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Abstract - Automatic Generation Control (AGC) 

is a key control system in the power grid. It is used to 
calculate the Area Control Error (ACE) based on 
frequency and tie-line power flow between balancing 
areas, and then adjust power generation to maintain 
the power system frequency in an acceptable range. 
However, attackers might inject malicious frequency 
or tie-line power flow measurements to mislead AGC 
to do false generation correction which will harm the 
power grid operation. Such attacks are hard to be 
detected since they do not violate physical power 
system models. In this work, we propose algorithms 
based on Neural Network and Fourier Transform to 
detect data forgery attacks in AGC. Different from 
the few previous work that rely on accurate load 
prediction to detect data forgery, our solution only 
uses the ACE data already available in existing AGC 
systems. In particular, our solution learns the 
normal patterns of ACE time series and detects 
abnormal patterns caused by artificial attacks. 
Evaluations on the real ACE dataset show that our 
methods have high detection accuracy.  

 
Index Terms—Power grid, AGC, data forgery attack, 

deep learning, attack detection.  

I. INTRODUCTION  
Automatic Generation Control (AGC) is a critical 

control function of the power grid used to control the 
amount of power generation and maintain the balance 
between power generation and load, which keeps 
frequency at the scheduled value (i.e. 60 Hz in the U.S.). 
In AGC, a control center periodically monitors the 
power system’s frequency and tie-line power flow 
between neighboring balancing areas (a balancing area 
is a part of the power system that balances the electric 
demand and supply within a geographic boundary), and 
adjusts the amount of power generation in each 
balancing area based on the collected information so 
that the change in generation can restore the frequency 
to the scheduled value. The required change in 
generation, called Area Control Error (ACE) is 
calculated based on the difference between measured 
frequency and scheduled frequency and the difference 
between measured tie-line power flow and the 
scheduled power flow. ACE is updated periodically 

every two or four seconds (which we call an AGC cycle 
for convenience) and then sent to the generators.  

However, AGC is vulnerable to data falsification 
attacks [1-4]. The attacker can inject falsified frequency 
or tie-line power flow measurements to force 
miscalculation of ACE, which may deceive AGC to 
make some wrong control actions. For example, when 
ACE is positive, it means that the area is over 
generating and thus AGC will issue a command to 
decrease power generation. However, if the frequency 
or tie-lie power flow measurements are attacked 
resulting in negative ACE value, AGC will believe that 
the area is under generating and thus increase the power 
generation, which exaggerates the over generating 
situation. A few work [5, 6] have been done to detect 
such attacks. Those schemes use load forecast to predict 
the ACE and then compare the measured ACE value 
with the predicted ones to detect forged AGC 
measurements. However, load prediction is run every 
five minutes [7] (a much lower frequency than ACE 
calculation) and the prediction is never 100% correct [8], 
which will result in inaccurate ACE prediction and 
inaccurate attack detection.  

The detection methods we propose in this paper only 
use the ACE time series data. Since ACE data is already 
available in current AGC systems, our detection 
methods can be easily deployed without interrupting 
service. Specifically, we propose two methods to do the 
detection. In the first method, we adopt Long Short 
Term Memory (LSTM) neural network to predict the 
ACE sequence pattern in the next detection window, 
compare with the corresponding ACE sequence pattern 
calculated from measurements, and then determine 
whether there is forged data in the sequence. The second 
method calculates the moving average of ACE time 
series and then converts the moving average data from 
time domain to frequency domain by using discrete 
Fourier transform. Then check if the data is normal in 
frequency domain. These two methods work well for 
different types of attacks. The two proposed methods 
are evaluated on the real ACE dataset obtained from 
company PJM, indicating their potential high 
performance in the real world.  

This paper is organized as follows. Section II 
discusses related work about detecting data forgery 
attacks in AGC. Section III describes the system model 
and three attack models considered in this paper. Section 



IV describes the proposed detecting methods. Section V 
shows the performance of the proposed methods on the 
real dataset. The last section concludes this paper. 

II. RELATED WORK 
     A few work have been done about attacks on AGC. 

In [9], the authors explore how to launch attacks to 
achieve expected effects in the shortest time, but no 
detection method is given. In [5], Sridhar et al. develop 
a model-based anomaly detection algorithm, in which 
the ACE values are predicted in 5-minute intervals for 
the next hour based on load forecast. The real-time 
value of ACE will be regarded as an anomaly if it is not 
in the forecasted range. This method heavily depends on 
load forecast. However, in the practical power system, 
load forecast have no high accuracy [8]. The work in [6] 
presents a two-tier intrusion detection system. The first 
tier forecasts the ACE value for the next time instance 
based on the current time instance. The measurement 
deviating from the prediction will be flagged as 
anomalous and then the flagged instance is passed to the 
second tier to verify anomaly by incorporating the 
overall system variable. However, the algorithm only 
depends on one previous observed value. If the previous 
data is abnormal or attacked, its prediction for the next 
time instance will be misled by the attacked data. 
Therefore, the attack in the next time instance may not 
be detected. The approach presented in [10] adopts a 
security game model to choose the best response 
strategies against attackers, but it does not give an 
approach to detect the attacks. 

