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Abstract - Automatic Generation Control (AGC)
is a key control system in the power grid. It is used to
calculate the Area Control Error (ACE) based on
frequency and tie-line power flow between balancing
areas, and then adjust power generation to maintain
the power system frequency in an acceptable range.
However, attackers might inject malicious frequency
or tie-line power flow measurements to mislead AGC
to do false generation correction which will harm the
power grid operation. Such attacks are hard to be
detected since they do not violate physical power
system models. In this work, we propose algorithms
based on Neural Network and Fourier Transform to
detect data forgery attacks in AGC. Different from
the few previous work that rely on accurate load
prediction to detect data forgery, our solution only
uses the ACE data already available in existing AGC
systems. In particular, our solution learns the
normal patterns of ACE time series and detects
abnormal patterns caused by artificial attacks.
Evaluations on the real ACE dataset show that our
methods have high detection accuracy.

Index Terms—Power grid, AGC, data forgery attack,
deep learning, attack detection.

1. INTRODUCTION

Automatic Generation Control (AGC) is a critical
control function of the power grid used to control the
amount of power generation and maintain the balance
between power generation and load, which keeps

frequency at the scheduled value (i.e. 60 Hz in the U.S.).

In AGC, a control center periodically monitors the
power system’s frequency and tie-line power flow
between neighboring balancing areas (a balancing area
is a part of the power system that balances the electric
demand and supply within a geographic boundary), and
adjusts the amount of power generation in each
balancing area based on the collected information so
that the change in generation can restore the frequency
to the scheduled wvalue. The required change in
generation, called Area Control Error (ACE) is
calculated based on the difference between measured
frequency and scheduled frequency and the difference
between measured tie-line power flow and the
scheduled power flow. ACE is updated periodically

every two or four seconds (which we call an AGC cycle
for convenience) and then sent to the generators.

However, AGC is vulnerable to data falsification
attacks [1-4]. The attacker can inject falsified frequency
or tie-line power flow measurements to force
miscalculation of ACE, which may deceive AGC to
make some wrong control actions. For example, when
ACE is positive, it means that the area is over
generating and thus AGC will issue a command to
decrease power generation. However, if the frequency
or tie-lie power flow measurements are attacked
resulting in negative ACE value, AGC will believe that
the area is under generating and thus increase the power
generation, which exaggerates the over generating
situation. A few work [5, 6] have been done to detect
such attacks. Those schemes use load forecast to predict
the ACE and then compare the measured ACE value
with the predicted ones to detect forged AGC
measurements. However, load prediction is run every
five minutes [7] (a much lower frequency than ACE
calculation) and the prediction is never 100% correct [8],
which will result in inaccurate ACE prediction and
inaccurate attack detection.

The detection methods we propose in this paper only
use the ACE time series data. Since ACE data is already
available in current AGC systems, our detection
methods can be easily deployed without interrupting
service. Specifically, we propose two methods to do the
detection. In the first method, we adopt Long Short
Term Memory (LSTM) neural network to predict the
ACE sequence pattern in the next detection window,
compare with the corresponding ACE sequence pattern
calculated from measurements, and then determine
whether there is forged data in the sequence. The second
method calculates the moving average of ACE time
series and then converts the moving average data from
time domain to frequency domain by using discrete
Fourier transform. Then check if the data is normal in
frequency domain. These two methods work well for
different types of attacks. The two proposed methods
are evaluated on the real ACE dataset obtained from
company PJM, indicating their potential high
performance in the real world.

This paper is organized as follows. Section II
discusses related work about detecting data forgery
attacks in AGC. Section III describes the system model
and three attack models considered in this paper. Section



IV describes the proposed detecting methods. Section V
shows the performance of the proposed methods on the
real dataset. The last section concludes this paper.

II. RELATED WORK

A few work have been done about attacks on AGC.

