y and µ distor-
tion bounds, for f3/2/z3/2 given by the FIRAS lines in Fig. 1;
(ii) the smallest value for the upper bound that an experiment
like PIXIE would be able to place on the reheating tempera-
ture, for f3/2/z3/2 given by the PIXIE lines in Fig. 1. Notice
that, as one approaches ε3/2 → 0 (limit of no energy transfer
to the photons), Trh in Eq. (10) becomes larger, i.e. the con-
straint from spectral distortion weakens. The other extreme is
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FIG. 2: Collection of FIRAS and BBN exclusion regions in the re-
heating temperature - gravitino mass plane, along with PIXIE sensi-
tivity limits (solid lines). The shaded area is ruled out by BBN [33],
dashed lines define the lower boundaries of the areas ruled out by
FIRAS. Color codes are as in Fig. 1 for y and µ distortions. The en-
ergy release scenario is that of a decay of a gravitino into a photon
+ photino. The three figures correspond to decreasing values of the
branching ratio for this process: B[G→γ+γ̃] = 1, 0.1, 0.01, respectively
moving from the figure at the top to the one at the bottom.

ε3/2 → 1, which provides the most stringent bounds that can
be obtained for a given process.

Gravitinos decay through a variety of channels. Several
studies have been proposed that quantify the effects of the
decay on the BBN predictions for light elements primordial
abundances [28]. We will refer to the studies carried out in

FIG. 3: Limits from spectral distortion (blue and red lines) and from
BBN (black line, reproducing results in [34]) for gravitinos decaying
entirely into hadrons.

[33] and [34] and include some of their results in our plots,
alongside our spectral distortion sensitivity lines, so as to vi-
sualize the different cosmological constraints simultaneously.

Unsurprisingly, both in the context of BBN and of spectral
distortion the most severely constrained scenarios involve di-
rect decays into charged particles and/or into photons.

We will first consider the case of a gravitino decaying into
photon + photino. If the photino mass is mγ̃ � m3/2, the total
decay rate reads

Γ3/2 '
m3

3/2

32 πM2
P

. (12)

Our results for this case are shown in the first plot of Fig. 2.
Here we set ε3/2 = 1/2: the fraction of gravitino initial en-
ergy effectively converted into photons is the one ultimately
responsible for CMB distortion.

The effect of such a decay on BBN are well-studied.
Photons emitted during the decay initiate an electromagnetic
cascade. They can scatter off background photons transfer-
ring energy to the latter or producing, for example, electron-
positron pairs. Photons can also interact with matter, scatter-
ing with background electrons or producing pair creation in
the presence of nuclei.

We consider the results obtained in [33]; here the spec-
trum of high energy photons and electrons was computed and
from it photodissociation effects on the light elements were
quantified. The BBN lines shown in Fig. 2 arise primarily
from D and 3He abundances: the shaded region corresponds
to an overproduction of these elements and is therefore ex-
cluded. Notice that the bounds from BBN are at least one
order of magnitude stronger than the FIRAS limits in most of
the mass range reported in the figure, with spectral distortion
limits approaching the ones from BBN only near the extreme
ends of the range, i.e. around m3/2 ≈ 10 GeV and towards
m3/2 ≈ 700 GeV. The latter value corresponds to gravitinos
decaying at the onset of the µ era. In this plot (the same will
apply to the remaining plots of Fig. 2), in order to draw a com-
parison with the limits from BBN studies in the literature, we
considered m3/2 ≈ 10 GeV as the lowest value of our mass
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FIG. 4: FIRAS exclusion regions (dashed lines) and PIXIE sensitiv-
ity limits (solid lines) for gravitinos decaying before recombination
(marked by the green band). Color codes are as in Fig. 1 for y and µ
distortions. The energy release scenario is that of a decay of a grav-
itino into photon + photino (upper panel) and of a decay into hadrons
(lower panel), both with unitary branching ratios.

range. However, our spectral distortion bounds also cover the
O(1 − 10) GeV range, which we show in Fig. 4 (upper panel).

Our plot shows that an experiment like PIXIE has the po-
tential to provide highly competitive constraints on the re-
heating temperature: for masses 10 GeV . m3/2 . 100 GeV,
T max

rh ≈ 106 GeV from BBN, whereas PIXIE may be able to
probe reheating temperatures as low as 6 × 103 GeV.

In supergravity models where R-parity is preserved, the
lightest supersymmetric particle (in our case the photino) is
stable. One then should also require that the energy density
of relic photinos does not overcome the critical density today.
This results in an additional bound on the reheating temper-
ature [33]: Trh . 1011 (mγ̃/100 GeV)−1h2 GeV, where h is
the Hubble rate in units of 100 (km/sec)/Mpc. The photino
mass is strictly model-dependent. If m3/2 is viewed as an up-
per bounds for mγ̃ (condition for Eq. (12) to apply), then in
the above range for the gravitino mass, the bound derived on
the reheating temperature from the relic density of photinos is
much weaker than both BBN and spectral distortion bounds.

If gravitinos only partially decay into photons and photi-
nos, as will in general be the case, one may describe this

by introducing an additional parameter, the branching ratio
B[G→γ+γ̃] ≡ Γ[G→γ+γ̃]/Γtotal. A value B[G→γ+γ̃] = 1 would then
correspond to the results just discussed and represented in the
upper panel of Fig. 2. BBN bounds can be derived for dif-
ferent values of B[G→γ+γ̃] in [33]. Being blind to the effect
of the remaining decay channels, some of which will likely
have cosmological implications, the bounds derived with this
procedure will therefore be conservative. For the sake of com-
parison between spectral distortion and BBN constraints, we
adopt this simplified approach here. For consistency we as-
sume that the ratio of the initial gravitino energy that is trans-
ferred to the CMB bath is simply reduced by a factor equal
to the branching ratio w.r.t. the case where gravitinos entirely
decay into photons and photino, i.e. ε3/2 = B[G→γ+γ̃]/2.

Our results are represented in the second and third panels of
Fig. 2, respectively for B[G→γ+γ̃] = 0.1 and B[G→γ+γ̃] = 0.01.
Notice that for these more realistic scenarios, the µ distor-
tion bounds from FIRAS are now comparable to or slightly
stronger than BBN bounds for the largest plotted values of the
gravitino mass in the B[G→γ+γ̃] = 0.1 case, and in the whole
mass range for B[G→γ+γ̃] = 0.01. As for B[G→γ+γ̃] = 1, our
plots show that also for these smaller values of the branching
ratio PIXIE would be able to rule out a substantial portion of
the currently allowed parameter space. One could gain ac-
cess to temperature values of Trh down to 105 − 106 GeV, as
opposed to the Trh & 109 − 1011 GeV range one can probe
with BBN and current spectral distortion bounds for gravitino
masses 10 GeV . m3/2 . 100 − 300 GeV.

We can also consider exclusively hadronic decay channels
for gravitinos, where one finds

Γ3/2 ≈
m3

3/2

5 πM2
P

. (13)

We refer to the nucleosynthesis bounds obtained for this case
in [34], which were derived for a gravitino with mass m3/2 &
100 GeV. The heaviest gravitinos that µ distortion can con-
strain in this case have masses m3/2 . 300 GeV. In Fig. 3
we present our spectral distortion results (for which we set
ε3/2 ≈ 1) and also display the primordial nucleosynthesis
bounds from [34] (mostly due to 3He/D and to 6Li/H mea-
surements) in the overlapping mass range. The µ distortion
bounds from an experiment like PIXIE would be more strin-
gent than nucleosynthesis bounds in most of the mass range,
nearing BBN for the heaviest mass values. In Fig. 4 (lower
panel) we present the FIRAS exclusion regions and the PIXIE
sensitivity bounds for the range O(1 − 100) GeV of gravitino
masses.

Our results in Eqs. (5), (10) and (11) are completely gen-
eral and therefore applicable to any scenario for gravitino de-
cay, simply by varying Ndec and ε3/2. We should also mention
that the spectral distortion constraints are derived assuming
that only a small fraction of all the energy transferred to the
medium by the decay products is absorbed by light elements,
and also ignoring a variety of other possible energy injection
mechanisms beyond decay into photons. A more complete
analysis should simultaneously follow the effective fraction
of energy used up by destroying light elements, and also more
complete energy injection cascades. The former effect might
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at best slightly weaken our bounds. The latter is likely to
strengthen them. We leave such an analysis to a future paper.

IV. CONCLUSIONS AND OUTLOOK

Cosmological datasets offer various routes to uncovering
beyond-the-standard model particle physics. Supersymmetry
is a promising candidate for extending the standard model and
searching for SUSY-induced effects is one of the main goals
in collider experiments. If SUSY is the correct description
of nature, it must broken at some energy scale. We do not
know what the SUSY breaking mechanism is, nor the scale at
which it occurs. Local supersymmetry (supergravity) theories
predict the existence of the gravitino, spin 3/2 superpartner
of the graviton. The gravitino mass is related to the SUSY
breaking scale and its interactions are fixed in a nearly model-
independent way. Being able to obtain stringent constraints
on gravitinos is then invaluable for testing supergravity.

Moreover, in the early Universe, gravitinos will be gener-
ated thermally from interactions in the thermal bath during
reheating following Inflation. In this case, their abundance
would be a function of the reheating temperature. If graviti-
nos decay after z ≈ 2 × 106, they may produce observable
distortions of the cosmic microwave background frequency
spectrum. Thus constraints on gravitino decays can provide
important constraints on the scale of Inflation.

In this paper we have analyzed how, with current technol-
ogy, spectral distortions in the CMB constrain a sizable region
of the reheating temperature - gravitino mass parameter space.
We have derived general analytic expressions for computing
µ and y distortions from gravitino decays occurring between
the beginning of the µ distortion era and recombination. Our
results are expressed in terms of a few parameters describing
the number and types of decay channels.

We have plotted the exclusion regions in (Trh, m3/2) space
for COBE/FIRAS along with the sensitivity limits of a
PIXIE-like experiment for various simplified assumptions

regarding gravitino decay, considering energy injection
purely by direct photon or hadron decay products. We
show that, when compared with the bounds from primordial
nucleosynthesis, a PIXIE-like experiment would be able to
constrain a much larger region of parameter space and that
the bounds from FIRAS can be competitive or exceed those
derived from BBN considerations (see Fig. 2 and Fig. 3). We
find that a PIXIE-like experiment will be able to constrain
inflationary reheating temperatures as low as 6 × 103 GeV,
which will cover most of the allowed parameter range for
inflation, and therefore interestingly might allow a detection
of SUSY-related Inflation, rather than a simple constraint on
models.

Our study can be extended in several ways. It would
be interesting to also include r-distortion, by performing a
numerical analysis of the thermal response of CMB photons
to gravitino decay. We also limited our study to gravitinos
decaying before recombination. Numerical tools have been
developed for extending our work to include lighter gravitino
masses corresponding to later decays. These are predicted in
a large number of supersymmetric models and are far from
being ruled out by other cosmological probes. Finally, more
stringent bounds could likely be derived with calculations of
full charged particle cascades beyond simple initial photon
or hadron decay products. As our analysis suggests, such
improvements are worth considering, given the great reach of
CMB spectral distortions for constraining gravitino physics
and the physics of Inflation.
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We explore some particle physics implications of the growing evidence for a helical primordial
magnetic field (PMF). From the interactions of magnetic monopoles and the PMF, we derive an
upper bound on the monopole number density, n(t0) < 1 × 10−20 cm−3, which is a “primordial”
analog of the Parker bound for the survival of galactic magnetic fields. Our bound is weaker
than existing constraints, but it is derived under independent assumptions. We also show how
improved measurements of the PMF at different redshifts can lead to further constraints on magnetic
monopoles. Axions interact with the PMF due to the gaγϕE · B/4π interaction. Including the
effects of the cosmological plasma, we find that the helicity of the PMF is a source for the axion
field. Although the magnitude of the source is small for the PMF, it could potentially be of interest
in astrophysical environments. Earlier derived constraints from the resonant conversion of cosmic
microwave background (CMB) photons into axions lead to gaγ . 10−9 GeV−1 for the suggested
PMF strength ∼ 10−14 G and coherence length ∼ 10 Mpc. Finally we apply constraints on the
neutrino magnetic dipole moment that arise from requiring successful big bang nucleosynthesis in
the presence of a PMF and we find µν . 10−16µB .

I. INTRODUCTION

There is growing evidence for the existence of an in-
tergalactic magnetic field from the observation of high
energy gamma rays. It is likely that a magnetic field in
intergalactic space would have been created in the early
universe, since astrophysics alone is not expected to gen-
erate fields on such large length scales. (For a recent re-
view on cosmic magnetic fields, see Ref. [1].) The discov-
ery of a primordial magnetic field (PMF) has important
ramifications for cosmology as it allows one to test mod-
els of magnetogenesis, which are often tied to the physics
of inflation [2] cosmological phase transitions [3, 4], and
baryogenesis [5–7]. The presence of a PMF after cos-
mological recombination can also aid in the formation of
first stars [8] and provide the seed field for the galac-
tic dynamo [9]. Additionally, the existence of a PMF
in our universe opens the opportunity to place indirect
constraints on exotic particle physics models where the
new physics couples to electromagnetism. In this paper
we will investigate the consequences of a PMF for mod-
els that contain magnetic monopoles, axions, and Dirac
neutrinos with a magnetic moment.

Blazars that emit TeV gamma rays are expected
to produce an electromagnetic cascade of lower energy
gamma rays due to electron-positron pair production and
the subsequent inverse Compton up-scattering of cosmic
microwave background (CMB) photons [10–14]. In the
presence of an intergalactic magnetic field, electrons and
positrons directed toward the Earth can be deflected off

∗Electronic address: andrewjlong@asu.edu
†Electronic address: tvachasp@asu.edu

of the line of sight, and those that are directed away from
the Earth can be deflected back toward the line of sight.
As a result the point source flux is depleted in the GeV
band, and the blazar acquires a halo of GeV gamma rays.
The non-observation of these GeV gamma rays was used
to place a lower bound on the magnetic field strength at
the level of B & 10−16 G [15–17]. This bound depends on
modeling of the blazar flux stability and also the plasma
instabilities during propagation, and it may weaken sub-
stantially depending on these assumptions [18–21]. The
search for the GeV halo extended emission has been ongo-
ing [22–26]. Most recently, Chen et al. [27] have found ev-
idence for the halo in a stacked analysis of known blazars
at ∼ 1 GeV energies and interpret it to be due to a field
with strength B ∼ 10−17 − 10−15 G. For reference, mea-
surements of the cosmic microwave background place an
upper bound on the magnetic field strength at the level
of B . 10−9 G [28].

There are theoretical motivations for considering the
possibility that the PMF is helical, i.e. there is an ex-
cess of power in either right- or left-circular polarization
modes. Helical magnetic fields emerge in many mod-
els of magnetogenesis [5–7, 29], and helicity conservation
dramatically impacts the evolution of the PMF, aiding
in its survival and growth [30]. Recently, Tashiro et al.
[31, 32] analyzed the diffuse gamma ray sky at 10-60 GeV
energies to look for the parity-violating signature [33, 34]
of a helical magnetic field. They find evidence for an
intergalactic magnetic field with strength B ∼ 10−14 G
on coherence scales λB ∼ 10 Mpc and with left-handed
helicity. Although the results of Refs. [31, 32] and [27]
appear inconsistent, it may be possible to reconcile them
by noting that the weak bending approximation breaks
down for B ∼ 10−14 G for gamma rays at ∼ 1 GeV ener-
gies [35].
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Motivated by these recent results, we investigate if the
existence of a helical PMF can be used to constrain other
particle physics ideas in a cosmological setting. Our anal-
ysis is sufficiently general that our results will remain rel-
evant even if the gamma ray observation results should
change or go away, e.g. with more data. However, for the
purpose of numerical estimates we will use B ∼ 10−14 G
and λB ∼ 10 Mpc as the fiducial field strength and co-
herence length scale, and we will take the magnetic field
to have maximal (left-handed) helicity.

In Sec. II we consider the interaction of a hypothetical
abundance of cosmic magnetic monopoles and a PMF.
The magnetic field does work on the monopoles, and
its field strength is thereby depleted. The constraints
we obtain in this way are generally weaker than exist-
ing bounds but are obtained under a different set of as-
sumptions. These results are summarized in Fig. 1. We
also discuss how heavy magnetic monopoles can lead to
anomalous scaling of the energy density in the PMF. As
observations of the PMF improve, they can be sensitive
to the anomalous scaling and thus become a tool for fur-
ther constraining magnetic monopoles.

In Sec. III we consider the interaction of an axion (ϕ)

with the PMF through the coupling gaγϕFF̃ . In this
analysis we include the cosmological plasma, and thus
we study the equations of magnetohydrodynamics cou-
pled to an axion. Although we find that the axion has
a negligible effect on the spectrum and evolution of the
PMF, it is interesting to note that this conclusion is not
sensitive to the assumed scale of Peccei-Quinn symmetry
breaking, fa, as long as gaγ ∝ 1/fa. In turn, the PMF
leaves the evolution of the axion condensate largely un-
affected. In principle the PMF damps the axion oscilla-
tions and the helicity of the PMF shifts the equilibrium
point, but these effects are quadratic in the already-small
magnetic field strength.

In Sec. IV we consider the interaction of the neutrino
magnetic dipole moment, µν , with the PMF. Enqvist et
al. [36, 37] have shown that this interaction induces a
spin-flip transition, which cannot be in equilibrium in the
early universe without running afoul of constraints on the
number of relativistic neutrino species. Using their result
with our fiducial value of B ∼ 10−14 G, we evaluate an
upper bound on µν , which is shown in Fig. 2.

We work in the CGS system with ~ = c = 1. The unit
of electric charge is e =

√
α ' 0.085 with α ' 1/137 the

fine structure constant, and the unit of magnetic charge
is em = 1/2e ' 5.9. The magnetic field is measured
in Gauss, and 1 G ' 6.93 × 10−20 GeV2. The reduced
Planck mass is denoted by MP ' 2.4 × 1018 GeV. The
metric signature is (+−−−), and the antisymmetric ten-
sor normalization is ε0123 = +1.

II. MAGNETIC MONOPOLES

A conservative cosmological bound on the energy den-
sity of magnetic monopoles is Ωm ≡ ρm/ρcr < 0.3

where ρm is the energy density in monopoles and ρcr '
10−29 gm c2/ cm3 is the critical cosmological energy den-
sity. The number density of nonrelativistic monopoles is
nm = ρm/m with m the monopole mass, and the cosmo-
logical bound implies

nm < 0.3
ρcr

m
' (2× 10−23 cm−3)

( m

1017 GeV

)−1

. (1)

The bound grows weaker for lighter monopoles since they
contribute less to the energy density for the same number
density.

The existence of the galactic magnetic field leads to
another indirect bound. Magnetic monopoles tend to de-
plete a magnetic field in the same way that free elec-
trons short out a conductor. The survival of the micro-
Gauss galactic magnetic field implies an upper bound on
the directed flux, F , of magnetic charge onto the Milky
Way. Requiring that the time scale for B-field depletion
is longer than the dynamo time scale of B-field regenera-
tion (τdyn ' 108 yr), leads to the so called Parker bound
[38]

F < 0.9× 10−16em cm−2 sec−1 sr−1 . (2)

Assuming that monopoles have unit charge and travel
with velocity v, the Parker bound can be expressed as an
upper bound on the monopole number density:

nm ≈
(4π sr)F
em v

< (4× 10−23 cm−3)
( v

10−3c

)−1

. (3)

Just as the Parker bound is predicated on the existence
of a magnetic field in the Milky Way, we expect that
a similar bound can be inferred from the existence of a
primordial magnetic field in the early universe.

We study a gas of monopoles and antimonopoles im-
mersed in a magnetic field that permeates the cosmo-
logical medium. The monopoles have mass m, magnetic
charge em, and they are homogeneously distributed with
number density nm(t). The magnetic field B(t,x) in-
duces a Lorentz force of

FB = emB (4)

on a monopole at (t,x), and it begins to drift along the
field line with a velocity v. The field does work by push-
ing the monopole, and in this way the monopole extracts
energy from the magnetic field at a rate

ĖB = FB · v . (5)

To solve for the evolution of the magnetic field strength
we must know the monopole velocity. Prior to electron-
positron annihilation, the monopole’s velocity is re-
stricted by elastic scattering with the cosmological
medium, but afterward it can free stream. We will con-
sider each of these cases in turn.
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A. Friction Dominated Regime

In the epoch prior to e+e− annihilation the cosmolog-
ical medium was dense with electromagnetically charged
particles. In this regime, monopoles interact with the
medium through elastic scattering such as M + e± →
M + e± with M the monopole. It is safe to assume that
the monopole’s rest mass is much larger than the kinetic
energy of particles in the plasma. This allows us to char-
acterize the effective interaction with a drag force that
takes the form [60]

Fdrag = −fdragv . (6)

At the time of interest, the scatterers are relativistic with
energy comparable to the temperature T of the plasma,
and they are in thermal equilibrium with number density
n ∼ T 3. For such a system the drag coefficient takes the
form [39, 40]

fdrag ≈ β e2e2
m gemT

2 (7)

where gem(t) is the number of relativistic, charged de-
grees of freedom in thermal equilibrium at time t and
β is an O(1) number related to the spin character and
charge of the scatterers. We will drop β from this point
onward since it is parametrically redundant with gem.
Also note that gem and T depend on time, but this can
be ignored on short time scales as compared to the Hub-
ble time scale.

The monopole’s equation of motion is

m v̇ = emB− fdragv . (8)

We assume that the distance traveled by the monopole
is small compared to the correlation length λB of the
magnetic field, and we treat B as uniform. Eq. (8) im-
mediately gives the terminal velocity of the monopoles,

vterm =
emB

e2e2
mgemT

2
, (9)

which is achieved on a time scale

τterm =
m

e2e2
mgemT

2
. (10)

Comparing with the Hubble time tH ∼ MP /T
2 (radia-

tion era) we have τterm � tH provided that m < gemMP ,
and thus the cosmological expansion is negligible.

At the present cosmic epoch, the photon temperature
is ∼ 10−4 eV and B ∼ 10−14 G. Assuming B ∝ T 2, we
get B ' 106 G at T ' MeV when gem ' 10. These esti-
mates give vterm ' 10−8, which validates our uses of the
non-relativistic equation of motion. As a consequence,
the distance traveled by a monopole during τterm is quite
small, dterm < 10−8τterm. We shall assume that the cor-
relation length of the magnetic field is larger, λB > dterm,
thus justifying our treatment of the magnetic field as be-
ing uniform.

The magnetic field’s response to this current is given
by the magnetic analog of Ampere’s law,

Ḃ = −4π jM = −4πemnmv . (11)

where nm is the number density of monopoles (assumed
equal to the number density of antimonopoles). Here
we have used E = 0 since electric fields are screened
due to the high electrical conductivity of the cosmologi-
cal medium. For typical parameters, the inter-monopole
spacing is small compared to the correlation length of the

magnetic field, n
−1/3
m � λB , and we can interpret nm and

B as coarse grained quantities on this length scale. Then
we insert v = vterm from Eq. (9) into Eq. (11) to get the
solution,

B(t) = B(ti) e
−(t−ti)/τdecay (12)

where the decay time scale of the magnetic field is given
by

τdecay =
e2e2

mgemT
2

4πe2
mnm

. (13)

In obtaining this solution, we have assumed v = vterm

which is justified if the monopoles reach terminal veloc-
ity much more quickly than the decay time scale, i.e.
τdecay � τterm. As we will see below, this condition is
satisfied for the range of parameters of interest to us.

To ensure survival of the magnetic field, we require
that τdecay is much larger than the Hubble time at tem-
perature T ,

tH =
1

2H
' 1.5

MP

g∗T 2
(14)

with H the Hubble parameter and g∗ the effective num-
ber of relativistic degrees of freedom. Substitution of
Eq. (13) into τdecay > tH now leads to a constraint on
the number density of monopoles,

nm <
e2e2

m

6πe2
m

gemg∗T
4

MP
, (15)

when the universe had temperature T .
The strongest bound is obtained when T is smallest.

Since our calculation assumes that monopoles scatter
on relativistic, charged particles with a thermal abun-
dance, the last time at which this is possible is the
epoch of e+e− annihilation. At this time Tann ' 1 MeV,
gem ≈ g∗ ≈ g∗S ' 10.75. To translate this into a
bound on the monopole number density today, denoted
by n0, we multiply by (aann/a0)3 = (g∗S,0T

3
0 /g∗ST

3
ann)

with g∗S,0 ' 3.91 and T0 ' 2.3 × 10−4 eV the temper-
ature of the microwave background photons today. We
find an upper bound on the monopole number density
today,

n0 <
e2e2

m

6πe2
m

g∗S,0g∗gem
g∗S

TannT
3
0

Mp
' 1× 10−20 cm−3 . (16)
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FIG. 1: A summary of upper bounds on the magnetic
monopole abundance from this work and the literature.
Black: the requirement of survival of the primordial magnetic
field (“primordial Parker bound”), derived here in Eq. (16).
Red: the cosmological abundance bound in Eq. (1). Blue:
direct search constraints [42] (see the magnetic monopole re-
view). Green: the requirement of survival of the Galactic
magnetic field (Parker bound), given by Ref. [43]. Orange:
the requirement of survival of the Galactic seed field (“ex-
tended Parker bound”), given by Ref. [41]. We take v ' 10−3

and assume that monopoles are unclustered, fc ' 1. If the
monopoles are clustered then the Parker bound, extended
Parker bound, and direct search limits move down by a factor
of fc ∼ 105.

If this bound is not satisfied then any primordial mag-
netic field would have been exponentially depleted by the
time of electron-positron annihilation. Due to the close
connection with the Parker bound for survival of galactic
magnetic fields, we will refer to Eq. (16) as the “primor-
dial Parker bound.”

In Fig. 1 we compare the primordial Parker bound
in Eq. (16) with other constraints derived previously in
the literature. Since these constraints are typically ex-
pressed as a bound on the monopole flux, we translate
into a bound on the number density using (4π sr)F ≈
fcnv. Here v is the average monopole velocity and
fc = ngalaxy/ncosmo. is the enhancement factor that ac-
counts for clustering of monopoles in the galaxy. For
clustered monopoles fc ∼ 105, but otherwise fc ∼ 1.
For the extended Parker bound calculation of Ref. [41],
we take Bseed = 10−11 G. For the direct search con-
straint we show a relatively conservative and robust limit
of F < 10−15 cm−2 sec−1 sr−1, but stronger constraints
are available for specific monopole parameters [42]. From
the figure, one can see that the primordial Parker bound

becomes stronger than the cosmological bound for light
monopoles, m . 5 × 1013 GeV, but it always remains
weaker than the direct search constraints.

B. Free Streaming Regime

After cosmological electron-positron annihilation the
number density of these scatterers decreases by a factor
of ∼ 10−10. The monopoles experience very little drag
force, and they can be accelerated freely by the magnetic
field. For a uniform and static magnetic field, the solution
of Eq. (8) with fdrag = 0 is simply v = emBt/m, or for
an inhomogenous field with domains of size λB we find

v(t) ∼ emBλB
m

√
t

λB
(17)

if the motion is diffusive. The monopole becomes rela-
tivistic when v(trel) ∼ 1 and comparing this time with
the present age of the universe gives

trel

t0
∼
(

m

emBt0

)2
t0
λB
∼ 1018

(
m

MP

)2
t0
λB

. (18)

With λB ∼ Mpc and t0 ∼ 10 Gpc, we find that
monopoles are relativistic today if m . 108 GeV, and
they are non-relativistic otherwise.

The above estimate ignores backreaction of the
monopoles on the PMF. To check for consistency, we
compare the kinetic energy in monopoles ρkin to the en-
ergy density available in the PMF ρB = B2/8π. For rel-
ativistic monopoles we should have ρB > ρkin � mnm,
and this provides an upper bound on the number density
of monopoles for which the velocity estimate in Eq. (17)
can be expected to hold. Taking B ∼ 10−14 G we find

nm � 10−35

(
108 GeV

m

)
cm−3 . (19)

Since are interested in much larger number densities, as
indicated by the bound in Eq. (16), we cannot use the
velocity relation in Eq. (17), but instead the monopole
and magnetic field equations will need to be evolved si-
multaneously.

Without friction to provide a means of energy dissi-
pation, the monopoles cannot deplete the magnetic field
strength. Instead there is a conservative exchange of en-
ergy between the magnetic field and the kinetic energy of
the monopoles. This co-evolution can lead to an anoma-
lous departure from the usual power law scaling behav-
ior of the magnetic field energy density if the monopoles
are non-relativistic. This can be seen from the following
argument. In the absence of the monopole gas, the en-
ergy density in the magnetic field redshifts like radiation
ρB ∼ (1+z)4 where z is the cosmological redshift. Mean-
while the kinetic energy stored in a gas of non-relativistic
particles redshifts more quickly. We can write the kinetic
energy density as ρkin = nmp

2/(2m) where p is the typi-
cal momentum and nm is the monopole number density.
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Since p ∼ (1 + z) and nm ∼ (1 + z)3, the kinetic energy
density redshifts like ρkin ∼ (1 + z)5. If energy is trans-
ferred quickly between the monopoles and magnetic field
then we might expect ρB ∼ ρkin. ∼ (1 + z)9/2 where 9/2
is the average of 4 and 5. This result is confirmed by the
full calculation, which we will now present.

Once again we consider a gas of monopoles coupled
to a magnetic field, but we now include the effects of
cosmological expansion. Let Xλ(τ) be the world line of
a monopole, and let Uλ(τ) = dXλ/dτ be its 4-velocity.
The monopole equation of motion, given previously by
Eq. (8), is now replaced by

m

[
dUλm
dτ

+ ΓλµνU
µ
mU

ν
m

]
= emF̃

λ
µU

µ
m (20)

where Γλµν is the Christoffel symbol. The magnetic analog
of Ampere’s law in Eq. (11) is now replaced by

∇αF̃αβ = 4πjβM (21)

where ∇α is the covariant derivative. The magnetic cur-
rent density jµM arises from monopoles with velocity Uµm
and antimonopoles with velocity Uµm̄. It can be written
as

jµM = em (nm U
µ
m − nm̄ U

µ
m̄) , (22)

and it satisfies the conservation law

∇µjµM = 0 . (23)

The spatial component of the 4-velocity is the comoving
peculiar velocity (Um)i = U im, and with an additional
factor of a we form the physical peculiar velocity (vm)i =
aU im. Neglecting the electric field and spatial gradients,
the system of equations can be put into the form

∂η(avm) =
em
m

(a2B) (24a)

a∂η(a2B) = −4πem(a3nm) (avm) (24b)

∂η
(
a3nm

)
= 0 (24c)

where dη = dt/a = da/Ha2 is the conformal time coor-
dinate. The third equation implies that the number of
monopoles per comoving volume is conserved; n0 = a3nm
is the number density of monopoles today. Then if not
for the additional factor of a in the second equation, the
solutions would simply be oscillatory with angular fre-
quency

ωpl =

√
4πe2

mn0

m
. (25)

This is just the usual formula for plasma frequency, but
instead of electron charge, mass, and density, here we
find the corresponding parameters for the monopole gas.

To solve these equations we must relate a to η. Dur-
ing the radiation era we have η = ηi + (a − ai)/Hia

2
i ≈

a/Hia
2
i , and the solution is

B =

(
a

ai

)−9/4 [
J0(φ) B1 + Y0(φ) B2

(a/ai)−1/4

]
(26a)

vm =

(
a

ai

)−3/4 [
φ J1(φ) v1 + φ Y1(φ) v2

(a/ai)1/4

]
(26b)

where

φ ≡ 2ω̃ ηi
ai

√
a . (27)

At late times φ � 1, and all of the Bessel functions go
to zero with an envelop ∼ φ−1/2 ∼ a−1/4. Then the
terms in square brackets do not scale with a and we find
B ∼ a−9/4 and vm ∼ a−3/4. One can check that the
energy densities scale in the same way

ρB =
|B|2

8π
∝ a−9/2 (28a)

ρkin. =
m

2
|vm|2 nm ∝ a−9/2 , (28b)

which confirms our earlier argument.
During the matter era we have η = ηi + 2(

√
a −

√
ai)/Hia

3/2
i ≈ 2

√
a/Hia

3/2
i , and the solution is

B =

(
a

ai

)−9/4 ∑
s=±1

(
a

ai

) i
4 s
√

4ω̃2η2i /ai−1

Bs (29a)

vm =

(
a

ai

)−3/4 ∑
s=±1

(
a

ai

) i
4 s
√

4ω̃2η2i /ai−1

vs . (29b)

For typical parameters we have 4ω̃2η2
i /ai � 1, and the

solution is oscillatory with a power law envelope. We find
the same anomalous scaling as in the radiation era, cf.
Eq. (28). If we remove the monopoles from the problem
by sending nm, ω̃ → 0 then the would-be oscillatory fac-
tors become a power law decay, and we regain the usual
scaling B ∼ a−2 and vm ∼ a−1.

This anomalous scaling does not provide constraints on
the monopole number density. However, it does affect the
way that we translate constraints on the magnetic field in
the early universe into the value of the magnetic field to-
day. Measurements of the cosmic microwave background
restrict the magnetic field energy density to be less than
∼ 10−5 of the photon energy density at the time of re-
combination [28]

ρB(zrec) . 10−5ργ(zrec) . (30)

Using the scaling relations, ρB ∼ (1 + z)9/2 and ργ ∼
(1 + z)4 this inequality implies that the magnetic field
energy density today is bounded by

ρB,0 . 10−5ργ,0(1 + zrec)−1/2

' (3× 10−10 G)2

(
1 + zrec

1300

)−1/2

(31)



6

where ργ,0 ≈ 2π2T 4
0 /30 is the CMB energy density to-

day. If it were not for the anomalous redshifting, the
constraint on the B-field strength would be weaker by a
factor of (1 + zrec)1/4 ' 6.

The anomalous scaling of the field strength in Eq. (28)
can become a tool in the future as measurements of the
PMF improve. By measuring the magnetic field strength
at different redshifts, say by using TeV blazars at differ-
ent distances, we can directly probe the anomalous scal-
ing, and hence obtain a new handle on the relic density
of non-relativistic magnetic monopoles.

III. AXIONS

Consider an axion ϕ(x) coupled to the electromagnetic
field Aµ(x). The Lagrangian takes the form [44]

L =
1

2
(∂µϕ)2 − m2

a

2
ϕ2 − 1

16π
FµνF

µν

− gaγ
16π

ϕFµν F̃
µν −Aµjµ (32)

where F̃µν = 1
2ε
µναβFαβ is the dual field strength ten-

sor, and jµ = (ρ, j) is the electromagnetic current arising
from the charged Standard Model fields. Our analysis
is sufficiently general to apply to any axion or axion-like
particle described by Eq. (32), but as a fiducial refer-
ence point we will consider a QCD axion with Peccei-
Quinn scale of fa ' 1010 GeV, an axion mass of ma ≈
Λ2
qcd/fa ' 1 meV, and a photon-axion coupling constant

gaγ ≈ α/(2πfa) ' 10−13 GeV−1.
The classical axion condensate obeys the field equation

�ϕ+m2
aϕ =

gaγ
4π

E ·B (33)

where we have used Fµν F̃
µν = −4E ·B. The electromag-

netic field evolves according to the constraint equation

∂µF̃
µν = 0 (34)

and the modified field equation

∂µF
µν + gaγ ∂µϕF̃

µν =
4π

c
jν . (35)

In terms of the electric and magnetic vector fields we have

∇ ·B = 0 (36a)

∇×E +
1

c

∂B

∂t
= 0 (36b)

∇ ·E + gaγ∇ϕ ·B = 4πρ (36c)

∇×B− 1

c

∂E

∂t
− gaγϕ̇B− gaγ∇ϕ×E =

4π

c
j . (36d)

Note the presence of the additional terms arising from
the spatio-temporal variation of the axion field.

We seek to study the coevolution of the coupled ax-
ion and electromagnetic fields. Eqs. (33) and (36) de-
scribe a non-dissipative system. Dissipation is introduced
as the electromagnetic field couples to charged particles
in the cosmological medium, which opens an avenue for
energy to be lost in the form of heat. This coupling
is parametrized by the conductivity σ which appears in
Ohm’s law

j = σ (E + v ×B) (37)

where v(t,x) is the local velocity of the plasma. Prior
to the epoch of e+e− annihilation, free charge carriers
were abundant and the cosmological medium had a high
conductivity [45]

σ ≈ T/α (38)

where α ' 1/137 is the fine structure constant. Ohm’s
law allows us to eliminate j and thereby reduce the sys-
tem of equations in four unknowns {E,B, j, ϕ} to a set
of equations describing only three unknowns:

ϕ̈−∇2ϕ+m2
aϕ =

gaγ
4π

E ·B (39a)

Ḃ = −∇×E (39b)

Ė = ∇×B− gaγϕ̇B− gaγ∇ϕ×E

− 4πσE− 4πσv ×B . (39c)

In the MHD approximation (nonrelativistic flow) we can
neglect the displacement current since it is negligible
compared to the curl of the magnetic field, |Ė|/|∇×B| ∼
(v/c)2 � 1 [46]. Then Eq. (39c) becomes algebraic in E,
and we can solve it to eliminate E from the remaining
equations. Focusing now on a homogenous axion field,
the system of equations reduces to

ϕ̈+ g2
aγ

ηd|B|2

4π
ϕ̇+m2

aϕ =
gaγηd

4π
B ·∇×B (40a)

Ḃ = ∇× (v ×B) + ηd∇2B + gaγηdϕ̇∇×B (40b)

where

ηd ≡
1

4πσ
≈ α

4πT
(41)

is the magnetic diffusivity, assumed to be homogenous.
Eqs. (40a) and (40b) together with the Navier-Stokes
equation for the plasma velocity v are the final equations
to be solved. We first solve Eq. (40b) to determine the
effect of the axion on the magnetic field, and afterward
we will consider the evolution of the axion according to
Eq. (40a).

A. Effect of Axion on Magnetic Field

In order to solve Eq. (40b) for the B-field we must know
the fluid velocity, which appears in the advection term,
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∇ × (v × B). Since our primary interest is in the co-
evolution of the magnetic field and the axion, not in the
magnetohydrodynamics, we will neglect this term [61].
Since Eq. (40b) is linear in B, and we assume that ϕ
is homogenous, we can solve the equation by first per-
forming a Fourier transform. For a given mode k let
(e1(k), e2(k), e3(k)) form a right-handed, orthonormal
triad of unit vectors with e3(k) = k/|k|. It is convenient
to introduce the right- and left-circular polarization vec-
tors by

e±(k) =
e1(k)± ie2(k)√

2
. (42)

Note that ik×e±(k) = ±|k|e±(k). The mode decompo-
sition is given by

B(t,x) =

∫
d3k

(2π)3
eik·x

∑
s=±

bs(t, |k|)es(k) . (43)

With this replacement, Eq. (40b) becomes

ḃ±(t, k) = −ηdk
2b±(t, k)± gaγηd k ϕ̇ b±(t, k) (44)

where we have written k = |k|. The last term of this
equation, essentially the chiral-magnetic effect [47], has
been studied previously in the context of axions [48] and
cosmology [49, 50]. The solution is

b±(t, k) = b±(ti, k) e−k
2(t−ti)ηd e±k/kax(t) (45)

where we have defined the wavenumber

kax(t) ≡ 2

gaγ∆ϕ(t)ηd
(46)

and ∆ϕ(t) = ϕ(t)−ϕ(ti) is the change in the axion field.
The prefactor in Eq. (45) is the initial spectrum of the
magnetic field which will depend on the PMF genera-
tion mechanism. The first exponential is the usual diffu-
sive decay term, which exponentially suppresses modes
on a length scale shorter than k−1

diff =
√

(t− ti)ηd '
10−1

√
t/T . The second exponential only kicks in at small

length scales where k > kax. Then it leads to a suppres-
sion of one polarization mode and enhancement of the
other, depending on the sign of ∆ϕ(t).

The value of ∆ϕ(t) depends on the solution for the
axion field as well as the initial time ti. We expect that
the misalignment mechanism sets the initial condition
ϕ(ti) ∼ ±fa. The subsequent evolution is determined
by solving Eq. (40a), which we will turn to in the next
section. For the moment we will assume that the axion
evolution is not significantly affected by the presence of
the magnetic field, and the solution is the standard one:
the axion remains “frozen” at ϕ(ti) until the time of the
QCD phase transition when it begins to oscillate around
ϕ = 0 with angular frequency ω = ma [51]. Then we can
approximate

∆ϕ(t) ≈

{
0 t < tqcd
sfa t > tqcd

(47)

where s = sign[ϕ(ti)]. Using this approximation we can
estimate kax. Prior to the QCD phase transition, ∆ϕ is
small and kax is large, meaning that none of the modes
receive the enhancement or suppression from the axion
coupling. This is reasonable since the axion is deriva-
tively coupled, and as long as it is stationary there will
be no effect on the magnetic field. After the QCD tran-
sition, we can estimate

kax ≈
4πσ

gaγfa
≈ 4πT

αgaγfa
(48)

using Eqs. (38) and (41). Note that this result is insen-
sitive to the Peccei-Quinn scale, and as long as gaγ =
α/(2πfa) we have k−1

ax ≈ α2/(8π2T ) ' 10−6T−1.
The solution in Eq. (45) can also be written as

b±(t, k) = b±(ti, k) eK
2(t−ti)ηd e−(k∓K)2(t−ti)ηd (49)

where

K(t) ≡ 1

kax(t− ti)ηd
=
gaγ∆ϕ(t)

2(t− ti)
. (50)

This representation of the solution is convenient, because
all the spectral information is contained in the second
factor. One of the helicity modes has a Gaussian spec-
trum peaked at |K(t)| > 0 with width

√
1/(t− ti)ηd,

and the other helicity mode peaks at k = 0. Estimating
kax as above, we find that the associated length scale of
the spectral peak corresponds to K−1 ≈ kaxtηd ' 600t,
which is larger than the scale of the cosmological horizon
dH ∼ t.

It appears that the presence of an axion condensate
coupled to electromagnetism has a negligible impact on
the evolution of a primordial magnetic field, unless there
are situations in which ∆ϕ can be much larger than fa.

We note that our analysis ignores the possibility of
turbulence in the primordial plasma. It would be of in-
terest to include both turbulence and the axion coupling
in future studies.

B. Effect of Magnetic Field on Axion

Next we will investigate the effect of a background
magnetic field on the axion condensate. We have seen
that the magnetic field is approximately unmodified on
length scales larger than the diffusion length, k−1

diff ∼√
ηdt (cf., Eq. (45)). In this regime Eq. (40a) can be

rewritten as

ϕ̈+ 2
ϕ̇

τdecay
+
ϕ

τ2
a

= H (51)

where

τdecay ≡
8π

g2
aγηd〈|B|2〉

, (52)

τa ≡
1

ma
, (53)

H ≡ gaγηd

4π
〈B ·∇×B〉, (54)
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and the angled brackets 〈·〉 denote spatial averaging. The
axion condensate evolves like a damped and driven har-
monic oscillator, where the damping and driving forces
are induced by the magnetic field background. As we
discuss below, it is interesting that the driving force is
associated with the helicity of the magnetic field.

The magnetic-induced damping of axion oscillations
is parametrized by the time scale τdecay. To determine
when this damping will be relevant for the evolution of
the axion, we compare it with the cosmological time
scale, given by Eq. (14). To express 〈|B|2〉 = B2 in
terms of the magnetic field strength today, B0, we use
B = B0(a0/a)2 ' 10B0(T/T0)2 where the factor of 10 is
related to the number of relativistic degrees of freedom
in the early universe and today. Then the ratio is found
to be

τdecay

tH
≈ 16π2g∗

75

T 4
0

αg2
aγMPB2

0T
(55)

' 1016 (10−13 GeV−1)2

g2
aγ

(1010 GeV)

T

(10−14 G)2

B2
0

.

This estimate suggests that the magnetic-induced decay
of the axion field is negligible for a typical Peccei-Quinn
scale and B-field strength. If the B-field strength today
were as large as B0 ∼ 10−9 G and the Peccei-Quinn scale
was as low as fa ∼ TeV, then τdecay would be compara-
ble to the Hubble time at T ≈ fa. As the temperature
decreases, the magnetic-induced decay becomes less rel-
evant.

It is interesting that the magnetic field also induces a
driving force, parametrized by H. The pseudoscalar H
is related to the helicity of the magnetic field. This is
perhaps more evident from the initial form of the axion
field equation, Eq. (33), where E ·B is equal to the rate
of change of the helicity density −(1/2)d(A ·B)/dt plus
a divergence, which vanishes upon spatial averaging. If
the power in the magnetic field is localized on a particular
length scale λB we can estimate 〈B ·∇×B〉 ∼ B2/λB ∼
300(B2

0/λB0
)(T/T0)5 where we used λB ∼ 3λB,0(T0/T ).

Prior to the QCD phase transition we can neglect the
mass and drag terms in Eq. (51), and the solution is
simply ϕ = Ht2/2. Since the axion is massless, there is
no restorative potential, and the helical magnetic field
leads to an unbounded growth of the axion condensate.
Although this analysis neglects the Hubble drag, we can
estimate the maximum field excursion in one one Hubble
time to be Ht2H/2. Comparing with the Peccei-Quinn
breaking scale, the corresponding angular excursion is

∆θ ≈ Ht
2
H

fa
≈ 75

16π2

αgaγM
2
PB

2
0

fag2
∗T

5
0 λB,0

' 10−35

(
B0

10−14 G

)2(
λB,0

10 Mpc

)−1

×
(

gaγ

10−13 GeV−1

)(
fa

1010 GeV

)−1

. (56)

We are led to conclude that for realistic parameters, the
helical PMF does not significantly impact the evolution of
the axion condensate prior to the QCD phase transition.

After the QCD phase transition, the axion mass
reaches its asymptotic value, and the source term dis-
places the minimum of the axion potential from ϕ = 0
to ϕmin = Hτ2

a = H/m2
a. In terms of the angular coordi-

nate:

θmin ≈
Hτ2

a

fa
≈ 25

12π2

αgaγB
2
0T

4

fam2
aλB,0T

5
0

(57)

' 10−47

(
B0

10−14 G

)2(
λB,0

10 Mpc

)−1(
T

200 MeV

)4

×
(

fa
1010 GeV

)−1(
gaγ

10−13 GeV−1

)( ma

1 meV

)−2

.

The temperature dependence enters through B ∼ T 2,
λB ∼ 1/T , and ηd ∼ 1/T , and the fractional shift is
largest at high temperature where B is large and λB
is small. Immediately after the QCD phase transition,
Tqcd ∼ 200 MeV, the fractional shift is already extremely
small. Moreover if the PMF is not helical then H = 0
and there is no shift in the axion potential.

It is interesting that the estimate of Eq. (57) is insensi-
tive to the Peccei-Quinn scale; as long as gaγ = α/(2πfa)
and ma = Λ2

qcd/fa we have gaγ/fam
2
a = α/(2πΛ4

qcd).
Then the primarily challenge toward obtaining a large
effect is the smallness of the magnetic field strength. Al-
though unrelated to primordial magnetic fields, which is
the motivation for this work, it would be interesting to
study the axion condensate in an astrophysical system
where the magnetic field is both helical and strong. For
instance, the field strength in a magnetar can grow as
large as B ∼ 1015 G and the magnetic field in some as-
trophysical jets is known to be helical [52].

C. Axion-Photon Interconversion

Until this point we have focused our attention on the
interplay between the axion condensate and the primor-
dial magnetic field, and we now turn our attention to the
quanta of these fields. In the presence of a background
magnetic field, the interaction in Eq. (32) yields a mix-
ing between axion particles and photons. Typically the
conversion is inefficient, but in the presence of a plasma
the photon acquires an effective mass, and the conver-
sion probability experiences a resonance when mγ = ma

[53]. In the cosmological context, the conversion of pho-
tons into axions may lead to a dimming of the cosmic
microwave background across frequencies. Then mea-
surements of the spectrum of the CMB can be used to
place constraints on the axion-photon coupling and the
magnetic field strength.

Bounds were obtained from the COBE / FIRAS mea-
surement of the CMB spectrum in Ref. [54], and re-
cently a second group [55] has extended the calculation
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to include forecasts for next-generation CMB telescopes,
namely PIXIE and PRISM. The latter references finds
an upper bound on the product of the axion-photon cou-
pling and the r.m.s. magnetic field strength today:

gaγB0 < 10−14 GeV−1 nG (COBE-FIRAS data)

gaγB0 < 10−16 GeV−1 nG (PIXIE/PRISM forecast)
(58)

for a light axion ma < 10−14 eV. For larger axions masses
the bound weakens. Using our fiducial value for the mag-
netic field B0 ' 10−14 G, we can write

gaγ < 10−9 GeV−1

(
B0

10−14 G

)−1

(COBE-FIRAS)

gaγ < 10−11 GeV−1

(
B0

10−14 G

)−1

(PIXIE/PRISM) .

(59)

These bounds are comparable to the direct search limits
from the CAST helioscope [56],

gaγ < 8.8× 10−11 GeV−1 (60)

for ma . 0.02 eV.

IV. DIRAC NEUTRINOS

While the neutrinos are known to be massive particles,
the nature of their mass remains a mystery. If neutrinos
are Dirac particles then the theory contains four light
states per generation: an active neutrino νL, an active
antineutrino, ν̄R, a sterile neutrino νR, and a sterile an-
tineutrino ν̄L. The active states interact through the
weak force, and this allows them to come into thermal
equilibrium in the early universe. The sterile states, on
the other hand, interact only via the Yukawa interaction
with the Higgs boson, and because of the smallness of
the Yukawa coupling yν ∼ mν/v ∼ 10−12, these states
are not expected to be populated.

This story is modified if a strong magnetic field per-
meated the early universe. The nonzero neutrino mass
implies that the neutrino will also have a nonzero mag-
netic moment µν . From Standard Model physics alone
one expects [57, 58]

µsm
ν ' (3× 10−20µB)

mν

0.1 eV
, (61)

where µB ≡ e/2me ' 83.6 GeV−1 is the Bohr magne-
ton, but new physics can increase this value appreciably.
The magnetic field couples to µν and induces the spin-
flip transitions νL → νR and ν̄R → ν̄L, which can be
viewed as the absorption or emission of a photon. If the
spin-flip occurs rapidly in the early universe, the sterile
states would be populated, and the effective number of
relativistic neutrino species would double from Nν = 3 to

6. However, this is not consistent with measured abun-
dances of the light elements, which imply Nν ≈ 3 at
the time of nucleosynthesis [59]. We must therefore re-
quire that the spin-flip transition goes out of equilibrium
prior to the QCD epoch, Tqcd ' 200 MeV, so that the
subsequent entropy injection at the QCD phase transi-
tion can suppress the relative abundance of sterile states
to acceptable levels [51]. This translates into an upper
bound on the neutrino magnetic moment and magnetic
field strength, which was originally discussed by Enqvist
et al. [36, 37].

In the rest of this section we apply the results of
Ref. [37]. The spin-flip transition occurs with a rate

ΓL→R = 〈PνL→νR〉Γtot
W (62)

where 〈PνL→νR〉 is the average conversion probability
and Γtot

W is the total weak scattering rate. The active
neutrinos scatter via the weak interaction which leads
to Γtot

W ' 30G2
FT

5
qcd at the QCD epoch. The conver-

sion probability depends on the magnetic moment and
field strength as 〈PνL→νR〉 ∝ µ2

νB
2, since the interaction

Hamiltonian is Hint = −µν · B. The coefficient takes
different values depending on the relative scale of the
magnetic field domains λB and the weak collision length
LW ≈ (Γtot

W )−1. At the QCD epoch LW ' 1.6×10−2 cm,
which corresponds to a length scale of LW,0 ' 3×1010 cm
today. It is safe to assume that the magnetic field of in-
terest is much larger than this length scale, and therefore
λB � LW . To ensure that the spin-flip transition is out
of equilibrium one must impose ΓL→R < H with H the
Hubble parameter. This inequality resolves to the bound
(see Eq. (37) of Ref. [37])

µνB(tqcd) < (3.5× 102µB G)

√
LW
λB

. (63)

To express this inequality in terms of the B-field strength
and correlation length today, we use B ' 6B0(Tqcd/T0)2

and LW /λB = LW,0/λB,0. This leads to an upper bound
on the neutrino magnetic moment:

µν < (3× 10−16µB)

(
B0

10−14 G

)−1(
λB,0

10 Mpc

)−1/2

.

(64)

If this bound is not satisfied, the sterile neutrino states
will still be thermalized with the active neutrino states at
the time of BBN leading to Nν ≈ 6, which is inconsistent
with the data. If the neutrinos are Majorana particles,
then the sterile states are much heavier, and this bound
does not apply.

The bound in Eq. (64) is represented graphically in
Fig. 2. For comparison we show the SM prediction from
Eq. (61) and the direct search limits. The strongest labo-
ratory constraints arise from elastic ν−e scattering. The
limits are flavor-dependent, but they are typically at the
level of [42]

µν . 10−10µB (direct) . (65)
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FIG. 2: The requirement that spin-flip transitions are out of
equilibrium at the QCD epoch leads to an upper bound the
neutrino magnetic moment given by Eq. (64).

From the figure we see that the indirect early universe
constraint is significantly stronger than the direct con-
straint for B & 10−18 G. This provides the exciting op-
portunity to constrain extensions of the SM that predict
an enhancement to the magnetic moment of Dirac neu-
trinos.

V. SUMMARY

Growing evidence for the existence of an intergalactic
magnetic field has motivated us to consider the effects of
a primordial magnetic field on models of exotic particle
physics in the early universe. We have focused our study
on magnetic monopoles, axions, and Dirac neutrinos with
a magnetic moment. We summarize our results here.

In the context of a universe containing relic magnetic
monopoles, we have derived a “primordial Parker bound”
by requiring the survival of a primordial magnetic field
until the time of electron-positron annihilation. The
bound, which appears in Eq. (16), gives an upper limit on
the cosmological monopole number density today: n0 <
1× 10−20 cm−3. This translates into an upper bound on
the monopole flux in the Milky Way; if the monopoles are
unclustered then F < 3×10−14 cm−2 sec−1 sr−1(v/10−3),
and if they are clustered the bound weakens by a factor of
∼ 105. In Fig. 1 we compare the primordial Parker bound
with other constraints on relic monopoles. If the primor-
dial magnetic field is not generated prior to T ' MeV,
then this bound does not apply.

After e+e− annihilation the monopoles are able to free
stream, and they evolve along with the magnetic field as
described by the system of equations in Eq. (24). The
solution is an analog of the familiar plasma oscillations
(“Langmuir oscillations”) seen in an electron-ion plasma.
In the regime where the plasma oscillations are fast com-
pared to the cosmological expansion, the coupling of the
monopoles to the magnetic field leads to an anomalous
scaling with redshift such that B ∼ a−9/4, vm ∼ a−3/4,
and ρB ∼ ρkin. ∼ a−9/2. The behavior of the coupled
system is effectively the average of the usual scalings for
radiation ρB ∼ a−4 and the kinetic energy of a non-
relativistic gas ρkin. ∼ a−5. If the strength of the inter-
galactic magnetic field could be measured over a range of
redshifts, this would allow for a direct test of the anoma-
lous scaling, and thereby probe relic magnetic monopoles.

We have also studied the effect of a primordial mag-
netic field on the evolution of an axion condensate in the
early universe. We obtain an exact solution to the MHD
equations for the magnetic field in the limit where the ad-
vection term is negligible and the axion is homogenous.
After Peccei-Quinn breaking but prior to the QCD phase
transition, the axion field is frozen, because its mass is
smaller than the Hubble scale, and since the axion is
derivatively coupled, this leads to no effect on the mag-
netic field. Below the QCD scale the axion field begins
to oscillate, and the spectrum of the magnetic field is
distorted as in Eq. (45). One helicity mode of the mag-
netic field is enhanced while the other is suppressed; this
CP-violation is a consequence of the axion’s pseudoscalar
nature. However, the spectral shape of the magnetic field
is only affected on extremely large length scales, as given
by Eq. (50), except in situations where there can be sig-
nificant axion evolution prior to the QCD epoch.

We next study the evolution of the homogenous ax-
ion condensate in the presence of a background mag-
netic field. The axion behaves as a damped and driven
harmonic oscillator, as seen from its equation of mo-
tion Eq. (51). The damping time scale depends on the
strength of the magnetic field and the photon-axion cou-
pling. For typical parameters it is generally larger than
the cosmological time scale, and therefore irrelevant for
the evolution of the axion. It is interesting that the driv-
ing force (source termH) is only operative when the mag-
netic field has a helicity. This can be seen directly from

the interaction L 3 ϕFF̃ where FF̃ ∼ E · B ∼ ḣ is re-
lated to the rate of change of magnetic helicity h = A ·B.
Prior to the QCD phase transition when the axion was
effectively massless, the axion field equation reduces to
ϕ̈ = H. In principle a very strong magnetic field could
cause the axion to grow without bound as ϕ(t) = Ht2/2,
by drawing energy from the magnetic field. For typical
parameters, however, this growth occurs on a time scale
that is much longer than the cosmological time. It may
still be the case that helical magnetic fields occurring in
astrophysical environments are strong enough to lead to
observable signatures.

We have also considered the resonant conversion of
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CMB photons into axions, which leads to a distortion of
the CMB blackbody spectrum [53–55]. Using constraints
on spectral distortions from current and anticipated fu-
ture CMB telescopes, Ref. [55] obtained an upper bound
on the axion-photon coupling. For our fiducial magnetic
field strength this translates into gaγ . 10−9 GeV−1 with

current data, and a forecast of gaγ . 10−11 GeV−1 for
experiments presently under discussion (see Eq. (59)).

Finally we turn to the effect of the primordial mag-
netic field on Dirac neutrinos, which carry a magnetic
moment. In the presence of a magnetic field, left-handed
neutrinos can be converted into right-handed neutrinos.
If this spin-flip process is in equilibrium in the early uni-
verse, the right-handed states would be populated, and
the effective number of relativistic neutrino species would
double from 3 to 6, which is inconsistent with observa-
tions. Requiring that this process is out of equilibrium at
the time of the QCD phase transition leads to an upper
bound on the neutrino magnetic moment and magnetic

field strength. Drawing on the work of Ref. [37], we find
the limit in Eq. (64), which implies µν < 3 × 10−16µB
for our fiducial magnetic field parameters B0 = 10−14 G
and λB = 10 Mpc. As seen in Fig. 2, this bound is signif-
icantly stronger than the direct search limits over most
of the parameter space.
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Abstract. We study the characteristic size and shape of idealized blazar-induced cascade halos
in the 1 − 100 GeV energy range assuming various non-helical and helical configurations for the
intergalactic magnetic field (IGMF). While the magnetic field creates an extended halo, the helicity
provides the halo with a twist. Under simplifying assumptions, we assess the parameter regimes
for which it is possible to measure the size and shape of the halo from a single source and then to
deduce properties of the IGMF. We find that blazar halo measurements with an experiment similar to
Fermi-LAT are best suited to probe a helical magnetic field with strength and coherence length today
in the ranges 10−17 . B0/Gauss . 10−13 and 10 Mpc . λ . 10 Gpc where H ∼ B2

0/λ is the
magnetic helicity density. Stronger magnetic fields or smaller coherence scales can still potentially
be investigated, but the connection between the halo morphology and the magnetic field properties is
more involved. Weaker magnetic fields or longer coherence scales require high photon statistics or
superior angular resolution.

Keywords: intergalactic magnetic field, helicity, gamma ray, blazar

ar
X

iv
:1

50
5.

07
84

6v
3 

 [
as

tr
o-

ph
.C

O
] 

 2
9 

Se
p 

20
15

mailto:andrewjlong@asu.edu
mailto:tvachasp@asu.edu


Contents

1 Introduction 1

2 The Blazar-Induced Cascade Halo 2

3 Morphology of the Cascade Halo 5
3.1 Formalism and Assumptions 5
3.2 Constraint Equations 6
3.3 Shape Parameter 9

4 Halo Morphology for Specific Magnetic Field Configurations 10
4.1 Case 1: Uniform Magnetic Field Parallel to Line of Sight 10
4.2 Case 2: Uniform Magnetic Field Normal to Line of Sight 11
4.3 Case 3: Uniform Magnetic Field with Arbitrary Orientation 12
4.4 Case 4: Helical Magnetic Field with Wave Vector Parallel to Line of Sight 15
4.5 Case 5: Helical Magnetic Field with Wave Vector Normal to Line of Sight 19

5 Implications for Helicity Measurement 22

6 Summary and Discussion 27

1 Introduction

Several lines of reasoning suggest that the voids between galaxies and galaxy clusters contain a
large-scale intergalactic magnetic field (IGMF). The presence of even a weak IGMF is sufficient
to explain the observed micro-Gauss galactic and cluster magnetic fields [1–3] through the dynamo
amplification. Moreover, the IGMF may be a remnant from the early universe as it could have been
generated during cosmological phase transitions [4, 5], in the epoch of matter-genesis [6–8], or in
certain inflationary scenarios [9]. An observation of the IGMF and measurement of its energy and
helicity spectra, therefore, could serve as a powerful new probe of astrophysics, particle physics, and
early universe cosmology. (For recent reviews on cosmic magnetic fields, see Ref. [10, 11].)

On the observational side, TeV blazars offer one of the best strategies for measurements of
the IGMF at redshifts out to z ∼ 1 [12–16]. The blazar initiates an electromagnetic cascade as
its TeV gamma rays produce electron and positron pairs (leptons) upon scattering on extragalactic
background light (EBL). The cascade develops as the leptons inverse-Compton scatter on cosmic
microwave background (CMB) photons producing secondary GeV gamma rays. Since the initial
TeV gamma ray has a mean free path of & 10 Mpc, the cascade develops outside of the host halo
where it probes the IGMF. In the presence of an IGMF, the charged leptons are deflected by the
magnetic field and the blazar acquires a halo of GeV gamma rays. In the weak field regime, the
leptons experience a gentle deflection and the angular extent of the magnetically broadened cascade
(MBC) goes as Θ ∝ B. In the strong field regime, the leptons are so dramatically deflected that the
secondary emission is isotropized into an extended pair-halo (PH).

The hunt for cascade halos is ongoing at a number of gamma ray observatories [17–19] as
well as independent collaborations [20–24]. Most recently Ref. [24] reports evidence for GeV halos
around 24 low redshift blazars, which are revealed in a stacked analysis of the Fermi-LAT gamma
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ray data. Assuming a magnetically broadened cascade, i.e. weak bending approximation, they infer
the IGMF field strength to be B0 ∼ 10−17 − 10−15 G where B0 is the magnetic field strength at the
present cosmological epoch.

While there has been extensive analytic and numerical work on the relationship between halo
size and magnetic field strength, the literature contains little discussion of what information could
be extracted from the halo shape. In principle the halo size and shape together (morphology) may
encode not only the magnetic field strength but also its helicity1.

There are two compelling reasons for considering a helical IGMF. First, magnetic helicity is a
prediction of many models of magnetogenesis from the matter-genesis epoch [6–8], cosmological in-
flation [25–30], and other early universe scenarios [31–33]. Second, the evolution of a magnetic field
within the magneto-hydrodynamic (MHD) approximation is known to be more robust to dissipation
if it is helical [34]. So, if a magnetic field was generated by causal processes in the early universe, it
has a much better chance of surviving if it is helical.

The helicity of the IGMF can be observed if charged particles propagate in this field, such
as in the case of cosmic rays [35] and cascade gamma rays [36, 37]. The parity violating IGMF
helicity leads to certain non-trivial parity-odd correlation functions of the arrival directions of cosmic
rays and cascade gamma rays. An advantage of seeking a parity odd signature is that other sources
of noise are expected to be parity even and hence do not contribute to the signature on average. The
parity-odd correlation, calledQ, has been evaluated for diffuse gamma ray data obtained by the Fermi
Gamma Ray Telescope, and provides evidence for an IGMF of strength∼ 10−14 G on distance scales
∼ 10 Mpc with left-handed helicity [38, 39].

In this work we endeavor to develop an understanding of how a helical IGMF leads to parity-
violating features in the shape of blazar-induced cascade halos. To that end, we study an idealized
system: we focus on a few toy models of the IGMF, we do not model astrophysical sources, we do not
include stochasticity in the development of the cascade, and we do not include foreground (noise).
In this setting we can focus on the relationships between the parameters of the magnetic field model,
i.e. the field strength, coherence length, and helicity, and the resulting size and shape of the cascade
halo. We find that there are several regimes in the range of interesting physical parameters that each
lead to qualitatively different halo morphology. We identify the region of parameter space where
measurements of cascade halo size and shape are best suited to probe the helical IGMF.

In Sec. 2 we review the physics giving rise to the cascade halo. In Sec. 3 we study the prop-
agation of particles through the cascade and derive a set of equations that can be solved to find the
size and shape (morphology) of the halo. In Sec. 4 we apply the results of Sec. 3 to calculate the halo
shape for five specific magnetic field configurations, three non-helical and two helical. In Sec. 5 we
analyze which regions of the magnetic field parameter space could be probed by measurements of
cascade halos. We conclude in Sec. 6 with a discussion of potential directions for future work.

2 The Blazar-Induced Cascade Halo

As depicted in Fig. 1, a blazar’s TeV gamma rays initiate an electromagnetic cascade when they
scatter on extragalactic background light. If the cascade occurs in the presence of a magnetic field,
the blazar acquires a halo of GeV photons. Then the shape and angular extent of the halo are related
to the magnetic field in the neighborhood of the blazar. This section is a review of the physics giving
rise to the halo following Ref. [40].

1 A helical magnetic field has a larger amplitude in either left- or right-circularly polarized modes.
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Figure 1. The geometry of gamma ray propagation. A TeV gamma ray (red arrow) travels off of the line of
sight (black dashed line) connecting the blazar (yellow star) to Earth (pale blue dot). Pair production occurs
and either the electron or positron (green arrow) is deflected back toward the line of sight. Inverse Compton
scattering creates a GeV photon (blue arrow) that eventually reaches Earth. The lepton need not make a
complete orbit as we have shown here.

The comoving distance from the Earth to a blazar (source) at redshift zs is

ds =
c

a0H0

∫ zs

0

dz√
Ωm(1 + z)3 + ΩΛ

' (1 Gpc)
zs

0.24
(2.1)

where we have used the measured values of the cosmological parameters [41] and assumed zs � 1
in the last equality. The blazar emits O(1− 10 TeV) gamma rays into a jet or pair of jets [42]. In the
simplest model of the jet, radiation is uniform within a cone of half opening angle θjet, and typically
θjet ' 5◦ corresponding to a solid angle of Ωjet ' 0.024 sr.

A gamma ray with energy Eγ0 ∼ TeV at redshift zγγ is likely to scatter on optical and infrared
extragalactic background light (EBL) and produce an electron-positron pair. The mean free path is
given by Dγ0 = 〈σγγnEBL〉−1 where σγγ is the pair production cross section and dnEBL(ε, zγγ)/dε is
the spectrum of EBL photons at redshift zγγ . Assuming nEBL(zγγ) = (1 + zγγ)−2nEBL(z = 0) it was
argued in Ref. [40] that the mean free path can be reliably approximated as

Dγ0 ' (80 Mpc)
κ

(1 + zγγ)2

(
Eγ0

10 TeV

)−1

. (2.2)

Ref. [40] estimates a range of values 0.3 < κ < 3 for the dimensionless coefficient, and we will take
κ = 1 hereafter. The comoving mean free path is given by dγ0 = (1+zγγ)Dγ0 . As long as dγ0 � ds
we can approximate zγγ ≈ zs and write the comoving mean free path as

dγ0 ' (80 Mpc)
1

(1 + zs)

(
Eγ0

10 TeV

)−1

. (2.3)
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After pair production the charged leptons acquire an energy Ee ≈ Eγ0/2, and, to accuracy
me/Ee ∼ 10−6 (the inverse boost factor), they travel in the same direction as the initial TeV gamma
ray. The leptons produce secondary γ-rays through inverse Compton (IC) scattering on cosmic mi-
crowave background (CMB) photons. If ECMB is the energy of a CMB photon at redshift zγγ then
energy conservation gives the energy of the corresponding IC photon to be

E′γ =
4

3
ECMB

E2
e

m2
e

(2.4)

where me ' 0.511 MeV/c2 is the electron mass. When this photon reaches Earth (z = 0) it will
have been redshifted to an energy of Eγ = (1 + zγγ)−1E′γ . If the spectrum of the TeV blazar is
known, one can use the spectra of the EBL and CMB to calculate the spectrum of GeV gamma rays
arriving at Earth. For our purposes only the average relationships are required. At redshift zγγ the
average energy of a CMB photon is 〈ECMB(zγγ)〉 = εCMB ' (6×10−4 eV)(1+zγγ), and the average
energy of a GeV photon arriving at Earth is then

Eγ =
4

3
(1 + zγγ)−1εCMB

E2
e

m2
e

' (77 GeV)

(
Eγ0

10 TeV

)2

. (2.5)

Evidently an initial spectrum of gamma rays from Eγ0 ∼ 1 − 10 TeV are transferred into cascade
photons with Eγ ∼ 1− 100 GeV energies. The scattering of leptons on CMB photons is a stochastic
process that occurs with a typical mean free path lmfp. On average the leptons lose their energy via
IC within the electron cooling distance

De =
3m2

ec
4

4σTUCMBEe
' (31 kpc)

(
Ee

5 TeV

)−1(1 + zγγ
1.24

)−4

, (2.6)

where σT ' 6.65×10−25 cm2 is the Thomson scattering cross section andUCMB ' (1+zγγ)4(0.26 eV/cm3)
is the CMB energy density at redshift zγγ .

The halo emerges because TeV gamma rays directed off of the line of sight can induce a cascade
that is deflected back toward the line of sight by the magnetic field. At the point of pair production
(redshift zγγ) let B and v be the magnetic field and the velocity of the lepton, respectively. Assuming
that the coherence length of the magnetic field λ ≈ |B|/|∇B| is much larger thanDe, the electron or
positron will probe an effectively homogeneous magnetic field. In this background the lepton follows
a helical trajectory with gyroradius (Larmor radius)

RL = R
|v⊥|
c

where R ≡ Ee
e|B|

, (2.7)

and −e is the charge of the electron. The component of v perpendicular to B is v⊥ = v − (v · B̂)B̂
where unit vectors are denoted by a hat. Using this expression we can write

RL = R

√
1− (v̂ · B̂)2 . (2.8)

If the magnetic field is frozen into the plasma, then its energy density redshifts like radiation, and we
have |B| = B0(1 + zγγ)2 with B0 the field strength today. Then we can we estimate

R ' (3.5 Mpc)

(
Ee

5 TeV

)(
B0

10−15 G

)−1(1 + zs
1.24

)−2

(2.9)
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where we have also used zγγ ≈ zs.
By approximating zs ≈ zγγ throughout our analysis we assume that dγ0/ds � 1. Using

Eqs. (2.1) and (2.3) this ratio is

dγ0
ds
' 0.18

(
Eγ

10 GeV

)−1/2(1 + zs
1.24

)−1( ds
1 Gpc

)−1

(2.10)

where ds and zs are related by Eq. (2.1). We will primarily be interested in Eγ & 10 GeV and
ds & 0.7 Gpc where the approximation is well-justified. For lower energy gamma rays or closer
sources, the approximation begins to break down as the Earth is located inside of the developing
cascade.

It is also useful to compare the electron cooling distanceDe and gyroradiusR. Using Eqs. (2.6)
and (2.9) and approximating zγγ ≈ zs this ratio is

De

R
' 0.067

(
B0

10−15 G

)(
Eγ

10 GeV

)−1(1 + zs
1.24

)−2

. (2.11)

Since 2πRL is the circumference of the lepton’s orbit, this ratio indicates whether the lepton travels
around the orbit many times De/R � 1 or whether it makes only a small arc De/R � 1. In the
former case, called the “pair halo regime,” the cascade gamma rays are spread out over large angles; in
the latter case, called the “magnetically broadened cascade regime,” the cascade photons are slightly
spread out around the source.

3 Morphology of the Cascade Halo

We are interested in the size and shape of the cascade halo as it appears from Earth. In this section
we first establish an analytic formalism for calculating halo maps, i.e. the orientation n̂(Eγ) of GeV
gamma rays reaching Earth. Next we introduce parameters that quantify the halo size and shape,
which can be extracted from the halo map.

3.1 Formalism and Assumptions

We move between spherical, cylindrical, and Cartesian coordinates. The origin is located at the Earth
and ẑ is oriented along the line of sight to the blazar. The polar and azimuthal angles are denoted
by (θ, φ), and the spherical and cylindrical radial coordinates are r and ρ. The sets of unit vectors
{r̂, θ̂, φ̂}, {ρ̂, φ̂, ẑ}, and {x̂, ŷ, ẑ} form right-handed orthonormal coordinate systems. It will be
useful to note the relationships

ρ̂ = cosφ x̂ + sinφ ŷ

φ̂ = − sinφ x̂ + cosφ ŷ
,

x̂ = cosφ ρ̂− sinφ φ̂

ŷ = sinφ ρ̂+ cosφ φ̂
. (3.1)

For plotting gamma ray arrival directions, it is convenient to introduce the lateral and transverse
angular extent as

ϑlat = θ cosφ and ϑtrans = θ sinφ . (3.2)

The distinction between the lateral and transverse directions is arbitrary. Although other mappings
are possible, this one has the convenient feature that the Euclidean norm is equal to the polar angle

θ =
√
ϑ2

lat + ϑ2
trans. A gamma ray arriving at Earth is specified by an energy Eγ and an orientation,

which can be expressed as the pair (θ, φ) or equivalently (ϑlat, ϑtrans) or n̂ = r̂.
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We seek to study the development of the cascade semi-analytically by deriving a set of trigono-
metric equations that can be solved (analytically if possible, numerically if not) to find the orientation
of GeV gamma rays reaching Earth. In this sense our approach differs from a purely numerical sim-
ulation in which TeV gamma rays are ejected from the blazar in random directions, the paths of the
lepton and GeV gamma rays are calculated, and trajectories that do not intersect the Earth are dis-
carded. As we will see, inspection of Fig. 1 leads to a set of three equations: the first arises from the
trigonometry of the triangle, the second arises from the geometry of the lepton’s orbit, and the third
ensures that the GeV gamma ray intersects with the line of sight. We solve these three equations for
a given magnetic field configuration and gamma ray energy Eγ to obtain the orientation of the GeV
gamma ray at Earth (θ, φ) as well as the bending angle δ. This semi-analytic approach is applicable
thanks to the following two well-justified approximations.

First, we assume that the lepton samples a homogeneous magnetic field, and thus its path is a
simple helix. If λ is the coherence length of the magnetic field, this condition is expressed asDe � λ.
We saw in Eq. (2.6) that typically De ∼ 100 kpc, and since we will be interested in λ > 1 Mpc this
assumption is well-justified. If we were interested in smaller coherence scales, where the lepton
motion is diffusive, then our approach would not be applicable.

Second, we assume that the displacement of the lepton can be neglected. This ensures that, to
a good approximation, the two gamma rays lie in the same plane and that they form the legs of a
triangle as in Fig. 1. To verify that the longitudinal displacement along the field line is negligible, we
need |v‖|De/|v| � ds, dγ0 ; to ensure that the transverse displacement around the orbit is negligible
we need Min[De, RL] � ds, dγ0 . In Eqs. (2.1), (2.3), and (2.9) we saw that typically ds ∼ 1 Gpc,
dγ0 ∼ 100 Mpc, and De, R ∼ 100 kpc. Then over all of the relevant parameters space we have
De � dγ0 , and the assumption is very well-justified.

Although our approach only requires the above two approximations, we also use the following
two assumptions as a matter of convenience. First, it is important to remark that many aspects of
the cascade are stochastic in nature: the spectrum of TeV gamma rays emitted by the blazar, the
distance traveled by the TeV gamma rays before pair production, the spectrum of EBL photons, the
distance traveled by the leptons before IC, the number of IC photons emitted before electron cooling
becomes appreciable, and the spectrum of CMB photons that are up-scattered. For simplicity we
neglect the stochastic spread in each of these various parameters, and we fix them equal to their
average values given in Sec. 2. As a result, we obtain a deterministic relationship between the energy
of gamma rays reaching Earth and their orientations on the sky; we call this function the halo map
n̂(Eγ). These halo maps are useful tools for studying the connection between halo morphology and
the underlying magnetic field since they can be calculated quickly, without sophisticated numerical
simulation, and they capture the characteristic features of the halo size and shape. It is expected that
properly taking account of the stochasticity will lead to a significantly “smeared” version of the halo
maps shown here, since the variance in the random parameters is typically O(1). We discuss the
stochastic smearing further in the conclusions, Sec. 6, as a direction for future work.

As a second simplification, we neglect the blazar’s jet structure and assume that emission from
the blazar is isotropic. If we were to properly treat the angular distribution of radiation from the blazar,
then only a portion of our halo maps would be visible. We return to this point in the conclusions,
Sec. 6, where we also show a few halo maps that have been calculated with the jet restriction in place.

3.2 Constraint Equations

We obtain the first in the set of three equations by applying the law of sines to the triangle in Fig. 1:

sin θ =
dγ0
ds

sin δ . (3.3)
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Here θ is the polar angle that a GeV gamma ray arriving at Earth makes with the line of sight to the
blazar, and the bending angle δ is the angle between the orientation of the initial TeV gamma ray and
the final GeV gamma ray. The second equation is a relationship for the bending angle δ:

1− cos δ =
(

1− (v̂i · B̂)2
)(

1− cos(De/R)
)
. (3.4)

To derive Eq. (3.4), we write the magnetic field at the point of pair production as B = B n̂‖, and we
write the initial lepton velocity as vi = v‖ n̂‖ + v⊥ n̂⊥ where n̂‖ · n̂⊥ = 0. Then v‖ = vi · B̂ and
v2
‖ + v2

⊥ = v2 ≈ c2. The lepton velocity at time t after pair production is

v(t) = v‖ n̂‖ + v⊥ cos(ωt) n̂⊥ ∓ v⊥ sin(ωt) n̂‖ × n̂⊥ (3.5)

where ω = v⊥/RL = c/R is the angular frequency of the orbital motion. The sign ambiguity in
the last term is related to the charge of the lepton; the (−) is for positrons and (+) is for electrons.
The lepton travels an electron cooling distance2, De, in time τ = De/c. Since the gamma rays
are approximately tangential to the lepton trajectory, the orientation of the initial TeV gamma ray
is v̂(0), the orientation of the final GeV gamma ray is v̂(De/c), and the bending angle satisfies
cos δ = v̂(0) · v̂(De/c), which gives Eq. (3.4).

Before discussing the third equation, it is useful to consider the limits of small and large lepton
deflection. Recall that De/R = ωτ is the angular deflection of the lepton as it travels a distance
De around the gyro-circle, and we saw in Eq. (2.11) that De/R ∝ B0/Eγ . For sufficiently weak
magnetic field or high gamma ray energy we have De/R� 1 and Eqs. (3.3) and (3.4) reduce to

θ ≈
√

1− (v̂i · B̂)2 Θext and δ ≈
√

1− (v̂i · B̂)2
De

R
(3.6)

where

Θext ≡
dγ0De

dsR
. (3.7)

In Θext we find the familiar expression for the angular extent of the halo [14]. Using the numerical
estimates from Sec. 2 we have

Θext ' (0.68◦)

(
B0

10−15 G

)(
Eγ

10 GeV

)−3/2( ds
1 Gpc

)−1(1 + zs
1.24

)−3

. (3.8)

Since Θext ∝ B0 the angular extent of the halo grows larger as the field strength is increased, which
is characteristic of the MBC regime.

In the opposite regime where the lepton deflection is large we have De/R � 1, and the lepton
makes multiple orbits before IC occurs. If (v̂i ·B̂)2 < 1/2 then Eq. (3.4) has a discrete set of solutions
at energies E(n)

γ where the halo reaches a maximum angular extent

θ ≈ Θmax and δ ≈ π

2
(3.9)

2Throughout our analysis we assume that the lepton always travels an electron cooling distance, and that IC scattering
only occurs once, at this point. In reality the mean free path of the lepton is shorter than De and multiple IC photons
are emitted. These multiple emissions are an example of the stochastic effects, discussed previously, that we neglect for
simplicity. We perform a preliminary investigation of the stochasticity in Sec. 6.”
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with

Θmax ≡ arcsin

(
dγ0
ds

)
' (10◦)

(
E

(n)
γ

10 GeV

)−1/2(
1 + zs
1.24

)−1( ds
1 Gpc

)−1

. (3.10)

In this limit, known as the PH regime, the angular extent of the halo is not proportional to the magnetic
field strength, but instead it is restricted only by the geometry of the TeV gamma ray propagation.

We finally turn to the third constraint equation, which needs to enforce that the TeV and GeV
gamma rays approximately lie in a plane of constant φ, as shown in Fig. 1. To ensure that the charged
lepton is not deflected out of this plane, the Lorentz force F = (e/c)v × B must be normal to φ̂.
Of course, as the lepton follows its helical path, the direction of its velocity changes and so too does
the direction of the Lorentz force. Then we must average the Lorentz force over the trajectory of the
lepton.

Let x(t) be the helical trajectory of the lepton, v(t) = dx/dt be its velocity, tγγ be the time
of pair production, and τ = De/c be the time elapsed before IC up-scattering. Neglecting the
cosmological expansion, which is not relevant on such short time scales, the impulse imparted on
the charged lepton at redshift zγγ is given by

J = ±e
c

∫ tγγ+τ

tγγ

dtv(t)×B(x(t), t) (3.11)

where the ± is related to the charge on the lepton. If the magnetic field is static and homogeneous
over the path of the lepton, we can pull it out of the integral, and the integrand contains only v(t).
Defining the time averaged electron velocity as

vavg ≡
1

τ

∫ tγγ+τ

tγγ

dtv(t) , (3.12)

we can write the impulse as

J = ±eτ
c

vavg ×B . (3.13)

Since the magnetic field does no work, the magnitude |v(t)| ≈ c is fixed. Then using the geometry
shown in Fig. 1, we see that vavg must bisect the angle δ, and it can be written as

v̂avg = sin

(
δ

2
− θ
)
ρ̂− cos

(
δ

2
− θ
)

ẑ . (3.14)

Writing also

B̂ = bρρ̂+ bφφ̂+ bzẑ (3.15)

we have

v̂avg × B̂ · φ̂ = −bρ cos

(
δ

2
− θ
)
− bz sin

(
δ

2
− θ
)

= 0 . (3.16)

Typically bρ or bz will depend on the azimuthal angle φ, and then this equation fixes the plane (normal
to φ̂) in which lie the two gamma rays and the line of sight.
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Now we summarize the three constraint equations. To ensure that the motion remains in the
plane, we impose Eq. (3.16):

bρ cos

(
δ

2
− θ
)

+ bz sin

(
δ

2
− θ
)

= 0 (3.17)

where Eq. (3.15) gives the decomposition of the magnetic field into cylindrical coordinates. From the
geometry of the gamma ray trajectories, we have the law of sines in Eq. (3.3),

sin θ =
dγ0
ds

sin δ , (3.18)

and finally the bending angle is given by Eq. (3.4),

1− cos δ =
(

1−
(
bρ sin(δ − θ)− bz cos(δ − θ)

)2)(
1− cos(De/R)

)
, (3.19)

where we have written the initial lepton velocity as

v̂i = sin(δ − θ)ρ̂− cos(δ − θ)ẑ . (3.20)

The constraints in Eqs. (3.17)-(3.19) can also be derived from the single vector equation

dγ0v̂i + ∆x+ Lv̂f + dsẑ = 0 , (3.21)

which ensures that the cascade photon reaches Earth. Here L is the distance from the IC scattering
to the observation point and ∆x is the displacement of the lepton between pair production and IC
scattering. To find ∆x, we can integrate Eq. (3.5). However, in the limit that De � dγ , ds, the ∆x
term can be dropped from the equation. Trigonometric manipulation of Eq. (3.21) then once again
leads to the above constraint equations.

3.3 Shape Parameter

In the next section we consider various static magnetic field configurations B̂(x), and we solve
Eqs. (3.17)-(3.19) for θ, φ, and δ to determine the halo map n̂(Eγ). Having solved Eqs. (3.17)-(3.19)
we construct the halo map as the radial unit vector

n̂(Eγ) = sin θ cosφ x̂ + sin θ sinφ ŷ + cos θ ẑ (3.22)

that points from the Earth toward the arriving gamma ray of energy Eγ . Note that n̂(Eγ) may be
multi-valued meaning that gamma rays of a particular energy may appear from multiple directions in
the sky. All of the information about the halo size and shape is contained in the function n̂(Eγ). For
instance, the size of the halo is given by Θ(Eγ) = arccos[n̂(Eγ) · ẑ].

There are many ways to quantify the halo shape and orientation. Since we are interested in
probing magnetic helicity, we are motivated to consider a parity-odd Q-statistic [36, 37], which is
sensitive to the sign of the magnetic helicity. The statistic is defined as the triple product of vectors
sampled from the halo map n̂(Eγ) at three different energies. For illustrative purposes, we consider
a few energy combinations:

Q10,30,50 = n̂10 × n̂30 · n̂50 (3.23a)

Q25,30,35 = n̂25 × n̂30 · n̂35 (3.23b)

Q8,10,12 = n̂8 × n̂10 · n̂12 (3.23c)

Q38,40,42 = n̂38 × n̂40 · n̂42 (3.23d)
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where n̂# is shorthand notation for n̂(Eγ = # GeV). We will see that different energy combinations
are sensitive to different ranges of parameters, namely magnetic field strength and coherence length.
Since n̂(Eγ) may be multi-valued in general, one can calculate Q by first averaging over the multiple
arrival directions for a given energy.

It is also useful to write the triple product Qabc = n̂a × n̂b · n̂c as

Qabc = sinϑab sinϕabc (3.24)

where 0 ≤ ϑab ≤ π is the angle between n̂a and n̂b, and −π/2 ≤ ϕabc ≤ π/2 is the angle between
n̂c and its projection onto the plane spanned by n̂a and n̂b. If n̂a and n̂b are collinear then ϑab = 0
and Qabc vanishes; if n̂c lies in the same plane as n̂a and n̂b then ϕabc = 0 and Qabc also vanishes.
The sign of Qabc is controlled by the sign of ϕabc, which depends on whether n̂c is “in front of” or
“behind” the plane normal to n̂a×n̂b. Since it is odd under reflections one sees thatQabc is a measure
of parity violation in the halo map.

4 Halo Morphology for Specific Magnetic Field Configurations

In this section we study the size and shape of the GeV halo for various specific magnetic field configu-
rations. The configurations we consider are simplified and do not realistically model the intergalactic
magnetic field. However, these examples serve to illustrate the parametric relationships between the
field configuration and the halo morphology. Previous studies have focused on the size information
alone, and we will see that the shape information provides insight into the magnetic field’s orienta-
tion and helicity. We consider five different non-helical and helical magnetic field configurations, as
shown in Fig. 2.

4.1 Case 1: Uniform Magnetic Field Parallel to Line of Sight

The simplest configuration is a homogeneous magnetic field oriented along the line of sight with the
blazar,

B̂ = −ẑ . (4.1)

The three constraint equations, Eqs. (3.17)-(3.19) , reduce to

sin(δ/2− θ) = 0 (4.2a)

sin θ =
dγ0
ds

sin δ (4.2b)

1− cos δ = sin2(δ − θ)
(

1− cos(De/R)
)
. (4.2c)

There is a trivial solution with δ = θ = 0 corresponding to gamma rays oriented along the line of
sight, v̂ = −ẑ, that are not deflected by the magnetic field. There is also a nontrivial solution,

δ = 2θ = 2 cos−1

(
ds

2dγ

)
,

De

R
= (2n+ 1)π (4.3)

where n is an integer. Since the azimuthal angle φ does not appear in these equations, the solution will
be rotationally symmetric about the line of sight to the blazar. Also, since De/R and dγ0/ds depend
on energy, there will only be a discrete set of energies for which a solution exists. The solution can
be understood in physical terms: the velocity component along the magnetic field remains constant,
and the velocity component perpendicular to the magnetic field gets reflected, and so the triangle in
Fig. 1 is an isosceles triangle. Apart from these solutions, the magnetic field deflects other gamma
rays away from the line of sight, and they do not reach Earth.
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Figure 2. The five magnetic field configurations that we consider. Cases 1-3 are homogeneous field configura-
tions that have different orientations with respect to the line of sight with the blazar. Cases 4-5 are helical field
configurations with their wavevectors oriented either along or normal to the line of sight.

4.2 Case 2: Uniform Magnetic Field Normal to Line of Sight

Next we consider a homogeneous magnetic field that is oriented normal to the line of sight with the
blazar (see Fig. 2). Without loss of generality we can align the Cartesian coordinate system with the
magnetic field such that

B̂ = ŷ = sinφ ρ̂+ cosφ φ̂ . (4.4)

and Eqs. (3.17)-(3.19) reduce to

sinφ cos(δ/2− θ) = 0 (4.5a)

sin θ =
dγ0
ds

sin δ (4.5b)

1− cos δ =
(

1− sin2(δ − θ) sin2 φ
)(

1− cos(De/R)
)
. (4.5c)

For a given gamma ray energy Eγ there is a solution

φ = 0, π , sin θ =
dγ0
ds

sin δ , and cos δ = cos
De

R
(4.6)

where Eγ enters through dγ0/ds and De/R, see Eqs. (2.10) and (2.11). Recall that De/R > 0 is
unbounded from above but 0 ≤ δ ≤ π and 0 ≤ θ ≤ π/2. For this magnetic field configuration, the
trajectories of all the gamma rays lie in the y = 0 plane where φ = 0, π. In the limit of small lepton
deflection, De/R� 1, the solution further simplifies to

θ ≈ Θext =
dγ0De

dsR
(4.7)
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as in Eqs. (3.6) and (3.7).
The halo map corresponding to the solution in Eq. (4.6) is shown in Fig. 3. We have mapped

the polar and azimuthal angles (θ, φ) into the lateral and transverse angular extent (ϑlat, ϑtrans) using
Eq. (3.2). The y-component of velocity is conserved for B̂ = y, and only gamma rays lying in
the plane y = 0 normal to the magnetic field are deflected back toward the line of sight. The halo
map n̂(Eγ) is double-valued as there are precisely two gamma ray arrival directions for each energy.
Along one branch the electron was deflected back toward Earth and generated the secondary IC
gamma ray, and on the other branch it was the positron.

The energy dependence of the polar angle is shown in Fig. 4 for various parameter combinations.
The highest energy gamma rays experience the smallest deflection, and they arrive closest to the line
of sight (θ = 0). In this regime, the small angle approximation is valid, and we have the scaling
θ ≈ Θext ∝ E

−3/2
γ from Eq. (3.7). Lower energy gamma rays are found farther from the line

of sight, and there is an energy gradient. As the energy decreases further, the bending angle δ =
De/R ∝ 1/Eγ continues to grow, as per Eq. (2.11), and eventually δ = π/2 where the electron
experiences a deflection of 90◦. This corresponds to an energy

E(crit)
γ ' (0.43 GeV)

(
B0

10−15 G

)(
1 + zs
1.24

)−2

, (4.8)

which also serves to indicate where the small bending approximation breaks down. Since sin δ = 1
is maximized at this point, the halo achieves a maximum angular extent (cf. Eq. (3.10))

Θmax = arcsin

(
dγ0
ds

)
' (59◦)

(
ds

1 Gpc

)−1( B0

10−15 G

)−1/2

. (4.9)

Still lower energy gamma rays arrive closer to the line of sight, because the lepton is bent more than
90◦.

For this case the halo map is wide in lateral extent and narrow in transverse extent as seen
in Fig. 3. In principle one could measure the orientation of the magnetic field by measuring the
orientation of the halo map. This is an example of how shape information can probe additional
aspects of the IGMF beyond just its field strength. Of course, we have assumed that the magnetic
field is uniform over the scale probed by the TeV gamma rays, i.e. if the magnetic field coherence
length is λ, then we have implicitly assumed λ � dγ0 ∼ 100 Mpc. In a realistic setting it is more
likely that the magnetic field forms domains smaller than dγ0 . If the magnetic field is statistically
isotropic across domains, then different leptons probe random orientations of the field, and the halo
will resemble a more familiar, rotationally symmetric halo map. Apart from this isotropization, the
discussion of this section is largely unchanged, and specifically Eq. (4.6) still gives the relationship
between the gamma ray energy and polar angle.

4.3 Case 3: Uniform Magnetic Field with Arbitrary Orientation

Next we consider a homogeneous magnetic field that has a component along the line of sight to the
blazar. This is a generalization of the previous two cases. Without loss of generality we can write the
magnetic field configuration as

B̂ = (cosβ ŷ − sinβ ẑ) = cosβ sinφ ρ̂+ cosβ cosφ φ̂− sinβ ẑ (4.10)
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Figure 5. The halo map for Case 3. If we had taken β < 0 then the halo maps would be reflected in the vertical
direction. The black dots and gray dashes have the same meaning as in Fig. 4.

where the skew angle β controls the component of B̂ along the line of sight. Eqs. (3.17)-(3.19) reduce
to

sinφ = tanβ tan(δ/2− θ) (4.11a)

sin θ =
dγ0
ds

sin δ (4.11b)

1− cos δ =
(

1− sin2 β
cos2(δ/2)

cos2(δ/2− θ)

)(
1− cos(De/R)

)
(4.11c)

where we have used the equation for sinφ to simplify the third equation.
Numerically solving Eq. (4.11) leads to the halo maps shown in Fig. 5. In comparing with

Case 2 from Sec. 4.2 we see that the halo map is no longer restricted to a line, but instead the halo
acquires a transverse extent. We vary the skew angle β in the left panel of Fig. 5. In the limit that
β goes to zero, we regain the line-like halo map of Case 2, and in the limit that β goes to 90◦, we
regain point-like halo map of Case 1. We vary the field strength in the right panel of Fig. 5. In the
PH regime where B0 . 10 × 10−15 G, the halo size is proportional to the field strength (green and
magenta curves), while in the MBC regime where B0 & 10 × 10−15 G, the halo size is limited by
the geometry (brown and teal curves).

Our analytic approach to calculating the halo map has an advantage over numerical shooting
techniques insofar as we can solve for the halo map analytically in certain limiting regimes. To
demonstrate this point, first consider the limit of small skew angle β � 1 in which Case 3 reduces to
Case 2. In this limit, Eq. (4.11) becomes

φ ≈ β tan(δ/2− θ) , θ ≈ arcsin

(
dγ0
ds

sin
De

R

)
, and δ ≈ De

R
, (4.12)
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and it follows that

ϑlat ≈ arcsin

(
dγ0
ds

sin
De

R

)
(4.13)

ϑtrans ≈ β tan

(
De

2R
− arcsin

(
dγ0
ds

sin
De

R

))
arcsin

(
dγ0
ds

sin
De

R

)
. (4.14)

This behavior is seen in the left panel of Fig. 5. Second, consider the small bending angle regime
De/R� 1 (weak magnetic field) where Eq. (4.11) becomes

φ ≈ sinβ

2 cos2 β

De

R
, θ ≈ Θext

cosβ
, and δ ≈ De

R
cosβ , (4.15)

and Θext ∝ B0 was given by Eq. (3.7). Then the lateral and transverse extents are

ϑlat ≈
Θext

cosβ
(4.16)

ϑtrans ≈
sinβ

2 cos2 β

De

R

Θext

cosβ
. (4.17)

Observe that ϑtrans is suppressed with respect to ϑlat by an additional factor of (De/R) ∝ B0.
We quantify the halo shape using the triple product Q-statistic, given by Eq. (3.23). Since the

magnetic field configuration under consideration is not helical, we expect Q = 0. In fact this is
immediately evident from the symmetry of Fig. 5: the gamma rays on the branch in the first quadrant
contribute Q < 0 while those in the second quadrant contribute Q > 0, and upon summing the
two branches, they cancel. However, this cancellation is possible in part because we have assumed
isotropic emission from the blazar. In practice, the jet may only illuminate a small patch of the halo
map. Thus, to demonstrate the parametric dependence and typical scale of Q it is illustrative to
calculate the statistic using only the gamma rays in one of the two branches.

We evaluateQ10,30,50 from Eq. (3.23) and show the results in Fig. 6. Similar results are obtained
for the other energy combinations, and we do not show them here. The parameters are chosen to
correspond with the halo maps in Fig. 5. The statistic Q10,30,50 becomes small (i) in the limit β →
0 where the halo map approaches a straight line, (ii) in the limit β → 90◦ where the halo map
approaches a point, and (iii) in the limit B0 → 0 where the angular extent of the halo decreases.
Increasing the field strength grows Q10,30,50 until the crossover from the MBC to the PH regime at
B0 ∼ 50× 10−15 G. For larger B0 the statistic first decreases and then begins to oscillate, similar to
the behavior of the halo size, seen in Fig. 4.

4.4 Case 4: Helical Magnetic Field with Wave Vector Parallel to Line of Sight

We now turn our attention to helical magnetic field configurations. The simplest configuration con-
sists of a single circular polarization mode with wavelength λ and wavevector k = (2π/λ)ẑ oriented
along the line of sight with the blazar:

B̂ = cos(ψ + 2πz/λ) ŷ + σ sin(ψ + 2πz/λ) x̂ . (4.18)

The spatial coordinate z should not be confused with the redshift zs. The three parameters are the
coherence length λ, the handedness index σ = ±1, and the phase shift ψ. The handedness index
controls the sign of the magnetic helicity density,

H ≡ B ·∇×B = σ
2π

λ
|B|2 . (4.19)
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Figure 6. The magnitude of the parity statistic, given by Eq. (3.23), for Case 3. If we had averaged over all
gamma rays, we would find Q10,30,50 = 0 since the gamma rays in the first and second quadrants of Fig. 5
cancel. Here we just show Q10,30,50 for the gamma rays in the second quadrant.

The case σ = 0 corresponds to a non-helical, linearly polarized plane wave, while σ = +1 corre-
sponds to left-circular polarization and −1 to right. In the subsequent analysis, one should bear in
mind that varying λ at fixed |B| implies that the magnetic helicity is being varied.

It is convenient to define the angle βeff = ψ + 2πz/λ. Then using the geometry of Fig. 1 the
longitudinal coordinate at the point of pair production is z = ds − dγ0 cos(δ − θ), and

βeff(δ, θ) = ψ +
2π

λ
(ds − dγ0 cos(δ − θ)) (4.20)

is the effective skew angle. For this case, Eqs. (3.17)-(3.19) reduce to the set of equations

tanφ = −σ tanβeff(δ, θ) (4.21a)

sin θ =
dγ0
ds

sin δ (4.21b)

cos δ = cos
De

R
, (4.21c)

which can be solved analytically. The solutions are shown in Fig. 7. The most striking feature in
these figures is that the halo map forms a spiral pattern. The handedness of the spiral is controlled by
the helicity of the magnetic field, parametrized here by σ = ±1. As the phase shift ψ is varied, the
halo map is uniformly rotated clockwise or counterclockwise.

As we vary the coherence length λ the spiral becomes flatter or tighter. In the limit of large
coherence length λ � dγ0 ∼ 100 Mpc, the cascade takes place in an effectively homogeneous
magnetic field, B̂ ≈ ŷ. Then we regain the behavior of Case 2 from Sec. 4.2 in which the gamma
rays propagate in a plane and arrive at Earth collimated into a line with small transverse extent. In
the opposite limit of small coherence length, λ � dγ0 ∼ 100 Mpc, the TeV gamma rays sample the
magnetic field at a random phase. In terms of the halo map, this translates into a tightly wound spiral
with multiple cycles. Varying the magnetic field strength has the same effect as in the previous cases.
In the PH regime where the field is weak, the angular size of the halo grows with increasing field
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Figure 7. The halo map for Case 4. We have taken σ = +1 and ψ = 0. For σ = −1 the handedness of the
spiral is reversed, and for a phase shift ψ 6= 0 the halo map is uniformly rotated, but otherwise the structure
remains unchanged. In the left panel, if λ is further decreased below 100 Mpc the spiral becomes tighter, and
if λ is further increased above 1 Gpc the halo map asymptotes to a straight line.

strength, while in the MBC regime where the field is strong, the angular size of the halo is limited by
the geometry (brown curve in right panel).

The halo maps in Fig. 7 display a clear parity-violation that should be captured by the Q-
statistics. However, the halo map n̂(Eγ) is double-valued, i.e. there are two gamma rays at each
energy, which correspond to the two branches of the spiral in Fig. 7. If we first average n̂(Eγ)
over its multiple solutions, we would obtain Avg[n̂(Eγ)] = 0 and therefore Q = 0. This result is
a consequence of the high symmetry of the system under consideration: we have assumed that the
wavevector of the magnetic field is oriented along the line of sight, and we have allowed for isotropic
emission from the blazar. As we discussed for Case 3 of Sec. 4.3, under more realistic conditions the
blazar’s jet will only illuminate a part of the full halo map, and then the cancellation is disrupted. To
model this effect, we calculate Q along a single branch of the spiral.

We calculate theQ-statistics using Eq. (3.23) and show the parametric dependence on coherence
length λ and field strengthB0 in Fig. 8. The statistic has the same qualitative behavior for each energy
combination: (i) |Q| decreases for small B0, (ii) |Q| decreases for large λ, and (iii) Q oscillates
rapidly from positive to negative values for small λ. When the magnetic field is weak, the halo has
a small angular extent, as shown in the right panel of Fig. 7, and Qabc = n̂a × n̂b · n̂c decreases as
n̂a, n̂b, and n̂c become approximately collinear (see also Eq. (3.24)). When the coherence length is
large the halo map resembles a straight line, as seen in the left panel of Fig. 7, and Qabc decreases as
n̂a, n̂b, and n̂c become approximately coplanar. In this regime, the magnetic field appears uniform,
and therefore non-helical, on the scale probed by the TeV gamma rays. When the coherence length
is small the halo map resembles a tight spiral, as seen in the left panel of Fig. 7, and the three gamma
rays used to construct Q may not lie on the same cycle of the spiral. In this case, Q may take positive
or negative values depending on the energies at which the spiral is sampled, and as λ decreases further
and the spiral becomes more tightly wound, the sign of Q oscillates. We will use λosc to denote the
coherence length at which Q begins to oscillate.
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Figure 8. The parity statistics, given by Eq. (3.23), for Case 4. For large λ the sign of the Q-statistic is given
by sign[Q] = −σ = −sign[H]. As the coherence length is lowered, the halo map begins to spiral around
the line of sight, as seen in Fig. 7, and the sign of Q oscillates. Statistics calculated from different energy
combinations have the same qualitative behavior, but they differ in the magnitude of Q and the value of λ at
which the oscillations begin.

The four cases in Fig. 8 display important quantitative differences between Q-statistics con-
structed from different energy combinations. Comparing the bottom two panels, |Q8,10,12| > |Q38,40,42|,
we see that lower energy gamma rays leads to a larger value for |Q|. This is simply because lower
energy gamma rays are more easily deflected and lead to a larger halo in the MBC regime, see
Eq. (3.8). Comparing the top two panels, λosc({10, 30, 50} GeV) > λosc({25, 30, 35} GeV), we
see how the energy spacing affects the coherence length scale below which Q begins to oscillate.
As λ decreases and the halo map becomes a more tightly wound spiral, and the gamma rays from
more closely spaced energies, in this case {25, 30, 35} GeV, remain on the same cycle of the spiral
longer than more widely spaced energies. In the two lower panels the energy spacings are identical
but nevertheless λosc({38, 40, 42} GeV) < λosc({8, 10, 12} GeV). This is because the spiraling
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behavior becomes more pronounced as the gamma ray energy is lowered; see Fig. 7 and note that the
separation between the 5 and 10 GeV gamma rays is much larger than the separation between the 10
and 15 GeV gamma rays.

4.5 Case 5: Helical Magnetic Field with Wave Vector Normal to Line of Sight

Finally we consider a more generic helical magnetic field configuration. We do not require that the
wave vector is oriented along the line of sight, but for simplicity we don’t allow it to have a general
orientation either, and instead we require that k is normal to the line of sight with the blazar. Without
further loss of generality we can write k = (2π/λ)x̂. The magnetic field configuration is

B̂ = cos(ψ + 2πx/λ) ŷ − σ sin(ψ + 2πx/λ) ẑ

= cos(ψ + 2πx/λ) sinφ ρ̂+ cos(ψ + 2πx/λ) cosφ φ̂− σ sin(ψ + 2πx/λ) ẑ . (4.22)

In this case the phase shift ψ plays a nontrivial role. For specific values ψ = 0, π/2, π, · · · the
magnetic field is either symmetric or antisymmetric when reflected across the line of sight (x→ −x
and φ → −φ), but for general ψ there is no such symmetry. Once again the handedness index σ
controls the magnetic helicity via Eq. (4.19).

It is convenient to introduce the effective skew angle

βeff(δ, θ, φ) = ψ +
2πdγ0
λ

sin(δ − θ) cosφ (4.23)

where we have used x = dγ0 sin(δ − θ) cosφ. Then Eqs. (3.17)-(3.19) reduce to

sinφ = σ tanβeff(δ, θ, φ) tan (δ/2− θ) (4.24a)

sin θ =
dγ0
ds

sin δ (4.24b)

1− cos δ =
(

1− sin2 βeff(δ, θ, φ)
cos2(δ/2)

cos2(δ/2− θ)

)(
1− cos(De/R)

)
. (4.24c)

These equations have a rich and interesting family of solutions, but as a result they cannot be solved
analytically as in Case 4. Instead we solve Eq. (4.24) numerically.

The halo maps are shown in Fig. 9, and we have chosen the same parameters as in Fig. 7
to facilitate comparison with Case 4. In each of the three panels we have taken the handedness
index σ = +1, and the associated parity-violation is evident in the “S”-like shape of the halo maps.
Choosing σ = −1 reflects the halo maps across the vertical axis, which flips the handedness.

In the first panel, the coherence length is reduced from λ = 1000 Mpc to 50 Mpc. The behavior
in the large λ regime is the same as in Case 4: when the coherence length is much larger than the
scale of the cascade, dγ0 ∼ 100 Mpc, the gamma rays probe an effectively homogeneous magnetic
field, and we regain the line-like halo map that was originally seen in Case 2 of Sec. 4.2. The small λ
behavior is distinctly different than in Case 4 where we encountered a spiral-shaped halo map. Now
the wavevector crosses the line of sight to the blazar. As λ is reduced, the surfaces of constant phase
become compressed in the lateral direction, and the “S”-like halo map becomes “squeezed.”

In the second panel, the magnetic field strength is increased from B0 = 2 to 16× 10−15 G. In
the small B0 regime, we once again regain the behavior of the previous cases: a smaller field strength
translates into a smaller halo. In the large B0 regime, on the other hand, a new phenomenon emerges:
the halo map acquires multiple disconnected branches. In this panel only, all of the black dots denote
Eγ = 5 GeV, and we see that for B0 = 8 and 16 × 10−15 G the halo map n̂(Eγ) has six distinct
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Figure 9. The halo map in Case 5. We have taken σ = +1 in all panels, and for σ = −1 the halo maps are
reflected across the vertical axis. In the first and second panels we fix ψ = 0. In the first and third panels,
the black dots have the same meaning as in the previous halo maps: they indicate Eγ = 100, 20, 15, 10, and
5 GeV. In the second panel, the black dots show only Eγ = 5 GeV, the black square indicates Eγ = 7 GeV
for B0 = 8× 10−15 G, and the black triangle indicates Eγ = 11 GeV for B0 = 16× 10−15 G.

values. In the previous cases, the halo map was only double-valued. The new branches contain only
low energy gamma rays, which are more easily deflected, and the bifurcation points are denoted by a
black square and black triangle for B0 = 8 and 16 × 10−15 G, respectively. As the field strength is
further increased or the coherence length lowered, additional branches will emerge.

In the third panel, we vary the phase parameter ψ from 0 to π. If ψ 6= (0 mod π) then the
reflection symmetry of the halo map is disrupted. This was not the situation in Case 4 where varying
ψ simply lead to a uniform rotation of the spiral-like halo map.

To quantify the parity-violating features in the halo maps, we calculate the Q-statistics using
Eq. (3.23) and show the results in Fig. 10. As we have seen, the halo map becomes multi-valued
for large B0 and small λ, and it displays multiple branches. To generate Fig. 10 we calculate Q
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Figure 10. The parity statistics for Case 5. We calculate Q using only the main solution branch. The plots are
truncated at small λ and large B0 where numerical issues arise. For small λ and large B0 where there can be
multiple branches, this approach probably underestimates Q.

using only the main branch, which is continuously connected to the line of sight. By neglecting the
branches with larger angular separation from the line of sight, we would presumably underestimate
Q in this regime.

Over the parameter space shown Fig. 10 we have sign[Q] = −σ = −sign[H], where H > 0
for the left-circular polarization mode. In the limit of large λ we have the same behavior as in Case
4, see Fig. 8. In the limit of small λ the Q-statistics decrease because the main branch is squeezed,
and the angular extent of the halo is smaller. Also in comparing with Case 4, we see that the scaling
with B0 is different: in Fig. 8 we found |Q| ∼ B2

0 but Fig. 10 implies that |Q| ∼ B4
0 for Case 5. As

such, the magnitude of Q very quickly decreases with decreasing field strength.
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5 Implications for Helicity Measurement

By considering particular realizations of the IGMF, our analysis reveals the parametric behavior of
the halo size and shape on the various magnetic field variables, specifically the field strength B0,
the coherence length λ, and the magnetic helicity density H = ±(2π/λ)B2

0 . In the “corners” of
the parameter space, where either B0 or λ is very large or very small, the halo map behaves in a
way that may make a measurement of the magnetic helicity more challenging than in the “central”
parameter regime. For instance, small B0 implies a small halo, which may not be distinguishable
from a point source with a telescope’s finite angular resolution. In this section we will demarcate the
various parametric regimes and discuss the challenges posed by each.

The quantitative analysis in this section uses the simplified field configurations considered in
Sec. 4, but we expect qualitatively similar results (parameter space boundaries) even if the interven-
ing magnetic field configuration is not of one of the forms we have discussed, e.g. if the field is
stochastically homogeneous and isotropic. The inclusion of stochastic variables in the development
of the cascade, e.g. spectrum of the EBL or scattering probabilities, will smear out the halo patterns
we have seen, and non-cascade photons introduce noise in our signal and dilute the halo. A rigorous
evaluation of experimental sensitivities, even for a given set of experimental parameters, will require
more information on blazar sources (gamma ray flux and spectrum, jet orientation and structure) and
the background noise.