In [9], the authors explore how to launch attacks to
achieve expected effects in the shortest time, but no
detection method is given. In [5], Sridhar et al. develop
a model-based anomaly detection algorithm, in which
the ACE values are predicted in 5-minute intervals for
the next hour based on load forecast. The real-time
value of ACE will be regarded as an anomaly if it is not
in the forecasted range. This method heavily depends on
load forecast. However, in the practical power system,
load forecast have no high accuracy [8]. The work in [6]
presents a two-tier intrusion detection system. The first
tier forecasts the ACE value for the next time instance
based on the current time instance. The measurement
deviating from the prediction will be flagged as
anomalous and then the flagged instance is passed to the
second tier to verify anomaly by incorporating the
overall system variable. However, the algorithm only
depends on one previous observed value. If the previous
data is abnormal or attacked, its prediction for the next
time instance will be misled by the attacked data.
Therefore, the attack in the next time instance may not
be detected. The approach presented in [10] adopts a
security game model to choose the best response
strategies against attackers, but it does not give an
approach to detect the attacks.

III. PRELIMINARY AND ATTACK MODELS

A. AGC System

For a balancing area, AGC is used to adjust power
generation to maintain the frequency at the scheduled
value. AGC is an automated control system as
illustrated in Fig. 1. It periodically (every 2-4 seconds)
receives the measurements of frequency in this
balancing area and tie-line power flows between this
area and neighboring areas from field devices, and
calculates the ACE according to the equation ACE =
(Prictie = Pscn) + B(f — fscn)» where Prigiine and ficn
are the scheduled tie-line power flow and the scheduled
frequency respectively. B is the frequency bias factor,
which is constant and is estimated annually. Then AGC
adjusts the power generation of generators according to
the obtained ACE.

B. Attack Models
One stealthily forged data measurement may not be

enough to introduce significant impact to the power grid.

According to [9], the shortest time to stealthily mislead
the system frequency to breach the safety condition
without triggering AGC suspension is at least 10 AGC
cycles, which means that in order to achieve expected
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Fig. 1. AGC system
effects, the attacker needs to inject a series of false data
to indirectly control the generator for a period.

In this work, we mainly consider three attack models
explored in [5, 11]: scaling attack, ramp attack, and
random attack. In the attack models, the attacker keeps
launching attacks until achieving expected results. Let
T, represent the attack period, t represent time, t,
represent the time point when the attacker starts an
attack, y(t) represent the true measurement (which
could be either frequency or tie-line power flow as
discussed later) value without attacks, and y*(t)
represent the measurement value with possible attacks.
The three attack models can be described as follows.

Scale Attack: This attack modifies the measurements
by scaling up or down with a scaling parameter A, .

(@), forteT,
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y@®)+A,-y(@), forteT,

Ramp Attack: This attack modifies the measurements
gradually with the addition A,-(t — t;). A, is a ramping
parameter. This type of attack is more difficult to detect
because it has very small and unnoticeable changes at
the beginning of the attack period.
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Random attack: This attack aims to add some
random positive values in a range with lower bound a
and upper bound b to the real measurements during the
attack period.

N 0! forteT,
YT 0+ rand(a,b), forteT,

These attacks directly change the sensor
measurements. It can be derived that ACE is
proportional to tie-line power flow and frequency
deviation. According to [12], we have

"G,/
AR, =)yl

fo, Griand GD;is the scheduled frequency, the rated
generation capacity and the governor droop of generator
i. All the three variables are constants for each power

system. Assuming K = — ?zlg’;i—;f", then AP, = KAf

and K 1is also a constant. Then, we can obtain:

ACE = AP, + BAf = AP, +§APL :(1+§)APL
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Fig. 6. Structure of LSTM

From the above formula, it can be known that ACE is
linear to tie-line power flow and frequency deviation.
Therefore, even though these attack models directly
modify the sensor measurements such as tie-line power
flow and frequency, they also have same modification
trend on ACE. For example, if the attacker launches
scale attack on tie-lie power flow or frequency, it can
also be regarded as scale attack on ACE.

C. Dataset

The real ACE dataset is from PJM (PIM
Interconnection) [13], an electric regional transmission
organization (RTO). The dataset includes four years’
ACE data, from the year 2012 to 2015, with about 2
million data records. Each record provides the ACE
value and its date and time.