Strong Field Regime
For a strong magnetic field, at energies such that the gyroradius R is smaller than the typical distance
traveled by the charged lepton De, see Eq. (2.11), we have De/R > 1. This has two consequences.
First, the maximum angular extent of the halo is no longer tied to the magnetic field strength, but
instead it is fixed by the geometry as in Eq. (3.10). Then if a halo is seen, one can infer the presence
of an IGMF, but one cannot measure the field strength from the halo size alone. Second, since the
charged leptons can make a complete orbit around the gyrocircle, the GeV gamma rays will be emitted
isotropically. This reduces the flux by roughly Ωjet/4π, where Ωjet is the solid angle of the blazar’s
jet, and makes it more difficult to see the halo.

Therefore in the strong field regime, measurements of the cascade halo have a reduced capacity
to probe the parameters of the IGMF. To avoid this regime, we require

De

R
. 1 , (5.1)

which leads to an upper bound on the magnetic field strength,

B0 . (15× 10−15 G)

(
Eγ

10 GeV

)(
1 + zs
1.24

)2

(5.2)

upon using the expression for De/R in Eq. (2.11). We plot this boundary in Fig. 11. It divides the
PH regime De/R > 1 from the MBC regime De/R < 1.

Weak Field Regime
A gamma ray telescope cannot pinpoint the arrival direction of a gamma ray with arbitrary precision.
If the angular resolution is too poor, then the halo cannot be distinguished from a point source, and
one cannot use halo size and shape measurements to probe the IGMF. This issue becomes especially
relevant for weak magnetic fields, which do not induce much bending and lead to a smaller halo (cf.
Eq. (3.8)).

Angular resolution is quantified by the point-spread function (PSF), which is the probability
distribution function for the angle between the true and reconstructed arrival direction of a gamma ray
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of given energy. The 68% confinement radius is the angular radius containing 68% of the probability.
The confinement radius of the Fermi-LAT (Large Area Telescope) [43] is well-approximated by the
following empirical formula:3

δθ68(Eγ) ' (0.11◦)

√
1 +

(
Eγ

7.9 GeV

)−1.62

. (5.3)

Although our analysis is not specific to the Fermi-LAT instrument, we use this confinement radius as
fiducial point of reference.

In the weak field regime, the angular extent of the halo is given approximately by θ ∼ Θext(Eγ)
from Eq. (3.8), regardless of the specific field configuration under consideration. If Θext is sufficiently
large compared to δθ68, then the halo can be distinguished from a point source and its angular extent
measured. In fact, if the detector response is known very well (negligible systematic error), then halos
as small as δθ68/

√
Nγ can be probed when a large number Nγ of halo gamma rays are visible. Thus

we assess when the telescope will be able to distinguish the halo from a point source using

Θext(Eγ) &
δθ68(Eγ)√
Nγ(Eγ)

(5.4)

where Nγ(Eγ) is the number of gamma rays collected at energy Eγ .
The requirement of sufficient angular resolution in Eq. (5.4) leads to a lower bound on the

magnetic field strength,

B0 &
(0.16× 10−15 G)√

Nγ(Eγ)

[
1 +

(
Eγ

7.9 GeV

)−1.62
]1/2(

Eγ
10 GeV

)3/2( ds
1 Gpc

)(
1 + zs
1.24

)3

(5.5)

which is shown in Fig. 11. For smaller B0 the cascade halo is too small to distinguish from a point
source given an angular resolution comparable to the Fermi-LAT. We show a scenario with small
photon counts,Nγ = 1, and large photon counts,Nγ = 1+103(Eγ/GeV)−2, which could potentially
be achieved in a stacked halo analysis [22, 24]. The E−2

γ dependence is included as a crude model of
the gamma ray flux: lower energy gamma rays are more abundant.

The preceding discussion yields a range of field strengths where measurements of cascade halo
sizes are best suited to probing the IGMF. This range depends on the energy of the observed gamma
rays, as illustrated in Fig. 11, and taking the extremal values 1 GeV < Eγ < 100 GeV leads to
10−18 G < B0 < 10−13 G. However, the range also depends on photon fluxes. For instance, probing
B0 & 10−14 G requires a sufficient abundance of high energy photons with Eγ & 10 GeV, which re-
main in the MBC regime, and probing B0 . 10−17 G requires a large number of low energy photons
Eγ . 10 GeV so as to beat down the effective angular resolution. More conservatively speaking,
the range of magnetic field strengths that can be probed using cascade halo size measurements lies
between 10−18−10−17 G and 10−14−10−13 G. This range is indicated on the parameter space plots
of Fig. 12 as the blue shaded region. The gradient in the blue color indicates where the boundaries
depend on the details of the analysis, just discussed. This range is independent of the magnetic field
coherence length λ as long as λ is sufficiently large that the charged lepton probes an effectively
homogeneous magnetic field, i.e., λ & De ∼ 100 kpc. For smaller coherence length, the charged
leptons do not follow helical arcs; instead their motion is that of a random walk, and our analysis
breaks down.

3This formula matches Fig. 2 of [43] for the case of on-orbit data (P6_V11) and front-converting events.
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Figure 11. The reach of a gamma ray telescope like Fermi-LAT to probing an IGMF of strength B0 using
cascade gamma rays of energy Eγ . We consider blazars located at both ds = 1 Gpc (blue) and 0.7 Gpc (red)
from Earth. The two upper lines labeled δ ≈ De/R < 1 demarcate the boundary between the MBC regime,
where a measurement of the halo size furnishes a measurement of the field strength, and the PH regime, where
the halo size is insensitive to the field strength. The two middle curves labeled Θext > δθ68 indicate the
field strength below which the halo size is smaller than the Fermi-LAT 68% confinement radius. Finally, we
suppose that many cascade photons are observed Nγ = 1 + 103(Eγ/GeV)−2, and the two lower curves,
Θext > δθ68/

√
Nγ , indicate the approximate field strength below which the halo cannot be resolved.

Short Coherence Length Regime
When the coherence length is small, information about spatial inhomogeneities is encoded in features
of the halo at small angular scales. It is challenging to measure this halo substructure given limitations
on angular resolution and photon flux. If one is only able to measure the large scale halo morphology,
then gamma ray observations have a diminished capacity to probe magnetic helicity on small length
scales.

As a specific example, recall the study of helical magnetic fields in Case 4 of Sec. 4.4. In the left
panel of Fig. 7, the halo of GeV gamma rays form a spiral around the blazar. For small λ the angular
scale of the spiral (separation between subsequent cycles) is smaller than the angular scale of the full
halo. If we coarse grain on the scale of the halo, e.g. to model the finite detector resolution, the map
would appear rotationally symmetric, but when the small scale behavior is resolved, the spiral can be
seen.

To study the small scale structure of the halo, we require not only good angular resolution, but
also closely spaced gamma ray energies. Recall from Eqs. (2.3) and (2.5) that the mean free path of
the TeV gamma ray is

dγ0 ' (180 Mpc)

(
1 + zs
1.24

)−1( Eγ
10 GeV

)−1/2

(5.6)

where Eγ is the energy of the GeV gamma ray reaching Earth. Each TeV gamma ray emitted by the
blazar can be viewed as a local probe of the magnetic field at the point where pair production occurs.
If we want to probe the magnetic field on the length scale λ, then we should employ gamma rays
with energies E1 = Eγ and E2 = Eγ + ∆Eγ such that dγ0(E1)− dγ0(E2) ≈ λ. The optimal energy
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separation is therefore

∆Eγ ≈ 1 GeV

(
Eγ

10 GeV

)3/2( λ

10 Mpc

)(
1 + zs
1.24

)
(5.7)

assuming ∆Eγ � Eγ for which λ ≈ (dds/dEγ)∆Eγ . Considerations of gamma ray flux prohibit
one from taking ∆Eγ arbitrarily small to probe arbitrarily small λ.

Since the Q-statistics are constructed from three different gamma ray energies, as in Eq. (3.23),
the associated ∆Eγ and Eγ for a given statistic lead to a corresponding optimal coherence length
λopt via Eq. (5.7). The effects of inhomogeneities on smaller length scales, λ < λopt ≈ dγ0(Eγ) −
dγ0(Eγ + ∆Eγ), are washed out. We have seen this behavior explicitly for Case 4 in Fig. 8 and Case
5 in Fig. 10: as the coherence length decreases below λ ∼ λopt, the Q-statistic stops growing and
turns over or flattens out. To ensure that the optimal coherence length of a particular Q-statistic is
small enough to probe magnetic field inhomogeneities on the scale λ, we impose

λ & 10 Mpc

(
∆Eγ

1 GeV

)(
Eγ

10 GeV

)−3/2(1 + zs
1.24

)−1

, (5.8)

While a non-zero measurement of Q is of interest even for smaller λ, it becomes difficult to draw
a connection between the value of Q and the parameters of the underlying magnetic field. This is
particularly evident in Fig. 8 where Q oscillates with varying λ, and even sign[Q] does not neces-
sarily correspond to the sign of the magnetic helicity. Presumably detailed modeling of the cascade
development would be required to infer properties of the IGMF at such small λ.

In the parameter space plots of Fig. 12 we indicate the coherence length below which oscilla-
tions set in by writing “Q oscillations.” This boundary is drawn at the point where each of the Q-
statistics has its first zero-crossing, determined numerically, but it is well-approximated by Eq. (5.8).
For the energies and energy spacings that we have shown, the Q-statistics are best suited to probe
coherence lengths in the range 10− 100 Mpc. In order to probe shorter coherence lengths, Eq. (5.8)
indicates that we need to consider Q-statistics built from larger Eγ and smaller ∆Eγ . However, this
limit is technically challenging: higher energy gamma rays are less abundant and this problem is
exacerbated by small energy bins.

Long Coherence Length Regime
We have already seen in the analyses of Secs. 4.4 and 4.5 that the Q-statistic becomes small as
the coherence length is made large. In this limit, the magnetic field is effectively homogeneous on
the scale probed by the cascade, and information about the magnetic helicity, which is encoded in
gradients, becomes inaccessible. In terms of the halo map, the characteristic “S”-like curve becomes
flattened out (see the left panel of Fig. 7 or 9), and the transverse angular extent of the halo becomes
small. As a consequence angular resolution is a challenge for a measurement of small Q since one
needs not only to distinguish the halo from a point, but also distinguish the flattened S from a line.

Recall that the triple product Qabc = n̂a × n̂b · n̂c can be written as in Eq. (3.24)

Qabc = sinϑab sinϕabc (5.9)

where ϑab is the angle between n̂a and n̂b, and ϕabc is the angle between n̂c and the plane spanned
by the other two vectors. Because of the detector’s finite angular resolution, the unit vectors can only
be localized on the sphere with a precision of δθ68. This translates into a comparable uncertainty on
ϑab and ϕabc, and we estimate the precision with which the Q-statistic can be measured as

δQabc ≈
√

cos2 ϑab sin2 ϕabc + sin2 ϑab cos2 ϕabc δθ68 . (5.10)
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Figure 12. This sensitivity plot gives a rough indication of the region of magnetic field parameter space that
can be probed with a gamma ray telescope like the Fermi-LAT using four different Q-statistics, Eq. (3.23). In
the blue shaded regions, the magnetic field strength can be inferred from a measurement of the halo size. For
smaller field strength the halo cannot be distinguished from a point source, and for larger field strength (PH
regime), one may still be able to measure the halo size, but its connection to the field strength is obscured,
see Fig. 4. In the red shaded region, the magnetic helicity can be inferred from a measurement of the halo
shape via the Q-statistic. (These curves are defined with respect to the helical field configuration in Case 4 of
Sec. 4.4, and we expect similar boundaries for more general helical configurations.) For larger λ and smaller
B the parity-odd signal is too small to measure given the assumed angular resolution, and for smaller λ one
may still be able to measure the halo shape via Q, but its connection to the coherence length is obscured, see
Fig. 8.
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The factor on the right side depends on the choice of gamma ray energies used to form the triplet as
well as the specific magnetic field configuration being considered. As a rough estimate, we assume
the small angle approximation and take ϑab ∼ ϕabc ∼ Θext(10 GeV) using Eq. (3.8). Thus we infer
that the Fermi-LAT angular resolution is satisfactory to measure a Q-statistic satisfying

Q > δQ ∼ Θext(10 GeV) δθ68 ∼ 3× 10−5 B0

10−15 G
, (5.11)

which is analogous to Eq. (5.4) for the halo size. As per the discussion surrounding Eq. (5.4), we
expect that large photon counts can weaken the bound. Since this is a rough estimate, we consider
δQ ' 10−4, 10−5, and 10−6 in the following analysis.

In Fig. 12 we also show the boundaries corresponding to the inequality in Eq. (5.11) for each
of the energy combinations considered previously. The heavy red shaded region corresponds to Q >
δQ ∼ 10−4 where gamma ray observations of cascade halos should be able to measure the strength
and helicity of the magnetic field. Moving outside of the red shaded region, the helicity measurement
becomes more challenging, because either Q is too small to measure given an angular resolution
comparable to the Fermi-LAT (large λ regime) or Q has a complicated dependence on the magnetic
helicity (small λ regime). Outside of the blue shaded region, even the field strength measurement
becomes challenging, because either the halo is too small to distinguish from a point source given
the angular resolution (small B0 regime) or the halo size is insensitive to the field strength (large B0

regime). With better statistics one can presumably beat down the angular resolution issues to probe
weaker fields.

6 Summary and Discussion

One day gamma ray observations may provide measurements of both the size and the shape of cascade
halos. Whereas the halo size is tied to the average magnetic field strength, the halo shape can depend
on other properties of the magnetic field, particularly its helicity. In this work we have attempted to
illuminate the connection between magnetic helicity and halo shape by studying the development of
the electromagnetic cascade for simplified magnetic field configurations. We have taken an analytic
approach in which the three equations, (3.17), (3.18), and (3.19), are solved to find the trajectory of
gamma rays reaching Earth.

By acting as local probes of the magnetic field, blazar-induced cascade halos offer an interesting
opportunity to measure properties of the IGMF. The physical parameters of the cascade and the
detector resolution come together to determine the region of magnetic field parameter space that can
be probed with this technique. By studying a particular helical magnetic field configuration with its
wavevector oriented along the line of sight to the blazar, we have estimated the boundaries of this
region in the two dimensional parameter space consisting of field strength B0 and coherence length
λ; see Fig. 12. The boundaries are partly determined by the anticipated detector resolution, and an
improvement in angular resolution would allow access to smaller B0 and larger λ. The boundaries
are also depend on the measurement strategy, namely the energy combinations used to form the
parity-odd Q-statistics via Eq. (3.23). For the four statistics considered here, we find that blazar-
induced cascade halos are well-suited to probing helical magnetic fields with coherence length λ &
10 Mpc, see Eq. (5.8). Reaching smaller length scales would require more closely spaced energy
combinations, and then one runs into issues with angular resolution and photon flux.

There are a number of avenues for future work. First, we have considered only the simplest mag-
netic field configurations in order to draw the connection between halo shape and magnetic helicity.
These configurations are not likely to be realistic models of the true IGMF. It would be straight-
forward to generalize our analysis and consider field configurations built from multiple modes in
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Figure 13. A “smeared” halo map for Case 4 with parametersB0 = 10−15 G, λ = 700 Mpc, and ds = 1 Gpc.
The same parameters correspond to the the green curve in Fig. 7 (left panel), which is also shown on this figure
as a black curve. The colors denote different gamma ray energies: 5 < Eγ/ GeV < 10 (magenta), 10 <
Eγ/ GeV < 15 (blue), 15 < Eγ/ GeV < 20 (green), 20 < Eγ/ GeV < 30 (yellow), 30 < Eγ/ GeV < 50
(orange), and 50 < Eγ/ GeV < 100 (red).

random orientations. In this case, it may become too difficult to solve Eqs. (3.17)-(3.19), and in-
stead one would want to simulate the cascade using a shooting algorithm, such as in the analysis of
Ref. [15].

Second, the parity-odd test statistic Q is not an automatic proxy for the magnetic helicity. We
have seen in Sec. 4.4 that even the sign of Q won’t necessarily equal the sign of the magnetic helicity
if the coherence length is small. (This was also pointed out in [37, 39] in the case of statistically
homogeneous and isotropic magnetic fields.) The statistic Q can still be useful in this regime if the
three energies at which it is evaluated are finely spaced, though then the photon counts may be small
and the resulting error bars will be large. Alternately, now that we know qualitatively the effects of
magnetic field helicity in the gamma ray pattern, it may be possible to devise improved statistics to
detect these patterns.

Third, our analysis neglects the stochastic nature of the cascade’s development. This simplifi-
cation allows us to calculate the halo map n̂(Eγ) that gives a deterministic connection between the
energy of a gamma ray and its arrival direction on the sky. A more realistic model would account
for the stochasticity in the gamma ray propagation distances, spectra, and so on. As a crude model
of this effect, we calculate a halo map for Case 4 by replacing dγ0 and De in Eqs. (3.17)-(3.19) with
r1dγ0 and r2De where r1 and r2 are randomly selected from a uniform probability distribution over
the range 0.5 < r1, r2 < 1.5. We calculate 100 such halo maps in this way for the same parameter
set and show the results in Fig. 13. Although the degree of smearing is significant, the halo map
retains the qualitative features that we have seen previously, namely it angular extent and parity-odd
spiraling shape.

Fourth, our analysis neglects the jet structure of the blazar, and assumes that the emission is
isotropic. It is straightforward to include the effect of the jet in our semi-analytic formalism. Let

n̂jet(θoff , φoff) = sin(θoff)ρ̂(θoff , φoff)− cos(θoff)ẑ(θoff , φoff) (6.1)
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be the orientation of the jet where θoff and φoff give the polar and azimuthal offset angles from the
line of sight. The orientation of the initial TeV gamma ray, v̂i, is given by Eq. (3.20). Then the jet
criterion,

arccos
[
v̂i · n̂jet

]
< θjet , (6.2)

ensures that the TeV gamma ray is emitted from within the cone of the jet. As a consequence of
the jet criterion, only a portion of the full halo map becomes illuminated. This behavior is shown in
Fig. 14 where we have reevaluated the halo maps from Case 4 using Eq. (6.2), and there is a similar
effect for the other cases. When θoff > θjet the Earth is not contained within the cone of the jet, an
the blazar itself may not be seen. In this regime, the cascade photons would appear to contribute to
the diffuse gamma ray flux.
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Figure 14. The effect of the finite jet angle, θjet, and offset from the line of sight, θoff , where φoff = 0. The
thin colored curves show the halo map for an isotropically emitting blazar, θjet = 180◦, and the thick curves
show the halo map for a blazar jet with θjet = 5◦ and different offsets θoff = 0◦, 5◦, and 8◦ in the three rows,
respectively. For θoff > 10◦ none of the halo is visible with Eγ > 5 GeV.

– 30 –



References

[1] P. P. Kronberg, Extragalactic magnetic fields, Rept.Prog.Phys. 57 (1994) 325–382.

[2] L. M. Widrow, Origin of galactic and extragalactic magnetic fields, Rev.Mod.Phys. 74 (2002) 775–823,
[astro-ph/0207240].

[3] L. M. Widrow, D. Ryu, D. R. Schleicher, K. Subramanian, C. G. Tsagas, et al., The First Magnetic
Fields, Space Sci.Rev. 166 (2012) 37–70, [arXiv:1109.4052].

[4] T. Vachaspati, Magnetic fields from cosmological phase transitions, Phys.Lett. B265 (1991) 258–261.

[5] J. Ahonen and K. Enqvist, Magnetic field generation in first order phase transition bubble collisions,
Phys.Rev. D57 (1998) 664–673, [hep-ph/9704334].

[6] J. M. Cornwall, Speculations on primordial magnetic helicity, Phys.Rev. D56 (1997) 6146–6154,
[hep-th/9704022].

[7] T. Vachaspati, Estimate of the primordial magnetic field helicity, Phys.Rev.Lett. 87 (2001) 251302,
[astro-ph/0101261].

[8] A. J. Long, E. Sabancilar, and T. Vachaspati, Leptogenesis and Primordial Magnetic Fields, JCAP 1402
(2014) 036, [arXiv:1309.2315].

[9] M. S. Turner and L. M. Widrow, Inflation Produced, Large Scale Magnetic Fields, Phys.Rev. D37
(1988) 2743.

[10] R. Durrer and A. Neronov, Cosmological Magnetic Fields: Their Generation, Evolution and
Observation, Astron.Astrophys.Rev. 21 (2013) 62, [arXiv:1303.7121].

[11] K. Subramanian, The origin, evolution and signatures of primordial magnetic fields,
arXiv:1504.0231.

[12] F. A. Aharonian, P. S. Coppi, and H. J. Voelk, Very high energy gamma rays from active galactic nuclei:
Cascading on the cosmic background radiation fields and the formation of pair halos, Ap. J. Lett. 423
(Mar., 1994) L5–L8, [astro-ph/9312045].

[13] R. Plaga, Detecting intergalactic magnetic fields using time delays in pulses of γ-rays, Nature 374
(Mar., 1995) 430–432.

[14] A. Neronov and D. V. Semikoz, A method of measurement of extragalactic magnetic fields by TeV
gamma ray telescopes, JETP Lett. 85 (2007) 473–477, [astro-ph/0604607].

[15] A. Elyiv, A. Neronov, and D. Semikoz, Gamma-ray induced cascades and magnetic fields in
intergalactic medium, Phys.Rev. D80 (2009) 023010, [arXiv:0903.3649].

[16] K. Dolag, M. Kachelriess, S. Ostapchenko, and R. Tomas, Blazar halos as probe for extragalactic
magnetic fields and maximal acceleration energy, Astrophys.J. 703 (2009) 1078–1085,
[arXiv:0903.2842].

[17] J. Aleksic, L. Antonelli, P. Antoranz, M. Backes, C. Baixeras, et al., Search for an extended VHE
gamma-ray emission from Mrk 421 and Mrk 501 with the MAGIC Telescope, Astron.Astrophys. 524
(2010) A77, [arXiv:1004.1093].

[18] HESS Collaboration, A. Abramowski et al., Search for Extended gamma-ray Emission around AGN
with H.E.S.S. and Fermi-LAT, Astron.Astrophys. 562 (2014) 145, [arXiv:1401.2915].

[19] VERITAS Collaboration, M. F. Alonso, Search for extended gamma ray emission in Markarian 421
using VERITAS observations, arXiv:1406.4764.

[20] A. Neronov and I. Vovk, Evidence for strong extragalactic magnetic fields from Fermi observations of
TeV blazars, Science 328 (2010) 73–75, [arXiv:1006.3504].

– 31 –

http://xxx.lanl.gov/abs/astro-ph/0207240
http://xxx.lanl.gov/abs/1109.4052
http://xxx.lanl.gov/abs/hep-ph/9704334
http://xxx.lanl.gov/abs/hep-th/9704022
http://xxx.lanl.gov/abs/astro-ph/0101261
http://xxx.lanl.gov/abs/1309.2315
http://xxx.lanl.gov/abs/1303.7121
http://xxx.lanl.gov/abs/1504.0231
http://xxx.lanl.gov/abs/astro-ph/9312045
http://xxx.lanl.gov/abs/astro-ph/0604607
http://xxx.lanl.gov/abs/0903.3649
http://xxx.lanl.gov/abs/0903.2842
http://xxx.lanl.gov/abs/1004.1093
http://xxx.lanl.gov/abs/1401.2915
http://xxx.lanl.gov/abs/1406.4764
http://xxx.lanl.gov/abs/1006.3504


[21] F. Tavecchio, G. Ghisellini, L. Foschini, G. Bonnoli, G. Ghirlanda, et al., The intergalactic magnetic
field constrained by Fermi/LAT observations of the TeV blazar 1ES 0229+200,
Mon.Not.Roy.Astron.Soc. 406 (2010) L70–L74, [arXiv:1004.1329].

[22] S. Ando and A. Kusenko, Evidence for Gamma-Ray Halos Around Active Galactic Nuclei and the First
Measurement of Intergalactic Magnetic Fields, Astrophys.J. 722 (2010) L39, [arXiv:1005.1924].

[23] W. Essey, S. Ando, and A. Kusenko, Determination of intergalactic magnetic fields from gamma ray
data, Astroparticle Physics 35 (Oct., 2011) 135–139, [arXiv:1012.5313].

[24] W. Chen, J. H. Buckley, and F. Ferrer, Evidence for GeV Pair Halos around Low Redshift Blazars,
arXiv:1410.7717.

[25] C. Caprini and L. Sorbo, Adding helicity to inflationary magnetogenesis, JCAP 1410 (2014), no. 10 056,
[arXiv:1407.2809].

[26] K. Atmjeet, T. R. Seshadri, and K. Subramanian, Helical cosmological magnetic fields from
extra-dimensions, arXiv:1409.6840.

[27] N. Bartolo, S. Matarrese, M. Peloso, and M. Shiraishi, Parity-violating and anisotropic correlations in
pseudoscalar inflation, JCAP 1501 (2015), no. 01 027, [arXiv:1411.2521].

[28] S.-L. Cheng, W. Lee, and K.-W. Ng, Inflationary dilaton-axion magnetogenesis, arXiv:1409.2656.

[29] T. Fujita, R. Namba, Y. Tada, N. Takeda, and H. Tashiro, Consistent generation of magnetic fields in
axion inflation models, JCAP 1505 (2015), no. 05 054, [arXiv:1503.0580].

[30] L. Campanelli, Lorentz-violating inflationary magnetogenesis, arXiv:1503.0741.

[31] R. Jackiw and S.-Y. Pi, Creation and evolution of magnetic helicity, Phys.Rev. D61 (2000) 105015,
[hep-th/9911072].

[32] M. Joyce and M. E. Shaposhnikov, Primordial magnetic fields, right-handed electrons, and the Abelian
anomaly, Phys.Rev.Lett. 79 (1997) 1193–1196, [astro-ph/9703005].

[33] A. Diaz-Gil, J. Garcia-Bellido, M. Garcia Perez, and A. Gonzalez-Arroyo, Magnetic field production
during preheating at the electroweak scale, Phys.Rev.Lett. 100 (2008) 241301, [arXiv:0712.4263].

[34] T. Kahniashvili, A. G. Tevzadze, A. Brandenburg, and A. Neronov, Evolution of Primordial Magnetic
Fields from Phase Transitions, Phys.Rev. D87 (2013) 083007, [arXiv:1212.0596].

[35] T. Kahniashvili and T. Vachaspati, On the detection of magnetic helicity, Phys.Rev. D73 (2006) 063507,
[astro-ph/0511373].

[36] H. Tashiro and T. Vachaspati, Cosmological magnetic field correlators from blazar induced cascade,
Phys.Rev. D87 (2013), no. 12 123527, [arXiv:1305.0181].

[37] H. Tashiro and T. Vachaspati, Parity-odd correlators of diffuse gamma rays and intergalactic magnetic
fields, Mon.Not.Roy.Astron.Soc. 448 (2015) 299, [arXiv:1409.3627].

[38] H. Tashiro, W. Chen, F. Ferrer, and T. Vachaspati, Search for CP Violating Signature of Intergalactic
Magnetic Helicity in the Gamma Ray Sky, arXiv:1310.4826.

[39] W. Chen, B. D. Chowdhury, F. Ferrer, H. Tashiro, and T. Vachaspati, Intergalactic magnetic field
spectra from diffuse gamma rays, arXiv:1412.3171.

[40] A. Neronov and D. Semikoz, Sensitivity of gamma-ray telescopes for detection of magnetic fields in
intergalactic medium, Phys.Rev. D80 (2009) 123012, [arXiv:0910.1920].

[41] Planck Collaboration Collaboration, P. Ade et al., Planck 2015 results. XIII. Cosmological
parameters, arXiv:1502.0158.

[42] L. Costamante, Gamma-rays from Blazars and the Extragalactic Background Light, Int.J.Mod.Phys.
D22 (2013), no. 13 1330025, [arXiv:1309.0612].

– 32 –

http://xxx.lanl.gov/abs/1004.1329
http://xxx.lanl.gov/abs/1005.1924
http://xxx.lanl.gov/abs/1012.5313
http://xxx.lanl.gov/abs/1410.7717
http://xxx.lanl.gov/abs/1407.2809
http://xxx.lanl.gov/abs/1409.6840
http://xxx.lanl.gov/abs/1411.2521
http://xxx.lanl.gov/abs/1409.2656
http://xxx.lanl.gov/abs/1503.0580
http://xxx.lanl.gov/abs/1503.0741
http://xxx.lanl.gov/abs/hep-th/9911072
http://xxx.lanl.gov/abs/astro-ph/9703005
http://xxx.lanl.gov/abs/0712.4263
http://xxx.lanl.gov/abs/1212.0596
http://xxx.lanl.gov/abs/astro-ph/0511373
http://xxx.lanl.gov/abs/1305.0181
http://xxx.lanl.gov/abs/1409.3627
http://xxx.lanl.gov/abs/1310.4826
http://xxx.lanl.gov/abs/1412.3171
http://xxx.lanl.gov/abs/0910.1920
http://xxx.lanl.gov/abs/1502.0158
http://xxx.lanl.gov/abs/1309.0612


[43] Fermi-LAT Collaboration, Determination of the Point-Spread Function for the Fermi Large Area
Telescope from On-orbit Data and Limits on Pair Halos of Active Galactic Nuclei,
arXiv:1309.5416.

– 33 –

http://xxx.lanl.gov/abs/1309.5416


Magnetic monopole - domain wall collisions
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Interactions of different types of topological defects can play an important role in the aftermath
of a phase transition. We study interactions of fundamental magnetic monopoles and stable domain
walls in a Grand Unified theory in which SU(5)×Z2 symmetry is spontaneously broken to SU(3)×
SU(2) × U(1)/Z6. We find that there are only two distinct outcomes depending on the relative
orientation of the monopole and the wall in internal space. In one case, the monopole passes through
the wall, while in the other it unwinds on hitting the wall.

I. INTRODUCTION

Grand Unified Theories (GUTs) are based on large
symmetry groups, the smallest of which is an SU(5)
model with an additional, possibly approximate, Z2 sym-
metry. When such large symmetries are broken in a cos-
mological setting, several kinds of topological defects can
be produced. The ensuing cosmology will depend criti-
cally on the interactions of the different defects. In par-
ticular, the SU(5) × Z2 symmetry breaking leads to the
existence of magnetic monopoles and domain walls in the
aftermath of the phase transition. We expect the mag-
netic monopoles to interact with domain walls, poten-
tially resolving the magnetic monopole over-abundance
problem [1]. To investigate this idea further, we study the
interactions of SU(5) monopoles and Z2 domain walls in
this paper.

The interaction of monopoles and domain walls was
also studied in [2] with the domain wall structure given
by

Φ = tanh
( z
w

)
Φ0 (1)

where the order parameter Φ is in the adjoint represen-
tation of SU(5), Φ0 is its constant vacuum expectation
value (VEV), and w is the width of the domain wall. By
numerical evaluation it was found that monopoles hit-
ting this domain wall will unwind and spread on the wall.
Subsequently, however, it was found [3–6] that the model
actually has several domain wall solutions, including the
one in Eq. (1), and that the lightest (stable) wall has a
different structure (see Sec. II B). Hence the interaction
of the stable wall and the monopole needs to be revisited.

In Sec. II we provide details of the SU(5)× Z2 model,
the monopole solution, the wall solutions, and finally our
scheme for setting up a configuration with a monopole
and a domain wall together. This provides us with initial
conditions that we numerically evolve in Sec. III. The
complexity of the field equations and the problem re-
quires some special numerical techniques that we briefly
describe in Sec. III.

Our results are summarized in Sec. IV. Essentially we
find that there are two internal space polarizations for
the monopole with respect to the wall. One of the polar-
izations is able to pass through the wall with only some

kinematic changes. The monopole with the other polar-
ization is unable to pass through the domain wall and
unwinds on the wall, radiating away its gauge fields. The
disappearance of this monopole is further explained in
Sec. IV.

II. THE MODEL

The SU(5) model we consider is given by the La-
grangian:

L = −1

4
Xa
µνX

aµν +
1

2
Dµφ

aDµφa − V (Φ) (2)

where Φ = φaT a (a = 1, ..., 24), Xa
µν are the gauge field

strengths defined as

Xµν = ∂µXν − ∂νXµ − ig[Xµ, Xν ] , (3)

Xµ = Xa
µT

a are the gauge fields and g is the coupling
constant. T a are the generators of SU(5) normalized by
Tr(T aT b) = δab/2. The covariant derivative is given by

Dµφ
a = ∂µφ

a − ig[Xµ,Φ]a . (4)

The most general renormalizable SU(5) potential is

V (Φ) = −m2TrΦ2+γTrΦ3+h(TrΦ2)2+λTrΦ4−V0 , (5)

and we will assume that γ vanishes, giving the model an
additional Z2 symmetry. For λ ≥ 0 and h + 7λ/30 ≥ 0,
the potential has its global minimum at [7]

Φ0 =
η

2
√

15
diag(2, 2, 2,−3,−3), (6)

with η = m/
√
h+ 7λ/30. The VEV, Φ0, spontaneously

breaks the SU(5) symmetry to SU(3)×SU(2)×U(1)/Z6.
In what follows, the four diagonal generators of SU(5)

are chosen to be

λ3 =
1

2
diag(1,−1, 0, 0, 0),

λ8 =
1

2
√

3
diag(1, 1,−2, 0, 0),

τ3 =
1

2
diag(0, 0, 0, 1,−1),

Y =
1

2
√

15
diag(2, 2, 2,−3,−3).

(7)
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We use a = 1, 2, 3 to denote generators T a = τa =
diag(0, 0, 0, σa/2) where σa are the Pauli spin matrices.

A. The monopole

Let us consider a magnetic monopole whose winding
lies in the 4-5 block of Φ. This is possible [8] if we take
the VEV along one of the radial directions far away from
the monopole to be

Φ∞ =
η

2
√

15
diag(2,−3, 2, 2,−3)

= η

√
5

12
(λ3 + τ3) +

η

6
(Y −

√
5λ8). (8)

The monopole ansatz for the scalar field can be written
as [3]

ΦM (r) = P (r)

3∑
a=1

xaτa+M(r)

(√
3

2
λ3 −

1

2
λ8

)
+N(r)Y,

(9)
while the non-zero gauge fields can be written as

Xa
i = εaij

xj

gr2
(1−K(r)), (a = 1, 2, 3) (10)

and P (r),M(r), N(r), and K(r) are profile functions
that depend only on the spherical radial coordinate r =√
x2 + y2 + z2 and satisfy the boundary conditions:

lim
r→∞

rP (r) = η

√
5

12
, M(∞) = η

√
5

3
,

N(∞) =
η

6
, K(∞) = 0. (11)

The profile functions for the monopole alone were evalu-
ated numerically and are shown in Fig. 1.

The non-Abelian magnetic field can be defined as [9]

Bk = −1

2
εijkXij

with the associated energy density given by Tr(BkB
k).

Far away from the centre, the monopole field becomes
Bk → Qxk/(gr3), with Q = τ jxj/r.

The monopole charge Q includes a component along
the generator of the unbroken U(1) symmetry (Φ∞ of
Eq. (8)), as well as SU(2) and SU(3) magnetic charges.
The U(1) part of the magnetic field, which is a defining
feature of a topological SU(5) monopole, is given by

BkY = −1

2
εijkXa

ij φ̂
a (12)

where φ̂a ≡ φa/
√
φbφb. As discussed in [10], other def-

initions of the Abelian magnetic field are possible, and
these differ from our definition but only within the core
of the monopole. Since we only use our definition to plot
the long range Abelian magnetic field (see Fig. 3) the
definition in Eq. (12) is sufficient.

FIG. 1. The profile functions for the monopole alone, evalu-
ated numerically, for a model with η = 1, h/λ = −0.2 and
λ = 0.5.

B. The wall

Without loss of generality [4], the domain wall solution
can be taken to be diagonal at all z and written in terms
of the diagonal generators of SU(5) as

ΦDW (z) = a(z)λ3 + b(z)λ8 + c(z)τ3 + d(z)Y . (13)

In each of the two disconnected parts of the vacuum man-
ifold M there are a total of 10 different diagonal VEVs
corresponding to all possible permutations of 2’s and 3’s
in Eq. (6). Topology dictates that there must be a do-
main wall separating any pair of VEVs from the two dis-
connected parts of M. However, not every such pair of
VEVs corresponds to a stable domain wall solution. For
instance, as shown in [3], the wall across which Φ0 goes
to −Φ0 is unstable and will decay into a lower energy
stable wall. The stable domain walls are obtained when
both 3’s in Eq. (6) change into 2’s across the wall.

Let us choose the boundary condition at z = −∞ to
be

Φ− = Φ(z = −∞) =
η

2
√

15
diag(2,−3, 2, 2,−3)

= η

√
5

12
(λ3 + τ3) +

η

6
(Y −

√
5λ8) . (14)

For this choice of Φ−, there are three different choices of
Φ(z = +∞), proportional to

diag(3,−2,−2, 3,−2)

diag(−2,−2, 3, 3,−2)

diag(3,−2, 3,−2,−2) , (15)

that lead to stable domain walls. For the purpose of un-
derstanding the monopole-wall interactions, it is suffi-
cient to consider only two of the above, corresponding to
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FIG. 2. The wall profile functions for Cases 1 and 2 for a
model with η = 1, h/λ = −0.2 and λ = 0.5. Note that the
profile function c(z) goes to zero in Case 2, which gives an

unbroken SU(2) ⊂ SU(3) symmetry in the 4-5 block of Φ
(2)
+ .

The profile function a(z) is the same for Cases 1 and 2.

the two distinct entries in the 4-5 block of Φ. We take
the first to be the same as in [3], subsequently referred
to as Case 1:

Φ
(1)
+ =

η

2
√

15
diag(3,−2,−2, 3,−2)

= η

√
5

12
(λ3 + τ3)− η

6
(Y −

√
5λ8) . (16)

The value of the field in the core of this wall is pro-
portional to diag(1,−1, 0, 1,−1). The other case, subse-
quently referred to as Case 2, has

Φ
(2)
+ =

η

2
√

15
diag(3,−2, 3,−2,−2)

= η

√
15

6
λ3 +

η

6
(4Y −

√
5λ8) , (17)

with the field in the wall being proportional to
diag(1,−1, 1, 0,−1). A novel feature of these walls is that
the unbroken symmetry groups on either side of the wall
are isomorphic to each other but they are realized along
different directions of the initial SU(5) symmetry group.
Hence the wall is the location of a clash of symmetries
[12].

Note that the symmetry within the wall is [SU(2) ×
U(1)]2. The SU(2)’s correspond to rotations in the 1-3
and 2-5 blocks and the U(1)’s to rotations along σ3 in
the 1-2 and 3-5 blocks. Therefore the symmetry group
within the wall is 8-dimensional, and is smaller than the
12-dimensional symmetry outside the wall1. Also note

1 For simplest domain walls, such as kinks in λΦ4, the full symme-

that the symmetry in the 4-5 block is different for the Φ
(1)
+

and Φ
(2)
+ vacua. This is going to be of direct relevance for

the fate of the monopoles.
The profile functions a(z), b(z), c(z) and d(z) for both

cases are shown in Fig. 2. In each case, they are linear
combinations of two functions F+(z) and F−(z) defined
by the alternative way of writing the domain wall solution
[3]

ΦDW =
Φ+(z)− Φ−(z)

2
F−(z) +

Φ+(z) + Φ−(z)

2
F+(z) ,

(18)
where F+(±∞) = 1, F−(±∞) = ±1. For a general choice
of parameters, functions F±(z) must be found numeri-
cally. For h/λ = −3/20, they are known in closed form

[3]: F+(z) = 1, F−(z) = tanh(mz/
√

2). Correspondingly,
for this value of h/λ, the four functions a(z), b(z), c(z),
and d(z) are either constant or describe a transition from
one constant value to another. For h/λ 6= −3/20 the
“constant” functions develop a small bump around z = 0
as can be seen in Fig. 2.

C. Monopole and Wall

As our initial configuration, we take the monopole to
be on the z = −∞ side, far away from the wall. In this
case, the ansatz for the initial combined field configura-
tion of the wall and the monopole can be written as [3]

ΦM+DW = P (r)
c(z′)

c(−∞)

3∑
a=1

xaτa +N(r)
d(z′)

d(−∞)
Y

+ M(r)

(√
3

2

a(z′)

a(−∞)
λ3 −

1

2

b(z′)

b(−∞)
λ8

)
(19)

where z′ = γ(z − z0), γ = 1/
√

1− v2 is the boost fac-
tor, v is the wall velocity and z0 is the initial posi-
tion of the wall. The monopole is at x = 0 = y = z.
It is easy to check that, far away from the monopole,
the profile functions take on the values in Eq. (11) and
ΦM+DW → ΦDW . Close to the monopole, z′ → −∞,
since the monopole is initially very far from the wall,
and ΦM+DW → ΦM as desired. We work in the tempo-
ral gauge, Xa

0 = 0, and with the initial ansatz for the
gauge fields given by Eq. (10) for both cases.

It is instructive to examine the difference in the nature
of the magnetic field in Cases 1 and 2. As mentioned
in Sec. II A, the charge of our monopole along the z-
direction, Q = (1/2)diag(0, 0, 0, 1,−1), is a combination
of the U(1), the SU(2), and the SU(3) magnetic charges.
Since the VEV of Φ in our model is along the generator

try of the Lagrangian is restored inside the core. However, the
symmetry inside stable domain walls in SU(N) × Z2 is always
lower than that of the vacuum [4].
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of (hypercharge) U(1), the magnetic field, as defined in
Eq. (12), corresponds solely to the U(1) component of the
charge. In Case 1, Tr(QΦ) is the same on both sides of
the wall and the U(1) magnetic field is unaffected by the

presence of the DW. In Case 2, however, Tr(QΦ
(2)
+ ) =

0 and there is no magnetic field corresponding to the
unbroken U(1) on the z = +∞ side of the wall. Instead,
the gauge field on that side is associated with an SU(2)
subgroup of the unbroken SU(3). We note that, while the
magnetic energy density associated with the gauge field
is unaffected by the presence of the wall, it is specifically
the U(1) magnetic field that is a defining feature of a
topologically stable monopole.

FIG. 3. The magnetic field BY (defined in Eq. (12)) multiplied
by r2 for Cases 1 and 2, where at each point r2Bz

Y and r2Bx
Y

are plotted as a vector. In Case 1, there is a magnetic field
associated with the unbroken U(1) symmetry on both sides of
the wall. In Case 2, the magnetic field becomes associated with
the SU(2) ⊂ SU(3) on the z = +∞ side on the wall, while its
U(1) component vanishes. Note that it is the U(1) magnetic
field that characterizes a topologically stable monopole.

The magnetic field, as defined in Eq. (12), is plotted for
both cases in Fig. 3, where the vectors have components
r2BzY and r2BxY . This plot shows that, in Case 1, there
is a U(1) magnetic field on both sides of the wall falling
off as r2 as expected, while in Case 2 the U(1) magnetic
field is zero on the z = +∞ side of the wall.

III. EVOLUTION

Let us consider an initial monopole-wall configuration
given by Eq. (19) in which VEV at z = −∞ is given by
Φ− in Eq. (14). As mentioned in the previous Section,
there are 2 types of boundary conditions at z = +∞,
given by Eqs. (16) and (17), dubbed Case 1 and Case
2, leading to 2 different outcomes of the monopole-wall
collision.

Before considering the two cases in detail, let us note
that initially, when the monopole and the wall are very
far away from each other, the field configuration has just
three non-zero gauge fields and six scalar fields corre-
sponding to the generators that appear in Eq. (19). Be-

cause these six generators form a closed algebra, it follows
from the equations of motion that the subsequent evolu-
tion does not involve fields corresponding to the other 18
generators. Namely, the scalar and the gauge field equa-
tions are

DµD
µφa = −∂V/∂φa (20)

DµX
µνa = gfabc(D

νΦ)bφc (21)

where fabc are the SU(5) structure constants defined by
[T a, T b] = ifabcT

c. Let C be the set of indices of the 6
generators that appear in the initial field configuration
given by Eq. (19). Since the 6 generators form a closed
algebra, fabc = 0 for a /∈ C and b, c ∈ C. Now let φa and
Xa
µ be fields corresponding to any a /∈ C. If φa and Xa

µ are
zero at the initial time, they will remain zero if fabc = 0
for b, c ∈ C and ∂V/∂φa 6= 0. The former condition is
satisfied as mentioned above, while the latter holds since
Tr[T aT b] ∝ δab and Tr[T aT bT cT d] = 0 for b, c, d ∈ C,
as we have checked by explicit evaluation. Thus, for our
purposes, it is sufficient2 to consider only a ∈ C.

Our numerical implementation is based on techniques
developed in [2]. First, the DW and the monopole pro-
file functions are found via numerical relaxation. The
monopole is initially located at the center of the lattice.
We give the DW a velocity towards the monopole and
boosted profiles are inserted into the initial configuration
given by Eq. (19). With the initial time derivatives sim-
ply determined from the Lorentz boost factor, this initial
configuration is evolved forward in time using a staggered
leapfrog code. The boundary conditions require special
care since the wall extends all the way across the lattice.
We have implemented boundary conditions in which the
field is extrapolated across the boundary. We have nu-
merically tested that this boundary condition leads to
a smoothly evolving domain wall, without any spurious
incoming radiation. Even though our problem has axial
symmetry, we work in Cartesian coordinates as this offers
superior stability. However, as discussed in [13], we take
advantage of the axial symmetry of our configuration to
restrict the lattice to just three lattice spacings along the
y direction. We then use a 256× 256 lattice grid for the
x and z coordinates. Additionally, the axial symmetry
allows us to solve only for positive x and use reflection to
find the fields at negative x. The units of length are set
by η = 1 and we take each lattice spacing to correspond
to half of a length unit. In these units, the range of x and
z axis for a 256×256 grid is [−64, 64]. Note that in some
figures we do not plot the entire lattice. The radius of the
monopole core is about 10 length units and is about the
same as a half of the domain wall width. At the initial
time, the wall is 30 length units away from the center of
the monopole.

2 Although the field components for a 6∈ C continue to vanish dur-
ing evolution if they vanish initially, we cannot exclude the possi-
bility that the fields in these other directions may grow unstably
if they did not vanish initially.
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FIG. 4. The potential and magnetic energy densities in the xz plane for the colliding monopole and wall in Case 1. We see
that the monopole passes through the wall and the energy densities remain localized. Additionally, we see the magnetic energy
density is unchanged before and after the collision.

FIG. 5. The scalar field φa in the xz plane for the colliding
monopole and wall in Case 1, where at each point φ3 and
φ1 are plotted as a vector. In this case the scalar field ar-
rangement in direction and magnitude remains virtually un-
changed.

A. Case 1: the monopole passes through

It is not difficult to predict that the monopole in Case
1 will pass through the wall. The monopole winding is
due to the fields in the SU(2) subgroup corresponding
to generators τa, a = 1, .., 3. In Eq. (19), these fields
are multiplied by the function c(z) which has the same
value at z = ±∞ and, as known from [3], is approxi-
mately constant across the domain wall. Only b(z) and
d(z) change signs across the wall, but these are irrelevant
for the winding of the monopole. Thus, the presence of
the wall is of no qualitative consequence to the wind-
ing of the monopole or its profile functions. The only
effect is the small change in c(z) around z = 0 (note

that, as mentioned earlier, c(z) is strictly a constant when
h/λ = −3/20).

We numerically collide the monopole and the wall by
giving the wall an initial velocity of 0.8 (in speed of light
units) and choosing parameters η = 1, h = −λ/5, and
λ = 0.5 for V (Φ).

Fig. 4 shows the potential and magnetic energy densi-
ties as the wall hits the monopole in Case 1. In addition,
we plot the scalar field configuration in Fig. 5, where each
point is a vector with components φ3 and φ1. These fig-
ures show that the magnetic energy density and the scalar
field configuration remain unchanged after the collision,
and that the potential energy densities corresponding to
the monopole and the domain wall remain localized. This
does not imply a complete absence of interaction between
the wall and the monopole – some interaction is expected
due the non-linearity of the scalar field potential.

To see if the monopole gains momentum due to the in-
teraction, we have evaluated the centre of energy (COE)
defined as

zCOE(t) =

∫
V
d3x z ρ(t,x)∫
V
d3x ρ(t,x)

, (22)

where V is the volume of a finite cylindrical region cen-
tred at the origin and extending 1/8th of the lattice size
in the x- and z-directions, while ρ is the energy density.
For h/λ = 0, we give the wall a velocity of v = 0.9
towards the monopole and compare the initial zCEO to
the one after the wall passes away. We see a very slow
drift of the COE in the direction of the wall velocity.
We performed the same procedure using different model
parameters and wall velocities and the outcome was qual-
itatively the same. In all cases, while the direction of the
drift is clear, the magnitude is extremely small and too
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close to the numerical uncertainties to allow a definitive
quantitative analysis.

B. Case 2: the monopole unwinds

As in Case 1, it is possible to guess the outcome of the
monopole-wall collision without doing numerical simula-

tions. For this, we note that Φ
(2)
+ has an SU(2) symmetry

in the 4-5 block, which means that there is no topology
that can support the winding. Thus, the monopole cannot
exist in that corner of the matrix. An equivalent way to
see this is to note that the function c(z), which multiplies
the three relevant monopole scalar fields, goes to zero at
z = +∞ (see Fig. 2), effectively erasing the monopole.

Additional insight can be gained by noting that the
long range magnetic field of the monopole transforms into
an SU(3) magnetic field on the far side of the wall. More
explicitly, the U(1) magnetic field is given by Eq. (12)
with Xa

ij determined using the solution in Eq. (10). Since
Xij only has components in the τa directions, it lies in the
4-5 block. However, the 4-5 block is entirely within the
unbroken SU(3) on the right-hand side of the wall. Thus
the long range magnetic field of the monopole is purely
SU(3) on the right-hand side of the wall and, from the
vantage point of someone there, there is no U(1) mag-
netic field emerging from the left-hand side of the wall.
However, a U(1) magnetic field is an essential feature of
a topological monopole. Thus, from the right-hand side
of the wall, there is no magnetic monopole in the system,
only some source of SU(3) magnetic flux.

Doing the numerical simulation with the parameters
chosen as before, we plot the potential and magnetic en-
ergy densities as the wall hits the monopole in Fig. 6. This
figure shows that the potential energy for the monopole
disappears as the wall and monopole collide, and the
magnetic energy that was stored in the monopole ra-
diates away in a hemispherical wave. The collision was
simulated with initial wall velocities ranging from 0.1 to
0.99 for h/λ = −1/5, and initial wall velocities of 0.6, 0.8
and 0.99 for h/λ = −3/20 and 1/5. In all of these cases,
the result of the collision was unchanged.

In Fig. 7, we show the a = 1, 2, 3 components of the
scalar field using two different representations. In the first
row, the fields φ3 and φ1 are plotted as a vector. The plot
shows that the components of the field that are responsi-
ble for the winding vanish on the z = +∞ side of the wall.
In the second row of Fig. 7, the color represents the mag-
nitude |φ| ≡

√
φaφa, a = 1, 2, 3, while vectors are drawn

of fixed length and direction given by tan−1(φ3/φ1). Even
though |φ| becomes very small, it is not strictly zero at a
finite distance from the wall, and so one can still define
the direction of the arrow in this way. One can see that
initially the field has a hedgehog configuration across the
wall. However, as the wall sweeps along, the fields on the
z = +∞ side of the wall rotate around in such a way as
to unwind the monopole. In the final step, all fields that
are non–zero are pointing in one direction, and therefore

the monopole winding is gone.

IV. CONCLUSIONS

In a Grand Unified model there can be several types of
defects, including magnetic monopoles and domain walls.
In the aftermath of the cosmological phase transition in
which the Grand Unified symmetry is spontaneously bro-
ken to the standard model symmetry, the monopoles and
walls will interact3. We have studied these interactions
explicitly in an SU(5)×Z2 GUT, taking into account that
the model has several different types of domain walls,
and that only the lowest energy wall is expected to be
cosmologically relevant. Even this stable wall has several
different orientations in internal space, two of which are
distinct for the purposes of monopole-wall interaction.

The first wall (Case 1 above) is found to be trans-
parent to the monopole. This is simply because the do-
main wall mainly resides in a certain block of field space,
while the winding of the monopole resides in a differ-
ent non-overlapping block. The interactions between the
monopole and the wall are very weak, and only affect the
dynamics of the monopole as it passes through the wall.
Depending on the parameters, the monopole might be
attracted or repelled by the wall leading to a time delay
or advance as the monopole goes through.

The second wall (Case 2 above) is opaque to the
monopole. When the monopole hits the wall its energy is
transformed into radiation on the other side of the wall,
as seen in Fig. 6. A useful way to picture this system
is to consider a magnetic monopole that is located in-
side a spherical domain wall. Now there is a topological
magnetic monopole inside the wall, but only an SU(3)
magnetic flux from the outside. In particular, there is no
topological magnetic monopole as seen from the outside.
Therefore the spherical wall itself must carry the topo-
logical charge of an antimonopole4. If the spherical wall
shrinks, either it can annihilate the magnetic monopole
within it and radiate away the energy, or the monopole
can escape the wall, in which case the wall would then
collapse into an antimonopole so that the total topolog-
ical charge of the system continues to vanish. Our ex-
plicit numerical evolution shows that annihilation occurs
for the parameter ranges we have considered. We note
that the unwinding of the monopole in the Case 2 may
be related to the mechanism of formation of non-Abelian
clouds (massless monopoles) [15].

Our results have bearing on cosmology as they explic-
itly show the possible destruction of magnetic monopoles.
In the case where the Z2 symmetry is approximate, the
walls will eventually decay away, and it is possible that
these interactions could lead to a universe that is free of

3 Scattering of fermions and GUT domain walls was studied in [14]
4 The correspondence between spherical domain walls and global

monopoles in SU(N) has previously been noted in [5].
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FIG. 6. The potential and magnetic energy densities in the xz plane for the colliding monopole and wall in Case 2. We can see
that as the domain wall and monopole collide, the potential energy contained by the monopole disappears and the monopole
begins to radiate away its magnetic energy in a hemispherical wave. Note that the middle and final plots for the magnetic
energy density have a much smaller scale as the ripples are not visible at the original scale.

magnetic monopoles. Estimates in [1] indicate that this
possibility is worth investigating in more detail. With
several types of domain walls and monopoles simultane-
ously forming in a phase transition [16–18], and with the
complex nature of both the inter-wall [19] and monopole-
wall interaction, the fate of the monopoles will remain
uncertain until a comprehensive simulation of the GUT
phase transition is performed. We leave this for a future
study.
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FIG. 7. The scalar field φa in the xz plane for the colliding monopole and wall in Case 2. At each point in the first row, φ3

and φ1 are plotted as a vector. In the second row, the length of the arrow is fixed, while the direction of the arrow is given by
tan−1(φ3/φ1) and the color represents the magnitude of the field |φ| =

√
φaφa for a = 1, 2, 3. The first row shows the monopole

unwinding as the wall sweeps past it, and the second shows how the fields arrange themselves to unwind the monopole.
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1. Introduction

Symmetry-breaking phase transitions at which topological defects form are ubiquitous in

low-temperature condensed-matter systems. In fundamental particle physics too, there

are good reasons for thinking that similar phenomena occur at vastly higher energy

scales. If so, the defects formed may have significant effects in the early universe.

Electroweak unification is now well-established. It is natural to suppose that further

unification may occur at even higher energies, in a Grand Unified Theory (GUT).

Some evidence in support of this idea comes from the running of the three independent

coupling constants in the SU(3)×SU(2)×U(1) standard model. In the basic standard

model, they do not quite seem to meet. But in its supersymmetric extension, the

parameters can be chosen so that they do all come together at an energy of around 1015

GeV [1, 2], suggesting the possibility of a high-temperature phase with a larger symmetry

represented by a simple group such as SO(10). In such a model, the universe would be

expected to go through one or more phase transitions with decreasing symmetry as it

cooled after the Big Bang. Even without supersymmetry, models with multiple phase

transitions may be viable [3].

Depending on the pattern of symmetry breaking, such transitions could create

topological defects of various types. These include point defects (monopoles), linear

defects (cosmic strings, analogous to vortices in condensed matter) and domain walls.

It has long been known that because the standard model group contains a U(1) factor,

monopoles are generic in GUT models that start with a simple gauge group. Avoiding

the resulting over-abundance of monopoles was one of the prime original motivations

for the introduction of the theory of inflation; if the monopoles are generated before

the inflationary era, they will be diluted to insignificance by the rapid expansion.

Nevertheless, inflation is compatible with the existence of defects, which can be formed

during the reheating phase that terminates that era [4]. Moreover, essentially all realistic

GUTs predict the existence of cosmic strings, though not always stable ones [5].

Cosmological scenarios derived from fundamental string theory or M-theory, such

as braneworld models, also frequently predict the appearance of defects of similar types

[6, 7, 4, 8]. These strings can have somewhat different properties. In particular, the

probability of exchanging partners when strings intersect, can be much less than one [9],

in contrast to the situation for cosmic strings in gauge theories [10]. Moreover, there can

be strings of different tension, fundamental strings (F-strings) as well as Dirichlet D1

branes (D-strings) and (p, q)-strings, composites of p F-strings and q D-strings [11, 12].

There may be junctions where three strings meet. The evolution of a network of such

strings is a more complicated problem, but the final result may not be so very different

[13]. Analytic and numerical studies have shown that a network of ordinary cosmic

strings generally evolves, at least on large scales, to a scaling regime in which the

strings form a roughly constant fraction of the energy density of the Universe. Though

the analysis is less clear cut, this appears also to be true for a multi-tension network. In

that case the lightest strings come to dominate [14, 15]. Here we shall not discuss these



Monopoles on strings 3

added complications in any detail. Another important topic that lies outside the scope

of this review is the relevance of monopole and string networks to QCD confinement.

See for example [16].

There has been extensive discussion in the literature of the characteristics and

effects of these various defects, and of ways in which they might be detected. But in

addition to the simple defects there may also be composite defects such as domain

walls bounded by strings and strings connected to monopoles, and there has been

less discussion of the effects of these more exotic structures. In this paper, we shall

concentrate on the composites of strings and monopoles. As we aim to make clear, even

within this category there are many different types of structures.

In Sec. 2, we briefly review the topological requirements for the different types of

defects to form at a phase transition, where the symmetry is broken from a group G

to a subgroup H. These are governed by the topology, in particular the homotopy

groups, of the manifold M of degenerate vacuum states, which may be identified with

the quotient space G/H. Then in Sec. 3, we discuss the case where the system undergoes

two successive phase transitions, with the symmetry first broken from G to H and then

to a smaller subgroup K. Such scenarios often lead to the formation of composite

defects. In the remainder of the section, we discuss a number of different models that

illustrate the wide range of possible defect structures. The interactions between the

various defects that can form can be quite complex [17, 18]. Here we concentrate only

on a few examples.

Sec. 4 is devoted to a discussion of the strings and monopoles that appear in

the standard electroweak model. Electroweak monopoles and strings are not strictly

speaking topological defects. Electroweak monopoles are confined while electroweak

strings are known to be unstable, but configurations of these electroweak defects still

can play an important role in cosmology, especially perhaps in connection with baryon

number violation and cosmological magnetic field generation.

Possible means of observing composite defects of various kinds are discussed

in Sec. 5, where we also discuss the observational constraints arising from existing

observations. The conclusions are briefly summarized in Sec. 6.

2. Simple defects

2.1. Topological conditions for defects

We first recall the conditions for the appearance of topological defects of various types

at a symmetry-breaking phase transition (see for example [19]). When the system is

cooled through the transition temperature, there is some order parameter field multiplet

φ that acquires a vacuum expectation value, say 〈0|φ|0〉 = φ0, lying somewhere on a

manifold M of minima of the potential V(φ). If the symmetry group is G, then any

operation g ∈ G will transform this vacuum state into another degenerate vacuum state,

with expectation value gφ0. If H = {h ∈ G|hφ0 = φ0} ⊂ G is the subgroup leaving φ0
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invariant, then the vacuum manifold may be identified with the quotient M = G/H,

the set of left cosets {gH} of H in G. The types of defects that may be formed are

governed by the topology of M.

Cosmic strings can form ifM is not simply connected, i.e. its fundamental group or

first homotopy group π1(M) 6= 1, where 1 stands for the group comprising the identity

alone. That means there are closed loops inM that cannot be continuously shrunk to a

point. The value of φ at points on a large loop in space surrounding a cosmic string will

follow such a path. In the simplest case, where φ is a complex scalar and G comprises

the phase rotations φ → φeiα, then M is a circle, |φ| = η, i.e. φ = ηeiα with arbitrary

phase α. In this case, π1(M) = Z. Thus the strings are labelled by an integer winding

number n; on a loop around a string of winding number n, the phase α changes by 2nπ

(see section 2.2).

There is a simple general criterion for the existence of strings in a model where

the symmetry group G is connected and simply connected, i.e. π0(G) = π1(G) = 1.

Then a standard theorem tells us that π1(G/H) = π0(H). Here the zeroth homotopy

group counts the number of disconnected pieces of H; π0(H) = H/H0, where H0 is the

connected component of H containing the identity. So strings exist if and only if H

is disconnected. The theorem may still be applied even if G is not simply connected,

merely by replacing it by its simply connected universal covering group. For example,

we may replace U(1) by the additive group of real numbers G = R, in which case H = Z,

the set of transformations with α = 2nπ.

Similarly, monopoles exist if π2(M) 6= 1, that is, if there are non-shrinkable two-

dimensional surfaces in M. Surrounding a monopole, the value of φ will lie on such a

surface. The simplest example here is when G = SU(2), with φ in the three-dimensional

adjoint representation. Then H = U(1), and M is a 2-sphere, |φ| = η, so π2(M) = Z.

The monopoles are again labelled by an integer (see section 2.3). There is also a similar

theorem, applicable when π0(G) = π1(G) = 1, namely π2(G/H) = π1(H). So monopoles

exist when H is not simply connected.

For completeness, we mention two other topological objects. Domain walls occur

when M itself is disconnected, π0(M) 6= 1. For example, we may take a real scalar

field φ with a double-well potential and Z2 symmetry under φ → −φ. The domain

wall separates regions where the vacuum expectation value lies in one well or the

other. Finally textures occur if π3(M) 6= 1. Here there is no actual defect, in the

sense of a compact region of concentrated energy. However, a non-trivial texture

cannot be smoothly eliminated and converted to the vacuum state; it represents excess

energy, albeit spread out rather than concentrated. Unwinding of the texture occurs

in a restricted region of spacetime. Textures in the universe could have real physical

consequences [20].

In the remainder of this section, we discuss specific models that illustrate a variety

of different types of strings and monopoles.
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2.2. Simple string models

a. The simplest model that leads to cosmic strings is the U(1)-symmetric Abelian Higgs

model, comprising a complex scalar field φ interacting with a gauge field Aµ, described

by the Lagrangian

L = Dµφ
∗Dµφ− 1

4
FµνF

µν − V , (1)

where

Dµφ = ∂µφ+ ieAµφ, Fµν = ∂µAν − ∂νAµ, (2)

and

V = 1
4
λ(φ∗φ− η2)2. (3)

Here λ and η are real positive constants and we set c = ~ = 1. The potential V
has a maximum at φ = 0, so the U(1) symmetry is broken in the vacuum. There

is a degenerate family of vacua labelled by the phase angle: 〈0|φ|0〉 = ηeiα. This is

essentially scalar electrodynamics but with a symmetry-breaking potential. The masses

of the scalar and vector particles in the theory are ms =
√
λη, mv =

√
2|e|η.

A static string with winding number n along the z axis is described in cylindrical

polars (ρ, ϕ, z) by a field configuration

φ = ηf(ρ)eniϕ, A0 = 0, Ak = − n

eρ
h(ρ)∂kϕ, (4)

where the dimensionless functions f and h satisfy the boundary conditions

f(0) = h(0) = 0, f(∞) = h(∞) = 1. (5)

The magnetic field along the string carries a total magnetic flux 2nπ/e. This is the

Nielsen–Olesen string solution [21].

The solution with n = 1 is always stable, but the stability of strings with n > 1

depends on the value of the ratio β = m2
s/m

2
v = λ/2e2. For Type-II strings, with β > 1,

close parallel strings repel, and any string with n > 1 is unstable to break-up into n = 1

strings. Type-I strings, with β < 1, are stable for all values of n, and can form three-

string junctions where for example strings with winding numbers m and n meet to form

an (m + n) string. For the critical case of β = 1, there is no force between parallel

strings.

For these strings, the tension is equal to the energy per unit length, µ, and is given

by µ = 2πg(β)η2, where g is a slowly varying, monotonically increasing function with

the value g(1) = 1 for the critical coupling.

b. As a second example, we consider the symmetry group G = SU(2) with two

scalar fields in the adjoint representation, φ = φaσa and ψ = ψaσa, where the σa are

Pauli matrices. If we take

V = 1
4
λ(~φ2 − η2)2 + 1

4
λ(~ψ2 − η2)2 + 1

4
µ(~φ · ~ψ)2, (6)

where ~φ2 = φaφa = 1
2

tr(φ2), then it is clear that in the vacuum we will have |~φ| = |~ψ| = η

and ~φ · ~ψ = 0. This breaks the symmetry down to the centre of SU(2), namely
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H = {1,−1} ∼= Z2. Since H is discrete, there is no remaining massless gauge field.

But there are strings, because π1(M) = π0(H) = Z2. For these “Z2 strings”, stable

strings with higher winding numbers may exist but are not stable for topological reasons.

We shall return to this point below.

In fact, it is easy to construct similar models of “Zn strings”, by taking the

symmetry group to be SU(n) with n fields in the adjoint representation, and choosing a

potential that constrains them all to be non-zero and mutually orthogonal (see Section

3.2d).

c. Interesting possibilities occur when some of the symmetries are local and others

global [22]. For example, suppose that G = U(2) ∼= SU(2) × U(1)/Z2, with a scalar

field in the fundamental (spinor) representation. (The Z2 factor is required because

the centre of SU(2), comprising the two elements {1,−1} is also contained in U(1).)

Moreover, suppose that only the Abelian factor U(1) is gauged, so there is just one

gauge boson, while SU(2) is a global symmetry group.

If we looked only at the local symmetry, we might expect the appearance of strings

because of the breaking of U(1). However the vacuum manifold ψ†ψ = η2 is M = S3,

and π1(M) = 1, so there are no topologically stable strings. It is easy to construct a

string solution by embedding the Nielsen–Olesen string solution (4); we take

φ = ηf(ρ)eniϕ

(
0

1

)
, A0 = 0, Ak = − n

eρ
h(ρ)∂kϕ. (7)

Stability of this semi-local solution is not guaranteed by any topological argument.

Using the other component of φ, it can be smoothly deformed into a configuration lying

entirely in M, so that the potential energy vanishes, but at the cost of increasing the

gradient energy. Despite the absence of a topological guarantee of stability, detailed

analysis shows that it is indeed dynamically stable in the Type-I regime β < 1, though

not when β > 1 [23, 24].

2.3. ’t Hooft–Polyakov monopoles

In this model, G = SU(2), and φ belongs to the three-dimensional adjoint

representation. We can write φ = φaσa, Aµ = Aaµσ
a. Here we take

Dµφ = ∂µφ+ 1
2
ie[Aµ, φ], Fµν = ∂µAν − ∂νAµ + 1

2
ie[Aµ, Aν ], (8)

or equivalently

Dµφ
a = ∂µφ

a − eεabcAbµφc, F a
µν = ∂µA

a
ν − ∂νAaµ − eεabcAbµAcν . (9)

With V = 1
4
(~φ2 − η2)2, we find that the vacuum manifold M is a two-sphere, ~φ2 = η2,

and H = U(1). In this case there is a scalar particle of mass ms =
√
λη and three vector

particles, one massless (identified with the photon) and two with masses mv =
√

2|e|η.

This is essentially the Weinberg-Salam model with vanishing weak mixing angle, θw = 0.
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Here a static monopole at the origin is described by the solution [25, 26]

φa = ηf(r)
xa

r
, Aa0 = 0, Aak = −h(r)

εakjxj

er2
, (10)

where r =
√
xkxk and the functions f and h obey the boundary conditions

f(0) = h(0) = 0, f(∞) = h(∞) = 1. (11)

At large values of r, the gauge field is found to be

F a
0k = 0, F a

ij =
xa

r

εijkx
k

er3
. (12)

This field is in the direction of the unbroken symmetry generator, corresponding to the

electromagnetic field. It represents a radial magnetic field

Bk ≡ −1

2
εkijφ̂aF a

ij = − x
k

er3
. (13)

Hence the total outward magnetic flux, the magnetic charge of the monopole, is

q = −4π

e
. (14)

In any model, for the field Aak to be single-valued, the magnetic charge for any

monopole must always satisfy the condition

eq = 2nπ (15)

for some integer n. Note that for this particular monopole solution, the charge is twice

the minimal value.

It can be shown that the mass of the monopole obeys the Bogomol’nyi bound [27],

mmon ≥
4πη

e
, (16)

which is saturated in the Prasad-Sommerfeld limit of small scalar coupling, λ/e2 → 0

[28].

3. Composite defects

3.1. Defects formed at multiple phase transitions

There are many field-theory models that predict more than one phase transition in the

early universe. In such cases, composite defects may form [29].

Suppose we start with a theory with symmetry group G, and that it goes through

a phase transition where a field φ acquires a non-zero expectation value, breaking the

symmetry to a subgroup H ⊂ G, and then subsequently a second phase transition,

where another field ψ gets a non-zero, but generally smaller, vacuum expectation value,
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breaking the symmetry further to K ⊂ H. After the first breaking, we have a vacuum

manifoldM = G/H. If this is topologically non-trivial, defects will form. In the second

transition another set of defects may form if the manifold H/K has non-trivial homotopy

groups. However, the existence of stable defects in the final phase is actually controlled

by the topology of M′ = G/K.

The simplest example here is a U(1) gauge model with two scalar fields, φ of charge

2e, and ψ of charge e. We assume that the potential contains an interaction term of the

form −m(φ∗ψ2 + ψ∗2φ). The absolute minimum of the potential occurs when φ and ψ

have fixed magnitudes, say |φ| = η, |ψ| = ζ, and the phase of ψ2 is the same as that of φ.

After the first stage of symmetry breaking, when 〈φ〉 becomes non-zero, the symmetry

is reduced from U(1) to H = Z2, comprising the transformation ψ → −ψ. HereM is a

circle S1, and π1(M) = Z. Therefore strings are formed, labelled by an integer winding

number n, with the phase of φ changing by 2nπ around the string.

Now when the second transition occurs, the remaining Z2 symmetry is broken,

because ψ has to choose between the two degenerate vacuum values. Breaking this

discrete symmetry would be expected to create domain walls, separate regions where

opposite choices are made. But considering the overall symmetry breaking, from U(1)

to 1, no discrete symmetry breaking is involved, and there are no truly stable domain

walls. In fact,M′ is also a circle, but each point ofM corresponds to two diametrically

opposite points of M′.

Consider a string along the z axis, where outside the core, φ = ηeinϕ. To minimize

the potential we must then have ψ = ±ζeinϕ/2. But note that for n = 1 or any odd

number, that would not lead to a continuous solution. The strings with even winding

number survive, but around one with odd winding number there must be a point where

ψ changes sign over a short distance. In other words, the string becomes attached as

the boundary of a domain wall.

Unlike fully stable domain walls, these are potentially unstable to the formation of

holes surrounded by new loops of string, though such a decay has to overcome an energy

barrier. The hole has to attain a minimum size before its creation becomes energetically

favorable.

3.2. Monopoles joined by strings

We now discuss several examples where the first stage of the symmetry breaking leads to

the formation of ’t Hooft–Polyakov monopoles, followed by a second stage where strings

form.

a. One simple example is provided by the SU(2) model above with two adjoint

fields φ and ψ, but where the constants λ and η in the first two terms of (6) are different,

say λ, λ′ and η, η′, with
√
λ′η′ �

√
λη. Then in the first stage of symmetry breaking,

when φ becomes non-zero, the symmetry will break to H = U(1), while after the second

stage it will break further to K = Z2. At the first stage, monopoles will form, because

π2(G/H) = Z. In the second breaking, since π1(H/K) = Z, we expect strings, classified
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as usual by an integer winding number. Overall, however, since π1(G/K) = Z2, the

only topologically stable strings are Z2 strings.

Moreover, there are no truly stable monopoles. It is easy to see what happens.

Around an n = 1 monopole the field ~φ may be chosen to point radially outwards. When
~ψ becomes nonzero it needs to be orthogonal to ~φ, so around a sphere it should lie in

a tangential direction. But it is not possible to choose such a direction everywhere.

There have to be points where it vanishes. For example, we could take it everywhere in

the azimuthal ϕ direction, but to maintain continuity it must then vanish at the north

and south poles. In fact, there have to be two strings attached to the monopole. The

monopoles are like beads on the string. The configuration is often called a necklace.

Similar structures can appear very naturally in string-theory models [30].

It is useful to consider the fields around a string. If the first field ~φ is taken to be

along the string, then ~ψ must wind around it, either clockwise or anticlockwise. Thus

the string has a direction; a string is not identical to an anti-string, in spite of the fact

that they are topologically equivalent. A string can be converted to an antistring, but

it takes energy to do so. In fact, what it takes is the creation of a pair of monopoles.

Similarly, strings with higher winding numbers (in the Type-I case β < 1) may

exist, but are not truly stable; an n = 2 string can terminate on a monopole.

b. Now let us consider another model, this time with symmetry group G = U(2),

as in the example of the semi-local string, but here with all symmetries gauged. A scalar

field φ in the adjoint representation breaks the symmetry, here to H = U(1) × U(1).

The manifold of degenerate vacua is M = S2, and monopoles can form. Now suppose

there is another scalar field ψ in the fundamental (spinor) representation, and that there

are extra terms in the potential:

V = 1
4
λ(φaφa − η2)2 + 1

2
λ′(ψ†ψ − η′2)2 + gψ†σaψφa, (17)

where again
√
λ′η′ �

√
λη. As the system cools further, it will go through a second

transition at which 〈ψ〉 becomes non-zero. If, for example, 〈φa〉 = ηδa3 , then clearly, to

minimize the potential, 〈ψ〉 should be proportional to the eigenvector
(

0
1

)
of σ3. This

breaks the symmetry down to K = U(1), generated by 1
2
(1 + σ3) =

(
1 0
0 0

)
.

This model is very different from the previous one, in that there remains a massless

vector field in the final phase; indeed the gauge-field structure is the same as in the

bosonic sector of the standard electroweak model. Since π1(H/K) = Z, strings labelled

by an integer winding number will be formed in the second transition. The manifold of

vacua becomes M′ = G/K = S3. Thus there are no truly stable strings or monopoles

in the final phase. What happens is that each monopole becomes attached to a string;

each string is either a closed loop or connects a monopole to an antimonopole.

It is easy to see what a monopole configuration looks like. At large distance from

the monopole, we can take ~φ radially outwards, so that

φ = η
xk

r
σk = η

(
cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
. (18)
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All around the sphere, ψ must be proportional to the eigenvector with eigenvalue −1,

so we can take

ψ = η′

(
sin θ

2
e−iϕ

− cos θ
2

)
. (19)

But it is impossible to make this choice continuous everywhere. Here it is singular at

the south pole, where a string must be attached, around which the phase of ψ changes

by 2π.

Note that here the strings carry a magnetic flux (2π/e), equal to the magnetic

charge on the monopole, so there is only one string attached to each, not two.

c. Very different behaviour can be seen in a model based on the symmetry group

G = SU(3) with three fields φ, ψ1, ψ2, all in the 8-dimensional adjoint representation

[31]. In the first stage of symmetry breaking φ acquires a non-zero expectation

value, satisfying |φ| = η, where |φ|2 = 1
2

tr(φ2). The vacuum manifold is then

M = SU(3)/U(2), which may be identified with the complex projective space CP 2.

Points in this space may be labelled by triples of complex numbers ZT = (z1, z2, z3),

where (z1, z2, z3) and (κz1, κz2, κz3) represent the same point for any non-zero κ ∈ C.

The point in M corresponding to Z ∈ CP 2 is

φ =
η√
3

(
1− 3

ZZ†

Z†Z

)
. (20)

For example, we may choose the value

φ0 = ηT 8 ≡ η√
3

1 0 0

0 1 0

0 0 −2

 , Z0 =

0

0

1

 . (21)

Here T1, . . . , T8 are the generators of SU(3), the Gell-Mann matrices [32].

After this first symmetry breaking the remaining symmetry group is H = U(2) ∼=
SU(2) × U(1)/Z2. There are non-trivial loops in H, and π1(H) = Z, so there are

monopoles, labelled by an integer n. But this is somewhat misleading. Homotopically

non-trivial loops in H corresponding to odd values of n cannot lie solely in the U(1)

factor; they must include a path in SU(2) from the identity element 1 to (−1)2 =

diag(−1,−1, 1). A monopole with n = 1 must in a sense carry a “Z2 charge” as well as

the monopole charge 2π/e. Note however that the Z2 charge can only have the values

0 or 1; it obeys the Z2 addition rule, 1 + 1 ≡ 0. Repeated twice this path in SU(2) is

trivial, so for even n the paths can be confined to U(1). For even n, the monopoles do

not carry a Z2 charge.

Next, we introduce two more adjoint fields, ψ1,2, and choose the potential so

that all three fields have definite magnitude and are orthogonal, in the sense that

tr(φψ1,2) = tr(ψ1ψ2) = 0 and also so that at the minimum ψ1 and ψ2 commute with φ.

For example, with the choice (21) for φ, we may take ψ1,2 = η′T 1,2. This then breaks

the SU(2) symmetry down to Z2, so the final symmetry group is merely K = U(1).
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A typical solution representing the field around a minimal-charge monopole, in

spherical polars, is

φ =
η

2
√

3

 3 cos θ − 1 0 −3 sin θ eiϕ

0 2 0

−3 sin θ e−iϕ 0 −3 cos θ − 1

 , Z =

sin θ
2
eiϕ

0

cos θ
2

 . (22)

Suitable forms for the other two fields can be found by starting with ψ1,2 = η′T 1,2 at

the north pole θ = 0, and applying SU(3) transformations U(θ, ϕ) that perform the

transformation φ(θ, ϕ) = U(θ, ψ)φ0U
†(θ, ϕ). A simple choice is

U(θ, ϕ) =

 cos θ
2

0 − sin θ
2
e−iϕ

0 1 0

sin θ
2
eiϕ 0 cos θ

2

 . (23)

This means that around the south pole

U(π, ϕ) =

 0 0 −e−iϕ
0 1 0

eiϕ 0 0

 . (24)

Evidently, the configuration of the fields ψ1,2 is singular at the south pole. This

singularity cannot be removed by a gauge transformation (though it could of course

be moved to a different location), because the path as ϕ ranges from 0 to 2π is non-

contractible in SU(3), whereas it would be contractible if ϕ ranged from 0 to 4π. A Z2

string must be attached at the south pole of the monopole configuration.

Every monopole of charge n = 1 must be attached to a string. The strings may

terminate on monopoles or antimonopoles. A string may join a pair of equal-charge

monopoles or a monopole-antimonopole pair. However, numerical simulations show that

typically the second possibility is much more probable than the first. If the dynamics

leads to the string shortening and disappearing, then in the first case this would lead

to charge-2 monopoles, but in the second case to complete annihilation. The charge-2

monopoles have no Z2 charge, but are pure U(1) monopoles.

d. A different choice of potential in the SU(3) model can lead to an alternative

symmetry breaking pattern, again with very different behaviour [33]. The first stage

can proceed as before, with φ typically given by (21), breaking the symmetry down to

H = U(2) and again generating monopoles. But then we can choose the potential so

that the minimum typically occurs when ψ1,2 = η′T 4,6, generators that do not commute

with T 8 and so do not belong to H. This choice has the effect of breaking the symmetry

down to K = Z3, the centre of SU(3), comprising the matrices {e2πni/31|n = 0, 1, 2}.
Consequently, this produces Z3 strings. Since K is purely discrete, no massless gauge

fields remain.

Around a typical Z3 string, the fields ψ1,2 at large distance behave as

ψ1 = η′(T 4 cosnϕ+ T 5 sinnϕ), ψ2 = η′(T 6 cosnϕ+ T 7 sinnϕ). (25)
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This configuration can be induced by applying the gauge rotation

U(ϕ) = einT
8ϕ/
√

3 = diag(eniϕ/3, eniϕ/3, e−2niϕ/3). (26)

What then happens around a pre-existing monopole? As in the previous example, we

may expect that at the second symmetry breaking, the two new fields ψ1,2 may be

frustrated from finding the vacuum configuration everywhere around it. So we may

expect strings to be attached. But there is an important difference this time. Here the

gauge rotation around a string, Eq. (26), does not constitute a closed loop in SU(3)

unless n ≡ 0 mod 3, since U(2π) = e2πni/31. Consequently, we cannot attach just one

n = 1 string for example to the monopole. We need three of them, and if we are in the

region of parameter space in which forces between identical strings are repulsive, the

three will tend to spread out around the monopole. So this symmetry breaking pattern

yields a quite different type of string network, with junctions where three strings meet

at a monopole.

Another point should be noted here. An n = 2 string may or may not be unstable

to splitting into two n = 1 strings. But in any case it is topologically equivalent to

a n = −1 string, i.e. an n = 1 string in the opposite direction, so if it is stable to

splitting, it is indeed in principle unstable to turning into an n = −1 string. But it

may nevertheless be locally stable, because this transformation can only happen via the

creation of a monpole-antimonopole pair, which requires energy.

4. Monopoles and strings in the standard electroweak model

We have already discussed semilocal strings in Sec. 2.2 (see Eq. (7)) in an SU(2) ×
U(1)/Z2 model where the SU(2) is global and the U(1) is local. This model coincides

with the standard model of the electroweak interactions whose symmetry group is

denoted [SU(2)L × U(1)Y ]/Z2, but with the important difference that the SU(2)L
factor is gauged. If the SU(2)L and U(1)Y coupling constants are denoted by g and g′

respectively, the relative strength of the two coupling constants is given by the “weak

mixing angle”, θw, defined by

tan θw =
g′

g
(27)

with the measured value sin2 θw = 0.23.

Since the semilocal model is the sin2 θw → 1 limit of the standard model, we expect

the semilocal string solution to also be present in the standard model. Thus the standard

model has an electroweak string solution given by

φ = ηf(ρ)eniϕ
(

0

1

)
, Z0 = 0, Zk = − n

eρ
h(ρ)∂kϕ. (28)

Note that only the Z-gauge field of the standard model is non-vanishing; the charged

W± and the electromagnetic gauge fields vanish. Thus this solution is sometimes called
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a “Z-string” and also distinguishes it from other embedded electroweak strings called

“W -strings” in which the W± gauge fields are non-vanishing.

As in the semilocal case, there is no topological reason for the existence of the

electroweak string solution; nor is its existence protected by a topological winding

number. Hence we expect the Z-string to be unstable under small perturbations.

A detailed stability analysis of the electroweak string shows that it is metastable if

mH < mZ and for sin2 θw & 0.95, and is unstable for other parameters, including the

physical values: mH = 125 GeV, mZ = 91 GeV, sin2 θw = 0.23.

Since the Z-string solution is not topological, a particular Z-string can terminate.

To understand the properties of the terminus, we decompose the Z-magnetic flux inside

the string into a linear combination of SU(2)L flux and U(1)Y flux. When the Higgs

has the conventional vacuum expectation value: φ = η(0, 1)T , the decomposition is

Zµ ≡ cos θwW
3
µ − sin θwYµ. (29)

The W 3 magnetic flux is non-Abelian and can terminate, but the Y magnetic flux is

Abelian and divergenceless, and cannot terminate. Then the Y magnetic flux must

extend beyond the terminus of the Z-string and can only do so in the form of massless

electromagnetic (A) magnetic flux defined by

Aµ ≡ sin θwW
3
µ + cos θwYµ. (30)

Thus the terminus of the Z-string is a source of A magnetic flux i.e. a magnetic

monopole. Note that the Z and A gauge fields are orthogonal, so the magnetic monopole

has div(BA) 6= 0, where BA is the electromagnetic magnetic field, while it is confined by

a string that has nothing to do with electromagnetism. (The situation is very similar

to the dual case where electrically charged quarks are confined by QCD color strings.)

Before describing the properties of the electroweak magnetic monopole and Z-

string, we will provide another way of seeing the existence of the monopole, more in line

with the original paper by Nambu [34]. Essentially one constructs a composite adjoint

field

na(x) = −φ
†τaφ

φ†φ
. (31)

Once φ gets a vacuum expectation value, we will have na 6= 0. Note that na transforms

trivially under U(1)Y and, as far as its properties under SU(2)L are concerned, it is

exactly like the field φa in Sec. 2.3. Thus, as in the ’t Hooft-Polyakov monopole, we can

write down a “hedgehog” configuration

ηna = ηf(r)
xa

r
, W a

0 = 0, W a
k = −h(r)

εakjxj

gr2
. (32)

However, this configuration is disallowed in the underlying model because the relation

in Eq. (31) cannot be inverted to obtain a non-singular φ. Instead there has to be a

string attached to the hedgehog on which φ = 0. This is exactly the location of the

Z-string.
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More explicitly, the asymptotic Higgs and gauge field configurations for an

electroweak monopole with a semi-infinite Z-string along the −z axis are given by

φ = η

(
cos θ/2

sin θ/2eiϕ

)
(33)

gW a
µ = − εabcnb∂µnc + i cos2 θwn

a(φ†∂µφ− ∂µφ†φ) (34)

g′Yµ = − i sin2 θw(φ†∂µφ− ∂µφ†φ). (35)

A finite segment of Z-string will have an electroweak monopole on one end and an

antimonopole on the other end. A field configuration for such a finite energy “dumbbell”

configuration can be written as [34]

φ =

(
cos(Θ/2)

sin(Θ/2)eiϕ

)
(36)

where

cos Θ ≡ cos θm − cos θm̄ + 1 (37)

and θm and θm̄ are the spherical polar angles with the axes origin located at the monopole

and the antimonopole respectively. Nambu also considered the lifetime of rotating

dumbbells, though only accounting for decay by emission of electromagnetic radiation.

In particular, decay by fragmentation and other instabilities were not considered and

remain to be investigated.

The magnetic flux of the electroweak monopole can be shown to be

F =
4π

e
sin2 θw. (38)

Seemingly this does not obey the Dirac quantization condition but this is not a

contradiction because of the Z-string that is attached to the monopole.

The mass of the electroweak monopole cannot be defined because it is always

confined. If the mass is measured in terms of the energy barrier to the breaking of

Z-strings, it would turn out to be negative because the Z-string is unstable.

Finally we discuss the electroweak “sphaleron” [35] in terms of a bound state of an

electroweak monopole and antimonopole. Since a monopole and an antimonopole carry

opposite magnetic charges, there is an attractive Coulomb force that tends to bring them

together so that they can annihilate. However, a monopole and an antimonopole have

an extra degree of freedom, namely a relative phase between them. To see this in the

context of the electroweak model [36], consider the asymptotic Higgs field configuration

φmm̄ = η

(
sin(θm/2) sin(θm̄/2)eiγ + cos(θm/2) cos(θm̄/2)

sin(θm/2) cos(θm̄/2)eiϕ − cos(θm/2) sin(θm̄/2)ei(ϕ−γ)

)
(39)

where θm and θm̄ are spherical polar angles measured from the location of the monopole

at z = +a on the z−axis and the location of the antimonopole at z = −a respectively.

The phase angle γ will be explained in a moment. Note that |φmm̄| = η.
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Away from the antimonopole and close to the monopole we can take θm̄ ≈ 0 and

the configuration reduces to

φmm̄ → η

(
cos(θm/2)

sin(θm/2)eiϕ

)
(40)

which is the configuration around an electroweak monopole (see Eq. (33)). On the other

hand, if we take θm → π,

φmm̄ → ηeiγ

(
sin(θm̄/2)

cos(θm̄/2)ei(ϕ−γ)

)
. (41)

which is the Higgs configuration around an antimonopole up to an irrelevant overall

phase factor. The ϕ − γ phase shows that the antimonopole has a relative rotation

compared to the monopole. Thus γ is a relative “twist” between the monopole and the

antimonopole. Further, the twist provides a repulsive force between the monopole and

the antimonopole. By adjusting the twist parameter and the monopole-antimonopole

separation, a static solution can be found. The solution was first found in an O(3) model

in Ref. [37] and then in the electroweak model (in the θw = 0 limit) in Ref. [35] using

very elegant mathematical techniques. The solution, now called a “sphaleron”, plays an

important role in anomalous baryon number violation, and may play a critical role in

explaining the cosmic matter-antimatter asymmetry, and may also provide a mechanism

to generate cosmological magnetic fields (see below).

5. Observational constraints

As depicted in Fig. 1, there are three distinct cases relevant to monopoles connected by

strings that need to be considered in a cosmological setting. The three cases correspond

to whether a monopole is connected by 1 or 2 or many (≥ 3) strings. In addition, in all

three cases, we can consider the possibility that all the monopole magnetic flux has been

confined to the string, or only some of the flux is confined while the remaining flux is

unconfined. For example, in Sec. 3.2 we have discussed the case of SU(2)→ U(1)→ 1

and there all the monopole flux gets confined to a string. On the other hand, for the

electroweak monopole discussed in Sec. 4, the Z-flux is confined to a string, but the

monopole still carries an unconfined electromagnetic flux.

First consider the case when a monopole is connected to an antimonopole by a

single string and forms a “dumbbell”. Simulations find that the length distribution of

dumbbells is exponential: exp(−l/ξ) where ξ is set by the average distance between

monopoles at the time of string formation[38].

If dumbbells are produced at some cosmological epoch, the strings will quickly

shrink and bring the monopole and antimonopole together. The acceleration of the

monopole and antimonopole will lead to electromagnetic radiation, whereby the system

will lose energy, as given by the classical electromagnetic radiation formula Ė = g2a2/6π
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Figure 1. Three cases of monopoles on strings; blue and red dots represent monopoles

and antimonopoles respectively.

where the acceleration a = µ/M , M is the monopole mass, g the magnetic charge, and

µ the string tension. Once the monopole and antimonopole collide, they annihilate and

the time scale for a given dumbbell to dissipate will be given by its initial length. If a

dumbbell is very long initially, there is also a probability that it will be chopped into

shorter segments when other strings collide or when the long string crosses on itself,

through a process called intercommutation. Since the length distribution of dumbbells

is dominated by the smallest length, and the smallest length is typically much shorter

than the cosmic horizon, most of the energy in dumbbells is dissipated within a Hubble

time. Then observational signatures can only arise if a telltale remnant is produced

during the decay process. We will shortly discuss three possible remnants.

In the second case shown in Fig. 1, the monopole is like a “bead on a string” and we

expect the formation of “cosmic necklaces” [39, 30]. Monopoles and antimonopoles can

slide along the string, collide, and annihilate, and produce high energy particles that

can potentially be observed as cosmic rays [40, 41, 42]. However, closer scrutiny of the

process [42] finds that the monopoles annihilate very rapidly after formation and the

network soon resembles a network of ordinary cosmic strings. Then the observational

constraints on ordinary cosmic strings (discussed below) also apply to beads-on-strings,

independent of whether the monopole (beads) carry unconfined magnetic flux.

In the third case of Fig. 1, a string web is formed with monopoles at the junctions

of the web. Then the web stretches with the expansion of the universe, and dilutes

due to monopole-antimonopole annihilation. The resulting network scales self-similarly
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in time, i.e. the statistical properties of the web do not depend on time but the

characteristic overall scale (distance between monopoles) grows in proportion to cosmic

time [43]: d(t) ∼ χt with χ ∼ µ/(24πM2), where µ is the string tension and M is the

monopole mass. We now need to distinguish between the case when the monopoles carry

unconfined flux and the case when all the flux is confined, since these two scenarios lead

to very different cosmological scenarios [43].

If the monopoles carry unconfined flux, their rapid acceleration under the pull of

the strings leads to the emission of very high energy gamma rays whose spectrum peaks

at ∼ 100 TeV. The energy density in such gamma rays divided by the critical energy

density of the universe is estimated to be [43]

Ωγ TeV ∼
30Gµ

χ2
Ωγ (42)

where Ωγ is the fractional cosmic radiation energy density. The observed gamma ray

flux dies off very rapidly at such high energies. Using the numerical values in Ref. [44],

the relative energy density in cosmic gamma rays at energies above say 100 GeV is

Ωγ>100GeV . 10−11, thus leading to the constraint

M2

mP
√
µ
. 10−6 (43)

where mP = 1.2 × 1019 GeV is the Planck mass. The constraint will be stronger if

we restrict to gamma rays with energy greater than ∼ 100 TeV where observations

indicate a sharp cutoff in the gamma ray flux. It has been suggested that under some

circumstances even particles of trans-Planckian energy could have been generated [45].

If all the magnetic flux of the monopoles is confined to the string, the monopoles do

not radiate high energy photons even as they are accelerated by the connecting strings

to relativistic energies. In this case, the web of strings and monopoles does not have an

efficient way to dissipate its energy. The energy density in the web then dilutes due to

Hubble expansion and due to occasional rearrangements when monopoles annihilate or

when strings intercommute. As a result the relative energy density in the web compared

to the matter density grows with time [43, 46]. Eventually the web dominates the

cosmological matter energy density. Once the cosmological evolution of the web is

understood in detail‡, the growth of the web relative energy density potentially leads to

a constraint on the parameters of the fundamental model but a rigorous constraint has

not been derived so far.

Current cosmological constraints on ordinary cosmic strings as derived from the

millisecond pulsar timing observations limit the mass per unit length of the string, µ, to

be less than ∼ 10−9 in Planck units, i.e. µ . 1019 gm/cm [47, 48]. This constraint

depends on the gravitational radiation from strings, which is turn depends on the

dynamics of strings, and in particular on the loop distribution. In the cases of beads

on strings, the dynamics is expected to be similar to ordinary cosmic strings and so

‡ And with the inclusion of dark energy.
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this constraint also applies. However, in the case of a web of strings, the dynamics

is very different and loop formation is suppressed. In this case, the constraints from

the non-detection of string gravitational lensing, and non-observation of string induced

distortions of the angular power spectrum of the cosmic microwave background (CMB),

can still be applied. These provide the bound µ . 10−7 (for a summary of observational

bounds on cosmic strings, see Ref. [49]). If we combine this bound on the string tension

with Eq. (43) for the case of string webs in which monopoles have unconfined gauge

flux, we obtain a constraint on the monopole mass

M . 10−5mP . (44)

There are two remnants that can arise from dumbbells that are created at some

cosmological epoch that can potentially lead to an observable signature. The first

remnant is simply the energy resulting from the decay of dumbbells provided they decay

at cosmological redshifts between z ≈ 104 and 106. In this case there is not enough time

left until hydrogen recombination for the energy injected into the cosmological medium

to get thermalized. As a result, the decay of dumbbells can distort the spectrum of

the CMB. No such distortions have been measured so far and this limits the amount of

energy deposition in the medium. However, the cosmic temperature at these redshifts is

< 1 keV and the cosmic time is ∼ 1 yr, and from the particle physics side, we think we

know that there are no dumbbells that can survive for this long a period. The exception

is if plasma effects can somehow play a role as discussed in the case of “embedded

defects” in Ref. [50, 51] or if quantum effects are important and stabilize the dumbbells

[52].

The second remnant produced by decaying dumbbells is a magnetic field that can

be trapped in the cosmological medium, which can then survive until the present epoch

[53, 54]. Indeed, primordial magnetic fields may also help explain the ubiquity of

magnetic fields seen in galaxies and clusters of galaxies (for a recent review, see [55]).

We have already related twisted dumbbells to the electroweak sphaleron in Sec. 4

(see around Eq. (39)). If we assume that the cosmic matter-antimatter asymmetry is

generated dynamically via sphaleron processes, then sphaleron decay will leave behind

twisted or “helical” magnetic fields [56, 57]. Such magnetic fields violate parity since the

handedness of the field is related to the preference of matter over antimatter. Evidence

for helical cosmological magnetic fields has recently been discovered [58, 59], suggesting

that they may have been produced during the decay of monopoles-on-strings.

If the monopoles on dumbbells do not carry unconfined flux, they will still lose

energy by emitting gravitational waves, thus providing a third cosmological remnant

from dumbbells. Further, if the dumbbells are sufficiently long at production, as

can happen if the strings are produced after an inflationary epoch or with certain

string theory cosmic strings, the distribution of dumbbells will produce a gravitational

wave background [61] and gravitational wave bursts [62]. Upcoming gravitational wave

detectors can be sensitive to the bursts and can potentially provide constraints at the

level Gµ . 10−12.
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6. Conclusions

Field theories admit a wide variety of topological defects of which monopoles, strings,

and domain walls are commonly discussed. In this review we have focussed on a type

of “hybrid” or “composite” defect, namely monopoles connected by strings. We have

discussed field theories in which monopoles are connected to 1, 2, or 3 strings. The

case of one string per monopole is relevant to the electroweak model, and also to

a proposed explanation of the observed absence of cosmological magnetic monopoles

[60]. For more than 1 string per monopole, we have considered the symmetry breaking

pattern SU(N) → SU(N − 1) × U(1) → ZN . The first stage of symmetry breaking

gives monopoles and the second connects the monopoles to N strings. We have also

described the monopoles connected by a single string arising in the symmetry breaking

SU(2) × U(1) → U(1) × U(1) → U(1) and this is directly relevant to the standard

electroweak model.

Monopoles-on-strings can have observable effects in cosmology and ongoing

observational efforts constrain their abundance. If monopoles are connected by 2 or

more strings, a string network should exist in the universe. The strongest bounds on

a string network arise from gravitational radiation from loops of strings and lead to

µ . 10−9, where µ is the string tension in Planck units. The bound may not apply

to the string web in which monopoles are connected by more than 2 strings, since the

loop distribution will likely be suppressed. Gravitational lensing constraints still imply

µ . 10−7. Non-gravitational constraints due to particle emission have also been derived

in the literature and are summarized in Sec. 5.

The case when a monopole is connected by a single string is special because the

strings then bring monopoles and antimonopoles together, and the whole system can

rapidly annihilate. In this case, cosmological observables can only be sensitive to the

decay products of the system. Since the annihilation of monopoles and antimonopoles

releases magnetic fields, the growing evidence for cosmological magnetic fields may

indeed indicate a role for monopoles-on-strings in the early universe.
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5LAPTH, Université Savoie Mont Blanc, CNRS,
B.P.110, F-74941 Annecy-le-Vieux Cedex, France

(Dated: June 22, 2015)

This article, written for Scolarpedia [1], provides a brief introduction into the subject of cosmic
strings, together with a review of their main properties, cosmological evolution and observational
signatures.

Contents

I. Introduction 2

II. Role of Topology 2

III. Solution and properties 3
A. Straight global string 3
B. The Nielsen-Olesen string 3

1. Type I and Type II strings 3
C. Other types of strings 4

IV. Bulk Properties 4

V. Cosmology 6
A. Formation 6
B. Evolution 6

VI. How we can look for them 7
A. Gravitational signatures 8

1. Cosmic Microwave Background 8
2. 21-cm 10
3. Gravitational waves 11
4. Lensing 11

B. Non-gravitational signatures 11
1. Cosmic rays 11
2. Radio bursts 12
3. CMB spectral distortions 12

Acknowledgments 12

References 12

∗ Review published in Scholarpedia [1], http://www.scholarpedia.org/article/Cosmic_strings
†Electronic address: tvachasp@asu.edu
‡Electronic address: levon@sfu.ca
§Electronic address: steer@apc.univ-paris7.fr

ar
X

iv
:1

50
6.

04
03

9v
2 

 [
as

tr
o-

ph
.C

O
] 

 1
9 

Ju
n 

20
15

http://www.scholarpedia.org/article/Cosmic\char `_strings
mailto:tvachasp@asu.edu
mailto:levon@sfu.ca
mailto:steer@apc.univ-paris7.fr


2

I. INTRODUCTION

“Strings” are solutions of certain field theories, whose energy is concentrated along an infinite line. Strings exist in
many field theories motivated by particle physics, and this suggests that they may exist in the universe — hence the
name “cosmic strings”. String solutions are also present in condensed matter systems where they are called “vortices”.
In cosmological applications, strings are generally curved, dynamical, and may form closed loops. The energy of a
string remains concentrated along a time-dependent curve for a duration that is very long compared to the dynamical
time of the string.

II. ROLE OF TOPOLOGY

The topological properties of a field theory may be used to motivate the existence of string solutions. If a field
theory has certain symmetries and symmetry breaking patterns, the vacuum state (the state of lowest energy) may
not be unique. The collection of possible vacua form a manifold, M , which may have “holes” i.e. there may be closed
paths on M that cannot be continuously shrunk to a point. In this case, the field theory has topology that is suitable
for the existence of string solutions. In mathematical terms, the topology relevant for strings is described by the first
homotopy group of the vacuum manifold, π1(M). The relevance of topology is best understood with an example.

Consider a complex scalar field, Φ, in three spatial dimensions, with potential energy function,

V (|Φ|) = (|Φ|2 − η2
v)2

The minimum energy configuration has |Φ| = ηv but the phase of Φ is undetermined and labels the points on the
vacuum manifold which is a circle. A closed path that wraps around the circle cannot be continuously contracted to
a point and hence there can be strings in this field theory. If, as one goes around a closed path in physical space,
one also wraps around around the circle on the vacuum manifold n = ±1,±2, . . . times, then there will be possibly n
strings going through the closed path in physical space. (See Fig. 1.) Notice that at the center of the string |Φ| = 0
and hence the energy density is non-zero at the string core.

FIG. 1: String formation in the ”Mexican-hat” potential V (|Φ|). The potential is shown on the left-hand-side, with its circular
manifold (red) on which 3 points (blue) have been chosen at random. The right-hand-side shows (in red) a closed path in
”physical space”, along which |Φ| = ηv; the blue points in physical space are the points that map on to the blue points shown
on the vacuum manifold. On going around the path in physical space, the field wraps once around the vacuum manifold . By
continuity of the field, Φ must vanish somewhere within the circle in physical space. This is the center of the string drawn in
green. Fig. from [2].

Caution: Non-trivial topology of a field configuration does not necessarily imply the existence of a static solution.
For example, if two n = 1 strings repel at all separations, then an n = 2 configuration will split into two n = 1 strings
that move apart. In this case, there is non-trivial topology since n = 2, but no static solution exists.
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III. SOLUTION AND PROPERTIES

A. Straight global string

For a straight, static string, it is sufficient to look for a solution of the equations of motion in two spatial dimensions,
and then use translation invariance to extend the solution to three dimensions. For example, if the solution in two
dimensions is Φ0(x, y), then the solution in three dimensions is Φ(x, y, z) = Φ0(x, y).

The simplest theory which gives rise to string solutions is described by the Lagrangian

L = |∂µΦ|2 − λ

4
(|Φ|2 − η2)2

where λ is a dimensionless coupling constant, η is the vacuum expectation value of the field Φ, and the metric has
signature (+,−,−,−). We will also use natural units throughout so that ~ = c = 1. This Lagrangian is invariant
under a global U(1) symmetry, Φ→ ΦeiΛ (for any constant Λ), and the corresponding equations of motion are

∂µ∂
µΦ = −λ(|Φ|2 − η2)Φ.

The static string solution in this model is

Φ(x, y) = η f(mρ)einθ

where (ρ, θ) are polar coordinates on the xy-plane, m2 = λη2, and n is the (integer) winding number of the string.
On substituting into the equations of motion, the function f(ρ̃), ρ̃ ≡ mρ, has the features

f(ρ̃) = f0ρ̃
|n|(1 +O(ρ̃3)), ρ̃� 1

f(ρ̃) = 1−O
(

1

ρ̃2

)
, ρ̃� 1.

The energy density E = |~∇Φ|2 + V (Φ) is peaked within ρ ∼ m, and falls off as 1/ρ2 at large distances. The total
energy per unit length of the string diverges weakly (logarithmically). In a physical setting when there are lots of
strings or in a condensed matter sample of finite volume, the divergence gets cut off. This string solution is known as
a “global” string because there are no gauge fields in the model.

B. The Nielsen-Olesen string

The model can be extended to include gauge fields

L = |DµΦ|2 − 1

4
FµνF

µν − λ

4
(|Φ|2 − η)2

where Dµ = ∂µ − ieAµ is the gauge covariant derivative, and Fµν = ∂µAν − ∂νAµ. This “Abelian Higgs model” was
considered by Nielsen and Olesen in their discovery paper on string solutions in relativistic field theories [3]. The
Lagrangian is now invariant under a local U(1) symmetry in which Φ→ ΦeiΛ(x) and Aµ → ∂µΛ/e. In the static string
configuration, the asymptotic properties of the scalar field differs from the global case. In particular as ρ → ∞, the
scalar and gauge fields both contribute to the energy density and make it fall off exponentially fast, and the energy
per unit length µ of the string is finite.

The string also contains a flux of magnetic field that is quantized as can be seen by noting that DµΦ→ 0 outside
the string,

Magnetic flux =

∮
dxµAµ =

2πn

e

1. Type I and Type II strings

The properties of strings in the local U(1) model depend on the ratio of coupling constants β = λ/2e2. In the
limit β = 1 the equations of motion simplify and an important method to find string solutions, also often used in
supersymmetric field theories, was developed by Bogomol’nyi [4]. Here the energy per unit length µn of a string with
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winding number n is exactly equal to that of n strings each with winding number 1. In this case µ1 = πη2 and
µn = nµ1.

In the limit λ < 1, often called the type I regime in analogy with superconductors, µn < nµ1. In particular, two
n = 1 strings can merge to form an n = 2 string [5], see Fig. 2.

FIG. 2: Snapshots (from left to right and top to bottom) showing constant energy density isosurfaces in a simulation of two
strings with n = 1 in the type I regime (β = 0.125) colliding to form an n = 2 string . From [6].

In the type II regime, λ > 1 and only the winding 1 strings are stable. Usually when discussing the cosmological
properties of cosmic strings, the strings being considered are those of the local U(1) model in the type II regime.
These are referred to as “gauge strings” or “local strings”. When two type II strings collide, for essentially all angles
and collision velocities, they “intercommute”: that is, they exchange partners (Fig. 3). Thus gauge strings have an
intercommutation probability P = 1 [7, 8], except at very high incoming velocities [9].

C. Other types of strings

If there are fermions in the model that couple to the scalar field that winds around the string, “fermion zero modes”
may exist [10]. These are solutions of the Dirac equation that are localized on the string and have zero energy. If
the fermions also carry electromagnetic charge, the cosmic strings can carry electric currents, leading to interesting
astrophysical signatures in the cosmological context. In some models, charged scalar fields can also be localized on
the string. Current-carrying strings are also known as “superconducting strings” [11].

Many other types of strings (e.g. semi-local strings, Alice strings etc) can form depending on the topology and
coupling to other fields (see [12–16]).

In summary, the basic structure of a string is a scalar field that winds around the location of the string, where
there is a concentration of energy density. Gauge fields that interact with the scalar field provide the string with a
quantized magnetic flux. Fermion zero modes can be localized on the string and be responsible for currents that run
along the string.

IV. BULK PROPERTIES

If the mass of the scalar field that winds around the string is m and all dimensionless coupling constants are
O(1), the width of a local string is ≈ m−1. In most cosmological applications, the width of the string is very small
compared to the other length scales in the problem, and the thin string limit is commonly adopted. Then the string
is simply modeled as a line with mass per unit length µ ≈ m2. If the string is not superconducting, its tension T ,
i.e. the longitudinal component of the string energy-momentum tensor, is also µ. In the zero-width approximation,
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FIG. 3: Snapshots (from left to right and top to bottom) showing constant energy density isosurfaces in a simulation of two
strings with n = 1 in the type II regime (β = 32) colliding and intercommuting with the formation of kinks (as indicated by
arrows). From [9].

the strings are referred to as “Nambu-Goto” strings as their dynamics is obtained by solving the Nambu-Goto action
which minimises the area swept out by the worldsheet of the string. Numerically, µ ≈ 1022 gms/cm and Gµ ≈ 10−6

when m ≈ 1016 GeV.
An important feature of Nambu-Goto strings is that they contain “kinks” and “cusps”. A kink is a point at which

the tangent vector of the string changes discontinuously, and kinks are formed when strings intercommute (Fig. 3).
Kinks travel along the string at the speed of light. At a cusp, the string instantaneously travels at the speed of light.
Kinks and cusps give rise to important observational signatures of strings (see below).

Superconducting strings can carry an electric current j which can be timelike, spacelike or lightlike, and leads
to an equation of state of the string T = T (µ). In general, the maximum current allowed on the string is O(m2)
though, depending on the detailed particle interactions, it can be substantially weaker [17, 18]. The effective action
for superconducting strings is no longer the Nambu-Goto action.

The metric around a static infinitely straight Nambu-Goto string lying along the z-axis can be obtained by solving
the Einstein equations. It is ”conical” on the plane transverse to the string, and the line element is [19]

ds2 = dt2 − dz2 − dρ2 − ρ2dθ2 , 0 ≤ θ < 2π(1− 4Gµ)

where G is Newton’s gravitational constant. As is apparent, the metric is locally flat and the only non-trivial feature
is that the angular coordinate θ lies in an interval that is less than 2π. This particular form of the metric is central
to many of the observational signatures of cosmic strings described below.

In physical applications, a whole network of strings is formed when the symmetry is broken, and individual strings
can be infinitely long or in the shape of closed loops, and the network evolves in time. A curved string is a dissipative
solution of the equations of motion. Loops will eventually decay into various forms of radiation including the scalar
and gauge fields of which the string is formed, and gravitational waves through the coupling of the string to gravity;
infinite curved strings will tend to straighten out. The dissipation time-scale is generally very long compared to the
dynamical time of loops for long loops, so the string picture is useful. For example, a loop will oscillate ∼ (100Gµ)−1

times, (that is ∼ 105 times for the string tension of Gµ ∼ 10−7), before losing an O(1) fraction of its energy to
gravitational waves.

In certain field theories, strings networks can also have junctions — namely points at which three strings meet.
In particular this occurs in the Abelian-Higgs model when β < 1 as is shown in Fig. 2. Junctions also occur
in more complicated models in which non-abelian symmetries are broken. Cosmic superstring networks, predicted
in fundamental superstring theories, also have junctions. There they are located at the meeting point between
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fundamental F-strings, Dirichlet D-strings and a bound states of these two. Cosmic superstrings are known as (p, q)-
strings, an abbreviation for p F-strings and q D-strings [20, 21]. The effective action for strings with junctions is
a set of three coupled Nambu-Goto actions [22], but it should be noted that the intercommutation probability of
superstrings P < 1.