This dataset is normal data without any attack. Figure
2 shows the real ACE data pattern of 250 cycles. From
the figure, it can be seen that the ACE data has some
specific patterns. For example, the data sequence pattern
from cycle 0 to 49 is similar to the sequence pattern
from cycle 50 to 100. To generate attacked ACE data,
we add attacks to the normal data based on the above
attack models. The ACE data with the ramp attack (4,=
0.02) is shown in Fig. 3. The ramp attack is launched
periodically every 10 cycles and each attack lasts for 10
cycles. The blue line shows the original data without
attack, and the red one is the data with ramp attack. It
can been seen that the ACE data sequence pattern has
been totally changed. Figure 4 and Figure 5 show the
ACE data with scale attack when A, = 0.1 and random
data with rand (0, 0.1) respectively.

IV. DETECTION METHODS

A.  LSTM-based Detection

Based on the dataset observations, the ACE time
series data of a balancing area have some patterns
determined by the physical configuration of the AGC
system (e.g., how ACE responds to load changes). If an
attacker injects artificial data into AGC, the resulted
ACE patterns will be different. Therefore, we can detect
attacks through checking whether the ACE data patterns
deviate from the normal patterns. Following this idea,
we use neural network to learn the normal pattern of
ACE time series and use it to detect attacks. To
determine whether the pattern of the current data
sequence is normal or has appeared before, the neural
network model must have the ability to link the current
observations with the past observations. However,
traditional neural networks just focus on the current
input and they cannot connect the current task with the
previous information. Long Short Term Memory
networks (LSTM), a special kind of recurrent neural
network, is designed to make such connections.

The structure of LSTM is shown in Fig 6. x; is the
input, h; is the output and A is neural network. This
chain allows the past information to be passed from one
step to the next. In each step, it has a memory part to
remember useful information for a long period of time.
It is well-designed to learn from past experiences and
connect the previous data with the current [14]. LSTM
is able to find which previous sequence pattern that the
current sequence resembles or is similar to. Then it can
predict the next data sequence pattern based on the
resembled pattern as well as the current inputs.

Our experiments on the PJM dataset show that the
LSTM model learned from past ACE time series data is
able to make very accurate predictions for the next ACE
sequence. We split the PJM ACE data into two parts,
training data and testing data. Then training dataset (size:
1 million records) is used to train the model and then the
testing dataset is fed into the model to do the prediction
for each data point. The prediction results are shown in
Fig. 7. The red ones are predicted data which fits the
real data (blue ones) very well.

Since the LSTM model has very high prediction
accuracy, we can compare the predicted ACE sequence
with the measured ACE sequence to detect abnormal
measurements. In each comparison, we calculate the
distance between a predicted ACE data sequence with
the corresponding measured ACE sequence by using
Manhattan Similarity.

In particular, the LSTM model is first trained with
historical ACE data and can be updated dynamically
(e.g., every day or every week) to include the newly
generated ACE data. Then the current ACE data
sequence is fed into the trained model to do the
prediction. The length of the input data sequence can be



adjusted based on the datasets to achieve better
prediction results. Suppose the input length is m, and x;
is the i ACE measurement. We use the input data
sequence (Xijz1, Xiy2, - ,Xijzm) to predict X miq -
When predicted data sequence with n values is available,
it is compared with the measured data sequence at the
same time points to check whether the measured data
sequence deviates too much from it. The detailed steps
of the method are shown as follows which are run every
n ACE cycles.

Step 1: predict the next data sequence using the
trained model.
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Step 2: use Manhattan Similarity to compute the
distance between the predicted sequence and the
measurements.
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Step 3: compare the distance with the threshold ©. If
it is larger than the threshold (d >©), it is regarded as
attacked data. Otherwise, it is normal data.

B.  Fast Fourier Transform based Detection

The prediction accuracy of LSTM model mainly
depends on data sequence pattern, but it is not very
sensitive to data’s value. Since the scale attack just
scales the data’s value up or down and does not change
the data sequence patterns, LSTM model cannot detect
such attacks very well.