Cosmic strings also interact with the ambient cosmological medium. Particles scatter off the string with differential
cross-section per unit length [23]

dσ

dθ
=

π

2k(log(kδ))2
,

where k is the momentum of the particle transverse to the string and δ is the string width. The cross-section is larger
if there are particles that scatter by the “Aharonov-Bohm” interaction [24–26],

dσ

dθ
=

sin2(πν)

2πk sin2(θ/2)

where 2πν is the Aharonov-Bohm phase. Note that the scattering cross-sections only depend on the momentum of the
incoming particle, and are insensitive to the mass scale of the string. The interaction of strings with ambient particles
plays an important role in the early stages after a string network forms as it over-damps the string dynamics. However,
as the universe expands, the density of ambient matter falls and particle interactions cease to be an important factor.

V. COSMOLOGY

A. Formation

Based on our current understanding of particle physics, the vacuum structure may have topology that is suitable
for the existence of string solutions. The mathematical existence of string solutions in a field theory, however, does
not imply that they will be realized in a physical setting and additional arguments are needed to make the case that
strings can be present in the universe [27]. Essentially, during spontaneous symmetry breaking, different vacua are
chosen in different spatial domains, and the non-trivial topology of the vacuum manifold then inevitably implies the
presence of strings in cosmology. At formation, a large fraction of the string network (roughly 80% in the simplest
formation models) is in infinite strings and the rest is in loops with a scale-invariant distribution [28].

Subsequently, the network relaxes under several forces that include the string tension, frictional forces due to
ambient matter, cosmic expansion, and the process of intercommuting. In particular when a loop or an infinite string
intercommutes with itself, it chops off a loop. This means that at any given time the network will contain many loops:
those formed at time t as well as at all previous times. In addition, a Nambu-Goto loop evolves periodically in time
and hence loses energy to gravitational and other forms of radiation. As a result a loop of initial length `0 formed at
time t0 has a length `(t) at time t given by

`(t) = `0 − ΓGµ(t− t0)

where Γ is a constant which, in the case of gravitational radiation, is of order 100 [29] (the precise value depends on
the shape of the loop). A typical loop will have a number of kinks and cusps, and the spectrum of high-frequency
gravitational radiation emitted from a string depends on these features.

B. Evolution

The evolution of the network from its formation until today is an extremely complex problem involving very
disparate length scales. Several groups have tackled this problem by using numerical simulations of Nambu-Goto
(zero thickness limit) strings, starting with the pioneering work in [30–32]. Other groups have performed field theory
simulations in which the strings have structure. And yet others have built analytical models to describe the evolution
of the network. These analyses show that the network reaches a self-similar attractor solution on large scales in which
all the properties and length scales describing the network scale with time. In this ’scaling solution’, the physical
number density of loops n(`, t)d` with length between ` and ` + d` at cosmic time t is characterized by different
power-law behaviors. For example, recent simulations by [33], give

n(`, t) =
0.18

t3/2(`+ ΓGµt)5/2
, ` < 0.1t (radiation era)
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FIG. 4: Nambu-Goto strings in the matter era. Infinite strings (defined as having a size bigger than the conformal horizon,
which is the box size in this figure) are colored in white. The red loops are those whose average density has reached scaling.
The remaining loops are not (yet) in scaling, and they are color-coded according to their age: freshly formed loops are yellow
and older loops are bluer. The bluest ones are therefore those coming from the initial conditions and the greenish ones have
been formed in between. Figure given with kind permission by Christophe Ringeval.

n(`, t) =
0.27− 0.45(`/t)0.31

t2(`+ ΓGµt)2
, ` < 0.18t (matter era).

Nambu-Goto simulations by other groups (see for instance [34]) find similar loop distributions though there is dis-
agreement about very small loops that, however, carry only a very small fraction of the total energy in the network.
In Abelian-Higgs simulations, many fewer loops are seen and the string network energy is mostly dissipated directly
into particle radiation [35].

Notice that the above are the pure scaling distributions, meaning that the dimensionless number density of loops
t4n(`, t) only depends on the dimensionless ratio `/t for all times. At formation though, the loops are not in the scaling
distribution: they relax towards scaling after a time which can be estimated. Numerical simulations, however, observe
a population of non-scaling loops. Some of these are a remnant of the initial loop distribution formed at the phase
transition, and others are small loops freshly formed from small scale structure on long strings (see Fig. 4). Similarly,
on entering the matter era, the radiation era scaling distribution relaxes to the matter era scaling distribution. The
timescale for this process depends on the length of the loop, and is longer for shorter loops.

In addition to loops the network contains many infinite strings with typical separation ∼ 0.15dh where dh is the
horizon distance [36]. This corresponds to ∼ 40 infinite strings in any horizon volume. A typical distribution of strings
is show in Fig. 4.

VI. HOW WE CAN LOOK FOR THEM

The presence of strings in the universe can be deduced from their gravitational effects and other non-gravitational
signatures if they happen to couple to other forces. For example, cusps on cosmic string loops emit bursts of gravita-
tional waves [37]. Moving strings produce wakes in matter and line discontinuities in the cosmic microwave background
(CMB). They also induce characteristic patterns of lensed images of background light sources. Superconducting
strings, in addition to the above effects, emit electromagnetic radiation that can potentially be detected as radio
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bursts. At present, the strongest bounds on the string tension come from constraints on the stochastic gravitational
wave background from pulsar timing measurements and the LIGO interferometer. However, these bounds are sensi-
tive to the details of the string network evolution. On the other hand, bounds from CMB are weaker but also less
model-dependent. Different types of cosmic string signatures and their current status are reviewed below.

A. Gravitational signatures

1. Cosmic Microwave Background

FIG. 5: CMB anisotropy sourced by strings: a) a line-discontinuity in CMB temperature caused by a single string on a uniform
background (image provided by Proty Wu and Paul Shellard, (J.H.P.Wu PhD thesis, U. of Cambridge, 2000)); b) anisotropy
caused by a network of strings via the Kaiser-Stebbins-Gott effect alone (image from [38]); c) anisotropy caused by a network
of strings with full recombination physics taken into account. (Image from [39].)

Cosmic string networks persist throughout the history of the universe and actively source metric perturbations at all
times. Prior to cosmic recombination, density and velocity perturbations of baryon-photon fluid are produced in the
wakes of moving cosmic strings, which then remain imprinted on the surface of last scattering. After recombination,
strings crossing our line of sight generate line-like discontinuities in the CMB temperature, which is the so-called
Kaiser-Stebbins-Gott (KSG) effect [40–42]. Both, wakes and the KSG effect, are induced by the deficit angle in
the metric around a string. In addition, matter particles experience gravitational attraction to the string if it is not
perfectly straight. The search for cosmic string signatures in the CMB can be broadly divided into attempts to directly
detect line discontinuities in the temperature or polarization patterns, and statistical methods based on calculations
of various correlation functions.

Direct Searches. The spacetime around a straight cosmic string is locally flat, but globally conical, with a deficit
angle determined by the string tension. Thus, a string passing across our line of sight would produce a discrete step
in the CMB temperature proportional to Gµ |~v × n̂|, where ~v is the velocity of the string and n̂ is the direction of
the line of sight (see Fig. 5). Several groups have tried searching for such line-like features in the existing CMB
maps and to forecast the prospects for future observations. The tightest existing bound on the string tension based
on direct signatures is Gµ < 3.7 × 10−6 at the 95% confidence level [43] and is based on the assumption that the
number density of strings is approximately known. The most optimistic forecast, based on Canny algorithm, claims
that direct searches with future CMB experiments can achieve bounds of Gµ < 3 × 10−8 [44]. Detectable sharp
edges can be present not only in CMB temperature maps, but also in polarization maps. The primary limitation in
these types of studies comes not so much from the instrumental noise and angular resolution of the experiment, but
from the fact that CMB is dominated by the Gaussian fluctuations on scales comparable to the size of the horizon
at decoupling. Also, the above mentioned forecasts assume idealized line discontinuities produced by straight string
segments. Actual strings are not straight, and contain both infinite strings and string loops. It remains to be seen
how well these methods perform under more realistic assumptions.

Statistical Methods. The most reliable bounds on cosmic strings are derived from the angular power spectrum of
CMB temperature anisotropies measured by the WMAP and Planck satellites. Calculating the spectrum of CMB
anisotropies sourced by strings requires tracking their evolution from just before recombination until today over a
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FIG. 6: The CMB temperature (top) and B-mode polarization (bottom) spectra sourced by strings. Contributions from scalar
(black dash-dot), vector (red dash) and tensor modes (blue dot) and their sum (solid black) are shown separately.

large range of scales. Because obtaining an exact solution is quite challenging numerically, several approximate and
semi-analytical methods have been used to evaluate the string CMB spectra. There is broad agreement between results
from different approaches on the general shape of CMB spectra sourced by “local” cosmic strings, with the allowed
fraction of the string contribution to the total CMB temperature anisotropy currently limited to under 3% [45]. For
“conventional” strings, i.e. those with order unity inter-commutation probability, this implies Gµ <∼ few × 10−7.

While most approaches adopt the Nambu-Goto approximation, [46], evolved the cosmic string field configurations
in the Abelian-Higgs model. To make the calculation of CMB spectra numerically feasible, the fields were separately
evolved over limited time ranges in the radiation and matter eras, and an interpolation scheme was used to connect
the two scaling regimes. Perfect scaling was then assumed to extend their range to later times. To circumvent the
problem of resolving the fixed width core of strings in an expanding background, the core size was allowed to grow
with the expansion in a prescribed fashion. This approach is designed to directly calculate the spectra and cannot
predict CMB maps.

Another method predicting the spectra but not the map, is the so-called Unconnected Segment Model implemented
in the publicly available code CMBACT [47, 48]. In the unconnected segment model, the string network is represented
as a collection of uncorrelated straight string segments.
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FIG. 7: B-mode spectra from cosmic strings (black dot), weak lensing (blue long dash), inflationary gravity waves with r=0.15
(red dash) and their sum (black solid) along with the BICEP2 [49] and POLARBEAR [50] data points. The faint solid line is
the BICEP2 best fit model with r=0.2.

Although strings cannot be the main source of the CMB temperature anisotropy, they can generate observable B-
mode polarization. The B-mode from strings is primarily generated by vector modes, with a spectrum that is different
from the one generically produced from tensor modes arising in inflationary scenarios. Future CMB polarization
experiments should be able to reveal the presence of cosmic strings through their B-mode signature even if strings
contribute as little as 0.1% to the CMB temperature anisotropy. Constraints comparable to those previously obtained
from CMB temperature spectra were obtained with the POLARBEAR [50] and BICEP2 [49] B-mode spectra in [51–
54]. Given the uncertainty regarding the potentially significant unresolved foreground contributions to the BICEP2
signal, some of these results and conclusions may have to be revisited in the future.

Typical CMB temperature and polarization spectra sourced by local cosmic strings are shown in Fig. s 6 and 7. The
temperature spectrum features a broad peak at multipole moment L ∼ 300−500 and no acoustic peaks. The B-mode
spectrum has a peak at L ∼ 600 and lower peak at L ∼ 10 due to polarization generated at the epoch of reionization.
The position of the main peak is determined by the most dominant Fourier mode stimulated at last scattering. It
primarily depends on the string correlation length and the average string velocity at last scattering. Measuring the
location of the main peak would provide valuable insights into fundamental physics. For example, in the case of
cosmic superstrings the position of the peak of the B-mode spectrum constrains the value of the fundamental string
coupling gs in string theory [55].

Fluctuations sourced by strings are intrinsically non-Gaussian and hence their statistical signatures are not limited
to power spectra. Several groups have made predictions for various non-Gaussian estimators that could be sensitive
to cosmic strings. So far, the resulting bounds on strings are not competitive with those derived from power spectra.

The CMB bispectrum and trispectrum induced by strings on small angular scales is generally suppressed by sym-
metry considerations, but the trispectrum can be large [56–58]. The trispectrum parameter τNL can be as large as 104
for strings, hence one can anticipate strong constraints on cosmic strings as observational estimates of the trispectrum
improve.

2. 21-cm

The prospects of future observations of the 21 cm cosmological background motivated investigations of their ability to
constrain cosmic strings. Neutral hydrogen absorbs or emits 21 cm radiation at all times after recombination. Cosmic
strings would stir the hydrogen as they move around and create wakes, leading to 21 cm brightness fluctuations.
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Under certain optimistic assumptions, future experiments with a collecting area of 104 − 106 km2, can in principle
constrain Gµ in the 10−10 − 10−12 range [59]. The same strings that create wakes would also perturb the CMB via
the KSG effect, leading to potentially observable spatial correlations between the 21 cm and CMB anisotropies [60].
Also, the ionization fraction in the cosmic string wake is enhanced, leading to an excess 21 cm radiation confined to
a wedge-shaped region [61]. It remains to be seen if terrestrial and galactic foregrounds (which become very bright
at low frequencies) can be overcome to use 21 cm for mapping the high redshift distribution of matter.

3. Gravitational waves

Oscillating loops of cosmic strings generate a stochastic gravitational wave background that is strongly non-
Gaussian, and includes occasional sharp bursts due to cusps and kinks [37]. In the case when loops are large at
formation, which is the case favored by latest simulations, pulsars currently provide the tightest bounds of Gµ <∼ 10−9

for “conventional” strings, i.e. those with order unity intercommutation probability [33, 62]. (Notice that these
bounds do not apply to global strings as they decay primarily through Goldstone boson radiation.)

In the case of cosmic superstrings, the probability of cusp formation is expected to be reduced due to the extra
spatial dimensions, and there is some smoothing of the cusps. This can significantly damp the gravity waves emitted
by cusps, and to a lesser extent by kinks, and relax pulsar timing bounds on cosmic superstrings. On the other
hand, junctions on superstring loops give rise to a proliferation of sharp kinks that can amplify the gravitational wave
footprint of cosmic superstrings [63].

4. Lensing

The peculiar form of the metric around a cosmic strings can result in characteristic lensing patterns of distant
light sources. For instance, a straight long string passing across our line of sight to a distant galaxy can produce
two identical images of the same galaxy [64]. In the more general case of loops and non-straight strings, the image
patterns will be more complicated, but still have a characteristic stringy signature.

When strings bind and create junctions, as in the case of F-D superstring networks, the resulting configurations
can lead to novel gravitational lensing patterns, like tripling of images when lensed by a Y-junction [65, 66].

The existence of cosmic strings can be strongly constrained by the next generation of gravitational lensing surveys
at radio frequencies. LOFAR and SKA can give an upper bound of Gµ < 10−9 [67]. Microlensing surveys are less
constraining [68]. Effects of loop clustering on microlensing [69], gravitational lensing due to a moving string string
on pulsar timing, and quasar variability [70] have also been considered with an aim to derive constraints. Cosmic
string loops within the Milky Way can micro-lens background point sources and this offers a potentially powerful
methodology for searching for cosmic strings [71].

Vector perturbations sourced by strings or other topological defects can generate a curl-like (or B-mode) component
in the weak lensing signal which is not produced by standard density perturbations at linear order [72]. Future large
scale weak lensing surveys should be able to detect this signal even for string tensions an order of magnitude lower
than current CMB constraints.

B. Non-gravitational signatures

In the simplest cases, such as the Abelian Higgs model, the sole impact of cosmic strings on their surroundings is
through their gravity. In extended models, in which cosmic string solutions occur within a more complete particle
theory, it is quite common for strings to interact via forces present in the Standard Model. However, since the precise
nature of the coupling is unknown, the non-gravitational signatures of strings are more model-dependent than those
discussed in earlier sections.

1. Cosmic rays

If strings couple to other forces, cusps and kinks can emit beams of a variety of forms of radiation which can poten-
tially be detected on Earth as cosmic rays. For example, high energy gamma rays can be emitted from superconducting
strings [73].

Several authors have calculated the emission of particles from strings and the possibility of detecting them as cosmic
rays (for a review see [74]. An important feature for certain particle-string interactions is that the flux of particles
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on Earth is ”inversely” related to the string tension, at least for strings that are not too light. Thus lighter strings
produce larger cosmic ray fluxes. The reason is simply that the density of string loops is greater if the strings are
lighter, and the larger number of strings give a larger cosmic ray flux. Hence, if there are cosmic strings that emit
cosmic rays, the constraints imply a ”lower” bound on the string tension. Although, at very low tension, the constraint
again gets weaker because then the fractional energy loss in particles is very large and this reduces the loop number
density [75, 76]. Superconducting strings can also emit high energy cosmic rays with different dependencies on the
string parameters [77].

Another important constraint on the cosmic string scenario arises because the particles emitted by strings generally
include protons and also very high energy (∼ 1020 eV) photons [78]. Even though the nature of the ultra-high energy
cosmic rays is not clear at present - they could be protons or heavy nuclei or an admixture - it is certain that they do
not include a significant photon component. With particular interactions strings may be able to source the ultra-high
energy cosmic rays without conflicting with the photon bounds [79].

In the case of cosmic superstrings, radiation may include dilaton and other moduli. The case when the dilaton has
gravitational-strength coupling to matter has been discussed in [80], with constraints arising from a number of different
experiments and observations. In the case of large volume and warped Type-IIB compactifications, the coupling of
the moduli is stronger than gravitational-strength, and the resulting constraints in the three dimensional parameter
space – cosmic string tension, moduli mass, coupling strength – have been analyzed in [81]. Cosmic superstrings can
also be expected to provide distinctive cosmic ray signatures via the moduli emitted from cusps.

2. Radio bursts

The gravitational coupling between photons and cosmic strings leads to the emission of light from strings [82–84].
This particular emission is generic to cosmic strings but it is suppressed by two powers of the gravitational coupling
and it is unclear if it can lead to an observable signature.

Superconducting cosmic strings — strings that carry electric currents — can give transient electromagnetic signa-
tures (”radio bursts”) that are most evident at radio frequencies [85]. The event rate is dominated by kink bursts
in a range of parameters that are of observational interest, and can be quite high (several a day at 1 Jy flux) for a
canonical set of parameters [86]. In the absence of events, the search for radio transients can place stringent con-
straints on superconducting cosmic strings, though additional recently discovered cosmological radio burst candidates
are compatible with the superconducting string model [87].

3. CMB spectral distortions

If the strings are superconducting, they emit electromagnetic radiation that produces µ- and y-distortions of the
black body spectrum of the CMB. This will allow future CMB experiments, such as PIXIE [88], to place tight
constraints on Gµ and the electric current on the string [89].
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Monopole-Antimonopole Scattering

Tanmay Vachaspati
Physics Department, Arizona State University, Tempe, AZ 85287, USA.

We numerically study the head-on scattering of a ’t Hooft-Polyakov magnetic monopole and anti-
monopole for a wide range of parameters. In contrast to the scattering of a λφ4 kink and antikink
in 1+1 dimensions, we find that the monopole and antimonopole annihilate even when scattered at
relativistic velocities. If the monopole and antimonopole have a relative twist, there is a repulsive
force between them and they can initially be reflected. However, in every case we have examined,
the reflected monopoles remain bound and eventually annihilate. We also calculate the magnetic he-
licity in the aftermath of monopole-antimonopole annihilation and confirm the conversion of relative
twist to magnetic helicity as discussed earlier in the electroweak case.

Beautiful results have been obtained on the scattering
of monopoles on monopoles [1–3]. For example, analyt-
ical techniques show that head-on collision leads to 90◦

scattering for a certain value of the coupling constant
(in the so-called Bogomolny-Prasad-Sommerfield (BPS)
limit) [2]. Monopole-antimonopole scattering, though,
has received less attention, perhaps because the process
is less amenable to analysis.

A general expectation is that monopole-antimonopole
(MM ) scattering will lead to their annihilation and the
energy will be dissipated in the form of radiation. How-
ever this is not the result obtained in the analogous pro-
cess of Z2 kink-antikink scattering in 1+1 dimensions.
Numerical studies of kink-antikink scattering show anni-
hilation at low kinetic energy, reflection at higher incom-
ing energy, followed by annihilation at yet higher ener-
gies, etc., yielding a band structure reminiscent of solu-
tions of the Mathieu equation [4, 5]. One motivation for
the present work is to check for chaotic behavior in MM
scattering.

A second motivation for studying MM scattering comes
from the recent interest in the possible existence and
detection of a helical inter-galactic magnetic field [6].
Early work had speculated on the production of mag-
netic fields during monopole-antimonopole annihilation
[7, 8]. The connection to baryogenesis was made when
the electroweak sphaleron solution that mediates baryon
number violation was interpreted in terms of electroweak
MM pairs [9, 10]. It is crucial for this connection that
monopole-antimonopole pairs can have a relative “twist”
and the (unstable) electroweak sphaleron solution is re-
ally an MM pair that is prevented from annihilating by
the presence of a twist. In sphaleron decay, the twist
is believed to be the reason that the resultant magnetic
field has non-zero helicity, h, defined by

h =

∫
d3x A ·B (1)

where A is the electromagnetic gauge potential and B is
the magnetic field. In this paper, we will also study the
scattering of twisted MM pairs and confirm that mag-
netic field helicity originates in the relative twist of the
MM .

The results of our investigations are easily summarized:

numerical evolution for a wide range of MM initial condi-
tions show that untwisted MM scattering always leads to
annihilation. Thus we do not see any evidence for chaotic
behavior similar to that seen in 1+1 dimensions. How-
ever, when the monopoles are initially twisted, there is a
repulsive force between the monopoles. At low velocities,
the monopoles slow down or may even reflect back. Yet
this reflection is temporary and soon reversed, and the
MM then annihilate. Further, the annihilation of twisted
MM results in the production of a helical magnetic field.

We start out in Sec. I by defining the field theory, de-
scribing the magnetic monopoles and the twisted MM
ansatz in which the monopoles are also Lorentz boosted.
The MM field ansatz will form the initial conditions for
the numerical evolution described in Sec. II, where we
also show sample plots of the scattering, the trajectories
of the MM , and the magnetic helicity generated during
annihilation. We conclude in Sec. III.

I. SO(3) MODEL, MONOPOLES, AND MM
ANSATZ

A. SO(3)model

The model we study contains an SO(3)adjoint scalar
and gauge field, {φa,W a

µ} (a = 1, 2, 3) with the La-
grangian

L =
1

2
(Dµφ)a(Dµφ)a− 1

4
W a
µνW

aµν− λ
4

(φaφa−η2)2 (2)

where,

(Dµφ)a = ∂µφ
a − igW c

µ(T c)abφb (3)

and the SO(3)generators are (T a)bc = −iεabc. The gauge
field strengths are defined by

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν . (4)

The scalar field equations of motion are

∂2
t φ

a = ∂i∂iφ
a + igWµc(T c)ab∂µφ

b

+igWµc(T c)ab(Dµφ)b − λ(φbφb − η2)φa. (5)
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We will work in the Lorenz gauge given by the equation

∂tW
a
0 = ∂iW

a
i (6)

and then the gauge field equations are

∂2
tW

a
µ = ∂i∂iW

a
µ − gεabcW νb∂νW

c
µ − gεabcW b

νW
νc
µ

−gεabcφb(Dµφ)c. (7)

By rescaling the coordinates and the fields, as we shall
do from now on, we can set g = 1 and η = 1. Then λ is
the only free parameter left in the model. The BPS case
is when λ = 0. We will numerically evolve the 15 second
order partial differential equations (PDE) in (5) and (7).

The energy density for the model is given by

E =
1

2
(Dtφ)a(Dtφ)a +

1

2
(Diφ)a(Diφ)a

+
1

2
(W a

0iW
a
0i +W a

ijW
a
ij) +

λ

4
(φaφa − 1)2 (8)

where the sum over the repeated index j is restricted to
j > i.

Once φa acquires its vacuum expectation value, the
model contains two massive gauge fields and one massless
gauge field. The massless gauge field is

Aµ = naW a
µ (9)

where na ≡ φa/
√
φbφb is a unit vector at all spatial

points. The field strength corresponding to the gauge
field Aµ is defined as [11]

Aµν = naW a
µν − εabcna(Dµn)b(Dνn)c

= ∂µAν − ∂νAµ − εabcna∂µnb∂νnc. (10)

This field strength definition correspond to the usual
Maxwell electric and magnetic field only when the mag-
nitude |φ| is constant. We shall apply them at late times
after the monopoles have annihilated and when |φ| is ap-
proximately constant and non-zero everywhere.

B. Monopoles

The monopole solution takes the form

φa = P (r)x̂a (11)

W a
i =

(1−K(r))

r
εaij x̂j (12)

where x̂ = x/r and r is the (rescaled) spherical radial
distance centered on the monopole. The profile functions
P (r), K(r) are not known in closed form except in the
BPS (λ = 0) case [12, 13]

PBPS(r) =
1

tanh(r)
− 1

r
, (13)

✓

✓̄

O

x

y

z

P

FIG. 1: Monopole and antimonopole are chosen to be on the
z−axis with some initial separation 2z0. The spherical angles
θ and θ̄ are defined as shown.

KBPS(r) =
r

sinh(r)
. (14)

We will be studying the evolution of monopoles for a
range of λ. A functional form that reduces to the BPS
profile functions for λ = 0 and has the correct asymptotic
properties is

P (r) =
1

tanh(r)
− (1 +mr)

e−mr

r
(15)

K(r) =
r

sinh(r)
(16)

where m =
√

2λ is the scalar particle mass (in η = 1
units).

Next we will need to patch together a monopole and
an antimonopole, with a relative twist, and also boost
the monopole and antimonopole towards each other.

C. MM Ansatz

A twisted monopole-antimonopole ansatz is known in
the context of the electroweak model where the scalar
field is an SU(2) doublet [9]. The form is

Φ =

(
sin(θ/2) sin(θ̄/2)eiγ + cos(θ/2) cos(θ̄/2)

sin(θ/2) cos(θ̄/2)eiϕ − cos(θ/2) sin(θ̄/2)ei(ϕ−γ)

)
(17)

where θ and θ̄ are the spherical angles centered on the
monopole and antimonopole respectively (see Fig. 1), ϕ
is the azimuthal angle, and γ is the twist. A little algebra
shows that Φ†Φ = 1.

From Φ, we construct the corresponding unit vector
field na using

na = Φ†σaΦ (18)
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where σa are the Pauli spin matrices. The result, with
the replacement ϕ → ϕ − γ/2 to make the expressions
more symmetrical, is

n1 = (sin θ cos θ̄ cos γ − sin θ̄ cos θ) cos(ϕ− γ/2)

− sin θ sin γ sin(ϕ− γ/2) (19)

n2 = (sin θ cos θ̄ cos γ − sin θ̄ cos θ) sin(ϕ− γ/2)

+ sin θ sin γ cos(ϕ− γ/2) (20)

n3 = cos θ cos θ̄ + sin θ sin θ̄ cos γ (21)

Close to the monopole, we have θ̄ → 0 and then

n1 → sin θ cos(ϕ+ γ/2) (22)

n2 → sin θ sin(ϕ+ γ/2) (23)

n3 → cos θ (24)

as we would expect around a monopole. Close to the
antimonopole, we have θ → π and then

n1 → sin θ̄ cos(ϕ− γ/2) (25)

n2 → sin θ̄ sin(ϕ− γ/2) (26)

n3 → − cos θ̄ (27)

which corresponds to an antimonopole (because of the
minus sign in n3). Also note the relative twist along ϕ of
the monopole and antimonopole.

Our ansatz has the nice feature that n̂ ∝ ẑ far away
from the MM in all directions when the twist vanishes.
To check this we set γ = 0, θ̄ → θ and obtain n̂ = (0, 0, 1).

Now we are ready to write down the scalar field for a
twisted monopole-antimonopole pair:

φa(x, y, z) = P (rm)P (rm̄)na (28)

where P (r) is the profile function in Eq. (15) and rm, rm̄
are the distances of the spatial point (x, y, z) from the
monopole and antimonopole respectively.

At this stage the monopole-antimonopole are at rest.
To boost the monopole along the −z direction and the
antimonopole along the +z direction we first re-express
rm, rm̄ and na in Cartesian coordinates

rm = |x− xm|, rm̄ = |x− xm̄| (29)

where xm = (0, 0, z0) and xm̄ = (0, 0,−z0) are the loca-
tions of the monopole and the antimonopole respectively.
The unit vector na is also expressed in Cartesian coordi-
nates,

rmrm̄n
1 = (cx+ sy)[(z + z0) cos γ − (z − z0)]

−(cy − sx)rm̄ sin γ (30)

rmrm̄n
2 = (cy − sx)[(z + z0) cos γ − (z − z0)]

+(cx+ sy)rm̄ sin γ (31)

rmrm̄n
3 = (z − z0)(z + z0) + (x2 + y2) cos γ (32)

where c ≡ cos(γ/2), s ≡ sin(γ/2). Here we have been
careful to distinguish the (z±z0) factors coming from the

monopole and antimonopole, since these will be boosted
differently,

(z ± z0)→ (z ± z0)(b) = γL((z ± z0)∓ vzt) (33)

where, γL = (1 − v2
z)−1/2. Note that these boosts

also have to be included in rm and rm̄. (We will de-
note boosted quantities by a (b) superscript.) Then the
scalar fields at t = 0 for a boosted, twisted monopole-
antimonopole pair are:

φa(x, y, z) =
[
P (r(b)

m )P (r
(b)
m̄ )n(b)a

]
t=0

(34)

We also need the first time derivative (denoted by an
overdot) of the scalar field at t = 0 and this is given by

φ̇a(x, y, z) =
[
∂t

(
P (r(b)

m )P (r
(b)
m̄ )n(b)a

)]
t=0

(35)

The partial time derivative can be expressed in terms of
spatial derivatives as discussed below.

Now that we have the initial scalar fields, we move on
to specify the initial gauge fields. This is most simply
done numerically using the following scheme. We fix the
internal space orientation of the gauge fields by mini-
mizing the covariant derivative. The vacuum solution of
Dµn̂ = 0 is

W a
µ |vacuum = −εabcn̂b∂µn̂c (36)

To this we attach profile functions so that the gauge fields
are well defined at the locations of the monopole and
antimonopole. So

W a
µ |t=0 = −

[
(1−K(r(b)

m ))(1−K(r
(b)
m̄ ))

×εabcn̂(b)b∂µn̂
(b)c

]
t=0

(37)

Finally we need the initial time derivative of W a
µ . We

shall treat the spatial and temporal components differ-
ently to enforce the Lorenz gauge condition. For the
spatial components, as in the case of the scalar field, the
time derivative is given by

Ẇ a
i |t=0 = −

[
∂t

(
(1−K(r(b)

m ))(1−K(r
(b)
m̄ ))

×εabcn̂(b)b∂in̂
(b)c

)]
t=0

(38)

For the time component of the gauge field, we use the
Lorenz gauge condition

Ẇ a
0 |t=0 = [∂iW

a
i ]t=0 (39)

Although the form of the initial conditions is quite
involved, they are not too difficult to implement since
temporal derivatives can be related to spatial derivatives
using

[(z ± z0)(b)]t=0 = γL(z ± z0) (40)

[∂t(z ± z0)(b)]t=0 = ∓γLvz (41)

and spatial derivatives can be evaluated numerically.
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II. EVOLUTION

We discretize the 15×2 first-order equations of motion
and evolve the system using the iterated Crank-Nicholson
method with two iterations [14]. Our code has the nov-
elty that all field theory specific routines are generated
symbolically and are then inserted into a PDE integrating
routine. We have also implemented absorbing boundary
conditions by assuming that all fields only depend on t−r
where r is the distance from the center of the lattice. For
the specific problem at hand, all the non-trivial dynam-
ics is well within the simulation volume and the choice of
boundary conditions is not crucial.

The initial energy of our ansatz for γ = 0 matches the
analytic result for untwisted BPS monopoles. During the
numerical evolution we have checked energy conservation
at the few percent level at early times, before energy can
start leaving the simulation volume. The Lorenz gauge
condition is also approximately satisfied at all times in
the parameter space we have investigated.

The free parameters in the model are the coupling con-
stant λ, the boost velocity vz, and the twist γ. The initial
separation is taken to be 0.3 times the semi-lattice size
plus an offset that ensures that the magnitude of φ does
not vanish on a lattice point at the initial time. (This
simplifies some of the numerics.) We have also chosen
λ = 1 for our runs, and experimentation with a few other
values (including λ = 0) showed similar results. The ini-
tial boost velocity vz was varied in the interval (0.1, 0.9),
and the twist angle was chosen to range from 0 to 2π in
steps of π/4. The only runs where we do not explicitly
see annihilation until the end of the simulation is in the
case when γ = π and for some low values of vz. How-
ever, even in the cases when the MM do not annihilate,
they form a bound system and do not escape to infin-
ity. In some cases, we have let the system evolve much
longer and always found that the MM eventually annihi-
late. In Fig. 2 we show snapshots of untwisted MM and
they simply come together and annihilate. In Fig. 3 we
show snapshots of twisted (γ = π) MM at the same times
as for the untwisted case and we see that they have not
yet annihilated.

We plot the location of the monopole as a function
of time for a few sample parameters in Figs. 4 and 5.
The monopole location is defined by the location of the
minimum of φaφa over the simulation volume for z > 0
provided min[

√
φaφa] < 0.25. In Fig. 4, we hold the

velocity fixed at 0.5 and vary the twist from 0 to π. (The
dynamics for twist of γ is the same as that for a twist
of 2π − γ.) It is clear from the plot that the twist slows
down the monopole and can even cause it to bounce back.
In Fig. 5 we show z(t) for the monopole when the twist
is held fixed at π and vz = 0.25, 0.50, 0.75. Here the
bounce back is very apparent. However, the monopoles
are still bound after they bounce back and will eventually
annihilate.

The untwisting and annihilation of the MM is expected
to radiate magnetic fields that are helical [15, 16]. To test

FIG. 2: Snapshots of a planar slice of annihilating monopole
and antimonopole for λ = 1, γ = 0, and vz = 0.5. The colors
represent energy density.

this expectation, we have calculated the helicity defined
in Eq. (1) using (9) and (10). The plot of the magnetic
helicity as a function of time is shown in Fig. 6 where we
hold the velocity fixed at 0.75 and vary the twist. The
plot shows that the helicity vanishes if there is no twist
(γ = 0). Also, we see that the h(γ) = −h(2π−γ), and the
helicity vanishes in the case γ = π (though in this case
the MM survive until the end of the simulation). These
observations can be understood if the helicity is due to
the untwisting motion of the MM . If γ < π, the MM un-
twist in one direction and then annihilate, while if γ > π,
the MM untwist in the other direction so that γ → 2π.
The opposite senses of untwisting lead to the production
of magnetic fields with opposite helicity. The value γ = π
is an unstable point where the MM are unable to decide
which way to untwist. Eventually numerical instabilities
will cause untwisting in one way or the other. In Fig. 6
we also observe oscillations in the magnetic helicity, sug-
gesting that there may be oscillations in the twist.

In Fig. 7 we plot the magnetic helicity for λ = 1, γ =
3π/4 and for vz = 0.25, 0.50, 0.75. The plots are similar
in shape but shifted to earlier times for higher velocities.
This can be understood because the MM scatter at earlier
times for higher velocities.

III. CONCLUSIONS

We have studied MM scattering by numerical methods.
Part of the challenge was to devise initial conditions that
are suitable to describe boosted and twisted MM . Our
ansatz for initial conditions are given in Sec. I C but there
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FIG. 3: Snapshots of a planar slice of non-annihilating
monopole and antimonopole for λ = 1, γ = π, and vz = 0.5.
Except for the twist, all parameters, including snapshot times,
are identical to those in Fig. 2. The colors represent energy
density. At yet later times, the monopoles back-scatter but
are still bound and return to annihilate as discussed in the
text.

50 100 150 200 250 300t
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FIG. 4: The z-coordinate of the monopole as a function of
time for λ = 1, vz = 0.50 and γ/(π/4) = 0, 1, 2, 3, 4 (curves
from left to right). The curves terminate once min[

√
φaφa] ≥

0.25 (a condition that is met after the MM have annihilated)
except in the γ = π case, when the MM have not annihilated
even by the end of the simulation run (300 time steps with
dt = dx/2 = 0.1).

may be other choices.
The numerical evolution of MM shows that, unlike the

scattering of kinks in 1+1 dimensions, MM scattering is
not chaotic, as the MM are always found to annihilate
over the wide range of parameters we have investigated.
A twist in the initial conditions produces a repulsive force

between the monopole and antimonopole that can have
an important effect on the scattering dynamics. An in-
terpretation of our results is that, as the MM approach

50 100 150 200 250 300t
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2
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4

z

FIG. 5: The z-coordinate of the monopole as a function of
time for λ = 1, γ = π, and vz = 0.25, 0.50, 0.75 (blue, orange
and green curves). The MM have not annihilated until the
end of the simulation.
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FIG. 6: Magnetic helicity in the aftermath of MM anni-
hilation as a function of time for λ = 1, vz = 0.75 and
γ/(π/4) = 0, 1, 2, 3, 4, 5, 6, 7. The curves for γ/(π/4) = 0, 4 es-
sentially coincide with h = 0 and are not visible. The dashed
curves are for γ/(π/4) = 5, 6, 7 (green, blue, black), and mir-
ror the solid curves for γ/(π/4) = 3, 2, 1 (green, blue, black).
This shows that h(γ) = −h(2π − γ).

each other, they also tend to untwist. The untwisting
dynamics is damped due to radiation and eventually the
MM can annihilate. However, damping of the untwist-
ing dynamics leads to the production of helical magnetic
fields and the sign of the magnetic helicity is related to
the direction of untwisting.
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Stability of superfluid vortices in dense quark matter
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Superfluid vortices in the color-flavor-locked (CFL) phase of dense quark matter are known to
be energetically disfavored relative to well-separated triplets of “semi-superfluid” color flux tubes.
However, the short-range interaction (metastable versus unstable) has not been established. In this
paper we perform numerical calculations using the effective theory of the condensate field, mapping
the regions in the parameter space of coupling constants where the vortices are metastable versus
unstable. For the case of zero gauge coupling we analytically identify a candidate for the unstable
mode, and show that it agrees well with the results of the numerical calculations. We find that in
the region of the parameter space that seems likely to correspond to real-world CFL quark matter
the vortices are unstable, indicating that if such matter exists in neutron star cores it is very likely
to contain semi-superfluid color flux tubes rather than superfluid vortices.

PACS numbers: 12.38.-t, 25.75.Nq

I. INTRODUCTION

The densest phase of matter according to standard
model physics is the color-flavor-locked (CFL) phase [1].
The CFL condensate breaks the baryon number symme-
try of the theory, hence the CFL phase is a superfluid,
and CFL matter in the core of a spinning neutron star
will carry angular momentum in the form of superfluid
vortices. Unlike the fermions in terrestrial superfluids,
quarks interact via a non-Abelian gauge group; the struc-
ture of the vacuum manifold [2] is SU(3)×U(1)/Z3 and
this permits the existence of a non-Abelian vortex con-
figuration which is three times lower in energy than the
usual superfluid vortex. This configuration consists of
three widely-separated semi-superfluid flux tubes, each
carrying color magnetic flux. At separations much larger
than the size of the core any two semi-superfluid flux
tubes strongly repel each other [3], and it has there-
fore been conjectured that CFL superfluid vortices will
spontaneously decay into triplets of semi-superfluid flux
tubes. However, the short-range interaction between
the flux tubes has not been calculated [4], leaving open
the possibility that the vortices might be metastable, in
which case the decay rate, occurring via barrier pene-
tration, could be extremely low. Such metastability has
already been established for vortices in an analogous sys-
tem, a three component Bose-Einstein condensate [5].

In this paper we address these unresolved questions.
To probe the stability of the CFL superfluid vortices we
solve the classical field equations for the CFL condensate
on a two-dimensional lattice, analogously to previous cal-
culations done for SU(2) Yang-Mills-Higgs theory [6],[7].
This approach gives us a full understanding of the decay
process, far exceeding the insight that can be gained from
asymptotic methods. The results presented in this paper
are:

• We map the regions in the parameter space of the cou-

plings where the superfluid vortex is metastable (Sec-
tion IV).
• In the unstable regions we numerically extract the un-

stable mode (Section IV).
• We analytically construct an unstable mode arising in

the case of zero gauge coupling (Section III), and show
that it is very similar to the numerically extracted un-
stable mode.
• We clarify the nature of interaction of semi-superfluid

vortices at short distances in the unstable region.

II. VORTICES AND FLUX TUBES

The non-Abelian Ginzburg-Landau Lagrangian used
to describe semi-superfluid vortices [2] in the CFL phase
of dense quark matter is given by

L = Tr

[
−1

4
FijF

ij +DiΦ
†DiΦ +m2Φ†Φ− λ2(Φ†Φ)2

]
−λ1(Tr[Φ†Φ])2 +

3m4

4(3λ1 + λ2)
, (1)

where Di = ∂i − igAi, Fij = ∂iAj − ∂jAi − ig [Ai, Aj ].
Ai represents the gluonic gauge field. We choose the
normalization Tr[TαT β ] = δαβ for the SU(3) generators.
In the CFL phase Φ represents the color-flavor-locked
diquark condensate. It is a 3×3 complex matrix. An
element of Φ may be denoted as φαa, where α is a color
index and a is a flavor index. In the symmetry-breaking
phase the field in the ground state has a non-zero vacuum
expectation value,

Ai = 0 , Φ = φ̄13×3 , φ̄ =

√
m2

2λ
, (2)

where

λ ≡ 3λ1 + λ2, (3)
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and the mass spectrum contains the Goldstone boson and
two massive Higgs fields associated with perturbations
along the singlet and adjoint directions. Their masses
are mφ =

√
2m and mχ = 2

√
λ2φ̄ respectively. Stability

of the ground state requires λ > 0 and λ2 > 0. There are
also massive gluons of mass mg =

√
2gφ̄.

The superfluid vortex is

Ai = 0 , Φsf = φ̄ β(r)eiθ 13×3 , (4)

where β(r) is the radial profile that satisfies

β
′′

+
β

′

r
− β

r2
−m2β(β2 − 1) = 0 , (5)

with boundary conditions

β → 0 as r → 0 ,
β → 1 as r →∞ .

(6)

However, as noted above, the superfluid vortex is not
the lowest energy configuration in the topological sector
of configurations with net winding number 1 at radial
infinity. The lowest energy configuration consists of three
(red, green, and blue) semisuperfluid color flux tubes,
each with global winding 1/3. A red semisuperfluid flux
tube solution is

Φssft(r, θ) = φ̄

 f(r)eiθ 0 0
0 g(r) 0
0 0 g(r)

 , (7)

Assft
θ (r) = − 1

gr
(1− h(r))

 − 2
3 0 0

0 1
3 0

0 0 1
3

 , (8)

Assft
r = 0 . (9)

Green and blue flux tubes are obtained by permuting the
diagonal elements. The profile functions f(r), g(r) and
h(r) obey

f
′′
+
f

′

r
− (2h+ 1)2

9r2
f −

m2
φ

6
f
(
f2 + 2g2 − 3

)
−
m2
χ

3
f(f2 − g2) = 0 , (10)

g
′′

+
g

′

r
− (h− 1)2

9r2
g −

m2
φ

6
g
(
f2 + 2g2 − 3

)
+
m2
χ

6
g(f2 − g2) = 0 , (11)

h
′′−h

′

r
− m2

G

3

(
g2(h− 1) + f2(2h+ 1)

)
= 0 , (12)

with boundary conditions

f → 0, g′ → 0, h→ 1 as r → 0, (13)

f → 1, g → 1, h→ 0 as r →∞. (14)

To understand why a configuration of three well-
separated semisuperfluid flux tubes has lower energy than

a single superfluid vortex, compare the energy densities
far from the core:

εsf = 3φ̄2/r2,

εssft = 1
3 φ̄

2/r2.
(15)

The energy density arises entirely from the scalar field
gradient, which for each component is proportional to
n2/r2, where n is the net winding of the field. In the
superfluid vortex there is net winding of 1 in each of
the three diagonal components, whereas in the semisu-
perfluid flux tube there is net winding of 1/3 in each
component. So the energy density of a single semisuper-
fluid flux tube is 1/9 of the energy density of a super-
fluid vortex. This leads to a repulsive force between the
flux tubes, since the further apart they are, the more of
space is filled with the energetically cheaper semisuper-
fluid field configuration, as opposed to the energetically
costlier superfluid vortex field configuration. To estimate
the leading term in the resultant potential

V (l) = E3 ssft − Esf , (16)

we note that the energy density of the three semisuper-
fluid vortices can be approximated as being the same as
a superfluid vortex at r � l, and being a superposition
of the three individual energy densities at r . l. If we
assume that the cores of the flux tubes have radius ρ, and
neglect the core contributions (which are independent of
l), we find

V (l) ≈ 2π

∫ l

ρ

rdr (3εssft − εsf)

= −4πφ̄2 ln(l/ρ) . (17)

For large separation l, there is a strong repulsive force
decaying as 1/l. This justifies our neglect of contributions
that would be subleading in l, such as the core energies.

III. STABILITY ANALYSIS OF THE
SUPERFLUID VORTEX

The Ginzburg-Landau energy functional for a two-
dimensional static field configuration is

E =

∫
d2xH, (18)

with the Hamiltonian density

H = Tr

[
1

4
FijF

ij +DiΦ
†DiΦ−m2Φ†Φ + λ2(Φ†Φ)2

]
+λ1(Tr[Φ†Φ])2 +

3m4

4λ
, (19)

where λ has been defined in equation (3). We define the
spatial behavior of the superfluid vortex (4) by

ψ(r, θ) ≡ φ̄β(r)eiθ . (20)
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Up to an additive constant, the energy density of the
vortex is

H(Φsf) = 3
(
|∂iψ|2 −m2|ψ|2 + λ|ψ|4

)
. (21)

To investigate the stability of the vortex, consider a per-
turbation δΦ which only affects the quark condensate,
leaving the gauge field unperturbed,

δΦ =
f0√

3
13×3 + fαTα . (22)

(We use the normalization Tr(TαTβ) = δαβ for the SU(3)
generators.) To second order, the change in energy den-
sity due to the perturbation is given by,

δH ≡ H(Φsf + δΦ)−H(Φsf) = δH0 +

8∑
α=1

δHα

= (|∂if0|2 + λ(ψf∗0 + f0ψ
∗)2 + |f0|2(−m2 + 2λ|ψ|2)) +

8∑
α=1

|∂ifα|2 + λ2(ψf∗α + fαψ
∗)2 + |fα|2(−m2 + 2λ|ψ|2)

+O(f3
{0,α}) . (23)

Focusing on perturbations in the T8 color direction, and
decomposing f8 = f8R + if8I , we can write

δH8 = (f8R f8I)

(
ΩRR ΩRI
ΩRI ΩII

)(
f8R

f8I

)
,

ΩRR = −∇2 +m2

(
2
λ2

λ
β2 cos2 θ + β2 − 1

)
,

ΩII = −∇2 +m2

(
2
λ2

λ
β2 sin2 θ + β2 − 1

)
,

ΩRI =
λ2

λ
m2β2 sin 2θ.

(24)

It can be shown that, for λ1 > 0 (i.e. λ > λ2) the vortex
is unstable to a perturbation of the form

δΦ(8) = ε n̂·∇ψ(r, θ)T8 , (25)

which corresponds to a translation of the red and green
components of the vortex a small distance ε in the n̂ di-
rection, and translation of the blue component a distance
2ε in the opposite direction.

Using (24) we obtain the energy of the perturbation to
order ε2,

δE8 = ε2(λ2 − λ)
πm4

λ2

∫ ∞
0

rdrβ
′2β2 . (26)

This is the main result of this section. We see that if
λ > λ2 (i.e. λ1 > 0) then the perturbation (25) lowers
the energy of the vortex. At this point this is just a
guess: there might be a lower-energy perturbation that
involves the gauge field or has a different spatial profile or
color structure. However, we will see in Sec. IV that the
numerically obtained unstable mode matches (23) very
closely.

IV. NUMERICAL RESULTS

To analyze the instability of the superfluid vortex and
map the unstable/metastable boundary in the parameter
space spanned by the three couplings g, λ, and λ2, we
solve the classical field equations on a two-dimensional
lattice. For details see Appendix A. For all numerical
calculations we chose the mass scale to be m2 = 0.25 and
use a lattice spacing a = 1. This provides an adequate
resolution for the superfluid vortex solution on the lattice
for all parameter values that we studied, since the size
of the vortex depends only on m2, not on any of the
couplings.

We use the ket |Φ〉 as a convenient notation for the
actual lattice configurations of matrices in 2-dimensional
position space. We define the following inner product
and norm

〈A,B〉 ≡
∫
d2xTr{B†A} ,

||A|| ≡
√
〈A,A〉 .

(27)

To characterize the degree to which field configurations
resemble each other, we introduce the notion of an angle
ϑ between two lattice configurations A and B,

ϑ ≡ arccos
|〈A,B〉|
||A|| ||B||

, (28)

so when ϑ = 0 the configurations are the same up to an
overall multiplicative factor.

A. Numerical analysis of the unstable mode

In parameter regions where the superfluid vortex is
unstable, the vortex solution has an unstable mode, and
spontaneously decays to three semisuperfluid flux tubes
that repel each other. Snapshots of this process are
shown in Figure 1 where we plot the total energy den-
sity of the system along the vertical axis. The instability
arises from a direction in the high-dimensional config-
uration space of perturbations to the superfluid vortex
along which the potential possesses a negative curvature.
This direction is the unstable mode |δΦ(u)〉, and its time
evolution is

∂tt|δΦ(u)〉 = γ2|δΦ(u)〉 ,
|δΦ(u)〉t = eγt|δΦ(u)〉t=0 .

(29)

In parameter regions where the vortex is metastable,
there is no such unstable direction, and all perturbations
oscillate but remain small.

To find out whether, for a given set of parameter val-
ues g, λ, and λ2, the superfluid vortex is unstable or
metastable, we proceed as follows.

We first generate a lattice field configuration |Φsf〉 that
is the exact superfluid vortex solution of the lattice field
equations. We do this by transferring the continuum vor-
tex solution (with radial profile obeying Eq. (5)) to the
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FIG. 1. Plots of the total energy density in position space for: (a) a superfluid vortex before decay; (b) fission of a superfluid
vortex; (c) formation of well separated semi-superfluid vortices; (d) semi-superfluid vortices repelling each other.

lattice and then allowing it to relax to the lowest energy
state by evolving it using the Langevin equation with
damping but no noise. We can do this even when the
superfluid vortex is unstable because the initial approxi-
mate vortex configuration is proportional to the unit ma-
trix in the color-flavor space of complex 3 × 3 matrices,
and the color-flavor symmetry of the Lagrangian guaran-
tees that under time evolution it will remain proportional
to the unit matrix, whereas decay would require the gen-
eration of non-singlet color components.

To probe the stability of the equilibrated vortex
we add a small perturbation |δΦ(p)〉 to the superfluid
vortex, and evolve it forward in time. The exact form
of the perturbation is not important, as long as it has
some overlap with the unstable mode (if any). If the
vortex is unstable then even a tiny initial perturbation
with some component along the unstable direction will

grow exponentially as we evolve forward in time. It
quickly dominates the other components of the initial
perturbation. We tried three different perturbations
for the Φ-field (initial gauge links put to unity without
perturbation):

(a) a random configuration
Here we used 8 complex random numbers (uniformly
distributed between zero and 10−16) as entries for the
3× 3 Φ-matrices at each lattice site.

(b) the analytically obtained unstable mode for g = 0
This mode is constructed using (25), which is con-
trolled by two parameters, the direction n̂ and magni-
tude of the displacement, ε. Using the set {13×3, Tα}
as a complete basis, the radial profile serves as the po-
sition dependent coefficient of one or more of the basis
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elements {Tα}, since 13×3 is a stable direction. We
usually used T8 only, but one can equally well choose
any other basis element or combinations thereof.

(c) the numerically obtained unstable mode (see below).

During an initial transient period tmin (which lasts
longest for the random initial perturbation) the unstable
mode grows to become the dominant component. After
tmin the overlap of the growing mode with the original
perturbation grows exponentially in time, following (29),

A(t) ≡ 〈δΦ(p)|
(
|Φ〉t − |Φsf〉

)
∝ eγt, tmin < t < tmax .

(30)
The exponential growth ends after time tmax when the
amplitude is so large that nonlinearities become non-
negligible. Using (30) we can measure the growth rate γ
without knowing the actual form of the unstable mode.
If such an exponential growth is observed, the superfluid
vortex is unstable. The growth rate is determined by the
negative curvature of the energy in the unstable direc-
tion, and is independent of the initial “seed” perturba-
tion.

For an unstable vortex we can numerically obtain the
unstable mode up to an overall normalization factor, by
computing

|δΦ(u)〉 ≈ |Φ〉t+∆t − |Φ〉t . (31)

where tmin < t < tmax and similarly for t + ∆t. Once
we know the unstable mode |δΦ(u)〉, we can go back and
repeat the procedure described above using that mode
as the initial seed perturbation, in which case the initial
transient time tmin is very short and exponential growth
starts immediately.

During the epoch of exponential growth we use (28) to
compute the angle θ between the growing mode and the
initial perturbation. When using the numerically con-
structed unstable mode as a seed we find that θ is very
small, typically in the range 10−2 to 2 degrees. When
using an unstable mode that has been constructed ana-
lytically by Eq. (25), θ is typically of the order of 10−3 de-
grees. Thus, the analytic mode discussed in Section (III)
seems to be identical to the unstable mode, at least as far
as the g = 0 case is concerned. Allowing for (larger) non-
zero values of the gauge-coupling changes the picture, as
indicated by Figure 4. The transition line between unsta-
ble and metastable configurations is not parallel to the g
axis, suggesting that the gauge field plays a more promi-
nent role in the decay process as g grows larger. The
angle in the case of the random mode is slightly larger as
compared to the case where we used the analytic mode
to perturb the system. This discrepancy is most likely a
numerical artifact, as we are operating with very small
numbers to isolate and extract the unstable mode in this
very high-dimensional space.

FIG. 2. The critical surface in the parameter space of the
couplings g, λ and λ2. The surface separates the metastable
from the unstable regime, where the latter corresponds to the
larger volume shown in the plot. An exploration in λ-direction
up to a value of λ = 6.0 revealed nothing but unstable points.

B. Parameter space scan

Using the procedure described above to determine
whether the vortices for a gives set of couplings (g, λ, λ2)
are unstable or metastable, we performed a scan of the
parameter space for g ∈ [0.01, 1], λ ∈ [0.1, 6], λ2 ∈
[0.01, 0.5]. The translation of these couplings to physi-
cal values is discussed in Section IV C below. Our main
findings are summarized in Figures 2 and 3.

The critical surface separating the metastable from the
unstable regime is depicted in Figure 2. We see that only
a small subspace of the surveyed parameter space yields
metastable superfluid vortices. The plot suggests that
at higher values of the gauge coupling (g & 1), which is
the relevant region for QCD, the superfluid vortices are
unstable, spontaneously decaying in a short time. Larger
values of the coupling λ also yield unstable vortices.

In Figure 3 we sliced the three-dimensional parameter
space along the physically most relevant coupling among
the three, the gauge coupling g. With increasing g, the
area of metastable solutions decreases rapidly. The dot-
ted line in the plot corresponds to λ = λ2, which is the
line along which the analytic analysis of Section III pre-
dicts the stable/unstable transition. For small values of
g, this seems to be approximately true. As the gauge
coupling increases, however, the transition boundary de-
viates more and more from the predicted line, which is
most likely due to the gauge field playing an increasingly
important role in the decay process.
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FIG. 3. Stability of the superfluid vortex for different values of g, λ and λ2. White areas indicate unstable sectors, while shaded
areas correspond to regions where the superfluid vortex has been found to be stable. The dashed line corresponds to the line
λ = 4λ2, along which the equations that relate the couplings to physical values of µ and TC are valid, see discussion in Section
IV C. According to the stability analysis discussed in Section III, the transition region between stable and unstable solutions
should correspond to the dotted line λ = λ2 in the case of vanishing coupling g. This prediction seems to hold approximately
in the case of small g.

C. Relating stable and unstable regions to ratio of
masses

In Ref. [8] it was suggested that the short range inter-
action between semi-superfluid flux tubes, and hence the
unstable/metastable boundary for the superfluid vortex,
is dictated by the hierarchy of the masses mφ, mχ and
mg (Section II). In Figure 4 we investigate this proposal
by choosing one slice of the parameter space along the

plane λ = 0.1 and plotting the different mass hierarchies
along with the unstable/metastable boundary. The ver-
tical line corresponds to the line along which λ = λ2.
We could not find a direct agreement between the unsta-
ble/metastable boundary and any of the boundaries de-
rived from arranging the masses according to their mass
hierarchy.
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FIG. 4. Mass hierarchy in g − λ2 plane for λ = 0.1. The dif-
ferent shaded regions correspond to the different mass hierar-
chies of the scalar and gauge field masses. The intersection of
the vertical line (λ2 = λ) with the horizontal axis is the point
where the superfluid vortex changes from being unstable to
being metastable at zero gauge coupling. The red points (con-
nected by straight lines for better visual reference) denote the
line along which the stable/unstable transition occurs. Points
to the left of this line correspond to unstable configurations,
points to the right to metastable superfluid solutions. The
non-smooth nature of this line can be attributed to the finite
resolution used while exploring the space of couplings.

D. Relation between the effective theory and QCD

At arbitrary density it is not possible to calculate the
couplings in our effective theory in terms of the micro-
scopic physics, namely QCD, because QCD is strongly
coupled. However, in the ultra-high density regime,
where the coupling becomes weak, the parameters λ1 and
λ2 have been calculated using the mean field approxima-
tion [9], [10] in terms of baryon chemical potential µ and
the transition temperature Tc of the CFL condensate,

λ1 = λ2 =
λ

4
=

36

7

π4

ζ(3)

(
Tc
µ

)2

. (32)

Using this expression, the range of values of λ and λ2

that we have explored in our study correspond to values
of µ ranging from 400 MeV to 500 MeV and values of
Tc ranging from 10 MeV to 15 MeV. As we can see, in
the weak coupling mean field calculation λ1 = λ2, i.e.
λ = 4λ2. In our calculations the superfluid vortex is
unstable for λ = 4λ2. We illustrate this in Figure 3 where
the dashed straight line is where λ = 4λ2, and even at
very small QCD coupling g this line is in the unstable
region. Increasing the value of the coupling constant g

shrinks the region of meta-stability away from the plane
λ = 4λ2, and increasing the value of Tc just takes us to
larger λ and λ2, so from Figure 3 it seems likely that the
vortices will remain unstable at large g and Tc.

V. CONCLUSION AND DISCUSSION

We have studied the stability properties of the super-
fluid vortices in the CFL phase of dense quark matter.
Using a Ginzburg-Landau effective theory of the conden-
sate field discretized on a two-dimensional spatial lattice,
we evolved the vortex configuration in time and looked
for an exponentially growing unstable mode. We scanned
the parameter space of the couplings, mapped the regions
where the vortices are unstable as opposed to metastable,
and in unstable regions we identified the unstable mode.
We found that the region where superfluid vortices are
metastable is rather small. Vortices are metastable when
the gauge coupling g is sufficiently small. In that case,
the transition line separating the metastable from the un-
stable direction is almost as predicted in equation (26),
that is, λ ≈ λ2, see upper left panel in Figure 3. At larger
values of g, the metastable region shrinks and vanishes
around g = 0.6. We could not find any sign of metasta-
bility above values of λ ≈ 0.6. If we use mean-field weak-
coupling calculations to relate the Ginzburg-Landau cou-
plings to QCD parameters such as g, µ, and T then it
seems likely that CFL vortices in neutron stars would be
unstable rather than metastable, but these calculations
are not valid in the density range of interest for neutron
stars. If better calculations of the effective theory cou-
plings become available, the physical region in our plots
could be more precisely identified.

It is very interesting that a superfluid vortex can be
rendered unstable by solely perturbing the quark conden-
sate, in spite of the fact that in CFL matter gauge fields
play an essential role in the later states of the decay pro-
cess, in which the vortex separates into three color flux
tubes that repel each other. In a theory without gauge
fields there would be no such repulsive force, and our
preliminary calculations suggest that in that theory the
superfluid vortex decays into a molecule-like configura-
tion of three separate vortices which remain bound at a
fixed spacial separation.

This work opens up several avenues of future enquiry.
We only investigated the early stages of the process of
vortex decay. For regions of parameter space where the
vortices are metastable it would be interesting to mea-
sure their lifetime and evaluate the height of the energy
barrier. Our Ginzburg-Landau theory did not include
entrainment (current-current) interactions, and it would
be interesting to study how that affect our results. The
same methods that we used could be applied to vortices
in the color-spin-locked phase of quark matter, and to
study the stability of the proposed color-magnetic flux
tubes in two-flavor color superconducting quark matter.
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Appendix A: Equations of motion on the lattice

We solved the equations of motion on a two-
dimensional spacial lattice whose lattice spacing we de-
note by “a”. The matter field and its conjugate momen-
tum are represented by 3 × 3 complex matrices Φ and
Π with one color and one flavor index which live on the
lattice sites. The gauge fields are 3× 3 unitary matrices
U with two color indices living on the links, and their
time derivative is encoded in the electric field E which
is a Hermitian matrix. In what follows, i and j are dis-
cretized versions of spatial coordinates x and y, and t
represents time. U(t, i, j,+µ̂) represents a gauge link at
time t that emanates from the site (i, j) along the µ̂ di-
rection. We perform our calculations in the temporal
gauge, At(t, i, j) = 0. One can construct a plaquette at
time t, denoted by U2(t, i, j, µ̂), by starting at site (i, j)

and going in µ̂ direction. After each step, the orientation
is changed by a 90-degree turn to the left, such that the
plaquette closes after four steps. At any given time t,
starting at site (i, j), one can thus construct four differ-
ent elementary plaquettes, depending on the direction of
the initial step. The plaquette then corresponds to the
product of the four link variables in the order of their
appearance. For example, the plaquette U2(t, i, j,−ŷ)
becomes the matrix product U†(t, i, j − 1,+ŷ)U(t, i, j −
1,+x̂)U(t, i+ 1, j − 1,+ŷ)U†(t, i, j,+x̂).

The lattice energy functional is

Elattice =
∑
ij

(Hmagnetic +Helectric +Hpotential +Hkinetic),

(A1)
where

Hmagnetic =
6

g2a2

(
1− 1

3
<Tr [U2(t, i, j,+x̂)]

)
, (A2)

Helectric =
1

2
Tr
[
E(t, i, j)2

]
, (A3)

Hpotential = Tr
[
−m2Φ(t, i, j)†Φ(t, i, j)

]
(A4)

+Tr
[
λ2(Φ(t, i, j)†Φ(t, i, j))2

]
+λ1(Tr[Φ(t, i, j)†Φ(t, i, j)])2 +

3m4

4λ
,

Hkinetic = Tr
[
Π(t, i, j)†Π(t, i, j)

]
. (A5)

The lattice equations of motion derived from the above
energy functional are

Π̇(t, i, j) = ∇2Φ(t, i, j) +m2Φ(t, i, j)− 2λ1Tr
[
Φ(t, i, j)†Φ(t, i, j)

]
Φ(t, i, j)− 2λ2Φ(t, i, j)Φ(t, i, j)†Φ(t, i, j), (A6)

where

∇2Φ(t, i, j) =
1

a2

(
U(t, i, j,+x̂)Φ(t, i+ 1, j) + U†(t, i− 1, j,+x̂)Φ(t, i− 1, j)− 2Φ(t, i, j)

)
+

1

a2

(
U(t, i, j,+ŷ)Φ(t, i, j + 1) + U†(t, i, j − 1,+ŷ)Φ(t, i, j − 1)− 2Φ(t, i, j)

)
, (A7)

Ėαx (t, i, j) = Im

(
Tr

[
Tα
(

2

ga
(U2(t, i, j,+x̂)− U2(t, i, j,−ŷ)) +

2g

a

(
U(t, i, j,+x̂)Φ(t, i+ 1, j)Φ†(t, i, j)

))])
, (A8)

Ėαy (t, i, j) = Im

(
Tr

[
Tα
(

2

ga
(U2(t, i, j,+ŷ)− U2(t, i, j,+x̂)) +

2g

a

(
U(t, i, j,+ŷ)Φ(t, i, j + 1)Φ†(t, i, j)

))])
, (A9)

U(t+ δt, i, j,+µ̂) = exp
[
−iga δtEαµ (t+ δt, i, j)Tα

]
U(t, i, j,+µ̂), (A10)

where Tα’s are the SU(3) generators. We choose the normalization Tr[TαT β ] = δαβ .

Φ(t+ δt, i, j) = Φ(t, i, j) + δtΠ(t+ δt, i, j). (A11)

In order to obtain the initial superfluid vortex config- uration on the lattice, we use the Langevin evolution
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method. The continuum profile of the superfluid vor-
tex is first evolved using the Langevin approach, with
temperature set to zero. We then take the final relaxed
configuration and use it as the input configuration for

our numerical studies on stability. In the Langevin im-
plementation, equations (A10) and (A11) are modified as
follows :

U(t+ δt, i, j,+µ̂) = exp
[
−iga δt

(
Eαµ (t, i, j) + δt

(
Ėαµ (t, i, j)− ηEαµ (t, i, j) + ζα(t, i, j)

))
Tα
]
U(t, i, j,+µ̂), (A12)

Φ(t+ δt, i, j) = Φ(t, i, j) + δt
(

Π(t, i, j) + δt
(

Π̇(t, i, j)− ηΠ(t, i, j) + ζRe(t, i, j) + i ζIm(t, i, j)
))

. (A13)

where η is the coefficient of viscosity. By the fluctuation-
dissipation theorem the stochastic noise terms ζRe, ζIm,
ζα are independently drawn from the same Gaussian
probability distribution

ζ =

√
2ηΘ

a2δt
ξ(0, 1) (A14)

where ξ(0, 1) is a Gaussian random number of zero mean
and unit variance. Θ is the temperature of the thermal
bath that is coupled to the system.

We tested two types of boundary conditions (BC):
fixed and Neumann. Fixed BC consisted of locking the
matter and gauge fields at the edge of the lattice to the
values they would take when there is a superfluid vortex
at the center of the lattice. With fixed BC the boundary
affects the later stages of the decay of a superfluid vor-
tex because the edges repel the semisuperfluid flux tubes.
For Neumann BC we fixed the matter and gauge fields

at the boundary to be the same as their neighbors one
lattice spacing in. This sets the gradient of the field con-
figuration to zero at the edge. With Neumann BC the
later stages of the decay behave correctly, with the three
semisuperfluid flux tubes leaving the lattice and disap-
pearing across the boundary. However, with Neumann
BC the early states of the decay were affected by a very
slight attraction of the vortex to the boundary, so if the
vortex lives for long enough it starts moving slowly to-
wards the boundary. We therefore used fixed BC in our
calculations.

In order to study finite size effects, we used different
lattice sizes for our calculations. Calculations that led
to the main results of this paper were performed on a
612 lattice and were repeated on a lattice of size 1012,
where we found no significant discrepancy in the results.
We furthermore varied the criteria in the code that are
responsible for detecting the exponential growth of the
unstable mode. We found our results to be robust under
these changes as well.
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Fundamental Implications of Intergalactic Magnetic Field Observations

Tanmay Vachaspati
Physics Department, Arizona State University, Tempe, AZ 85287, USA.

Helical intergalactic magnetic fields at the ∼ 10−14 G level on ∼ 10 Mpc length scales are indicated
by current gamma ray observations. The existence of magnetic fields in cosmic voids and their
non-trivial helicity suggest that they must have originated in the early universe and thus have
implications for the fundamental interactions. I combine present knowledge of the observational
constraints and the dynamics of cosmological magnetic fields to derive characteristics that would
need to be explained by the magnetic field generation mechanism. The importance of CP violation
and a possible crucial role for chiral effects in the early universe are pointed out.

Several independent investigations of gamma rays from
blazars indicate the presence of intergalactic magnetic
fields [1–6]. Emission of TeV energy gamma rays from
blazars and the subsequent electromagnetic cascade in
the intergalactic medium is expected to distort the in-
trinsic blazar spectrum by depleting photons from the
TeV range and adding photons in the GeV range. The
lack of expected additional photons in the GeV range is
explained by invoking an intergalactic magnetic field of
strength>∼ 10−16 GeV. As an intergalactic magnetic field
disperses the additional GeV photons, the intergalactic
magnetic field hypothesis also predicts a halo of GeV pho-
tons around the blazar. An analysis of stacked blazars
provides evidence for such a halo and adds support to
the derived lower bound on intergalactic magnetic fields
[6].

An alternative approach developed in Refs. [7, 8] uti-
lizes the helical nature of intergalactic magnetic fields.
The reasoning is that intergalactic magnetic fields are
measured in cosmic voids, ∼ 100 Mpc away from as-
trophysical sources, and thus were most likely generated
in the early universe. (For a review of magnetic fields
and some possible astrophysical generation mechanisms
see Ref. [9].) Unless the magnetic fields are coherent on
very long length scales or are helical at the time of pro-
duction, they would dissipate and not survive until the
present epoch. If the magnetic field generation mecha-
nism was causal, the magnetic fields are not coherent on
large length scales and helicity is essential for survival.
Furthermore, the observation of helicity can help distin-
guish between cosmological and astrophysical magnetic
fields as a globally preferred sign of the helicity would be
indicative of a fundamental production mechanism.

In Refs. [7, 8] it was shown that the helicity of the in-
tergalactic magnetic field leaves a parity odd imprint on
the distribution of cascade gamma rays. Thus helicity
can be deduced by calculating parity odd correlators of
observed gamma ray arrival directions. (Simulations of
the process can be found in [10, 11].) Using this tech-
nique, it becomes possible to measure – not jut bound –
the power spectra of intergalactic magnetic fields. Apply-
ing this technique on current Fermi-LAT data, Refs. [4, 5]
estimate the intergalactic magnetic field to be ∼ 10−14 G

as measured on a length scale ∼ 10 Mpc . The statisti-
cal significance of these measurements is at ∼ 3.5σ level
in analysis with current data [12]. Further observations,
especially using a variety of observational tools, will be
able to confirm or refute these findings. For this paper
we proceed on the assumption that the accumulating ob-
servational evidence is correct.

The existence of helical intergalactic magnetic fields
points to an early universe origin and therefore is of in-
terest to particle cosmology. As observational dataset
gets larger, it will become possible to measure the mag-
netic field correlation functions over a range of scales. If
the spectrum is flat or red, i.e. does not fall off at large
length scales, the magnetic field would likely be a product
of the big bang or inflation. In this case, the primordial
magnetic field may shed light on cosmological initial con-
ditions and it may also have important consequences for
the origin of the matter-antimatter asymmetry [13, 14]
and other theoretical ideas [15]. If the spectrum is mea-
sured to be blue, we expect the magnetic field to have
been produced in high energy particle processes, and the
helicity of the magnetic field points to an important role
for CP violating interactions in the early universe.

For the rest of our discussion, we will assume that the
intergalactic magnetic field is stochastic and isotropic,
and is generated by a causal mechanism. (If the genera-
tion mechanism were acausal, the field may not even be
stochastic within our cosmic horizon.) Then the spatial
correlation function of the magnetic field is given by [16]

〈Bi(x)Bj(x+r)〉 = MN(r)Pij+ML(r)r̂i r̂j+ǫijk r̂kMH(r)
(1)

where Pij = δij − r̂ir̂j . MN (r) and ML(r) are the “nor-
mal” and “longitudinal” power spectra and are related by
a differential equation [16]; MH(r) is the helical power
spectrum and is what is measured by the parity odd
gamma ray correlators.

Our first task is to relate the spatial helical corre-
lation function to its counterpart in Fourier space be-
cause the magneto-hydrodynamic (MHD) evolution of
the magnetic field is carried out in Fourier space while
the field correlations are measured in physical space.
The Fourier space correlation functions for a stochastic,

http://arxiv.org/abs/1606.06186v2
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isotropic magnetic field are written as

〈bi(k)b∗j (k′)〉 =

[

EM (k)

4πk2
pij + iǫijlkl

HM (k)

8πk2

]

×(2π)6δ(3)(k − k′) (2)

where pij = δij − k̂ik̂j and

b(k) =

∫

d3xB(x)eik·x, B(x) =

∫

d3k

(2π)3
b(k)e−ik·x

(3)
We now use Eq. (3) in (1) to obtain

MH(r) =
1

2

∫

∞

0

dk kHM (k)
d

dρ

(

sin ρ

ρ

)

(4)

where ρ = kr.
Studies of the MHD equations show that a cosmolog-

ical magnetic field with helicity evolves so that at late
times [17–20]

EM (k) =
k

2
|HM (k)| =

{

E0(k/kd)
4, 0 ≤ k ≤ kd

0, kd < k
(5)

where the first equality is the relation for maximal he-
licity, the functional dependence k4 defines the “Batch-
elor spectrum”, and kd is a dissipation scale that will
be discussed below. For k > kd, the spectrum falls off
rapidly and so we have set it to zero. Strictly, the Batch-
elor spectrum only applies for k < kI where kI < kd
is the “inertial scale” where the spectrum peaks. For
kI < k < kd, the spectrum falls off as a power law and
there is a sharper fall off for k > kd [50] [21]. For simplic-
ity, we have taken kI ≈ kd, which may also be justified
if the magnetic field is generated on very small scales.
We shall also assume HM (k) ≥ 0 to be concrete. Below
we will estimate the power spectrum amplitude, E0 in
Eq. (5).
Gamma ray observations have been used to measure

MH(r). So we use Eq. (5) in (4) to obtain MH(r)

MH(r) =
E0kd
ρ5d

[(ρ3d−8ρd) sin ρd+4(ρ2d−2) cosρd+8] (6)

where ρd ≡ kdr. One can check: MH(r) ∝ r as r → 0
and MH(r) → sin(kdr)/r

2 as r → ∞, so MH(r) is well-
behaved for all r.
Any observation will measure a “smeared”MH(r). For

example, gamma ray observations in Refs. [4, 5] measure
MH on a certain distance scale r that is determined from
the energies of observed gamma rays. However, for sta-
tistical purposes, the observed gamma rays are binned
according to their energies – in 10 GeV wide bins in
Refs. [4, 5]. This means that observations yield MH

that is smeared over a range, ∆r, of r. With present
day observations, r is typically on the order of Mpc, and
ld = 2π/kd is typically kpc, so that ρd = kdr ≫ 1. The

precise smearing function depends on the binning proce-
dure and experimental details (e.g. energy dependence of
time exposure of the experiment), however, with current
parameters ld ≪ ∆r <∼ r.
Let us write ∆ρd = kd∆r. Then, from Eq. (6), the

smearing procedure will effectively replace the oscillat-
ing trigonometric functions by (weighted) averages. For
example,

sin ρd
ρ2d

→ 1

∆ρd

∫ ρd+∆ρd

ρd

dρ
sin ρ

ρ2
≈ O(1)

ρ2d
. (7)

Since ρd ≫ 1, the ρ3d term in the square bracket in Eq. (6)
will dominate and we can write

MH(r) ≈ E0kd
ρ2d

(8)

Therefore a measurement of MH(r) at r = r∗, denoted
MH∗, will give

E0 =
ρ2
∗
MH∗

kd
(9)

where ρ∗ = kdr∗, and the magnetic field energy and he-
licity spectra in Eq. (5) become,

EM (k) =
k

2
|HM (k)| = ρ∗r∗|MH∗|

(

k

kd

)4

(10)

From Eq. (50) of Ref. [7] [51] we have the estimate

|MH∗| ∼ (10−14 G)2 (11)

and r∗ ∼ 10 Mpc. Subsequent (and ongoing) analyses [5]
show rough agreement with these estimates and future
observations should be able to pin down the values more
accurately. Other analyses [1–3, 6] do not provide mea-
surements of the field strength but they do provide lower
bounds if they assume a coherence scale and a spectrum.
These lower bounds on the field strength are on the order
of 10−16 G (see Fig. 12 of Ref. [9]).
The energy density in the magnetic field is

E =
1

2
〈B2〉 =

∫

dk EM (k) ∼ (10−14 G)2
ρ2
∗

5
(12)

Similarly the helicity density is given by

H = lim
V→∞

〈

1

V

∫

V

d3xA ·B
〉

=

∫

dk HM (k) ∼ (10−14 G)2
ρ2
∗

2kd
(13)

where B = curl(A).
Next we discuss the dissipation length scale ld. In

Ref. [22], the authors considered a homogeneous mag-
netic field and calculated the damping rate of small per-
turbations on this background. The dominant dissipation
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of the small perturbations is due to the damping of fast
magnetosonic modes. Hence this mechanism sets the dis-
sipation scale that then depends on the strength of the
background uniform field.
The damping of a stochastic, helical magnetic field has

been discussed in Ref. [23, 24]. The evolution of the dissi-
pation scale, which roughly coincides with the coherence
scale for the Batchelor spectrum, depends on properties
of the magnetic field at the time it was generated. The
result for the dissipation scale at the present epoch is (see
Eqs. (4) and (5) of [25])

ld0 = 0.45 pc
√
n

(

ΩBRadg

0.083

)1/2

x−2/(n+2)

×
(

Tg

100 MeV

)

−n/(n+2)

(14)

where n is the spectral index for the magnetic field,
ΩBRadg is the ratio of the energy density in magnetic
fields to that in radiation (in all relativistic species), Tg

is the temperature, and all quantities are taken at the
time of magnetic field generation (denoted by subscript
“g”). Also, x = 2.3 × 10−9 is a numerical factor. This
formula yields

ld0 ≈ 1 pc− 1 kpc (15)

for magnetic field generation at the electroweak epoch
(Tg = 100 GeV), for n = 2 − 5 – larger n gives smaller
ld0 – and with ΩBRadg = 0.083. The index n is defined in
[25] by the relation ρB ∝ l−n where ρB is the energy den-
sity in magnetic fields on a length scale l at the epoch of

magnetogenesis. Translating this into our language with
the relation in Eq. (12) we have n = 5 for the Batchelor
spectrum, and n = 3 based on a model of processes that
might have occured during a first order phase transition
[26].
With ld0 = 1 kpc and r∗ = 10 Mpc we get ρ∗ = 2π ×

104. Inserting this estimate of ρ∗ in Eq. (12) gives the
magnetic field energy density at the present epoch,

E0 ∼ (3× 10−10 G)2
(

1 kpc

ld0

)2

(16)

and Eq. (13) gives

H0 ∼ 3× 10−20 G2 − kpc

(

1 kpc

ld0

)

(17)

In natural units (h̄ = 1 = c), with the conversions 1 G =
1.95× 10−20 GeV2 = 5× 107 cm−2, we can also write

H0 ∼ 2× 1017 cm−3

(

1 kpc

ld0

)

(18)

To get a feel for these estimates, we compare the energy
density in magnetic fields to that in photons,

ΩBγ0 =
E0
ργ0

∼ 10−8

(

1 kpc

ld0

)2

. (19)

where ργ0 = 4.6× 10−34 gms/cm3 ≈ (4× 10−6 G)2 is the
energy density in photons at the present epoch.

To proceed further we would like to estimate ΩBγ at
earlier times. The full details of the evolution are compli-
cated because of episodes (e.g. e+e− annihilation), vis-
cosity, finite electrical conductivity, and unknown factors
(e.g. neutrino masses). However a simple approximate
picture emerges from various studies within the context
of conventional MHD Refs. [18, 23]. Most crucially, he-
licity is found to be conserved, so the helicity density
H ∝ a−3 where a(t) is the cosmic scale factor. The dis-
sipation scale, also the scale where most of the magnetic
energy is stored, grows as ld ∝ a× a2/3 in the radiation
dominated era and as ld ∝ a in the matter dominated era
(i.e. for temperatures greater than the temperature at
matter-radiation equality Teq ≈ 1 eV) as long as the he-
licity is maximal [18]. So, from the relations in Eqs. (12)
and (13), the energy density scaling is E ∝ a−4 × a−2/3

in the radiation dominated era and E ∝ a−4 in the mat-
ter dominated era. With these scalings, and with the
cosmic cooling rate T ∝ a−1 and the temperature at
big bang nucleosynthesis (BBN) TBBN ∼ 1 MeV, we get
ΩBγBBN ∼ 10−4(1 kpc/ld0)

2. Requiring ΩBγBBN
<∼ 1,

this means that the magnetic dissipation scale today (also
the coherence scale) is observationally constrained to be
larger than ∼ 10 pc.

Spectral distortions of the cosmic microwave back-
ground (CMB) also provide a means to probe small
scale magnetic fields for cosmological redshift z between
103 and 106 [27–30]. As of now the bounds from
COBE/FIRAS measurements of the CMB spectrum are
not competitive with the BBN bound. Proposed exper-
iments, such as PIXIE, can change this situation and
be able to detect CMB µ−distortions for ld0 ∼ 1 kpc
(see Figs. 2 and 3 of Ref. [30]). Small scale magnetic
fields may also leave an imprint on the CMB anisotropies
through non-linear effects [31–34].

The estimate in Eq. (16) shows that intergalactic mag-
netic fields that are indicated by gamma ray observa-
tions may be of ∼ 3× 10−10 G strength on 1 kpc scales.
During structure formation, the field would get com-
pressed within galaxies by a factor (ρgal/ρc)

1/3, where
ρgal ≈ 10−24 gm/cm3 is the baryonic density in the
galactic disk and ρc ≈ 10−31 gm/cm3 is the cosmic
baryon density. If we assume flux freezing during struc-
ture formation, the magnetic field strength will increase
by (ρgal/ρc)

2/3 ≈ 105 and the coherence scale will de-
crease by (ρc/ρgal)

1/3 ≈ 10−2. With these numbers, and
ld0 = 1 kpc, a galaxy would inherit a magnetic field with
strength ∼ 3 × 10−5 G and coherence ∼ 10 pc. A some-
what larger value of ld0 ∼ 10 kpc would lead to estimates
that are closer to observations of the random component
of the Milky Way magnetic field, 4−6 µG on 10−100 pc
[35]. This conclusion is in line with that of Ref. [25] where
the authors argue that magnetic fields in galaxy clusters
may arise directly from the intergalactic magnetic field.
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We now turn to the helicity of the magnetic field, a
quantity that is parity (P) odd and also odd under com-
bined charge and parity (CP) transformations. Hence
observed non-zero magnetic helicity indicates a period of
CP violation in the early universe, as is also necessary for
the generation of the observed cosmic matter-antimatter
asymmetry. Thus it is natural to compare the observed
magnetic helicity to the cosmic baryon number density,
nb0 ≈ 10−7 cm−3,

ηBb0 ≡ H0

nb0
∼ 2× 1024

(

1 kpc

ld

)

(20)

This estimate raises a challenge for fundamental physics
– what processes can generate such a large helicity to
baryon number ratio?

The simplest particle physics based scenarios of mag-
netogenesis are based on the evidence that a baryon
number changing process via an electroweak sphaleron
[36] also produces magnetic fields with ∼ 102 helicity
[37, 38]. Then the magnetic helicity is proportional to
the baryon number and we get ηBb0 ∼ 102 [39, 40]. Even
in the unbroken phase of the electroweak model, where
the electroweak sphaleron solution does not exist per se,
we expect gauge field production to occur during changes
of Chern-Simons number which is necessary for baryon
number violation.

A more realistic view of the production of cosmic mat-
ter asymmetry is that baryon number violating processes
occur so as to produce both baryons and antibaryons
but with a slight excess of baryon production. In terms
of magnetic fields this means that both left- and right-
handed helical fields are produced but with a slight excess
of left-handed helicity that is given by the fundamental
CP violation [37]. Within the context of baryogenesis
in the standard model, CP violation is extremely weak
[41] and the total helicity is tiny compared to the energy
density in the magnetic field [37]. If we assume energy
equipartition, the energy density in magnetic fields will
be comparable to that in other forms of radiation [42].

The above description shows that the energy density
in magnetic fields may be much larger than that implied
by magnetic helicity alone. However, the problem we
are encountering based on observation, is that the ini-
tial magnetic helicity also needs to be much larger (see
Eq. (20)). Is there some dynamics beyond standard MHD
that could potentially increase the magnetic helicity and
saturate the maximal helicity condition in the early uni-
verse?

A simple possibility is to look for a mechanism that se-
lectively amplifies one handedness of the magnetic field.
Then, if we start with a magnetic field, even with zero net
helicity, the dynamics will amplify one of the two helici-
ties, increase the magnetic field energy density, and also
saturate the helicity at its maximal value. This has been
the focus of earlier studies of the “chiral magnetic effect”

[43], in which a magnetic field induces an electric cur-
rent j ∝ B, which results in the amplification of certain
Fourier modes of only one handedness [44]. More im-
portantly for us, however, the chiral magnetic effect also
selectively dissipates one handedness of the magnetic field
(see, for example, [45]). Thus, if baryon number violat-
ing interactions (or other dynamics) produce a large but
non-helical magnetic field, the chiral magnetic effect can
dissipate one of the two helicities – the handedness being
determined by the sign of the chiral imbalance – and re-
duce the magnetic field energy by half, and saturate the
helicity at its maximal value.
More quantitatively, ignoring the plasma velocity field,

the equations satisfied by the difference of the two helical
amplitudes of the magnetic field Fourier modes, ∆B ≡
|B+(k)| − |B−(k)|, is given by (see Eq. (60) in [45]),

∂η∆B = +
kp
σ
(|B+|+ |B−|) +O(∆B) (21)

where η is the conformal time, σ is the electrical conduc-
tivity of the plasma, kp = e2∆µ/2π2, and the chemical
potential ∆µ = µL − µR is a measure of the chiral im-
balance of the medium. Thus ∆B grows in proportion
to the summed amplitudes of the two helicities of the
magnetic field and the field tends to become maximally
helical on a time scale set by the chirality of the medium.
(A chiral imbalance might arise naturally above the elec-
troweak scale since the weak interactions distinguish be-
tween left- and right-handed particles at a fundamental
level.) Once the field becomes maximally helical, it stays
maximally helical. The precise dynamics, however, needs
further investigation since the analysis outlined above ig-
nores the plasma velocity field. The joint evolution of
the magnetic field and the plasma velocity is essential to
see effects such as the inverse cascade of helical fields.
In a chiral medium, it is also necessary to co-evolve the
chemical potentials. The joint evolution of homogeneous
chiral imbalance has started to receive attention [46] but
even the equations necessary to describe dynamics with
spatially varying chirality have not yet been established
(recent attempts can be found in [47, 48]).
The main point of this paper is that current observa-

tional evidence for intergalactic magnetic fields has pro-
found implications for fundamental interactions. The ob-
served magnetic fields must have originated in the early
universe since they are seen in voids and are helical. If we
uncover a red spectrum of the magnetic field, we would
know that they were generated by an acausal mechanism.
The magnetic fields would then provide valuable infor-
mation about the earliest moments of the universe. If
the spectrum turns out to be blue, the properties of the
magnetic field will give us important clues about parti-
cle physics beyond the standard model. The observation
of magnetic helicity implies a strong role for fundamental
CP violation in the early universe. Since helical magnetic
fields are closely connected with baryon number violating
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processes, the observation of helical magnetic fields can
inform us about matter-genesis. But baryogenesis by it-
self is insufficient to explain the large helicity that is indi-
cated by observations. We have suggested that there may
be a role for the chiral magnetic effect to drive magnetic
helicity to its maximal value. Then the standard model
must be extended to allow for successful baryogenesis and
the chiral magnetic effect should play a role in cosmol-
ogy. This would have implications for particle physics
close to the electroweak scale and may perhaps also be
testable at the LHC or future accelerator experiments.
Future observations (e.g. by the Cherenkov Telescope
Array [49]) will further sharpen the case for intergalactic
magnetic fields and allow for more precise measurements
of the power spectra.
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Probing Intergalactic Magnetic Fields with Simulations of Electromagnetic Cascades
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We determine the effect of intergalactic magnetic fields on the distribution of high energy gamma
rays by performing three-dimensional Monte Carlo simulations of the development of gamma-ray-
induced electromagnetic cascades in the magnetized intergalactic medium. We employ the so-called
“Large Sphere Observer” method to efficiently simulate blazar gamma ray halos. We study magnetic
fields with a Batchelor spectrum and with maximal left- and right-handed helicities. We also consider
the case of sources whose jets are tilted with respect to the line of sight. We verify the formation
of extended gamma ray halos around the source direction, and observe spiral-like patterns if the
magnetic field is helical. We apply the Q-statistics to the simulated halos to extract their spiral
nature and also propose an alternative method, the S-statistics. Both methods provide a quantative
way to infer the helicity of the intervening magnetic fields from the morphology of individual blazar
halos for magnetic field strengths B & 10−15 G and magnetic coherence lengths Lc & 100 Mpc. We
show that the S-statistics has a better performance than the Q-statistics when assessing magnetic
helicity from the simulated halos.

I. INTRODUCTION

The origin, strength and structure of intergalactic
magnetic fields (IGMF) remain a mystery up to the
present day. Possible mechanisms to explain cosmic mag-
netogenesis may be divided into two main categories:
cosmological scenarios predict that magnetic fields were
generated through processes taking place in the early uni-
verse, such as inflation [1–4], electroweak [5–8] or QCD
phase transitions [9–12], and leptogenesis [13], among
others; in astrophysical scenarios the fields would be cre-
ated during the later stages of evolution of the universe,
for example during structure formation [14] or even there-
after [15].

Measurements of IGMF are rather difficult due to
their low magnitude. Common methods to estimate
the strength of IGMF are indirect and include the well-
known Faraday rotation measurements which yield up-
per limits of the order of a few nG [18]. Lower bounds,
B & 10−17 G, have been obtained by several authors us-
ing gamma-ray-induced electromagnetic cascades in the
intergalactic space [18–25]. These lower bounds are con-
troversial because of the claims [26–30] that the devel-
opment of the cascade is suppressed by plasma instabil-
ities that arise from interactions with the intergalactic
medium. On the other hand, recent direct observations
of cascades [31] suggest that plasma instabilities are not
operative and that the original bounds hold. We expect

∗E-mail: rafael.alvesbatista@physics.ox.ac.uk
†E-mail: andrey.saveliev@desy.de, corresponding author
‡E-mail: guenter.sigl@desy.de
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that future analyses will clarify the role, if any, of plasma
instabilities in the development of the electromagnetic
cascade.

Magnetic fields can carry helicity (H), which is defined
as

H =

∫
A ·Bd3r , (1)

where A is the magnetic vector potential and B = ∇×A
is the magnetic field. Since magnetic helicity affects the
dynamical evolution of magnetic fields, an indirect way
to measure magnetic helicity is to measure the magnetic
field power spectrum and compare it with the evolu-
tion seen in magnetohydrodynamical (MHD) simulations
[32–34]. Ther are also some proposals to directly mea-
sure magnetic helicity based on the propagation of cos-
mic rays [35]. More recently, it has been proposed that
helicity can leave characteristic parity-odd imprints on
the arrival directions of gamma rays that are the result
of gamma-ray-induced electromagnetic cascades [31, 36–
39]. In particular, Long & Vachaspati [39] have carried
out a thorough analysis of the morphology of the ar-
rival directions of gamma rays using a semi-analytical
approach, but without including the stochasticity of the
magnetic field or the cascade process. Hence, a full Monte
Carlo approach and three-dimensional simulations are
needed in order to confirm or refute their findings and
provide a solid basis for further analyses.

The observation of helical primordial magnetic fields
has profound implications for particle physics and the
early universe. Scenarios in which the cosmological
matter-antimatter asymmetry is generated dynamically
are found to also produce helical magnetic fields [40].
The handedness of the field is related to details of the
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matter-genesis scenario [13, 40]. If the observed mag-
netic fields are coherent on very large scales, they may
have been produced at the initial epoch, perhaps during
an inflation [1, 2]. Helicity on these scales would indicate
the presence of certain parity violating interactions in the
fundamental Lagrangian [41].

In the present work we perform simulations of the
propagation of gamma rays in both helical and non-
helical IGMF. This paper is structured as follows: first,
we discuss the theory and implementation of simulations
of electromagnetic cascades in Sec. II; in Sec. III we apply
our approach to different magnetic field configurations,
focusing in particular on the role of magnetic helicity
(Sec. III C - III D); in Sec. IV we discuss the results, draw
our conclusions and give a short outlook.

II. SIMULATIONS OF ELECTROMAGNETIC
CASCADES IN THE INTERGALACTIC MEDIUM

A. Interactions and Energy Losses

The basic physics underlying the development of elec-
tromagnetic cascades induced by high energy gamma
rays from blazars is well-known [42, 43]. A gamma ray
emitted by a blazar interacts with photons from the dif-
fuse extragalactic background radiation fields producing
an electron-positron pair. The electrons1 then upscatter
photons of the cosmic microwave background to high en-
ergies in a process known as inverse Compton scattering
(ICS). The electrons continue to upscatter photons un-
til their energy diminishes. The upscattered photons can
produce yet more electron-positron pairs until the energy
of the photon drops below the threshold for pair produc-
tion. We should therefore observe the blazar source as
well as gamma rays originating from the cascade process,
unless magnetic fields bend the electron trajectories suf-
ficiently away from the line of sight.

To perform three-dimensional simulations of the devel-
opment of gamma-ray-induced electromagnetic cascades
in the IGM, we have modified the CRPropa 3 [44] code,
commonly used for ultra-high energy cosmic ray prop-
agation. Taking advantage of the modular structure of
the code and the flexibility to handle custom magnetic
field configurations, we have implemented relevant inter-
actions for gamma rays and electrons in the energy range
of interest (1 GeV . E . 1 PeV). Relevant interactions
are pair production by gamma rays and inverse Comp-
ton scattering by electrons. Adiabatic losses due to the
expansion of the universe are also taken into account.
Synchrotron losses, albeit small in this energy range, are
considered as well, for the sake of completeness.

1 Hereafter we will collectively refer to electrons and positrons sim-
ply as “electrons”.

Particles are propagated step-by-step. Within each
step the probability of a given interaction to occur is com-
puted using tabulated values for the interaction rate. If
the particle is charged, deflections due to magnetic fields
are calculated by integrating the equations of motion.
By doing so, we are adopting a three-dimensional Monte
Carlo approach for the propagation.

Interaction rates for pair production and inverse
Compton scattering are calculated following the imple-
mentation used in the Elmag code [45], and defined as
the inverse of the mean free path λ. They are tabulated
for the CMB and various models of extragalactic back-
ground light (EBL) at different redshifts as follows2 [45]:

R(E, z) ≡ λ−1(E, z) =
1

8E2

∞∫
0

dε

smax∫
smin

ds
n(ε, z)

ε2
Fint(s) ,

(2)
where E is the energy of the interacting particle (electron,
positron or photon), n(ε, z) is the comoving spectral den-
sity distribution of photons with energy ε at redshift z, s
denotes the center of mass energy in the kinematic range
smin ≤ s ≤ smax, and Fint is a function that depends on
the interaction in question.

In the case of pair production Fint = FPP is

FPP(s) = sσPP(s) , (3)

where σPP(s) is the cross section for pair production,
and s = 2Eε(1 − cos θ), with 0 ≤ θ ≤ π being the angle
between the gamma ray of energy E and the background
photon of energy ε. The values of s range from smin =
4m2

e to smax = 4Eεmax, where εmax is the cutoff energy
for the photon field, assumed to be approximately 0.1 eV
for the CMB and 15 eV for the EBL.

For inverse Compton scattering Fint = FICS is given
by

FICS(s) =
1

β
σICS(s−m2

e) , (4)

with β = (1−m2
e/E

2)
1
2 . The center of mass energies in

this case are s = m2
e + 2Eε(1 − β cos θ), for smin ≤ s ≤

smax, with smin = m2
e and smax = m2

e + 2Eεmax(1 + β).
Cross sections for these interactions are well-known

(see e.g. [45, 46]). The spectral density distribution of the
cosmic microwave background (CMB) can be described
as a black-body. The EBL is model-dependent. For this
particular work we adopt the lower limit EBL model of
Kneiske & Dole [47].

Synchrotron losses are given by

dE

dx
=

m2
eχ

2

(1 + 4.8(1 + χ) ln(1 + 1.7χ) + 3.4χ2)2/3
, (5)

2 Unless otherwise stated, in this section we use “natural units” in
which ~ = c = 1.
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following Ref. [45]. Here me is the electron mass, χ is

χ ≡ |p×B|
meB0

, (6)

with B0 = 4.1× 1013 G, and B the magnetic field vector
acting on an electron with momentum p.

Adiabatic losses due to the expansion of the universe
are given by

− 1

E

dE

dx
=
H(t)

c
=
H0

c

√
Ωm(1 + z)3 + ΩΛ , (7)

with H0 ≡ H(0) ' 70 km/s/Mpc designating the Hubble
constant at present time, Ωm ' 0.3 being the density of
matter, and ΩΛ ' 0.7 being the density of dark energy,
assuming the standard ΛCDM cosmological model.

In our simulations we consider a monochromatic source
and all emitted gamma rays are assumed to have an en-
ergy of 10 TeV. Photons from the source with energies
much smaller than this will be below the threshold for
creating a cascade, while photons with much higher en-
ergies will have a diminished flux.

B. Sampling of Helical Magnetic Fields

In order to run a simulation for a given magnetic field
scenario or, more specifically, for a given magnetic field
(and magnetic helicity) spectrum, one has to sample a
magnetic field grid which then may be used as input.
This procedure is explained in the following using the
formalism of [48].

The aim is to decompose the magnetic field into modes
of the divergence-free eigenfunctions K± of the Laplace
operator which for a specific wave vector k are given by3

K±(k) = e±(k)eik·x ≡ e1(k)± ie2(k)√
2

eik·x , (8)

where (e1, e2, e3) is a right-handed orthonormal system

of real unit vectors with e3 = k/k ≡ k̂. In order to obtain
e1 and e2 we chose a fixed arbitrary vector n0 ∦ k with
which we calculate

e1 ≡
n0 × k̂∣∣∣n0 × k̂

∣∣∣ , e2 ≡
k̂× e1∣∣∣k̂× e1

∣∣∣ . (9)

With these definitions the K± fullfil the following rela-
tions [48]:

∇ ·K± = 0 , ∇×K± = ±kK± . (10)

Considering these relations the magnetic field with
∇ · B = 0 or, in Fourier space, k · B̃(k) = 0 may be

3 We adopt CGS units in this section.

decomposed as

B(x) =

∫ [
B̃+(k)K+(k) + B̃−(k)K−(k)

] d3k

(2π)3
, (11)

for which, in order for B(x) to be real, the condition

B̃+(k)e+(k) + B̃−(k)e−(k)

= B̃+(−k)∗e+(−k)∗ + B̃−(−k)∗e−(−k)∗
(12)

must hold. A possible realization of this condition is

B̃±(k)e±(k) = B̃±(−k)∗e±(−k)∗ , (13)

which can be fulfilled by setting

B̃±(k) = B̃±(−k)∗ , (14)

which we are going to use in the following. Together with
(8) and (13) this leads to

e±(k) = e±(−k)∗, (15)

and thus

e1(k) = −e1(−k) , e2(k) = e2(−k) . (16)

The B̃± may be obtained from the given spectra using
the relations [48]

1

8π
〈|B(x)|2)〉 =

∫ [∣∣∣B̃+(k)
∣∣∣2 +

∣∣∣B̃−(k)
∣∣∣2] k2 dk

16π3

≡
∫
EB(k) d ln k

(17)

and

〈A(x) ·B(x)〉 =

∫ [∣∣∣B̃+(k)
∣∣∣2 − ∣∣∣B̃−(k)

∣∣∣2] kdk

2π2

≡
∫
HB(k) d ln k ,

(18)

where A is the vector potential and EB and HB are the
spectra of the magnetic energy density and the magnetic
helicity density, respectively. EB and HB are related to
each other through the inequality [49]

k

8π
|HB(k)| ≤ EB(k) (19)

which may be also expressed as

HB(k) = fH(k)
8π

k
EB(k) (20)

with −1 ≤ fH(k) ≤ 1.
Numerical and analytical analyses [34, 50] show that

EB is a power-law for small k, i.e.

EB ∝ kα , (21)
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with α = 5. This power-law behavior for EB is also
known as the Batchelor spectrum.

In our numerical analysis with stochastic magnetic
fields of Sec. III C, we will use magnetic fields with the
spectrum

EB ∝

{
k5 , k ≤ 2π/Lmin ,

0 , k > 2π/Lmin ,
(22)

where, for a correlation length Lc = 120 Mpc, Lmin =
8Lc/5 = 192 Mpc is the cutoff scale (cf. Eq. (28) below).

Finally, solving (17) and (18) for
∣∣∣B̃±∣∣∣2 gives

∣∣∣B̃±∣∣∣2 =
8π3

k3

[
EB(k)± k

8π
HB(k)

]
=

(
2π

k

)3

[1± fH(k)]EB(k) .

(23)

With these considerations the procedure for sampling

a magnetic field for given spectra EB and HB on a grid in
x-space is the following: first, for each k in the Fourier-
transformed k-space a value for the norm of B̃(k) is gen-
erated from a normal distribution with mean value µ = 0
and standard deviation σ = 2(2π/k)3EB(k) as follows
from (23) with fH = ±1. Next, we include a random
phase factor

B̃±(k) =
∣∣∣B̃±(k)

∣∣∣ [cos θ±(k) + i sin θ±(k)
]
, (24)

where θ±(k) are random phases distributed uniformly

on [0; 2π). Once we have B̃±(k), we use Eq. (14) to find

B̃±(−k). These B̃±(k) can then be plugged into (11) to
obtain the value for B(x) at a given x.

As sometimes it is more convenient to have B̃(k) given
in terms of the real and imaginary parts, we use Eq. (8)
to write it down in the form

B̃(k) = B̃+(k)e+(k) + B̃−(k)e−(k)

=
1√
2

{[(∣∣∣B̃+(k)
∣∣∣ cos θ+ +

∣∣∣B̃−(k)
∣∣∣ cos θ−

)
e1 +

(
−
∣∣∣B̃+(k)

∣∣∣ sin θ+ +
∣∣∣B̃−(k)

∣∣∣ sin θ−) e2

]
+ i
[(∣∣∣B̃+(k)

∣∣∣ sin θ+ +
∣∣∣B̃−(k)

∣∣∣ sin θ−) e1 +
(∣∣∣B̃+(k)

∣∣∣ cos θ+ −
∣∣∣B̃−(k)

∣∣∣ cos θ−
)
e2

]}
.

(25)

III. RESULTS

In this section we present the results. Some prelim-
inary considerations regarding the setup of simulations
should first be made.

We use the Large Sphere Observer approach which is a
computationally efficient method for studying cosmic and
gamma rays from a single source [51, 52]. It is defined
by the fact that this source is located in the center of a
sphere which has a radius equal to Ds, the distance from
the source to the observer. Hence, if a particle crosses
the sphere from the inside to the outside, it is flagged
‘detected’. This will henceforth be called a ‘hit’ and it
corresponds to the particle reaching the observer.

The source can emit gamma rays either within a jet or
isotropically. Due to the choice of a large sphere as an
observer, all events above a given energy threshold (here
we use 1.5 GeV) are detected. Moreover, we can easily
select a subset of the events and consider an arbitrary
emission pattern, such as a jet of arbitrary half-opening
angle Ψ, or an emission around an arbitrary direction
tilted with respect to the line of sight.

Simple geometrical considerations allow us to correct
the arrival directions on the large sphere to mimic Earth’s
field of view. In the sky maps presented in this work,

for each hit, the corresponding coordinate system of the
observer is placed such that its origin is located at the
position of the hit while the z axis points towards the
source, i.e. in the direction of the center of the sphere.
In order to determine the directions of the x and y axes,
we take a “global” reference frame at a fixed point of the
sphere and parallel-transport it along a geodesic to the
location of the hit. Then the spherical angles of the event
are measured in the local frame located at the hit point.

While the “Large Sphere Observer” method is econom-
ical as no photons are wasted, one possible concern is that
in a realistic set-up most photons would indeed be wasted
and the actual halo morphology would be sensitive to the
absent photons. However, our results in the test case of
a uniform magnetic field correlate well with analytic sim-
ulations [39], giving us confidence in the method.

The magnetic field (except for the uniform case) is
sampled in a grid with 10003 cells, where each cell has a
size of ∼ 10 Mpc.

A. Comparison with Analytic Estimates

For a gamma ray emitted at TeV energy ETeV and
observed at an energy Eγ , originating from a source
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FIG. 1: Arrival directions of photons from a monochromatic TeV blazar emitting gamma rays with energies ETeV = 10 TeV in
a collimated jet, in the energy range of 1-100 GeV, projected onto a plane, are shown in the upper row; the color scale indicates
the number of photons per bin. The deflection angle (θ) of observed gamma rays as a function of the energy are presented in
the bottom row. The magnetic field is stochastic with a spectrum according to (21) and a mean field strength of 10−15 G (left
column) and 10−16 G (right column); blue dots correspond to simulation results and the black line represents the analytical
prediction using Eq. (26).

(blazar in our case) located at redshift zs and distanceDs,
traversing a magnetic field of strength B, the expected
average angular arrival direction is [18]

θ(Eγ) ' 0.05◦κ(1 + zs)
−4

×
(
B

fG

)(
Eγ

0.1 TeV

)−1(
Ds

Gpc

)−1(
ETeV

10 TeV

)−1

.(26)

This formula is only a rough estimate where κ is a factor
close to unity, κ ' 1, which varies slightly with the EBL
model chosen. Furthermore, this equation is only valid if
the coherence length (Lc) of the field is much larger than
the propagation length of electrons before they upscatter
photons via inverse Compton. This is always true in
our simulations because the propagation length is of the
order of 30 kpc, whereas the minimum coherence length
is 10 Mpc.

In order to compare our results with Eq. (26), we sim-
ulate the propagation of gamma rays with initial energies
ETeV = 10 TeV, distance Ds = 1 Gpc (zs ' 0.25), emit-
ted in a collimated jet along the line of sight assuming
stochastic magnetic fields with strength of B = 10−16 G
and B = 10−15 G. The maps containing the arrival di-
rections are shown in the top panel of Fig. 1.

We have compared the deflections obtained from the
simulations with the theoretical prediction of Eq. (26).
This is shown in the bottom panel of Fig. 1. The results
show a good agreement with the expected deflections.
Differences are due to the nature of the analytic formula
itself, which has been derived in [18] using various sim-
plifying assumptions. Furthermore, as has been pointed
out in Ref. [18], the deflection angle is highly sensitive
to the particular EBL model used. In particular, for the
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EBL model used here (Kneiske & Dole [47]), we expect
κ ≈ 2.3. As pointed out in Ref. [18], 0.3 . κ . 3.0 for
typical EBL models found in the literature.

B. Uniform Magnetic Fields

We now consider a simple scenario with a uniform mag-
netic field. By definition, a uniform magnetic field has
a preferred direction, and therefore one has to distin-
guish among three general cases depending on the orien-
tation of the magnetic field with respect to the axis of
the jet: parallel, perpendicular, and intermediate orien-
tation. The jet direction is assumed to be along the line
of sight.

In Fig. 2 these different cases are shown for a magnetic
field of strength 10−15 G, assuming that the gamma rays
are emitted in a jet with a half-opening angle of 5◦ and
with energy ETeV = 10 TeV. The results for the three
cases with a specific focus on their energy dependence
are shown in Fig. 2.

The results for the first case, in which the magnetic
field is parallel to the jet axis, are rather intuitive and
are shown in the upper left panel of Fig. 2. One can see
that there is only one possible arrival direction, face-on,
i.e. θ = 0◦, which means that only electrons created with
momenta parallel to the magnetic field lines, and thus not
influenced by the Lorentz force, can reach the observer.
Any electron that deviates from the line of sight will have
a trajectory that leaves the plane spanned by the line of
sight and the velocity direction of the initial TeV photon
and will not reach the observer.

The second case, shown in the top right panel of Fig. 2,
has a magnetic field perpendicular to the line of sight.
Here only photons arriving in a plane perpendicular to
the magnetic field are detected. This means that the
parent-electrons of these photons describe circular mo-
tion in this same plane. If an electron has a velocity
component parallel to the magnetic field, it is initially
directed away from the line of sight, and there is no com-
ponent of the Lorentz force that can bend it back towards
the observer.

In the case of an intermediate orientation of the mag-
netic field, illustrated through the bottom panel of Fig. 2
for a tilt angle of 45◦ (left) and 75◦ (right), we obtain re-
sults between the two extreme cases previously discussed,
as expected. It is interesting to notice that the patterns
are now smeared out since electrons from a range of di-
rections can be directed towards the observer. Still, the
dilution of the signal is small compared to the actual de-
flection, and hence this can be observed. Therefore, rel-
evant information can still be extracted from sky maps
by using the morphology of the arrival directions.

C. Stochastic Helical Magnetic Fields

Now we introduce magnetic helicity to the simulations.
The source is assumed to have a half opening angle Ψ =
5◦. We take the field to be stochastic with a Batchelor
spectrum as in Eq. (22). As we are assuming the maximal
helical case, i.e. fH = ±1, this also fixes the spectrum of
HB(k) according to Eq. (20). The field has an average
field strength of Brms = 10−15 G and a correlation length
of Lc ' 120 Mpc. Here, B2

rms can be extracted from
Eq. (17) by setting

B2
rms ≡ 〈|B(x)|2)〉 =

1

(2π)3

∫ ∣∣∣B̃(k)
∣∣∣2 d3k

= 8π

∫
EB(k)d ln k ,

(27)

while Lc is defined by [53]

Lc =
1

(2π)3

π

B2
rms

∫
|B̃(k)|2k−1 d3k

=
8π2

B2
rms

∫
EB(k)k−1d ln k ,

(28)

such that for the EB defined in (22) we have Lc '
5Lmin/8, where Lmin is the cutoff scale.

We have simulated the propagation of gamma rays
with initial energy ETeV = 10 TeV in the presence of
stochastic magnetic fields with maximally negative (fH =
−1), zero (fH = 0) and maximally positive (fH = +1)
helicities4. To simulate 105 photons in our standard
scenario described above, i.e. with Ds = 1 Gpc and
B = 10−15 G, the current version of the code takes ∼ 8
hours on 64 cores at 2300 MHz.

The actual values for helicities for the whole simula-
tion box as well as along the line sight are shown in
Fig. 5 in order to illustrate to which extent statistics
play a role. As one can see, both for the whole grid as
well as just along the line of sight, which is more impor-
tant to judge about the statistical significance for a given
case, the helicity distribution corresponds to the sign it
has been assigned. Furthermore, from the panel on the
right, one can see that for these particular realizations,
for fH = +1 the absolute magnitude of B·(∇×B) is high
close to the source and low close to the observer, while
for fH = −1 it stays roughly equal along the propaga-
tion path. We can understand the qualitatively similar
patterns for fH = ±1, i.e. both patterns are spirals with
similar twist, by noting that pair production on average
happens close to the source, and both cases have similar
helicity measures in that region. As a confirmation of

4 We could generate the fH = −1 gamma ray distribution by a
parity reversal of the fH = +1 plot. However, we simulate the
two cases independently to show two different stochastic realiza-
tions.
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FIG. 2: Energy-dependent sky maps for a uniform magnetic field with B = 10−15 G. We show the cases of a tightly collimated
jet with magnetic field parallel (top left), perpendicular (top right), and tilted by 45 deg (bottom left) and 75 deg (bottom
right) to the blazar jet direction which is taken to be along the line of sight. The different colors represent the following
energy ranges: 5− 10 GeV (magenta), 10− 15 GeV (blue), 15− 20 GeV (green), 20− 30 GeV (yellow), 30− 50 GeV (orange),
50− 100 GeV (red).

this interpretation we found that in simulations in which
the absolute value of B · (∇×B) is small close to the
source, the spiral-like structures tend to be less distinct.