However, if the data sequence values change
unexpectedly, the change will be reflected on its
average. We can calculate the moving average [15] of
normal ACE data and attacked ACE data to observe
their differences. Figure 8 shows the moving average.
The blue line shows the moving average without any
attack and the red one is the moving average with the
scale attack (1,= 0.2) and the length of one attack period
is 10 AGC cycles. It can be seen that the moving
average of the data with scale attacks is more fluctuated
than the normal data. Then we use Fast Fourier
Transform (FFT) [16] to convert the moving average
data from time domain to frequency domain to explore
the fluctuation. For each 10-data sequence, we use FFT
to convert its moving average to frequency domain and
get the minimum transformed value (MTV) of each
sequence. As shown in Fig. 9, the MTV of normal
moving average is around 0.0. However, the MTV of
moving average with scale attack is around -0.2. The
MTVs of data under scale attack and normal data have
very obvious differences. Then we can set a threshold.
If a data sequence’s MTV is larger than the threshold, it

is normal data. Otherwise, it is regarded as attacked data.
Such threshold can be set by observing the differences
between MTVs of attacked data and normal data.

V. EVALUATIONS

A.  LSTM-based Detection

The data used in the experiments are as described in
Section III.C. We split the data into two parts: 67% as
training data and 33% as testing data. The training
dataset is used to train the LSTM model, which has a
hidden layer with 6 neurons and an output layer to make
the prediction. The sigmoid activation function is used
for the LSTM neurons. Here n is set as 10 because the
shortest attacked sequence which can negatively
influence the system is 10. The input data sequence size
m is set as 5, which can be adjusted based on different
datasets. The attacked data are generated by adding the
attack periodically into testing data every 10 cycles. To
test the model’s performance, we feed the attacked data
into the model to check the True Positive (TP) detection
rate which is defined as the fraction of attacks
successfully detected. We also feed the normal data
without attacks into the model to see the False Positive
(FP) detection rate which is defined as the fraction of
normal data sequences falsely detected as attacked data.

The setting of the threshold ® is critical. If the
threshold is too low, some normal data sequences will
be detected as attacked data. If the threshold is too high,
the attacked data sequences may not be detected. The
FP rates of different threshold settings are shown in
Table 1. The higher is the threshold and the lower is the
FP rate. In the following, we set the threshold as 0.3,
which has a FP rate of less than 5%.

When © =0.3, the detection results for ramping
attacks are shown in Fig. 10. The results show that when
A, (lambda) is higher, the TP detection rate is also
higher. This is because higher 1, means the attacks have
more significant modifications on ACE data and thus
such attacks are easier to be detected (note that these
attacks also have higher impact to the power grid).
When A, < 0.015, the impact of attack is very small
under this parameter setting, but our algorithm can still
detect most of attacks.

In the random attack, the attacker tries to inject
positive data to increase the ACE rather than decreasing
it. Thus, we set the lower bound a as 0 which means
the injected data are positive values which range in
(0,b). The TP detection rates for random attacks are
shown in Fig. 11. The results have similar trending with
ramp attack. Higher upper bound b means larger
amount of modifications. Thus the detection rate is
higher. When b > 0.1, the detection rate is above 92%.

Table 1. FP rates for different thresholds
Threshold 0.5 0.4 0.3
FP rate 0.2% 0.7% 4.5%

0.25
8.1%
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B. FFT-based Detection Method

We first calculate the moving average of the ACE
data and divide them into subsequences. Each
subsequence has 10 data points. Then we use FFT to
transform each subsequence to frequency domain and
get the MTVs for each subsequence. Then a threshold is
set to separate the MTVs of attacked data from the ones
of normal data. By observing the MTVs’ distribution,
the threshold is set as -0.08. If MTV is less than -0.08,
the subsequence is regarded as attacked data. Otherwise,
it is normal data. The FP rate is 5% when the threshold
is -0.08. The TP rates are shown as Fig.12. When A4 >
0.2, more than 90% attacks can be detected.

Fig. 12. TP rate for scale attack
with FFT-based method

VI. CONCLUSIONS

In this work we proposed two methods, LSTM-
based method and FFT-based method, to detect data
forgery attacks in AGC. We test our methods on the real
dataset and these methods achieve high detection
performances. Both LSTM-based and FFT-based
methods can detect about 90% attacks with less than 5%
FP detection rate.
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