The sky map containing the arrival directions of
gamma rays are shown in Fig. 3. We consider both the
case for which the jet is directed along the line of sight
(left column) and for which it is tilted by 5◦ (right col-

umn). For the former one can see the impact of magnetic
helicity by comparing the top (fH = −1) and bottom
(fH = +1) panels. A remarkable spiral-like pattern is
clearly visible, being left- or right-handed depending on
whether the helicity is negative or positive, respectively.
For zero helicity (fH = 0, middle panels), on the other
hand, no clear orientation can be seen.
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FIG. 3: Sky maps of arrival directions of photons from a blazar at a distance Ds = 1 Gpc emitting photons with energy
ETeV = 10 TeV in a jet with a half opening angle of Ψ = 5◦ directed at the observer (left column) and tilted by 5◦ with
respect to the line of sight (right column), respectively. The magnetic field is assumed to be stochastic with RMS strength
of B = 10−15 G, coherence length Lc ' 120 Mpc, and maximal negative (upper panels, fH = −1), null (central, fH = 0) and
maximal positive (lower panels, fH = +1) helicities, respectively. The colors represent the same energies as in Fig. 2.



9

FIG. 4: Sky maps of arrival directions of photons from a blazar at a distance Ds = 1 Gpc emitting photons with energy
ETeV = 10 TeV in a jet with a half opening angle of Ψ = 5◦ directed at the observer. The magnetic field is assumed to be
stochastic with RMS strength of B = 10−15 G and a coherence length of Lc ' 50 Mpc (left), Lc ' 150 Mpc (center) and
Lc ' 250 Mpc (right) for fH = +1. The colors represent the same energies as in Fig. 2.
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FIG. 5: Different magnetic helicity measures for the three cases shown in Fig. 3, i.e. negative helicity (fH = −1, red), zero
helicity (fH = 0, black) and positive helicity (fH = +1, blue). The left panel shows the total distribution of “physical helicity”,
defined as B · (∇×B), in the whole simulation box, normalized to 1. In the center panel the same measure is shown, however
restricted only to the line of sight and the neighboring cells. Finally, the right panel shows the helicity values along the line of
sight from the source (at x = 0 Mpc) to the observer (at x = 1000 Mpc).

We show here the results for Lc ' 120 Mpc. For lower
coherence lengths (Lc . 50 Mpc) and B . 10−15G we
find that the arrival direction pattern is washed out, and
it is not possible to infer the presence of helicity, thus
confirming the analytical predictions of Ref. [39] for this
combination of parameters using simulations. This can
be seen in Fig. 4 where the results for different Lc and
fH = +1 are shown. While for Lc = 250 Mpc a clear
characteristic spiral in the arrival directions can be seen,
it becomes less visible for Lc = 150 Mpc and disappears
for Lc = 50 Mpc. Therefore, Lc = 120 Mpc is a reason-
able choice in order to show the effects of helicity dis-
cussed below. It is also a valid value in certain magneto-
genesis scenarios [54].

To understand the dependence of the spiral pattern
on the coherence scale, we note that, for small coher-
ence lengths, the spirals become too tight to be resolved,
i.e. their angular size becomes too small compared to the
overall halo [39]. It seems, however, that the quality of
the spiral might be highly sensitive to the specific values
of the parameters of the setting such as B, Ds and Lc

which we will further investigate in the future.

On the other hand, for larger coherence lengths the
spirals tend to a straight line, similarly to the top right
panel of Fig. 2, approaching the case of a simple uniform
magnetic field. This, again, is rather intuitive, since if
Lc & Ds, the stochastic magnetic field will effectively be
uniform on the length scales in question.

On the right hand side of Fig. 3 we show the same
scenario described above, but this time the direction of
the jet is tilted by 5◦ with respect to the line of sight.
As one can see in the figure, this reduces the effective
area of arrival directions and also the symmetry of the
pattern. In our example, for instance, one of the “arms”
of the spiral pattern or a part of it is removed. This
enables us to apply the Q-statistics [37] (discussed below)
to relate the helicity of the field with the arrival directions
of gamma rays. It should be noted that all findings of
this and the previous sections are in good agreement with
the analytic predictions of Ref. [39].
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D. Computing the Q-factors

One possibility to quantify the role of magnetic helicity
is to use the Q-statistics, introduced in Refs. [36–38].
The key elements here are the observed energies and the
arrival directions of gamma rays at Earth. For sets of
photons with energies E1, E2 and E3 with E1 < E2 < E3,
the Q-statistics is given by [37]

Q(E1, E2, E3, R) =
1

N3

N3∑
j=1

[η1j(R)× η2j(R)] · nj(E3) ,

(29)
where nj(Ea) is the arrival direction of the j-th photon
with energy Ea, Na is the total number of photons of
energy Ea, and ηaj(R) is given by

ηaj(R) ≡ 1

Na

∑
i∈Da(nj(E3),R)

ni(Ea) , (30)

where Da(nj(E3), R) represents the set of photons of en-
ergy Ea that are located in a disk of radius R centered on
nj(E3). Essentially, the Q-statistics is the average value
of the triple product of photon arrival vectors of ener-
gies E1, E2, E3 that lie within an angle R of the highest
energy photon (E3).

As has been shown in Refs. [36–38], the calculation of
the parity-odd statistics, or Q-statistics, should enable
us, depending on the sign and general shape of the Q-
factors for different values of E1, E2, E3, and R, to draw
conclusions about the helicity of the intervening helical
magnetic field.

We now use Eq. (29) to calculate the Q-factors for the
three helicity scenarios analyzed (fH = −1, 0 and 1).
We display the results for the case of tilted jets (i.e. the
scenario shown in the right panel of Fig. 3) in Fig. 6.
We consider triplets of energies (E1, E2, E3) as needed
for Eq. (29), where each energy Ei corresponds to an
interval [Ei, Ei + 10 GeV].

The reason we consider the scenario of tilted jets is that
this is the most probable case – it is very unlikely for the
blazar jet to be directed exactly along the line of sight.
As discussed in Ref. [38], the function Q(R) is expected
to start at the origin since the angular deflections are
small for small R. For larger R, the magnetic helicity
causes Q to grow, and at much larger R, Q will approach
a constant value (Q∞) as there are no more photons to
include at such large R. The large R behavior gets mod-
ified in a realistic setting where, in addition to the blazar
photons, we also observe background photons from other
sources. Then, for large R, the blazar contribution gets
diluted by the background noise and Q decreases to zero.
In this case, we would see a peak in Q(R) whose posi-
tion is set by the relative number of blazar to background
photons. In our simulations, however, we do not include
background photons and indeed find Q → Q∞ at large
R.

E. Computing the S-Statistics

As the last part of our results we present a new alter-
native way to quantify the pattern of gamma ray arrival
directions and thus, indirectly, the helicity orientation.
The idea underlying idea of this new method that we de-
note S-Statistics (for “Spiral”) is that a gamma ray from
a cascade that has a greater deflection away from the
source direction due to the magnetic field will also have
a greater azimuthal deflection if the magnetic field is he-
lical. The pattern of observed gamma rays will have a
spiral structure that can be measured by finding the av-
erage deflection of gamma rays, θ̄(φ,Eγ), as a function of
the azimuthal angle φ and the considered gamma ray en-
ergy Eγ . We assume that there is at least one angle φmax

for which θ(φ,Eγ) has a well-defined and significant max-
imum, i.e. a maximum from an average in a bin which has
a reasonable number of photons and is statistically signif-
icant. We consider events inside a band around φmax with
width 2∆φ, i.e. events with φmax−∆φ ≤ φ ≤ φmax +∆φ.
For a right-handed spiral there should be higher values of
θ(φ,Eγ) for φ < φmax than for φ > φmax inside the band,

while for a left-handed pattern θ(φ,Eγ) should be smaller
for φ < φmax than for φ > φmax. In other words, the
peak of the function θ̄(φ) should be skewed to the right
or to the left depending on whether the spiral is right- or
left-handed, respectively. By finding a measure for this
asymmetry or skew of the maximum one can deduce the
orientation and subsequently the magnetic helicity.

More concretely, the calculation is performed in the
following way: first, we subdivide the interval on which
φ is defined, i.e. φ ∈ [0, 2π), in nbin bins, such that each
of the bins has a width δφ = 2π/nbin. The jth bin, which
corresponds to the interval [(j−1)δφ, jδφ), j = 1, ..., nbin,
will be labeled φ(j) = (j−1)δφ. For each bin we calculate
θ by

θ(φ(j), Eγ) =
1

Nj

∑
{i|φ(j)≤φi<φ(j+1)}

θi , (31)

where (φi, θi) are the coordinates of the ith event in the
set {i|φ(j) ≤ φi < φ(j+1)} and Nj is the total number

of events in this set. If {i|φ(j) ≤ φi < φ(j+1)} is empty,
we set θ(φ(j), Eγ) = 0. Furthermore, for real data it
might be necessary to restrict the analysis to events with
θ smaller than a certain value θmax as for θ > θmax back-
ground photons might dominate and result in a false sig-
nal.

In this set of θ(φ(j), Eγ) one now has to identify the rel-
evant and significant maxima as well as the corresponding
bin number jmax and calculate the quantities

Φ− =

jmax−1∑
j=jmax−δbin

θ(φ(j), Eγ), Φ+ =

jmax+δbin∑
j=jmax+1

θ(φ(j), Eγ),

(32)
where δbin ≥ 1 is the number of bins we need to consider
in order to include the width of the peak. Here one has
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FIG. 6: Q-statistics for the case of a source tilted 5◦ with respect to the line of sight, for Ds = 1 Mpc, ETeV = 10 TeV and
Ψ = 5◦. All panels correspond to the three right hand panels of Fig. 3, i.e. fH = −1 at the top, fH = 0 in the middle fH = +1
at the bottom panel. The triplets in the legends correspond to E1, E2, E3 in GeV, each in intervals of [Ei, Ei + 10 GeV].

to assume periodicity, i.e. θ(φ(j+nbin)) = θ(φ(j), Eγ). Es-
sentially Φ− corresponds to the average value of θ̄ to the
left of the peak and Φ+ to the right of the peak.

The final step is to define the S-statistics that measures
the skewness of the peak

S ≡ Φ− − Φ+

Φ− + Φ+
(33)

For a right-handed spiral S will be positive, whereas for
a left-handed spiral it will be negative.

We performed this computation for the data shown in
Fig. 3. The plots for θ(φ,Eγ), shown for different ener-
gies, are presented in Fig. 7. Even without any further
analysis one can see in this figure that the peaks for op-
posite orientations indeed show opposite skews – while on
the left panel higher angles are achieved for φ > φmax,
on the right panel, even more clearly, that is the case for

φ > φmax. For the central panel, however, peaks of either
skewness are found.

In order to support these qualitative considerations,
one has to look at the S-values which have been calcu-
lated and are presented for the three cases in Tabs. I–III.
The most clear case here is the one for fH = −1, where for
all energy ranges we obtain S < 0 with two values even
going as low as S ' −0.5. This means that the morphol-
ogy of the arrival directions is solely right-handed which
is also clearly seen in the top panel of Fig. 3. For the
case of fH = +1 the situation is less clear as there is
only one value being as high as S ' +0.48. Nevertheless,
since S is positive for all energy ranges with three excep-
tions for which, however the absolute value of S is close
to zero, this is strong evidence for a left-handed orienta-
tion. Finally, no clear statement can be made regarding
the case with no helicity (fH = 0) – here one does not
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FIG. 7: The average polar angle θ in dependence on the azimuthal angle φ, as calculated in (31) for the three cases fH = −1
(left), fH = 0 (center) and fH = +1 (right), corresponding to the three cases in Fig. 3. Here we have chosen nbin = 20. The
colors correspond to the energy ranges of the arrival energies Eγ in the same way as in Fig. 2, i.e. 5 − 10 GeV (magenta),
10− 15 GeV (blue), 15− 20 GeV (green), 20− 30 GeV (yellow), 30− 50 GeV (orange), 50− 100 GeV (red).

find significant negative or positive values for S.
As the last step, we need to connect the handedness

of the arrival direction pattern with the sign of helicity.
Their correlation has been found in Ref. [39], where an
analysis has been carried out for a homogeneous mag-
netic field. In this reference the authors indeed find that
for a positive helicity one expects a right-handed orien-
tation, whereas for negative helicities a left-handed ori-
entation should be observed, thus confirming our results
for stochastic fields.

As a concluding remark it should be stated that for the
results presented above we used simulations containing
approximately 1.4×105 photons arriving at Earth in the
energy range 1.5 ≤ Eγ/GeV ≤ 100, which provided clear
patterns with satisfactory statistical significance. The
upcoming Cherenkov Telescope Array (CTA) [55] might
be able to detect this kind of signature in the energy
range E ' 10 − 100 GeV with & 10 hours of observa-
tion. Fewer photons would distort the picture since, for
example in the case of the S-statistics, the peaks would
become less visible, such that a reliable calculation would
no longer be possible. This is the case for high energy
photons as their contribution to the total flux is rather
small. On the other hand, for the lowest energies (∼ a
few GeV), even with as few as 104 photons relevant peaks
can be seen, which, however, might be more difficult to
construe in a more realistic case considering additionally
diffuse gamma ray radiation and multiple sources.

IV. DISCUSSION AND OUTLOOK

We have performed three-dimensional Monte Carlo
studies of the development of gamma-ray-induced elec-
tromagnetic cascades in the intergalactic medium in the
presence of magnetic fields. We have used the “Large
Sphere Observer” method for improved computational

TABLE I: Table for S for maximal negative helicity (fH =
−1).

Eγ/GeV jmax φmax/deg Φ− Φ+ S

5–10
6 108.0 0.768 1.67 -0.37

16 288.0 0.649 1.60 -0.42

10–15
7 126.0 0.813 0.904 -0.05

17 306.0 0.709 0.882 -0.11

15–20
7 126.0 0.472 0.818 -0.27

18 324.0 0.637 0.473 0.15

20–30
6 108.0 0.222 0.625 -0.48

17 306.0 0.370 0.428 -0.07

30–50
6 108.0 0.163 0.507 -0.51

16 288.0 0.170 0.385 -0.39

50–100
7 126.0 0.151 0.200 -0.13

17 306.0 0.145 0.172 -0.09

TABLE II: Table for S for vanishing helicity (fH = 0).

Eγ/GeV jmax φmax/deg Φ− Φ+ S

5–10
4 72.0 1.69 12.12 -0.11

17 306.0 2.99 1.69 +0.28

10–15
6 108.0 1.80 1.04 +0.27

17 306.0 2.21 1.28 +0.27

15–20
5 90.0 1.12 1.07 +0.02

13 234.0 1.01 1.28 -0.12

20–30
6 108.0 1.02 0.610 +0.25

16 288.0 1.07 0.608 +0.28

30–50
4 72.0 0.463 0.470 -0.01

14 252.0 0.491 0.511 -0.02

50–100
4 72.0 0.277 0.275 +0.00

16 288.0 0.418 0.218 +0.31
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TABLE III: Table for S for maximal positive helicity (fH =
+1).

Eγ/GeV jmax φmax/deg Φ− Φ+ S

5–10
19 342.0 1.23 1.01 +0.10

9 162.0 1.15 1.32 -0.07

10–15
19 342.0 0.888 0.713 +0.11

9 162.0 0.785 0.822 -0.02

15–20
0 0.0 0.722 0.284 +0.44

9 162.0 0.594 0.542 +0.05

20–30
19 342.0 0.428 0.309 +0.16

10 180.0 0.655 0.405 +0.24

30–50
19 342.0 0.296 0.203 +0.19

9 162.0 0.285 0.338 -0.08

50–100
19 342.0 0.157 0.131 +0.09

10 180.0 0.120 0.138 +0.18

performance. In this case all cascade photons hitting
the surface of the sphere are detected by the the ob-
server. With a standard three-dimensional Monte Carlo
simulation most cascade photons would not reach Earth,
resulting in wasted computation and very low statis-
tics. A simplification made in our treatment is that
the magnetic field evolves adiabatically with redshift as
B(z) = B(z = 0)(1 + z)2. This is justified because the
cascade development we have discussed occurs in cosmic
voids where MHD amplification and contamination by
sources is minimal. Also, the sources are at redshifts
z . 1.

We first compared our computational setup with an-
alytical approximations and then validated it in simple
scenarios containing a uniform magnetic field oriented
parallelly and perpendicularly to the line of sight of the
blazar jet. As expected, for a magnetic field parallel
to the direction of the jet of half-opening angle Ψ, as-
sumed to be pointing toward Earth, effects of the field
were not observed. For a magnetic field perpendicular to
the direction of the jet, deflections were non-zero and in
the expected direction. Similar results were obtained for
stronger and weaker magnetic fields and other orienta-
tions. These results are in accordance with Ref. [39] and
also with the predictions of Eq. (26).

We have also studied the particular case of a mag-
netic field with a Batchelor power spectrum with and
without helicity. The effects of helicity can be clearly
seen in Fig. 3, where arrival directions follow right- or
left-handed spirals, depending on the sign of the helic-
ity. For stochastic fields, in general, the results tend to
converge toward the case of a uniform magnetic field in
the limit of large coherence lengths. We have considered
only large values of correlation length (Lc ' 120 Mpc)
since for much smaller coherence lengths, with the other
parameters being held fixed, no clear signature of helicity
can be seen, as shown in Fig. 4. Nevertheless, one should
bear in mind that the current upper limits of coherence

length of magnetic fields in voids range between a few
and hundreds of Mpc [54], placing the chosen value of
120 Mpc well within the allowed bounds.

We have deployed the so-called Q-statistics, a pow-
erful analysis tool that makes it possible to determine
the properties of magnetic helicity directly from the ob-
servables of gamma rays measured at Earth. In this
work we for the first time applied Q-statistics to realis-
tic three-dimensional simulations of electromagnetic cas-
cades. Our results for Q are shown in Fig. 6. The plots
do not show a strong correlation between Q and the exis-
tence and sign of the helicity. At the moment we cannot
clearly state whether averaging over several objects will
show a stronger correlation. We plan on investigating
this issue in a future work.

It is important to stress the fact that Q-statistics might
not be the final method to quantify magnetic helicity,
however it is a good initial approach and has been used in
several works (Refs. [36, 37, 39]) with satisfactory results.
In this work we have, for the first time, introduced the
S-statistics, which is a direct measure of the handedness
of a pattern with respect to the line of sight. We have
shown that the orientation, represented by the sign of S,
is directly correlated with the sign of helicity. This shows
that the S measure is also a powerful tool to be used in
the analysis of helicity of IGMF.

Backgrounds at the ∼ 10-100 GeV energy range are ex-
pected due to secondary photons from AGN halos whose
jet opening angles do not encompass the Earth. Other
astrophysical sources of photons in this energy range also
exist and have to be taken into account. In this first work
we have neglected these backgrounds, which will be in-
cluded in future studies.

We found that it is probably necessary to analyze var-
ious sources in order to make a definite statement about
the sign of the helicity, since a clear signature cannot
always be seen. In the future we will extend our simula-
tions to the case of multiple sources and diffuse gamma
rays. We expect to be able to reproduce actual detec-
tions and consequently retrieve more precise information
about IGMF, which can be used to infer their origin and
evolution.

In addition, we will extend the analysis by further ex-
ploring the parameter space as varying quantities such as
the magnetic field strength Brms, the magnetic correla-
tion length Lc and source parameters such as its distance
from the observer, its energy spectrum or its cutoff en-
ergy, as they may be important in order to obtain a com-
plete picture of their influence as discussed above and to
explain actual observations.
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Creation of Magnetic Monopoles in Classical Scattering
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We consider the creation of ’t Hooft-Polyakov magnetic monopoles by scattering classical wave pack-
ets of gauge fields. An example with eight clearly separated magnetic poles created with parity
violating helical initial conditions is shown. No clear separation of topological charge is observed
with corresponding parity symmetric initial conditions.

Magnetic monopoles are of key interest in current re-
search as they embody non-perturbative aspects of field
theories. Their rich physical and mathematical prop-
erties have inspired continued investigations ever since
Dirac first proposed their existence (e.g. [1–4]). Du-
alities that relate the spectra of particles and mag-
netic monopoles can be an important element in solv-
ing strongly coupled problems [5, 6] and may also help
understand the spectrum of fundamental particles [7, 8]
In particle physics, monopoles necessarily arise in grand
unified models of particle physics, and the standard elec-
troweak model contains field configurations that corre-
spond to confined monopoles [9].

The current investigation involves the interpretation of
magnetic monopoles in terms of particles. Can we create
magnetic monopoles by assembling particles? This prob-
lem is difficult because particles are the quanta in a quan-
tum field theory and magnetic monopoles are classical ob-
jects in that field theory. No perturbative expansion of
the quantum field theory in powers of coupling constants
can describe magnetic monopoles because properties of
the magnetic monopole are proportional to inverse pow-
ers of the coupling constant. (Recent work on resurgence
in quantum mechanics [10] offers a glimmer of hope that
divergences in the perturbative expansion may hold non-
perturbative information.) A more modest objective is to
study the creation of magnetic monopoles by scattering
classical waves, where the classical waves can themselves
be thought of as quantum states containing high occu-
pation numbers of quanta. This is the approach we shall
take.

Past work on the creation of kinks in 1+1 dimen-
sions [11–17], on the decay of electroweak sphalerons
[18, 19], and on the scattering and annihilation of mag-
netic monopole-antimonopole [20], together with results
from magneto-hydrodynamics (MHD) [21], offers some
guidance on initial conditions that may be suitable for
creating magnetic monopoles. We will further explain
these motivations when describing our initial conditions.

We will work with an SO(3) field theory, as considered
by ’t Hooft [22] and Polyakov [23], that contains a scalar
field in the adjoint representation, φa (a = 1, 2, 3), and
gauge fields, W a

µ , with the Lagrangian

L =
1

2
(Dµφ)a(Dµφ)a− 1

4
W a
µνW

aµν− λ
4

(φaφa−η2)2 (1)

where,

(Dµφ)a = ∂µφ
a − igW c

µ(T c)abφb (2)

and the SO(3) generators are (T a)bc = −iεabc. The gauge
field strengths are defined by

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν . (3)

Our numerical methods are borrowed from Numerical
Relativity [24]. We use temporal gauge W a

0 = 0 and treat
Γa ≡ ∂iW

a
i as new variables whose evolution ensures

that the Gauss constraints are satisfied. The resulting
classical equations of motion that we want to solve are
written as

∂2t φ
a = ∇2φa − gεabc∂iφbW c

i − gεabc(Diφ)bW c
i

−λ(φbφb − η2)φa − gεabcφbΓc (4)

∂tW
a
0i = ∇2W a

i + gεabcW b
j ∂jW

c
i − gεabcW b

jW
c
ij

−DiΓ
a − gεabcφb(Diφ)c (5)

∂tΓ
a = ∂iW

a
0i − g2p[∂i(W

a
0i) + gεabcW b

iW
c
0i

+gεabcφb(Dtφ)c] (6)

where W a
0i = ∂tW

a
i in the temporal gauge, DiΓ

a ≡
∂iΓ

a − gεabcΓbW c
i , and g2p is a free parameter. Ana-

lytically, the square bracket in Eq. (6) vanishes due to
the Gauss constraints and the value of g2p is irrelevant.
However the square bracket does not vanish when we dis-
cretize the system and a non-zero value of g2p is critical to
ensure numerical stability [24]. After some experimenta-
tion we set g2p = 0.75 in our runs. We also set g = 0.5,
λ = 1 and η = 1 in our numerical work.

The fields are evolved using the explicit Crank-
Nicholson method with two iterations [25]. We have used
a new implementation of absorbing boundary conditions.
Essentially, only the Laplacian of the fields on the lattice
boundaries are replaced using radially outgoing bound-
ary conditions. For example,

∇2φa → −r̂ · ∇(∂tφ
a) (7)

at a boundary point with r̂ the unit radial vector from
the center of the box. The first order spatial derivatives
throughout the equations of motion are evaluated using
one-sided differences. We have found good stability and
smooth evolution with this strategy.

The non-algorithmic part of this project is to devise
initial conditions that are likely to result in monopole
creation. As noted in Ref. [15], a crucial hint comes from
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the conservation of helicity in MHD in plasmas with high
electrical conductivity. (Magnetic helicity is defined as
the volume integral of A ·B where A is the electromag-
netic gauge potential and B = ∇×A.) Combined with
the observed conservation of electromagnetic helicity dur-
ing sphaleron decay [18, 19] and the repulsive force be-
tween monopoles and antimonopoles that are twisted and
that yield magnetic helicity on annihilation [20], it seems
like a good idea to try initial conditions that are built
from helical, i.e. circularly polarized gauge waves. Also,
MHD simulations indicate that helicity causes magnetic
fields to expand out to larger length scales (“inverse cas-
cade”), so that by colliding helical waves, helicity will get
compressed, causing tension against the natural tendency
to expand. This tension can relax if helicity conservation
is violated, either with a decrease in the plasma electrical
conductivity or by producing magnetic monopoles.

The natural way to discuss initial conditions is to first
specify the value of the scalar field since this determines
the massless and massive components of the gauge fields.
In the numerics, however, it is easier to specify the gauge
field and then make various choices for the uniform value
of the scalar field, and this is how we will present the
initial conditions.

We choose only one of the 3 SO(3) gauge fields to be
non-trivial in the initial conditions. Let this be W 3

i . Ini-
tially, at t = 0, W 3

i is given separately for waves prop-
agating in the +z and −z direction in terms of scalar
functions f1(x, y), f2(t+(z−z0)) and f3(t−(z+z0)) with
z0 > 0. For the waves that are functions of t+ (z − z0),
we have:

W 3
x = ∂yf1(ωf2 − ∂zf2) cos(ω(t+ (z − z0))) (8)

W 3
y = ∂xf1(ωf2 + ∂zf2) sin(ω(t+ (z − z0))) (9)

W 3
z = ∂x∂yf1f2[cos(ω(t+ (z − z0)))

− sin(ω(t+ (z − z0)))] (10)

In this form it is easy to see that ∇ ·W 3 = 0. Then
∂tW

3
i = +∂zW

3
i gives

∂tW
3
x = ∂yf1[(ω∂zf2 − ∂2zf2) cos(ω(t+ (z − z0))

−(ωf2 − ∂zf2)ω sin(ω(t+ (z − z0))] (11)

∂tW
3
y = ∂xf1[(ω∂zf2 + ∂2zf2) sin(ω(t+ (z − z0))

+(ωf2 + ∂zf2)ω cos(ω(t+ (z − z0))] (12)

∂tW
3
z =

∂x∂yf1[∂zf2(cos(ω(t+ (z − z0))− sin(ω(t+ (z − z0)))

+ωf2(− sin(ω(t+ (z − z0))− cos(ω(t+ (z − z0)))] (13)

Since ∇ ·W 3 = 0, and the electric field E3 = −∂tW 3,
the Gauss constraint is satisfied with vanishing charge
density. We will arrange for a vanishing charge density by
taking the scalar field to have vanishing time derivative
initially

∂tφ
a|t=0 = 0. (14)

We will also take φa = constant initially, with different
choices for the constant describing different physical sit-
uations as discussed below.

For a packet traveling in the opposite direction, we
write the formulae in terms of f3(t− (z + z0)):

W 3
x = ∂yf1(−ω′f3 − ∂zf3) cos(ω′(t− (z + z0)) (15)

W 3
y = −∂xf1(ω′f3 − ∂zf3) sin(ω′(t− (z + z0)) (16)

W 3
z = ∂x∂yf1f3 (cos(ω′(t− (z + z0)))

− sin(ω′(t− (z + z0))) (17)

For these packets we use ∂tW
3
i = −∂zW 3

i to write

∂tW
3
x = −∂yf1[(−ω′∂zf3 − ∂2zf3) cos(ω′(t− (z + z0)))

−(ω′f3 + ∂zf3)ω′ sin(ω′(t− (z + z0))] (18)

∂tW
3
y = ∂xf1[(ω′∂zf3 − ∂2zf3) sin(ω′(t− (z + z0)))

−(ω′f3 − ∂zf3)ω′ cos(ω′(t− (z + z0)))] (19)

∂tW
3
z = −∂x∂yf1[∂zf3(cos(ω′(t− (z + z0)))

− sin(ω′(t− (z + z0))))

+ω′f3(cos(ω′(t− (z + z0))) + sin(ω′(t− (z + z0))))](20)

The profile functions are taken such as to create a lo-
calized packet in all directions

f1(x, y) = a exp

[
− (x2 + y2)

2w2

]
(21)

f2(t+ (z − z0)) = exp

[
− (t+ (z − z0))2

2w2

]
(22)

f3(t− (z + z0)) = exp

[
− (t− (z + z0))2

2w2

]
(23)

where a is an amplitude and w is a width. The fre-
quencies ω and ω′ can be different in general but we
only consider ω′ = ±ω. The case ω′ = ω corresponds
to scattering of left- and right-handed circular polariza-
tions, while ω′ = −ω < 0 corresponds to scattering of
left- on left-handed circular polarization waves.

Now we linearly superpose the counterpropagating
wave packets and set t = 0 to get the initial conditions
for the gauge fields for our scattering experiments.

Next we discuss the choice of the scalar field φa. The
simplest choice is φ1 = 0 = φ2, φ3 = η but this is too
simple. In this case, W 3 corresponds to the massless
“photon” of the model, and in this classical evolution,
the scattering of photons does not excite any other field.
In other words, the dynamics lies in a subspace of the
full field theory [26] and the classical dynamics is exactly
as it would be in Maxwell theory. The next choice we
considered is φ1 = η, φ2 = 0 = φ3. Now W 3 is a massive
boson of the theory. This too leads to dynamics in a sub-
space, namely that spanned by {φ1, φ2,W 3}. So now the
model is effectively the Abelian-Higgs U(1) model. It is
interesting that when we performed some runs with these
initial conditions, we did observe zeros of φa, suggesting
that we had created loops of strings. We will postpone
this investigation for the future since here we are focusing
on the production of magnetic monopoles.
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For the classical dynamics to explore the full model,
we take

φ1 =
η√
2
, φ2 = 0, φ3 =

η√
2

(24)

at t = 0. Now the initial gauge field wave packet is a
superposition of the photon and the massive gauge boson.

After the system has evolved for a while, we would
like to know if monopoles have been created. Since
monopoles are stable objects and the scalar field van-
ishes at their centers, the existence of a monopole can
be detected by looking for peaks of the potential energy
density that are close to the value λη4/4 = 0.25. We
follow the potential energy diagnostic with a calculation
of the topological winding which is defined as

W (S) =
1

8π

∮
S

dn̂iεijkεabcφ̂
a∂j φ̂

b∂kφ̂
c (25)

where n̂ is the outward unit normal to a closed surface S
and φ̂a = φa/|~φ|. We replace the continuum formula for
the winding with a discrete formula as follows. We first
define the vector, ~v, at every vertex of the lattice,

vi = εijkεabcφ̂
a∂j φ̂

b∂kφ̂
c. (26)

Then the winding for a fundamental cell of the simulation
lattice is given by

W (S) =
1

8π

∑
plaq.

(
1

4

∑
vertices

n̂ivi

)
(27)

where the outside sum is over the 6 plaquettes bounding
a cell, n̂ is the unit vector normal to the plaquette, vi
is the vector in Eq. (26) evaluated at the vertices of the
plaquette, and the 1/4 is due to an averaging over the
4 corners of the plaquette. Even though W (S) takes
integer values, the discrete version W (S) may not be an
integer. However, for large surfaces S, W (S) will also
tend towards an integer value.

Our simulations are run on a 1283 lattice with lattice
spacing dx = 0.1 with field theory parameters: g = 0.5,
λ = 1, η = 1. The initial condition parameters were cho-
sen to be: w = 0.4, z0 = 1, a = 10, ω = 4. With this
choice of parameters, the initial energy is ∼ 105 and is
much larger than the energy per monopole-antimonopole
pair, which is ∼ 102. Further exploration of param-
eters and choice of initial conditions is likely to yield
monopoles even when we start with less energy, though
intuitively the initial conditions will have to be more
finely tuned or “coherent” if we take lower initial energy.

The first indication that monopoles have been pro-
duced during evolution is that we see zeros of the Higgs.
This is shown in Fig. 1.

The presence of monopoles is confirmed by finding the
topological winding, W for every cell of the lattice. In
Fig. 2 we show the distribution of topological charge on
xy-slices, i.e. on z = constant slices of the lattice. Only

50 100 150 200 250 300
t

0.2

0.4

0.6

0.8

Min. |ϕ|

FIG. 1: Minimum value of |~φ| on the lattice as a function of
time showing that zeros of the scalar field are produced after
some evolution.

FIG. 2: Topological winding at late times on slices with z =
9.2, 10.1 and 12.1. The total topological charges on these
slices are +2, -4, and +2 respectively.
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FIG. 3: Potential energy density distribution at the final time
of the simulation on spatial slices with z = 9.2, 10.1 and 12.1.

With |~φ| = 0, the potential energy density is 0.25 for our
parameters.

slices with significant windings are shown and the to-
tal topological charge on the entire lattice vanishes. It
is clear that the scattering has resulted in 4 monopoles
and 4 antimonopoles. This is further confirmed by plot-
ting the potential energy density on these slices, shown
in Fig. 3. The peaks in the potential energy represent
monopoles within which the scalar field has a zero. In
the discrete simulation, the zero may lie within a cell of
the lattice and the potential will not quite be its maximal
value of 0.25.

The distances between monopoles and antimonopoles
can be estimated and is on the order of 3 monopole
widths where we take the monopole width to be the in-
verse scalar boson mass, mS =

√
2λη. We can estimate

the velocities of the monopoles from Fig. 1 and our choice
of time step dt = dx/4 where dx is the lattice spacing.
We find that the monopoles are relativistic with v ∼ 1.
A simple estimate of the monopole-antimonopole escape
velocity gives vesc ∼ 0.1 when the separation of the pair
is a few monopole widths. Since the monopole and anti-
monopole velocities are not aligned, the monopoles and
antimonopoles are not bound and will continue to fly
apart with time, as we observe directly during the later
stages of the simulation.

A curious feature of the final configuration of

-60 -40 -20 20 40 60
z

-0.5

0.5

1.0

1.5

Total winding per z slice

FIG. 4: Topological winding on the z = 0 slice for the ω =
+ω′ = 4 simulation. The plot does not show a clear separation
of positive and negative winding. In the second panel we show
the integrated winding per z slice as a function of z. Here
too we do not see a clear separation of positive and negative
charges.

monopoles is that they are all located at z > 0. However,
this is not in contradiction with any symmetry, since our
initial conditions for ω′ = −ω are not reflection symmet-
ric under z → −z.

We intend to automate the numerical program so that
it can scan over a range of parameters and detect and
record magnetic monopoles when they do occur. For the
time being we have tried a few different values of the pa-
rameters and find monopole creation for larger values of
the amplitude a and frequency ω. Of particular inter-
est is the dependence on the sign of ω′ that determines
whether we are scattering left-on right-handed waves or
left- on left-handed waves. The results discussed above
are for ω = 4, ω′ = −4 (left- on left-handed waves); so we
also ran the code with ω′ = +4 and all other parameters
kept the same. In Fig. 4 we show the topological winding
distribution on the z = 0 slice. The sharp negative peaks
signifying possible antimonopoles have positive peaks in
their neighborhoods and the integrated charge vanishes.
There are other peaks at non-zero z but these too have
canceling charge distributions in their vicinity. The to-
tal topological charge per z slice is plotted in the second
panel of Fig. 4 to further illustrate this feature. Hence,
simply flipping the handedness of one of the initial waves
results in evolution in which there is no clear separation
of monopole and antimonopole charge.

The probability for creating monopoles depends on the
probability measure on initial states and this depends
on the human will to create such states. For example,
the probability of creating a complex structure like the
Large Hadron Collider by pure chance is incredibly low,
nonetheless it exists. A more meaningful question is the
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sensitivity of the outcome of the scattering to small er-
rors in the initial conditions. Is the creation of monopoles
a “stable” process? In the case of kinks in 1+1 dimen-
sions, it is known that their scattering and annihilation
is chaotic [27, 28]. This ties in with the chaotic behav-
ior seen in the creation of kinks [11, 12] and it appears
that the creation of kinks is very sensitive to the initial
conditions, i.e. it is unstable. However, chaos seems to
be absent in the annihilation of magnetic monopole and
antimonopole, at least within the domain of scattering
parameters that have been investigated [20]. This sug-
gests that the creation of monopoles will also be a stable
process but is something that needs to be investigated.
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Vortex structure in superfluid color-flavor locked quark matter
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Abstract. The core region of a neutron star may feature quark matter in the color-flavor-
locked (CFL) phase. The CFL condensate breaks the baryon number symmetry, such that
the phenomenon of superfluidity arises. If the core of the star is rotating, vortices will
form in the superfluid, carrying the quanta of angular momentum. In a previous study
we have solved the question of stability of these vortices, where we found numerical
proof of a conjectured instability, according to which superfluid vortices will decay into
an arrangement of so-called semi-superfluid fluxtubes. Here we report first results of an
extension of our framework that allows us to study multi-vortex dynamics. This will in
turn enable us to investigate the structure of semi-superfluid string lattices, which could
be relevant to study pinning phenomena at the boundary of the core.

1 Introduction

In its densest form, matter appears in the color-flavor locked (CFL) phase [1]. The CFL condensate
breaks the baryon number symmetry, which renders this phase a superfluid. If this form of matter
is present in the core region of a rotating neutron star, vortices will carry the angular momentum of
the spinning core. In a recent study [2], we addressed the question of stability of these superfluid
vortices, using a Ginzburg-Landau effective theory. There, from a topological point of view, stable
vortex solutions are expected, since the first homotopy group of the vacuum manifold is non-trivial [3].
However, the global vortex solution does not possess the lowest energy, and it has been conjectured
that the vortex undergoes a decay into a configuration of a triplet of well-separated semi-superfluid
strings [4]. In our study [2], we not only observed and numerically confirmed this decay, but we
also mapped out the stability-/metastability boundary in the parameter space of the couplings. We
furthermore identified an analytically constructed mode that proved to be sufficient to trigger the
decay of a global vortex. Let us briefly review our findings here. Assuming mu = md = ms = 0, the
Ginzburg-Landau Lagrangian of the effective theory reads

L = Tr
[
−

1
4

Fi jF i j + DiΦ
†DiΦ + m2Φ†Φ − λ2(Φ†Φ)2

]
− λ1(Tr[Φ†Φ])2 +

3m4

4λ
, (1)
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where Di = ∂i − igAi is the covariant derivative, Fi j = ∂iA j − ∂ jAi − ig
[
Ai, A j

]
is the gauge field-

strength tensor, and the Ai represent the gauge fields (gluons). The coupling λ is a linear combination
of the original self-couplings of the condensate,

λ ≡ 3λ1 + λ2. (2)

The matter field Φ represents the CFL condensate, and has a 3c × 3 f complex matrix structure. A
general entry of the Φ matrix is thus characterized by a color index α and a flavor index a, φαa. In the
broken phase, the vacuum expectation value (vev) is given by

Ai = 0 , Φ = φ̄13×3 , φ̄ =

√
m2

2λ
. (3)

A (global) superfluid vortex can then be written as

Ai = 0 , Φsf = φ̄ β(r)eiθ 13×3 , (4)

where β(r) is the radial profile obtained from solving

β
′′

+
β
′

r
−
β

r2 − m2β(β2 − 1) = 0 , (5)

with the boundary conditions β → 0 as r → 0 , and β → 1 as r → ∞ . A (red) semi-superfluid flux
tube, on the other hand, can be written as

Φssft(r, θ) = φ̄

 f (r)eiθ 0 0
0 g(r) 0
0 0 g(r)

 , (6)

Assft
θ (r) = −

1
gr

(1 − h(r))

 −
2
3 0 0

0 1
3 0

0 0 1
3

 , (7)

Assft
r = 0 . (8)

and the solutions for the green and blue flux tubes follow from swapping the diagonal elements of
the matrix. The profile functions f (r), g(r) and h(r) obey a set of coupled differential equations, see
equations (10)-(14) in [2]. As discussed in our paper, far from the core of the vortex, the energy
density of one semi-superfluid flux tube is one ninth of the energy density of a global vortex,

εsf = 3φ̄2/r2,

εssft = 1
3 φ̄

2/r2,
(9)

which is the cause of the instability. In the case of vanishing gauge coupling, we identified an unstable
mode analytically,

δΦ(8) = ε n̂·∇ψ(r, ) T8 . (10)

This mode establishes a distortion of the red and green components of the vortex by a small amount ε
in direction of the unit vector n̂, while shifting the blue component by an amount of 2ε in the opposite
direction. This perturbation of the global vortex can be plugged into the Hamiltonian density, and the
change in energy density evaluates to

δE8 = ε2(λ2 − λ)
πm4

λ2

∫ ∞

0
rdrβ

′2β2 . (11)



Figure 1. The parameter space of the couplings g, λ and λ2. Points behind the surface form the region of
meta-stability, all other points constitute the region of instability.

For λ2 > λ, this clearly lowers the energy and is thus an unstable direction. Depending on the gauge
coupling g and the condensate self-couplings λ1 and λ2, there are regions in parameter space where
the global vortex solution is unstable and decays immediately, but we could also identify regions of
meta-stability, see Figures 1 and 2. In Figure 2, the solid line corresponds to the instability boundary
in parameter space as derived from the perturbation (10), which seems to hold approximately for small
gauge couplings.

The dashed line in Figure 2 corresponds to the region in parameter space where λ1 = λ2. This
has been identified as the physically relevant regime at ultra-high density, where the coupling is suffi-
ciently small to allow for mean-field calculations, [5, 6],

λ1 = λ2 =
λ

4
=

36
7

π4

ζ(3)

(
Tc

µ

)2

. (12)

If this result can be extrapolated to densities where the system is strongly coupled, our study indicates
that there are no regions of metastability for the physically relevant case. This is supported by the fact
that the region of metastability dies away quickly with increasing coupling g.

2 Initial condition and boundary treatment for multi-vortex dynamics

So far we have explored the behavior of a single global vortex, as well as arrangements of three well-
separated semi-superfluid flux tubes. Currently we are investigating two possible extensions to our
numerical framework. On the one hand, we introduced strange-quark mass asymmetry, where we
followed the work of [7]. Our findings will be presented in a future publication. On the other hand,
we study the dynamics of multiple vortices on the lattice, which introduces several complications. In
these proceedings, we discuss the first steps in the simulation of multiple vortices on the lattice. To
set up many vortices on the lattice, we first obtain a radial profile for a winding-one global vortex by
solving (5) using a relaxation method on a large grid with high precision. In the absence of a gauge
field at initial time (that is, the link variables are unity), we construct the Φ-field in the presence of N
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Figure 2. Slices through the parameter space of the couplings for different values of g. The shaded area is the
region of meta-stability, its complement constitutes regions of instability. The dashed line is the projection of
the plane of weak-coupling results, see text. The solid line represents λ = λ2, which, in the case of vanishing
gauge coupling, should yield the boundary of stability/meta-stability. Note that the metastability region can be
characterized by λ1 <∼ − 0.16g. For fixed values of g and λ1, a change in λ2 has almost no effect on the stability
boundary.



vortices according to

Φ =

 N∏
i=1

β(ri)

 exp

i
N∑

i=1

niθi

 φ̄13×3, (13)

which is just a superposition of the N vortices. At a given point (r, θ), the variable ri indicates the
distance to a vortex at position i, and θi is the angle with respect to the vortex at position i. Even
though we plan to simulate systems of multiple vortices at non-zero gauge coupling in the unstable
regime, we start with the most simple case of zero gauge coupling and in the meta-stable region of
couplings. In this case, the Ansatz (13) is all we need. Since the superfluid vortices feature a repulsive
behavior, they separate quickly once we start our simulation, and, if we use the boundary conditions
of our previous study, approach the boundary and pin there. As far as semi-superfluid strings are
concerned, the fixed boundary case of our initial work should serve our purpose, since the boundary
is repulsive to the individual flux tubes. Together with the repulsion of the semi-superfluid vortices
among themselves, this will allow us to find the lattice structure of the multi-fluxtube arrangement.
However, at this point we have not yet observed the decay into semi-superfluid fluxtubes in the multi-
vortex system, and in this first step we intend to study the numerically much cheaper approach of
global vortices only. We thus have to use a modification of the first boundary condition. Using fixed
boundary conditions without any modifications also introduces the problem that, far away from the
center, many vortices constitute a large overall winding number, which in turn causes the energy
density to increase with decreasing distance to the boundary. In order to cancel some of the winding,
we introduced a grid of vortices which resides beyond the boundary, that is, outside of the simulation
region. The presence of those vortices, however, is taken into account when the initial condition is
computed, and, in particular, is frozen into the fixed boundary, see Figure 3.

Figure 3. Example of the energy density of an initial configuration of 90 vortices. The vortex positions have been
chosen randomly, with the additional constraint of a minimal vortex separation of 35 lattice units. In addition to
the 90 vortices, one can see the vortices sitting beyond the simulation region. They appear as ’shadows‘ along the
edges of the lattice. Those vortices have been frozen into the fixed boundary condition at initial time, and help in
providing a better initial setting for large vortex number arrangements, see text.



3 Time evolution of a multi-superfluid-vortex arrangement

In this section we show the time evolution of a random setting of 90 vortices on a 448 × 448 lattice at
vanishing gauge coupling in the meta-stable regime of the theory. In this case, the superfluid vortices
won’t undergo the decay to the semi-superfluid fluxtubes, but are expected to form a hexagonal lattice
structure. Snapshots of the time evolution of a first simulation run are shown in Figure 4. In this run
we have used a very high damping factor, in order to relax the system towards its lowest energy state
as gentle as possible. This is necessary, since the initial state has a high vortex (winding) number, and
since our Ansatz is not the lowest energy state, it has a lot of excess energy. The downside of a high
damping factor is a very slow time evolution, which is evident from the comparably small changes
in the configurations shown in Figure 4(a), despite the large time separation of the configurations. In
this first simulation run we successfully managed to simulate the time evolution of a state with very
high vorticity in a controlled and stable way. The vortices separate, and seem to prefer to occupy the
boundary, which requires some improvement of the boundary condition. So far we did not observe
the expected hexagonal lattice structure, however, this should be easily achievable by an appropriate
choice of initial condition and simulation parameters.

4 Conclusions and outlook

In this progress report we have reviewed our findings from our previous study [1], where we have
found numerical proof of the instability of superfluid vortices in CFL quark matter. We identified re-
gions of stability and metastability in the parameter space of the couplings, and connected our result to
the physically relevant regime by extrapolating weak coupling results. This indicates that superfluid
vortices are unstable in CFL quark matter. An analysis of the coupling dependence of the stabil-
ity/metastability boundary revealed that it seems to be independent of the coupling λ2, which raises
the question of the role of the condensate self-couplings in the decay process. We also constructed a
mode that is sufficient to trigger the decay of a superfluid vortex into the triplet of semi-superfluid flux-
tubes. The phenomenological consequences of the instability, for example on neutron star glitches,
remain elusive for now, since that requires a thorough understanding of a pinning mechanism. As a
first step towards a better understanding of the dynamics of a system with high vorticity we extended
our framework and presented first results for the time evolution of a multi-superfluid-vortex system.
We modified the boundary conditions slightly, which allows for a better initial setting of a multi-vortex
state, and simulated a system of 90 superfluid vortices in a controlled and stable way. Because it is
numerically less expensive, we started with the zero-gauge coupling case, and focused on the stable
regime of condensate self-couplings. As a next step, we intend to study the non-zero gauge coupling
case. This is numerically more expensive, since, on the lattice, gauge fields are represented as link
variables corresponding to group elements, and their time evolution involves a matrix exponential. In
order to speed up the code, we thus plan to use Graphics Processing Units (GPUs), which allows for
much faster evolution on larger lattices.
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(a) (b)

(c) (d)

Figure 4. Energy density snapshots of the time evolution of an initial arrangement of 90 vortices at random
positions with minimal initial vortex-vortex separation of 15 lattice units, using the improved fixed boundary
condition discussed in Section 3. The panels 4(a),4(b),4(c) and 4(d) show the state of the system at initial time,
and at t = 1000, t = 2000 and t = 3000 respectively. In order to prevent a violent separation of the vortices, a
high damping factor has been used in this evaluation. The lighter color shading of the initial state in panel 4(a)
comes from the fact that the initial condition has a lot of excess energy, which is then dissipated throughout the
time-evolution.
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Stars that are collapsing toward forming a black hole but appear frozen near their Schwarzschild
horizon are termed “black stars”. The collision of two black stars leads to gravitational radiation
during the merging phase followed by a delayed gamma ray burst during coalescence. The recent
observation of gravitational waves by LIGO, followed by a possible gamma ray counterpart by Fermi,
suggests that the source may have been a merger of two black stars with profound implications for
quantum gravity and the nature of black holes.

From an asymptotic observer’s viewpoint, a collapsing
body is forever suspended just above its Schwarzschild ra-
dius. The strong gravitational redshift near the surface
of the collapsing body causes the body to appear black.
Such objects are known as “frozen stars” or “black stars”.
Black holes are the infinite time limit of black stars and
traditionally black stars are viewed as indistinguishable
from black holes (e.g. Chapter 33, [1]). However, there
are good reasons to maintain the distinction between
black stars and black holes. First, quantum analyses of
gravitational collapse show that a black star evaporates
in a finite time [2] and so it is impossible to take the
infinite time limit. Second, theories of quantum gravity
often predict that black holes have structure such as a
string theory fuzzball [3] or a firewall [4]. Third, obser-
vations of the collision of two black objects can tell us
if the objects are black holes or black stars and hence
the distinction between these objects is experimentally
meaningful [5]. The resolution of these issues has taken
on a new urgency after the recent exciting observations
by LIGO [6] and Fermi [7] in which gravitational wave
emission from two coalescing black hole-like objects ap-
pears to have been followed by a gamma ray burst.

The essential idea behind equating black stars to black
holes is that a collapsing star very quickly fades from an
observer’s view, and there is no way to send in probes
(e.g. light rays) at late times so as to see the surface of
the black star. This idea is captured in the spacetime
diagram shown in Fig. 1 where certain rays can hit the
surface of the star but later rays arrive at the surface of
the star after it has crossed into its own event horizon. So
the surface of the black star can only be probed by rays
that arrive sufficiently early. This is the usual interpreta-
tion, also described in [1], and if the object is probed at
sufficiently late times, there is no way to send in probes
to distinguish between a black star and a black hole.

The picture changes in a quantum analysis, since then
a collapsing body produces a time-dependent metric that
leads to quantum radiation and causes the body to slowly
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Stars that are collapsing toward forming a black hole but are frozen near the Schwarzschild horizon
are termed “black stars”. Collisions of black stars, in contrast to black hole collisions, may be
sources of gamma ray bursts, whose basic parameters are estimated quite simply and are found to
be consistent with observed gamma ray bursts. Black star gamma ray bursts should be preceded
by gravitational wave emission similar to that from the coalescence of black holes.

It is well-known that, from an asymptotic observer’s
viewpoint, a collapsing body is forever suspended just
above its Schwarzschild radius. This picture may change
with the inclusion of quantum radiation from the collaps-
ing body as has been discussed from many viewpoints
[1–3]. However, quantum effects change the picture on
time scales given by the black hole evaporation time scale.
For astrophysical bodies such as the sun, the evaporation
time is ∼ 1066 years, which is ∼ 1056 times the present
Hubble time. Hence for astrophysical purposes, we can
ignore evaporative processes altogether and work within
classical general relativity. Since any radiation from the
collapsing body is redshifted by a large amount, the body
will appear as a dark compact object. The object will ap-
pear black but will not be a black hole. We will call such
an object a “black star”. In contrast, a “black hole” is a
vacuum solution of Einstein’s equations and there is no
matter distribution inside it except for the singularity at
the origin.

When we watch for signatures from the collapse of
astrophysical bodies, we take the asymptotic observer’s
viewpoint, and hence, gravitational collapse always leads
to black stars. In this brief note I point out that colli-
sions of black stars can be a source of gamma ray bursts,
and that such bursts are preceded by gravitational wave
emission whose characteristics should be similar to those
of black hole mergers. Even though the basic estimates
for gamma ray bursts originating in black star colli-
sions agree quite well with those for observed gamma ray
bursts, this note, at least in its current form, can only
be taken as a suggestion for pursuing this idea further.
Observed gamma ray bursts have very complex features,
and occur in many different sub-classes, each possibly
having a different underlying origin. For details about
gamma ray bursts, the reader is referred to the literature
e.g. [4–6].

To distinguish between black stars and black holes,
consider what happens when two black objects collide. If
we receive photons from the collision, then the colliding
objects were black stars because the empty spacetimes
of two black holes would only create gravitational waves.
If, however, we receive only gravitational waves from the
colliding objects then they can either be primordial black
holes or black stars that have not yet collided. Therefore,
at least when black stars do collide, they can be distin-
guished from black holes by the nature of the radiation.
The infall of matter on to a black star will also lead to

I +

r
=

0

I −

i0

i−

r = 0 i+

FIG. 1: Spacetime of a classical collapsing object (shaded
region) that appears as a black star to an observer located
near i+. Two null rays from I − are shown, one that collides
with the black star and the other that does not. Similarly, an
approaching second black star may or may not collide with
the first black star depending on initial conditions.

electromagnetic emission due to collisions of the matter
with the matter making up the black star; matter that is
falling into a black hole will not emit electromagnetically
except due to collision with other infalling matter, as in
an accretion disk.

We now estimate the energy radiated from the collision
of two black stars each of mass M . The radius of each of
the black stars is R = 2GM and so the density is

ρ =
1

8G3M2
∼ 1017

(
M◦
M

)2

gms/cm3 (1)

Therefore, if two black stars of mass M collide, it involves
the collision of matter at high density, and will lead to
radiation of photons and other light particles. Since the
gravitational binding between all constituents in this sys-
tem is very strong, we treat the collision as being totally
inelastic. Then the initial kinetic energy gets converted
to radiation resulting in the release of total energy

E ∼ Mv2 = 1048

(
M

M◦

) (
v

300km/sec

)2

ergs (2)

Assuming that this energy is released in a light crossing
time ∼ R/c = 2GM/c ∼ 10−5sec, which is the only

FIG. 1: Spacetime of a classical collapsing object (shaded
region) that appears as a black star to an observer located
near i+. Two null rays from I − are shown, one that collides
with the black star and the other that does not.

evaporate even as it collapses [2]. This radiation, very
similar to Hawking radiation from a black hole [8], does
not require the event horizon of a black hole and holds
for any collapsing body, even when it is outside its own
Schwarzschild radius. Gravitational collapse leads to a
black star that is continually collapsing and concurrently
evaporating into quantum radiation. Then the collapsing
object spacetime is shown in Fig. 2. Now every null ray
that hits the collapsing object and reflects off of it will
reach future null infinity I +. This happens if the null
ray collides with the collapsing object at any stage of the
collapse. The only caveat is that the interaction of the
null ray and the black star will lead to a time delay in
the escape of the reflected ray but the amount of time
delay will depend on when the reflection actually occurs.

In contrast to a black star, a “black hole” is a clas-
sical vacuum solution of Einstein’s equations and there
is no matter distribution anywhere in spacetime except
perhaps at the central singularity. Hence the collision of
black holes will only lead to gravitational radiation be-
cause the spacetime is devoid of matter. On the other
hand, black star collisions will lead to gravitational and
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the collapsing matter.

Without a rigorous calculation that includes backre-
action, one can not give a definite answer to the final
fate of a collapsing object. It may happen that the dia-
gram in Fig. 8 is correct and some radical and elaborate
solutions to the problems we mentioned in Sec. VII are
needed. However, one can imagine an alternative pic-
ture, different from the one in Fig. 8, which seems to have
fewer problems, and that is that an event horizon never
forms. Since the mass of the shell is decreasing during the
collapse, the shell will be chasing its own Schwarzschild
radius, and the question is whether the shell will catch up
to its own Schwarzschild radius or completely evaporate
before that happens [14].

With backreaction included, the radiation should lead
to a continual reduction of the Schwarzschild radius, RS ,
occurring in the Ipser-Sikivie metric (see Sec. II). Then,
as seen by the asymptotic observer, one of two possi-
bilities occurs: either the collapsing domain wall evapo-
rates and RS → 0 in a finite time, or else backreaction
causes the radiation rate to slow down and vanish in a
finite time. This latter possibility is unlikely, as our esti-
mates suggest that the rate of emission increases as RS

decreases [24]. We therefore conjecture that the backre-
action due to particle production will cause the collapsing
domain wall spacetime to completely evaporate in a finite
time. In this case, the spacetime can either be as given
in Fig. 8, or have the same global spacetime structure as
Minkowski space, as shown in Fig. 9. If the latter pic-
ture is correct, it also means that the infalling observer
will not encounter an event horizon, because this feature
is simply absent from the spacetime. Another way to
see this is to note that the causal relation between two
events is the same for all observers. Hence if the asymp-
totic observer sees a signal from an infalling object after
he sees the last radiation ray emitted by the evaporating
wall, this will also be the sequence of signals seen by the
infalling observer. As discussed in Sec. VII, the infalling
observer would expect to see an intense burst of radiation
as the wall approaches the Schwarzchild radius, but can
fail to do so because his detectors are too small to detect
the emitted range of frequencies.

In the absence of an exact backreaction calculation,
we also have to allow for the possibility that a value of
the critical mass exists above which Fig. 8 applies and
below which Fig. 9 holds. Also, as discussed by Hawk-
ing [19], the question of “whether a black hole forms”
is not sharp enough and may not make sense in the full
quantum theory since all of the measurements are made
by an asymptotic observer at infinity, while a collapsing
object exists for a finite time and disappears by emit-
ting radiation in the strong field region in the middle.
An asymptotic observer can never be sure if a black hole
formed because of underlying quantum uncertainty [19].

The broad picture we have obtained is consistent with
that proposed in Refs. [13, 14], though there are differ-
ences in the analysis and the conclusions. In particular,
we find a non-thermal spectrum whereas Gerlach argues

= initial mass

I −

i0

i−

i+

r
=

0

I +

domain wall

final ray
of radiation

F
radiated energy

no radiation

evaporating

D

FIG. 9: The spacetime of a collapsing domain wall. During
collapse the wall emits non-thermal (quasi-Hawking) radia-
tion as depicted by the arrows. Our calculations indicate
that the total energy flux between the point i0 to some point
indicated by F is equal to the energy of the initial domain
wall. Hence we conjecture that the domain wall evaporates
completely at point D. Between F and i+, there is no radia-
tion flux arriving at I +. The event horizon and singularity
present in the customary treatment are not formed and the
spacetime structure is the same as that of Minkowski space-
time.

for thermality. Our picture also supports the interpre-
tation of Hawking radiation given in Ref. [5] whereby
particles are created during the process of gravitational
collapse and are then radiated slowly to form what we
call Hawking radiation. We have indeed found particle
production during the collapse but the radiation is not
quite thermal. It is only in the frequency range where
the occupation number spectrum can be approximated
by T/ω (Eq. (73)) that thermality holds at finite time.
Also note that the non-thermality we find is in the mode
occupation numbers. Propagation of the radiation in the
background metric will cause further non-thermality due
to greybody factors.

If we live in a world of low scale gravity, the colli-
sion of particles in high energy accelerators will lead to
a situation where the particles are in a continual state of
gravitational collapse from which non-thermal radiation
is being emitted. The life-time of such a state can be es-
timated once we know the details of the radiation more
precisely from an analysis which includes backreaction.
However, on dimensional grounds, Hawking’s estimate
for the lifetime of a black hole (∼ R3

S/G) may well apply
to the colliding particles as well.

In reality the collapse is further complicated by the
fact that the collapsing object is not kept in isolation
and there are external forces that can disrupt the collapse
at any point in time. From the perspective of potential
information loss, note that any infalling encyclopedias
can be returned to the asymptotic observer if the collapse

FIG. 2: Spacetime of a quantum collapsing object (labeled a
“domain wall” in the figure) [2]. Now there is no event horizon
and singularity, and all rays that hit the collapsing object
reach I +, even if they are delayed due to their interactions
with the gravitational field.

electromagnetic radiation. Collisions of black stars can
be a source of gamma ray bursts (e.g. [9, 10]), and such
bursts will be preceded by gravitational wave emission
whose characteristics are similar to those of black hole
mergers. Thus, when two black stars collide, they can
be distinguished from the collision of black holes by the
presence of electromagnetic radiation.

In a realistic astrophysical setting the collision of two
black holes might be accompanied by the collision of
other accompanying matter, such as an accretion disk,
around the black holes. Stellar mass black holes would
have devoured surrounding matter and are therefore con-
sidered relatively clean environments, though new astro-
physical scenarios might include such matter [11]. Even
if there is surrounding matter that collides and produces
gamma rays, this electromagnetic radiation and the grav-
itational radiation would be produced at the same time,
with no specific time delay between them. On the other
hand, the black star scenario clearly predicts a time delay
between the gravitational wave emission and the gamma
ray burst because first the metric outside the black stars
coalesces and only then the material of the black stars
coalesces.

We now estimate the energy radiated from the collision
of two black stars each of mass M . The radius of each of
the black stars is R = 2GM and so the density is

ρ =
1

8G3M2
∼ 1014

(
30M�
M

)2

gms/cm3 (1)

where M� ≈ 2×1033 gms is the solar mass. This density
is high but still below the QCD density. Hence a 30M�
black star is mostly composed of ordinary protons and
neutrons.

The collision of two black stars of mass M involves the
collision of their constituent protons and neutrons which
will lead to radiation of photons and other light particles.
Since the gravitational binding between all constituents
in this system is very strong, we treat the collision as
being totally inelastic. Then the initial kinetic energy
gets converted to radiation resulting in the release of total
energy

E ∼Mv2δ ≈ 4 × 1049
(

M

30M◦

)( v

0.5c

)2
(

δ

10−6

)
ergs

(2)
where δ is the gravitational redshift of the energy as it
escapes the collision region. The collision velocity will
typically be an O(1) fraction of the speed of light, and
the gravitational redshift factor δ � 1 will depend on
how close the black star is to being a black hole.

We assume that the energy is released in a light cross-
ing time ∼ R/c = 2GM/c ∼ 3 × 10−4sec (for a ∼ 30M�
black star), which is the only relevant length scale in the
problem. This time interval will be dilated by δ−1 and
the emitted power in photons will be

P ∼ 2 × 1046
( v

0.5c

)2
(

δ

10−6

)2

ergs/sec (3)

Note that the power is independent of the mass M . We
can estimate the frequency of the photons by once again
treating the collision as being totally inelastic. Then ev-
ery proton in the black star gets stopped on collision and
the emitted photon energy is simply the initial kinetic
energy of the proton

Eγ ∼ mpv
2δ ≈ 0.25

( v

0.5c

)2
(

δ

10−6

)
keV (4)

Even though we cannot precisely estimate the event
rate of black star collisions, we do know that the rate is
lower for lower initial velocity since then the stars will
take a long time to collide i.e. δ will be smaller. Then
the emitted energy will redshift by a greater amount and
there will be a greater time delay between the gravita-
tional and electromagnetic emissions, making the gamma
ray burst very faint and also temporally uncorrelated
with the gravitational wave event. On the other hand,
we expect that the number of black stars falls off with
higher velocity. These two arguments suggest that there
should be a velocity at which black star collisions peak.
In terms of gamma ray bursts, it implies that the gamma
ray bursts should have a typical photon energy. Further,
the total power emitted should scale with this photon
energy as seen by dividing Eq. (3) by (4),

P

Eγ
≈ 1056

(
δ

10−6

)
sec−1 (5)
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This formula does not depend on the mass of the colliding
black stars and neither on their velocities, and hence is
an invariant of the model.

If an observed gamma ray burst is indeed due to col-
liding black stars, the burst should be preceded by gravi-
tational wave radiation from the coalescing spacetimes of
the black stars. The gravitational wave emission should
be very similar to that calculated numerically for black
hole collisions [12–14], and the final gravitational wave
emission due to coalescence should be accompanied by
the gamma ray burst when the material of the black
stars coalesce. The waveforms of the emitted electro-
magnetic radiation will depend on the normal modes of
the two black star system. Indeed, characteristics of the
gravitational radiation preceding the gamma ray burst,
together with the gamma ray burst, may allow us to infer
the parameters of the colliding black stars and the initial
conditions.

LIGO [6] has recently detected the gravitational wave
signature from the merger of two black holes, each with

mass ≈ 30M�. This stunning announcement has been
followed by a cautious but equally stunning claim by the
Fermi collaboration [7] that they may have seen a gamma
ray burst counterpart of the LIGO event. The energy and
emission frequency of the gamma ray burst are broadly
consistent with those estimated for black star collisions.
If future gravitational wave events are followed by de-
layed gamma ray burst events, it would be strong sup-
port for the black star picture and would provide deep
insight into gravitational collapse, black holes, and quan-
tum gravity.
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Abstract. Inter-galactic magnetic fields can imprint their structure on the morphology
of blazar-induced gamma ray halos. We show that the halo morphology arises through
the interplay of the source’s jet and a two-dimensional surface dictated by the magnetic
field. Through extensive numerical simulations, we generate mock halos created by stochastic
magnetic fields with and without helicity, and study the dependence of the halo features
on the properties of the magnetic field. We propose a sharper version of the Q-statistics
and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the
handedness of the helicity. We also identify and explain a new feature of the Q-statistics that
can further enhance its power.
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1 Introduction

Multiple analyses of observed gamma rays [1–7] provide growing evidence for the existence
of inter-galactic magnetic fields (for reviews see [8, 9]). The existence of such magnetic
fields poses new questions for cosmology and probably also for particle physics [10, 11]. In
addition, a primordial magnetic field can play an important role during structure formation
in the universe and could help us understand the ubiquity of magnetic fields in astrophysical
bodies.

A critical challenge at this stage is to sharpen observational techniques so that we can
better observe and measure inter-galactic magnetic fields. Of the various probes of inter-
galactic magnetic fields, blazar-induced gamma ray cascades hold certain key advantages.
The gamma ray cascades originate in the voids in the large-scale structure and are mostly
immune to complications of a noisy environment. The cascade develops in a relatively small
spatial volume and hence is a local probe of the magnetic field in the voids. This is distinct
from other methods, such as the Faraday rotation of the cosmic microwave background
polarization, that probe an integrated measure of the magnetic field. Gamma ray cascades
are also highly sensitive probes and can trace very weak cosmological magnetic fields.

In this paper we study the effect of stochastic inter-galactic magnetic fields on blazar
induced gamma ray halos and some results overlap with those of Refs. [12–16]. The cascade
process is complicated and all analyses use some simplifying assumptions. For example,
the analysis in Ref. [13] only considered non-stochastic magnetic field configurations. Other
simplification schemes, such as the “large spherical observer” method employed in Ref. [14],
transport arrival directions of gamma rays for distant observers to a single Earth-bound
observer. This technique is certainly useful to study spectral properties of the cascade,
but there is a danger that it loses or shuffles the spatial information of gamma ray arrival
directions that is crucial for morphological studies. Our focus is on the effect of stochastic
magnetic fields that are statistically isotropic and with or without helicity. So we carefully
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analyse the spatial information of the gamma rays that is useful for deducing properties of
the magnetic field but, for the present, we only include an approximate description of the
cascade development.

An important helpful concept that we develop in this paper is that of the “PP surface”
(see Sec. 3). This spatial surface holds the key to halo morphology and many of the features
that we see in our simulations can be understood in terms of the shape of the PP surface
and its intersection with the blazar jet.

We have applied a refined version of the Q-statistics first proposed in Ref. [17] to study
the morphology of halos. Our results show that this statistic can successfully extract the
helicity of the magnetic field. Our simulations also reveal that the plot of Q(R), where R is
a variable that will be explained below, has an additional bump. We are able to show that
this bump is a genuine feature of the Q-statistic and explain it in terms of properties of the
PP surface in Sec. 7. Thus this extra feature of Q(R) may become an observational tool in
future.

We give some background information in Sec. 2, discuss our simulation techniques in
Sec. 3, discuss features of the halo in Sec. 4, introduce the Q-statistic in Sec. 5 and apply it
to stochastic fields in Sec. 6. As mentioned above, we discuss the bump feature in Q(R) in
Sec. 7. We summarize our conclusions in Sec. 8. Our stochastic magnetic field generation
scheme is described in Appendix A.

2 Blazar Halos from an Intergalactic Magnetic Field

TeV photons from blazars induce electromagnetic cascades through pair production with the
extragalactic background light, γEBLγTeV → e+e−. In the presence of a magnetic field, the
charged leptons follow spiral paths as they propagate and lose energy due to inverse Comp-
ton scattering with the cosmic microwave background (CMB) photons. The up-scattered
CMB photons have gamma ray energies and produce extended halos around the direction
of the blazar. In this section we briefly discuss the formation of the halo under simplifying
assumptions.

Consider a blazar located at the origin of our coordinate system described by the unit
basis vectors x̂, ŷ, ẑ. We choose ẑ so that Earth is located at rE = −dsẑ where ds is the
comoving distance to the source,

ds =
1

a0H0

∫ zs

0

1√
Ωm(1 + z)3 + ΩΛ

dz ' zs
0.22

Gpc. (2.1)

To perform the integral, we have used ΩΛ ≈ 0.69, Ωm ≈ 0.31, H0 ≈ 0.67h as found in
Ref. [18] and we have also assumed that zs � 1 and used natural units so that c = 1. For all
the simulations in this paper we will choose ds = 1 Gpc.

The blazar will typically emit photons in a collimated jet which we approximate to be
a conical region with half-opening angle θjet ≈ 5◦. The energy Eγ0 of these photons must lie
above some threshold of about a TeV if they are to produce an electron-positron pair from
interaction with the Extragalactic Background Light (EBL). Due to the opacity of the EBL,
the TeV photons will travel a mean free path (MFP) determined by the pair production cross
section σγγ and the number density of the EBL photons nEBL ,

Dγ0 = 〈σγγnEBL〉
−1 ' (80Mpc)

κ

(1 + zγγ)2

(10TeV

Eγ0

)
, (2.2)
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We have assumed that nEBL ∝ (1 +zγγ)−2 to approximate the MFP in the final equality [19].
Following [13] we will set κ = 1 as this dimensionless constant is estimated to lie in the range
of 0.3 < κ < 3. The comoving distance from the source to the pair production event is given
by Dc

γ0 = (1 + zγγ)Dγ0.

The redshift of the produced lepton pairs will depend on the relative position of the
leptons to the source. Since Dc

γ0 � ds, we make the approximation zγγ ≈ zs and we can
write,

Dc
γ0 ' (80Mpc)

κ

(1 + zs)

(10TeV

Eγ0

)
. (2.3)

The energy of each of the produced leptons will be Ee ≈ Eγ0/2. These leptons are
expected to travel a distance De before losing most of their energy through inverse Compton
(IC) cooling which occurs by upscattering CMB photons. The cooling distance is

De =
3m2

e

4σTUCMBEe
' (31 kpc)

(5 TeV

Ee

)( 1.22

1 + zγγ

)4
(2.4)

where σT = 6.65 × 10−25cm2 is the Thomson scattering cross section and UCMB(zγγ) '
(0.26 eV/cm3)(1 + zγγ)4 is the CMB energy density. Note that we can assume the whole
cascade development happens around redshift zγγ as De � Dγ0. At that redshift, the average
energy of a CMB photon is

ECMB ' (6× 10−4 eV)(1 + zγγ), (2.5)

which implies that, from energy conservation, the upscattered photons will have energy

Eγ =
4

3
ECMB

E2
e

m2
e

' (77 GeV)
( Eγ0

10 TeV

)2
. (2.6)

As the lepton propagates, it upscatters ≈ (10TeV)/(10GeV) ∼ 103 photons, and produces a
gamma ray cascade in the 1-100 GeV range if the initial gamma ray had an energy of a few
TeV. Clearly not every photon upscattered by the leptons will reach Earth. Those that do
must come from a set of events that satisfy a set of three constraints given in Ref. [13] that
we now describe.

After pair production, the lepton’s initial velocity will be almost parallel to the momen-
tum of the parent photon with a negligible deviation of order the inverse Lorentz boost factor
me/Ee ∼ 10−6. Their subsequent trajectory will be determined by the magnetic field B(x)
through the Lorentz force. If the magnetic field is incoherent on length scales smaller than
the cooling distance De ∼ 30 kpc, the lepton trajectories will be diffusive and this situation
is much harder to analyze. So we focus on magnetic fields that are coherent on scales that
are much larger than De. Then the lepton trajectories are bent in an effectively constant
magnetic field and follow a helical trajectory with gyroradius

RL = RL0|v⊥|, with RL0 =
Ee
e|B|

, (2.7)

which depends on the lepton’s perpendicular velocity to B, i.e. v⊥ = v − (v · B̂)B̂.

The quantity 2πRL0 is useful as it denotes the distance the lepton must travel in order to
perform a full revolution. The value of RL0 is a function of the redshift as it depends on |B|.
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Figure 1. A TeV photon emitted from a blazar travels a comoving distance of dγ0 before scattering
off an EBL photon and pair producing leptons. The lepton trajectories are bent due to the local
magnetic field over a very short distance compared to the distance to the source, ds, and are shown
in the insets. (The insets show huge bending whereas we have only considered magnetic fields that
give small bending.) Inverse-Compton scattering of a lepton and CMB photons results in a cascade
of GeV energy gamma rays arriving at Earth from the direction of the pair production. [Sketch taken
from [13].]

For magnetic fields frozen in the plasma, the field strength redshifts as |B| = B0(1 + zγγ)2 ≈
B0(1 + zs)

2 where B0 is the magnetic field magnitude today. With

RL0 ' 3.5 Mpc
( Ee

5 TeV

)( B0

10−15G

)−1(1 + zs
1.22

)−2
, (2.8)

we can evaluate the ratio

De

2πRL0
' 0.0106

( Eγ
10 GeV

)−1( B0

10−15G

)(1 + zs
1.22

)−2
(2.9)

which determines the angular deflection of the leptons.
As depicted in Fig. 1, let us introduce the following angles: θ is the arrival angle of

the GeV photon with respect to the source location, δ represents the angle between the
upscattered photon and the TeV photon, α is the angle subtended by the TeV photon’s
momentum, rE the vector from the source to Earth, and finally φ is the azimuthal angle in
which the whole (planar) scattering process take place. We also introduce the polar vectors ρ̂
and φ̂, in the x̂, ŷ plane. It is important to emphasize that the whole process occurs in a plane
to a good approximation because De � Dc

γ0, ds and the length of the lepton trajectory can
be ignored. Then there are only 3 points that are relevant (the source, the pair production
point, and the observer) and they always lie in a plane.

Applying the sine formula to the triangle in Fig. 1 we get our first constraint

dssin(θ) = dγ0sin(δ). (2.10)

where dγ0 is the distance traveled by the TeV photon and is a random variable drawn from a
distribution that depends on the MFP Dc

γ0 in Eq. (2.3). This is discussed in detail in Sec. 3.
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The bending angle δ is related to the distance traveled by the lepton through the local
magnetic field which we write as B = Bn̂||. We also decompose the lepton’s initial velocity
at time ti = 0, v(ti = 0) = v||n̂||+v⊥n̂⊥, where n̂⊥ · n̂|| = 0. At some later time t the velocity
is

v(t) = v||n̂|| + v⊥cos(ωt)n̂⊥ ± v⊥sin(ωt)(n̂⊥ × n̂||), (2.11)

Here we introduced the angular frequency of the orbital motion ω = v⊥/RL = 1/RL0 and the
+ (−) sign refers to the positron (electron) trajectory. A CMB photon upscattered at time
tIC will be directed along the lepton’s trajectory and so the deflection angle of Figure 1 can
be expressed as cos(δ) = v̂(0) · v̂(tIC). Using Eq. (2.11) we can derive the second constraint,

1− cos(δ) =
(

1− (v̂(0) · B̂)2
)(

1− cos(tIC/RL0)
)
. (2.12)

The time of inverse Compton scattering tIC is a stochastic variable. Given its value and the
magnetic field direction, the constraints determine the bending angle, δ.

A single propagating lepton will be able to upscatter CMB photons towards Earth
only at certain times when the lepton’s momentum is directed towards Earth. Photons
upscattered at other times will not reach Earth and we can safely ignore them. The number
of photons upscattered by a lepton is very large (∼ 103), with mean deviation angles between
the photons ∼ 10−3×0.01 (see Eq. (2.9)). This angle is large enough that we only expect ∼ 1
of the cascade photons from any lepton to reach Earth. This allows us to adopt the strategy
that we first select a value of tIC from an exponential probability distribution as described
in Sec. 3 and then solve the constraint equations to find all TeV gamma rays from the blazar
that upscatter CMB photons that reach Earth. For different values of tIC , different TeV
gamma rays from the blazar will lead to observed photons. In this way, we will be able to
track the photons that arrive on Earth and not waste computational effort on those that go
elsewhere.

The third and final constraint is that the cascade gamma ray lies in the plane specified
by φ̂. This requires that the Lorentz force in the azimuthal φ̂ direction vanishes between the
time of pair production and IC scattering. Namely the φ component of the impulse must
vanish,

Jφ = φ̂ · J = φ̂ ·
(
± e

∫ tIC

0
dt v(t)×B

)
= 0. (2.13)

The impulse can be simplified by pulling out the assumed constant magnetic field of the
integral and defining

vavg =
1

tIC

∫ tIC

0
dt v(t). (2.14)

The geometrical setup of Fig. 1 forces vavg to bisect the angle δ and therefore its unit vector
can be written as

v̂avg = sin
(
δ/2− θ

)
ρ̂− cos

(
δ/2− θ

)
ẑ. (2.15)

Decomposing B as
B = bρρ̂+ bφφ̂+ bzẑ (2.16)

allows us to write

φ̂ · v̂avg × B̂ = −bρcos
(
δ/2− θ

)
− bzsin

(
δ/2− θ

)
= 0. (2.17)

To summarize this section, Eqs. (2.10), (2.12) and (2.17) are the constraints that need
to be satisfied by the variables (θ, δ, φ) given a magnetic field realization and initial velocity
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of the TeV gamma ray (both of which depend on (θ, δ, φ)), the source-observer distance (ds),
the distance to pair production (dγ0), and the photon upscattering time (tIC).

3 Halo Simulations

For events that satisfy the constraints in Eqs. (2.10), (2.12) and (2.17), an observer on Earth
will receive flux at a polar angle of θ from the line of sight (LoS) to the blazar and at an
azimuthal angle φ. Solving these constraints requires the use of numerical methods when
considering general B(x) and when including the stochasticity in the propagating distances
(PDs) of the initial gamma ray and pair produced leptons.

Therefore to simulate one observed photon, we supply the distance dγ0 traversed by
some TeV gamma ray of energy Eγ0 emitted from the source before it pair produces leptons,
one of which in turn travels a distance ctIC before emitting a photon of energy Eγ . Once
these 4 values dγ0, Eγ0, ctIC and Eγ , are set and an ambient magnetic field is given, one can
numerically solve the constraint equations for θ, δ and φ. The process is repeated until N
(which we chose to be 1000 or 5000 per simulation) observed photons are simulated. This
will create the halo that one would observe if the source was emitting isotropically. For a
source with a specific jet orientation we only retain the events whose initial TeV photons lie
within the jet. These small number of events give us the observed halo that will be shown
in our plots.

Let us go through the details regarding the generation of dγ0, Eγ0, ctIC and Eγ . We
must supply some energy distribution for gamma rays emitted by blazars; for this we assume
a power law spectrum [20, 21] and follow Ref. [15] by choosing a spectral index of Γ ' 2.5
that is characteristic of the TeV sources. This yields a spectrum given by,

dNγ0

dEγ0
∼
(Eγ0

TeV

)−2.5
. (3.1)

We shall also impose a 10 TeV cutoff on the emitted photon energy. The distance dγ0

traversed by a TeV gamma ray before turning into a pair of leptons is drawn from the
exponential distribution,

P [dγ0] =
1

Dc
γ0(Eγ0)

e−dγ0/D
c
γ0(Eγ0). (3.2)

The resulting leptons will have energies Ee given by Eq. (2.6) and they will upscatter nu-
merous CMB photons along their trajectories. The mean free path between each scattering
is given by lMFP = (nCMBσT )−1, where nCMB is the number density of CMB photons. The
lepton loses energy with each scattering and subsequent scatterings lead to lower energy
cascade gamma rays. Hence we run Monte Carlo simulations to determine the distributions

P (ctIC , Eγ |E(ini)
e ), giving us the probability that a lepton with initial energy E

(ini)
e upscatters

a CMB photon to energy Eγ after traveling a distance de = ctIC . Examples of these distri-
butions are shown in Fig. 2. Note that de will generally be much smaller than the cooling
distance De. Only events that lead to observed photons of energy between Emin = 5 GeV
and Emax = 50 GeV will be retained as these are in energies of observational interest for the
statistical analysis done in Sec. 5.

We will solve the constraint equations in a variety of magnetic field backgrounds, starting
with simple analytic configurations for illustration purposes, and then move on to the more
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Figure 2. Examples of the probability distribution for the distance traveled by a lepton with initial
energy Ee = Eγ0/2 before it upscatters a CMB photon to Eγ . These distributions are for leptons
evolving in the CMB light at a redshift of z ≈ 0.24, corresponding to a source located at ds ≈ 1 Gpc
from Earth. Note that the final distribution for Eγ = 43 GeV does not appear on the left as the
lepton does not possess enough energy to upscatter the CMB photons to these energies.

realistic case of stochastic, isotropic magnetic fields. Our procedure to generate stochastic,
isotropic magnetic fields is described in Appendix A.

As a warm up, and to compare our method with the results of Ref. [13], we consider a
source that radiates TeV photons isotropically in two different magnetic field backgrounds.
The first background,

B = B0

(
cos(β)ŷ − sin(β)ẑ

)
, (3.3)

with β = π/4, is a uniform magnetic field pointing at an angle π/4 from the line of sight.
The second background is a maximally helical field

B = B0

(
sin(2πz/λ)x̂ + cos(2πz/λ)ŷ

)
. (3.4)

Here λ is the coherence length of the helical field. We will take ds = 1 Gpc, B0 = 10−14 G
and λ = 500 Mpc as the prototypical values and eventually vary them one at a time to see
their effect on the halo morphology.

Next we solve the constraint equations and determine the arrival directions θ, φ for
several different energies Eγ , for an isotropically emitting source. The points located further
away from the source direction usually corresponds to lower energy photons. This is expected
since leptons that travel long distances (and hence allow for a large bending angle) will have
already lost a lot of energy and upscatter less energetic photons. This behavior can be seen
from the distribution shown in Fig 2.

We show halos for the simple field configurations of Eqs.(3.3) and (3.4) in Fig. 3. Looking
closely at Fig. 3, the drawn points are triangular; upright triangles are gamma rays that
originate from electrons and inverted triangles are those that originate from positrons. The
distinction is made clearer in Fig. 4 where red (black) points originate from positron (electron)
processes. If the source was taken to be a jet, gamma rays predominantly from one of the
two leptons will be observed.

The constraint equations are quite complicated to solve but there is a helpful visualiza-
tion. First consider the third constraint equation, Eq. (2.17), and note that bρ and bφ are also
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Figure 3. Example of halos from blazars in a uniform (left) and maxially helical (right) inter-galactic
magnetic field as given in Eqs. (3.3) and (3.4). The colors denote the energy of the observed gamma
ray.

Figure 4. Same as in Fig. 3 but now red (black) points originate from inverse Compton scattering
due to positrons (electrons). If the source was taken to emit along a jet, most of the observed gamma
rays would originate from either positron or electron processes but not both.

functions of θ, δ and φ. So Eq. (2.17) provides one functional relation between these vari-
ables that only depends on the magnetic field background. Hence the magnetic field defines
a two-dimensional surface in space. We will call this the “Pair Production surface” or the
“PP surface” since only lepton pair production at this surface can send GeV gamma rays to
the observer. In Fig. 5 we show the PP surface for the magnetic fields of Eqs. (3.3) and (3.4).
On these plots we also show the pair production locations, “PP locations”, that resulted in
the halos of Fig. 3. Note that a gamma ray from the source will propagate a certain distance,
dγ0 and then pair produce. So the pair production points also lie on a sphere of radius dγ0.
This is partly enforced by the law of sines in Eq. (2.10), which gives a relation between δ
and θ. The intersection of this sphere and the PP surface define a one-dimensional curve in
space; CMB photons that are inverse Compton scattered along the one-dimensional curve
can propagate to Earth. However, not all points on this one-dimensional curve will satisfy the
final constraint. Namely, Eq. (2.12), picks out a limited set of points on the one-dimensional
curve and these give the trajectories of the gamma rays that are observed.

The PP surface can be found analytically for simple cases. For instance, the constraint
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Figure 5. The PP surface for the uniform magnetic field of Eq. (3.3) (left) and the maximally
helical magnetic field of Eq. (3.4) (right). The source is located at the orange star; the observer is at
z = −1 Gpc. The blue points are the events that give rise to the halos shown in Figs. 3.

in Eq. (2.17) with the helical magnetic field from Eq. (3.4), which has bz = 0, reduces to,

bρ cos(δ/2− θ) = 0, (3.5)

with
bρ = B · ρ̂ = sin(2πz/λ+ φ). (3.6)

As cos(δ/2− θ) = 0 has only one solution at δ = π, θ = 0 in the physical range θ ∈ [0, π/2],
δ ∈ [0, π], the surface is mainly determined by bρ = 0 which translates to,

φ = −2πz

λ
. (3.7)

This equation describes a spiral structure as seen in Figure 5.
Until now, we have been assuming that the source emits photons isotropically. Below,

we will also consider the case when the source emits photon in a collimated jet. In that
case, there is a fourth constraint restricting the relevant part of the PP surface to where it
intersects the jet, and it is quite possible that there is no solution. We ignore such cases as
they are observationally irrelevant. In following figures we will show PP locations, even if
they do not lie within the jet. Only those PP locations that lie within the jet will lead to
observed gamma rays. For instance, Fig. 6 presents an example in which the source has a
jet with half-opening angle θjet = 5◦ and the magnetic field is given by Eq. (3.4). The jet
direction is chosen so that the Earth lies within the cone of the jet and the blazar can be
seen directly. The left plots in both figures shows that the jet picks out a small region of the
PP surface, and the right plots show the resulting halo.

4 Parameter Dependence of Halo

In this section we discuss the structure of the halo as the parameters B0, λ and the sign of
the helicity of the maximally helical magnetic field in Eq. (3.4) are varied. The concept of
the PP surface will be a useful tool for this discussion as it allows us to clearly see how the
magnetic field dictates the halo’s shape.
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Figure 6. Example of how a blazar with a jet will only shine and activate a small region of the PP
surface (left) and the resultant halo (right). The magnetic field is given in Eq. (3.4) with B0 = 10−14G,
λ = 250 Mpc.

Figure 7. Monte Carlo simulation with stochastic PDs using the magnetic field of Eq. (3.4) and
with the same setup as in Fig. 6 but with B0 reduced to 5 × 10−15G. Compared to the right panel
of Fig. 6, we see that the high energy gamma rays (blue and green points) are more clustered and so
the halo size is smaller at fixed energy.

The magnetic field strength directly affects the amount of bending of the lepton trajec-
tories since the gyroradius RL ∝ 1/B0. Therefore a weak magnetic field will require that the
initial TeV gamma ray is already propagating nearly towards Earth. Thus reducing B0 will
shrink the size of the halo at any given gamma ray energy, although lower energy gamma
rays may now enter the field of view. This can be seen in Fig. 7 which was created using
B0 = 5 × 10−15 G and λ = 250 Mpc. The plot looks almost identical to Fig. 6, which was
created using B0 = 10−14 G, except that the extent of the halo in the x and y directions, for
photons of the same energy, has shrunk by a factor of ∼ 2.

If one does not track the photon’s energy, the effect of a change in B0 is not easily
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Figure 8. Sketch of a blazar jet shown in red intersects the green PP surface which delimits the
shape of the halo (shown in blue) as seen by some observer. The halo photons must be distributed in
the blue region. A situation similar to the one depicted in the middle and third sketch can be seen
from the simulations in Fig. 6 and Fig. 9 below. The differences between the many possible shapes
arise due the characteristics of the intersection between the blazar’s jet and the PP surface.

seen through the morphology of the halos as their shapes and sizes are determined by the
intersection of the jet and the PP surface. We show a few examples of this interplay in the
sketch of Fig. 8. Understanding this could allow us to learn valuable information about the
inter-galactic magnetic field in the region probed by the PP locations by observing the halo’s
shape. In a real situation, we cannot observe the full halo shape as it will be contaminated
by background photons coming from other sources. However, we can still extract certain
useful halo information since the background is expected to be stochastically isotropic and
certainly not parity odd.

Another important thing to note is that we have assumed the jet and the power spectrum
to be fixed on the timescale necessary for the creation of the halos. Namely, the path length
of two events (i.e. the sum of the magnitude of the two vectors shown in Fig. 1) will differ as a
function of their bending angle. Hence this can introduce a significant time delay between the
subsequent observations of two initial TeV photons emitted from the source at the same time.
If this time delay is large, as would occur for events whose PP locations are Megaparsecs
apart, we would expect the source dynamics to alter its power spectrum and jet direction
in that timeframe – making our fixed jet assumption false. A quick change in jet direction
would translate in observed events arising from potentially very different regions of the PP
surface. Fortunately, this should not affect our final results once we average over many
realizations as this already stacks random jet oritentations together. A large power spectrum
variability could introduce more drastic effects but we will neglect this complication in this
initial exploration.

Let us quickly comment on the dependence of the morphology on the coherence length
of B. As can be seen from Eq. (2.3), the MFP Dc

γ0 of the TeV photons are of the order of
10− 100 Mpc. Any magnetic field with coherence length much larger than Dc

γ0 will appear
constant in space. On the other hand, for λc � Dc

γ0, the halo will be produced from a rapidly
varying part of the PP surface and will be more scattered.

The helicity of the magnetic field in Eq. (3.4) can be flipped by changing x → −x. A
flip in the helicity simply leads to a parity inversion of the PP surface and the halo spiral
also changes handedness. However, to get more statistics, we will investigate both helicities
using independent simulations in Sec. 6.
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Figure 9. The PP locations on the PP surface and jet (left) and corresponding halo (right) for
λ = 100, 500, 2000 Mpc for the magnetic field in Eq. (3.4) with B0 = 10−14 G. The direction to the
source is at θ = 0.

5 The Q statistic

One of the main goals of this work is to determine if the helicity of the inter-galactic magnetic
field can be deduced from the shape of the blazar halos. As we have seen, under certain
conditions, a helical inter-galactic magnetic field can produce a clear spiral-like structure in
a gamma ray halo. Hence it is important to develop a statistical technique that is sensitive
to this structure. A statistic, called Q, was developed in Ref. [17], and was applied to the
diffuse gamma ray background observed by the Fermi telescope in Refs. [4, 5]. A non-zero
value of Q was observed with high confidence in comparison to Monte Carlo simulations that
assume no inter-galactic magnetic field.

One can see from the halo plots above, e.g. Fig. 3, that the arrival direction of high
energy photons tend to lie closer to the blazar line-of-sight than those for lower energy
photons. Hence different locations of the PP surface are sampled by photons of different
energies and the observed gamma rays can carry an imprint of any curvature or twist of the
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Figure 10. Illustration of the Q-statistic. The plot represents two blazar halos in the observational
plane, each halo with just two photons, one at high energy (purple) and the other at low energy (red).
The image of the blazars is denoted by the stars and the line of sight to the blazar (along ẑ) points
out of the plane of the page as denoted by the arrow tip. The left sketch shows a situation where
Q < 0 since nred × npurple · nblazar < 0; similarly the sketch of the blazar on the right shows a Q > 0
situation.

PP surface. More precisely, the work of Ref. [17] showed that a left (right) handed helical
magnetic field will create left (right) handed spiral patterns in the observed photons.

Below we briefly review the idea behind a slightly modified version of the Q statistic
proposed in Ref. [17]. We will apply the statistics on regions surrounding an observed blazar
whose angular position will be denoted by the unit vector n(3) = ẑ. We consider a disk
of radius R centered on the location of the source and consider the set of photons within
this disk. These photons are binned according to their energies into non-overlapping bins
∆E1, ∆E2. We use N2 to denote the number of photons in bin ∆E2 within the disk of radius
R. We then perform the sum,

Q(∆E1,∆E2, R) = −n(3) ·

(
1

N2

N2∑
j=1

n
(2)
j ×

[∑N1
i=1 n

(1)
i Θ(m

(1)
i ·m

(2)
j )∑N1

i=1 Θ(m
(1)
i ·m

(2)
j ) + ε

])
(5.1)

where n
(a)
i ≡ ni(∆Ea) is the unit vector denoting the arrival direction of photon i

in bin a; m
(a)
i is the unit vector obtained by projecting n

(a)
i on to the xy-plane: m

(a)
i =

n
(a)
i − (n

(a)
i · ẑ)ẑ. We’ve also introduced the infinitesimal quantity ε to keep the denominator

from vanishing. The original Q statistic in Ref. [17] was defined without the Heaviside
function (Θ) in Eq. (5.1). We illustrate the Q−statistic in Fig. 10.

In the presence of background gamma rays in addition to the blazar gamma rays, we
expect Q(R) to start near 0 at R = 0, grow to a peak value near R = Rhalo, where Rhalo is the
angular radius of the halo, and finally come back down towards 0 at large R where the signal
becomes background dominated. However in mock maps with no background, the value of
Q should asymptotically flatten out to its maximal value attained at Rhalo, and its value will
be negative (positive) for right (left) handed magnetic fields. We can see this behavior in
Fig. 11 where we simulate the halo without any stochasticity and with the magnetic field of
Eq. (3.4).

To showcase the Q-statistic in this paper we will separate the gamma rays in three
energy bins:

∆E1 = (5, 20), ∆E2 = (20, 35), ∆E3 = (35, 50), (5.2)

all numbers in GeV. This choice was the real reason we only simulated photons between 5
to 50 GeV.
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Figure 11. (Top Left) A set of simulated observed photons from the halo formed by a blazar’s jet
with half-opening angle of 5◦. The surrounding random magnetic field was created with parameters
described in Eq. (6.2) and has the form given by Eq. (6.1). (Bottom Left) The PP locations of
the photons responsible for the halo. (Right) The result of applying the Q-statistic to the observed
photons on the right.

6 The Q statistic Applied to Stochastic Magnetic Fields

The result of Fig. 11 is noisy and can be misleading as we are dealing with random magnetic
fields. Indeed, these fields can sometimes create halos whose Q-statistics suggest the wrong
helicity. It is therefore important to average over many realizations of the magnetic field and
the jet orientation. Each realization will simulate a blazar with a jet of half-opening angle
θjet = 5◦ and having Earth in its LoS. The jet is also constrained to generate a halo with
at least 3 events in order for the statistics to be applied; this condition is easily satisfied if
Earth is in the jet’s LoS. Jets pointing further away from the LoS might still yield observable
photons but we would not be able to identify these blazars and so we don’t simulate those
cases.

We will consider magnetic fields of the form,

B(x) =
1

2N2 + 2

∑
k∈K

b(k, fH, Brms)e
ik·x (6.1)

with the set K consisting of 2N2 +2 vectors which have magnitude kmag and whose directions
are approximatively uniformly spread over the unit sphere. Half of the Fourier coefficients
b(k, fH, Brms) are drawn from their respective distribution as outlined in Appendix A, while
the other half are set by the requirement b(k, fH, Brms) = b∗(−k, fH, Brms), necessary for
obtaining a real value for the magnetic field. The value of −1 ≤ fH ≤ 1 controls the

– 14 –



Figure 12. (Left) Q(R) versus R for 100 Monte Carlo runs when the stochastic magnetic fields are
generated using the parameters shown in Eq. (6.2) with fH = +1. The mean Q(R) is shown by
the orange curve. (Right) A zoomed-in view of Q(R). The width of the error band is given by the
standard error i.e. standard deviation of the 100 Monte Carlo Q(R) values divided by the square root
of the sample size (100).

handedness of the field, namely fH = 1 (−1) corresponds to a maximally right-handed (left-
handed) helical field. Finally Brms determines the root mean square of B(x).

In Fig. 11 we compute the Q-statistics for 100 realizations of halos created with a random
magnetic field created using the parameters

Brms = 1× 10−14 G, kmag = 0.01/Mpc,

fH = +1, 2N2 + 2 = 27, (6.2)

where 2N2 + 2 is the number of directions of the k vector in Eq. (6.1). In Fig. 12 we plot the
average of Q over all the realizations, denoted Q(R), for the same runs as in Fig. 11 and for
the three gamma ray energy bin combinations. By doing so, we have in mind of averaging
the Q-statistics obtained from small regions around multiple observed blazars. The plot
also shows the standard error in Q(R) which is given by the standard deviation of Q(R)
divided by the square root of the number of realizations in the Monte Carlo simulations. The
standard error follows from the central limit theorem and is the error in using the sample
mean to estimate the population mean. However, it assumes that the samples, Monte Carlo
simulations in our case, from which values of Q(R) are drawn are independent and identically
distributed. This is certainly true in our setup but may not be true for actual observations
in which the same photons might contribute to the Q(R) calculated for blazars that are close
to each other. In addition, there will be variation in the distance to observed blazars and
other source characteristics. We plan to take some of these factors into account in a follow-up
analysis.
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Figure 13. Q(R) versus R when averaging for 1000 simulations (left) and 20 simulations (right).
The realizations had parameters fH = −1 (red, solid), fH = 0 (black, dashed) and fH = +1 (blue,
dotted) for the three energy bin combinations: (∆E1,∆E2) (top row), (∆E1,∆E3) (middle row)
and (∆E2,∆E3) (bottom row) where the bins are defined in Eq. (5.2). The other parameters of the
stochastic magnetic fields are given in Eq. (6.2) and the bands denote standard error of Q.

Figure 14. Analysis of the same data as used for Fig. 13 but computed with the original definition
of Q. Namely, the Θ term in Eq. (5.1) is simply replaced by the value 1. It is clear both from the
magnitude and the size of the error bars that the modified Q is a sharper statistics.
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Figure 15. Q versus R for 1000 simulations with Brms = 10−14 G (blue,solid), 5× 10−15 G (orange,
dashed), and 2× 5× 10−15 G (green, dotted) and fH = 1, k = 0.01/Mpc.

Pushing the statistics further, we are clearly able to distinguish between many different
properties of the magnetic field as the number of realization increases. For instance, we have
plotted Q(R) versus R for 1000 Monte Carlo simulations for fH = 0,±1 (Fig. 13) and the
plots show a clear correlation between Q(R) and the helicity of the magnetic field. We can
also notice distinct oscillations that occur at small R. It is also reassuring that the fH = +1
plot is the mirror image of the fH = −1 curve, just as we would expect due to parity
reflection. Within the clean context studied here, we only need ∼ 10−20 halos before we can
detect the sign of the helicity through the sign of the Q’s at large R. However this number
depends heavily on the properties of the magnetic field, source variability and background.
Hence the determination of the exact amount of data required to make such detection will
require a careful analysis of these parameters and therefore is relegated to future work.

In Fig. 14, we show that the Θ factor in our definition of Q in Eq. (5.1) improves the
resolution. Without the Θ factor, the Q-statistic is determined by the cross product of the
average arrival direction of the photons (in two energy bins) within a radius R of the source.
Because of the electron-positron symmetry, photons tend to arrive on either side of the source
(see Fig. 4), and the average arrival direction tends to be near the origin. Introducing the
Θ factor ensures that for every high energy photon selected, we only average the low energy
photons that arrive on the same side with respect to the source. Then there is a larger
contribution to the value of Q. Essentially the Θ term limits the sum to gamma rays within
the electron (or the positron) branch of the halo (see Fig. 4).

Next we examine the dependence of Q(R) on magnetic field parameters. In Fig. 15 we
plot Q(R) for several different magnetic field strengths and for fixed helicity fH = 1. We
see that increasing the magnetic field strength leads to an increasing amplitude of Q for all
energy combinations. The increase is due to the magnitude of n1×n2 which becomes larger
as the bending allows n1, n2 to point further apart.
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Figure 16. Q versus R for 1000 simulations with k = 0.01/Mpc (solid, blue), k = 0.05/Mpc (orange,
dashed), k = 0.1/Mpc (green, dotted) with Brms = 1× 10−14 G and fH = +1.

The effect of changing the magnetic field coherence scale is shown in Fig. 16 where
the magnetic field strength and other parameters are fixed and only kmag is varied. The
magnetic field with larger coherence length gives a larger signal, but there is a turning point
as extremely large coherence scale fields will behave like uniform fields. The signal for smaller
correlation length is washed out but the suppression depends on the energy combination. This
is to be expected from the analysis of Ref. [17] since Q with a certain energy combination
is sensitive to the magnetic helicity power spectrum at a definite coherence scale that is
determined by the combination of energies. To probe magnetic fields on small length scales,
it is necessary to consider gamma rays whose energies are close together [17]. Thus the energy
bins also have to be smaller and this means that the statistics is poorer.

7 The features at small R

The Q-statistic is essentially a measure of the differential rotation found in the arrival di-
rection of photons of different energies. Q will be negative (positive) if the rotation is right
(left)-handed as is depicted in Fig. 10. The results of our Monte Carlo simulations, for ex-
ample in Fig. 13, show that Q has some oscillation at small R which is made abundantly
clear for the Q using the bin with highest energies. Here we provide an explanation of this
small R feature. What the Q-statistic allow us to probe is the shape of the PP surface. As
already mentioned, it is clear from Fig. 11 that high energy photons are found close to the
LoS and the low energy ones are further out. However there is another important piece of
information, namely the z coordinate of their PP locations.

Remember that to give a contribution to Q, one requires a high energy photon (γHE)
and a low energy photon (γLE) as is shown in Fig. 10. If most γLE photons have PP locations
higher up on the PP surface than the γHE ’s, the Q-statistic measures the twist of the PP
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surface as one traverses it from bottom to the top. This is in contrast to whenever the low
energy photons originate from PP locations close to Earth when compared to those of γHE .
As the twist is parity odd, these two cases contribute to Q with opposite signs and is the
reason for these oscillations.

We can understand this effect explicitly with a little more thought. When R is very
small, we expect to see events with small bending angles. These mainly occur when the
lepton upscatters a photon towards Earth early after it was pair produced. The small R
observed γHE (γLE) photons must therefore have originated from TeV leptons with high
(low) energies. Because TeV gamma ray have a MFP that decreases with energy, we then
expect the γLE to be produced at PP locations closer to Earth than the γHE ones, therefore
Q initially measures the twist from top to bottom. Assuming that the helicity of the magnetic
field is right-handed, the value of Q will become increasingly negative as R departs from 0.

However as R increases further, two new things occur. First, the observed photons
entering the field of view come from events who experiences more bending. This means that
the lepton had to travel further and in the process lost more energy, therefore the maximal
energy of the new photons will be lower than those observed at small R and won’t contribute
to the highest energy bin. Hence the average z of the PP location of the high energy photons
is determined by the events at small R. Second, most of the volume entering the field of view
will be located closer to the source due to projection effects; the observed volume is shown
by the green cone of Fig. 17. We can then statistically expect the newly observed photons to
have PP locations located near z = 0. We are now in the reverse situation: a large majority
of photons γLE have PP locations that are higher than the ones for the γHE . These give a
contribution to Q with the opposite sign, pulling the its value toward 0 and sometime even
changes its overall sign (compare the top and bottom panel of Fig. 13). Finally when R
becomes large, the low energy events with PP locations at small z and far from the LoS start
contributing to Q and dominate. This process, depicted in Fig. 17, is responsible for the
features before the value of Q flattens out to its asymptotic value.

8 Conclusions

We have studied the effect of stochastic inter-galactic magnetic fields on the morphology of
gamma ray halos. The dependence of the morphology on the magnetic field strength, the
coherence length, and the helicity were investigated. Most importantly, we have provided an
understanding of the structure of the halo in geometrical terms, as arising due to the “PP
surface” as determined by the magnetic field. In simple cases, the PP surface can be found
analytically (for example, Eq. (3.7)).

To analyze the halo morphology, we have proposed a sharper version of the Q-statistic in
Eq. (5.1) and applied it to simulated halos. Our key finding is that Q is a powerful diagnostic
of the magnetic helicity (Fig. 13), field strength (Fig. 15) and coherence scale (Fig. 16). Based
on the analytical work of Ref. [17], we expect the sensitivity of Q to the coherence scale to
depend crucially on the energies of the gamma rays that are used. It would be interesting to
quantitatively examine how the sensitivity of Q to the coherence scale can be improved with
a choice of energy bins.

In addition, our Monte Carlo simulations have revealed a bump in Q(R) at small values
of R (see Fig. 13). We have understood and explained this feature in terms of the PP surface
in Sec. 7. This new feature may become useful in the analysis of real data in the future.
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Figure 17. The sign of the Q-statistic when applied to a halo produced by a magnetic field with
fH = 1. Here the squiggly lines represents photons of high (blue) and low (red) energies. The top
photons are the initial TeV gamma rays, the green points are the PP locations and the bottom photons
are the upscattered GeV photons that are eventually observed. At small R, the events with small
bending allows the Q-statistic to measure the twist of the PP surface from top to bottom (purple
shaded region, Q < 0). When R gets larger and PP surface region near the blazar enters the field
of view, the new events entering the field of view contribute to Q with the opposite sign as they are
located further up the PP surface than the high energy events which only occurs close to the LoS
(green shaded region, Q > 0). Finally as R gets large and the whole halo is exposed, the overwhelming
low energy events at low z and far from the LoS dominate the signal and drive Q toward its asymptotic
value (brown shaded region, Q < 0).

Our present study is limited in a few ways that we plan to overcome in future work.
First, we have not included any background gamma rays. These will introduce noise in the
evaluation of Q and the error bars will increase. We have also limited ourselves to stochastic
isotropic magnetic fields but with only one |k|−mode. This is useful at this stage as it allows
us to diagnose the effects of changing the coherence scale. In future, we plan to include a
spectrum of the magnetic field as motivated by current observations [11]. In future we also
plan to incorporate the full development of the electromagnetic cascade into our numerical
code, perhaps along the lines of Ref. [14] or [16]. Once we have understood individual blazar
halos, we will apply our techniques to the diffuse gamma ray background which is expected
to contain halos due to unseen blazars as well as those due to identified blazars.
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ASUs.

A Generation of Isotropic Random Magnetic Fields

To generate helical magnetic fields, we first decompose the magnetic field B(x) in circularly
polarized modes with basis vectors K±(k) that are divergence-free eigenfunctions of the
Laplace operator

K±(k) = e±(k)eik·x ≡ e1(k)± ie2(k)√
2

eik·x. (A.1)

The triad of unit vectors, {e1, e2, e3}, is constructed as

e1 ≡
n0 × k̂

|n0 × k̂|
, e2 ≡

k̂× e1

|k̂× e1|
, e3 =

k

k
≡ k̂ (A.2)

where n0 is any chosen unit vector such that n0 6= k̂.
With these definitions, the e’s form a right-handed orthonormal system and we have,

∇ ·K± = 0, ∇×K± = ±kK±, K±∗(k) = −K±(−k) (A.3)

Hence any magnetic field can be decomposed as,

B(x) =

∫
d3k

(2π)3
b(k)eik·x

=

∫
d3k

(2π)3

[
b+K+ + b−K−

]
, (A.4)

with the condition that
b±∗(k) = −b±(−k) (A.5)

to ensure that B(x) is real. The divergence-free condition, ∇ · B = 0 , is automatically
satisfied in this procedure.

We are interested in generating random magnetic fields with given energy (EB(k)) and
helical (HB(k)) power spectra. The relations between the modes b±(k) and the power spectra
are given by

1

8π
〈|B(x)|2〉 =

∫
k2dk

16π3

[
|b+|2 + |b−|2

]
≡
∫
EB(k)d ln(k) (A.6)

and

〈A(x) ·B(x)〉 =

∫
kdk

2π2

[
|b+|2 − |b−|2

]
≡
∫
HB(k)d ln(k). (A.7)

The ratio of EB and HB will be written in terms of a function fH(k) as [8],

HB(k) = fH(k)
8π

k
EB(k), (A.8)

and the “realizability condition” leads to the restriction

− 1 ≤ fH(k) ≤ 1 (A.9)

The field is non-helical if fH = 0, maximally right-handed if fH = +1, and maximally
left-handed if fH = −1.
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Eqs. (A.6), (A.7) and (A.8) allow us to write,

|b±|2 =
(2π

k

)3
[1± fH(k)]EB(k). (A.10)

Hence the modes |b±(k)| are drawn from a normal distribution with mean µ± = 0 and
standard deviation σ± = (1± fH)(2π/k)3EB(k). We then include a uniformly drawn phase
angle θ±(k) ∈ [0, 2π) which yields,

b±(k) = |b±(k)|eiθ±(k) (A.11)

In this paper we focus on stochastic magnetic fields that are isotropic but have power
on a single length scale λc = 2π/kmag and that have either fH(k) = 0 or fH(k) = ±1. This
corresponds to a delta function distribution for EB(k) and vanishing or maximal helicity of
either sign. To ensure that the magnetic fields are stochastically isotropic, we choose N2 + 1
vectors kn (n = 1, ..., N2 + 1) that discretize half of the two-sphere of directions in k−space,

kn = kmag(sin θi cosφj , sin θi sinφj , cos θi), (A.12)

with

θi = cos−1
(2i− 1

N
− 1
)
, φj = 2π

(j − 1)

N
, (A.13)

for i, j = 1, . . . , N , and

kN2+1 = kmag(0, 0, 1) (A.14)

Once we have k and b±(k) as described above, we compute

b(k) = b+K+ + b−K− (A.15)

for every k = kn. We also find b(−k) using the reality condition

b(−k) = b∗(k). (A.16)

Finally we obtain the random magnetic field,

B(x) =
1

(2N2 + 2)

∑
k∈K

b(k)eik·x (A.17)

where K is the set of vectors {kn,−kn} for n = 1, . . . , N2 + 1.
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