III. PRELIMINARY AND ATTACK MODELS 
A. AGC System 

For a balancing area, AGC is used to adjust power 
generation to maintain the frequency at the scheduled 
value. AGC is an automated control system as 
illustrated in Fig. 1. It periodically (every 2-4 seconds) 
receives the measurements of frequency in this 
balancing area and tie-line power flows between this 
area and neighboring areas from field devices, and 
calculates the ACE according to the equation 

, where  and  
are the scheduled tie-line power flow and the scheduled 
frequency respectively.  is the frequency bias factor, 
which is constant and is estimated annually. Then AGC 
adjusts the power generation of generators according to 
the obtained ACE.  

 
B. Attack Models 

One stealthily forged data measurement may not be 
enough to introduce significant impact to the power grid. 
According to [9], the shortest time to stealthily mislead 
the system frequency to breach the safety condition 
without triggering AGC suspension is at least 10 AGC 
cycles, which means that in order to achieve expected  
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Fig. 1. AGC system 

effects, the attacker needs to inject a series of false data 
to indirectly control the generator for a period.  

In this work, we mainly consider three attack models 
explored in [5, 11]: scaling attack, ramp attack, and 
random attack. In the attack models, the attacker keeps 
launching attacks until achieving expected results. Let 

 represent the attack period,  represent time,  
represent the time point when the attacker starts an 
attack,  represent the true measurement (which 
could be either frequency or tie-line power flow as 
discussed later) value without attacks, and  
represent the measurement value with possible attacks. 
The three attack models can be described as follows.  

Scale Attack: This attack modifies the measurements 
by scaling up or down with a scaling parameter s . 
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Ramp Attack: This attack modifies the measurements 
gradually with the addition .  is a ramping 
parameter. This type of attack is more difficult to detect 
because it has very small and unnoticeable changes at 
the beginning of the attack period.  
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     Random attack: This attack aims to add some 
random positive values in a range with lower bound  
and upper bound  to the real measurements during the 
attack period. 
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  These attacks directly change the sensor 
measurements. It can be derived that ACE is 
proportional to tie-line power flow and frequency 
deviation. According to [12], we have 
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, and is the scheduled frequency, the rated 
generation capacity and the governor droop of generator 
. All the three variables are constants for each power 

system. Assuming , then   
and K  is also a constant. Then, we can obtain:  
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Fig.2. ACE data pattern           Fig. 3. ACE with Ramp Attack 

 

  
Fig. 4. ACE with Scale Attack      Fig. 5. ACE with Random Attack 
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Fig. 6. Structure of LSTM 

 
 From the above formula, it can be known that ACE is 

linear to tie-line power flow and frequency deviation. 
Therefore, even though these attack models directly 
modify the sensor measurements such as tie-line power 
flow and frequency, they also have same modification 
trend on ACE. For example, if the attacker launches 
scale attack on tie-lie power flow or frequency, it can 
also be regarded as scale attack on ACE. 

 
C. Dataset  

The real ACE dataset is from PJM (PJM 
Interconnection) [13], an electric regional transmission 
organization (RTO). The dataset includes four years’ 
ACE data, from the year 2012 to 2015, with about 2 
million data records. Each record provides the ACE 
value and its date and time.  

This dataset is normal data without any attack. Figure 
2 shows the real ACE data pattern of 250 cycles. From 
the figure, it can be seen that the ACE data has some 
specific patterns. For example, the data sequence pattern 
from cycle 0 to 49 is similar to the sequence pattern 
from cycle 50 to 100. To generate attacked ACE data, 
we add attacks to the normal data based on the above 
attack models. The ACE data with the ramp attack ( = 
0.02) is shown in Fig. 3. The ramp attack is launched 
periodically every 10 cycles and each attack lasts for 10 
cycles. The blue line shows the original data without 
attack, and the red one is the data with ramp attack. It 
can been seen that the ACE data sequence pattern has 
been totally changed. Figure 4 and Figure 5 show the 
ACE data with scale attack when  = 0.1 and random 
data with rand (0, 0.1) respectively. 

IV. DETECTION METHODS  
A. LSTM-based Detection  

 Based on the dataset observations, the ACE time 
series data of a balancing area have some patterns 
determined by the physical configuration of the AGC 
system (e.g., how ACE responds to load changes). If an 
attacker injects artificial data into AGC, the resulted 
ACE patterns will be different. Therefore, we can detect 
attacks through checking whether the ACE data patterns 
deviate from the normal patterns. Following this idea, 
we use neural network to learn the normal pattern of 
ACE time series and use it to detect attacks. To 
determine whether the pattern of the current data 
sequence is normal or has appeared before, the neural 
network model must have the ability to link the current 
observations with the past observations. However, 
traditional neural networks just focus on the current 
input and they cannot connect the current task with the 
previous information. Long Short Term Memory 
networks (LSTM), a special kind of recurrent neural 
network, is designed to make such connections.  

The structure of LSTM is shown in Fig 6.   is the 
input,  is the output and  is neural network. This 
chain allows the past information to be passed from one 
step to the next. In each step, it has a memory part to 
remember useful information for a long period of time. 
It is well-designed to learn from past experiences and 
connect the previous data with the current [14]. LSTM 
is able to find which previous sequence pattern that the 
current sequence resembles or is similar to. Then it can 
predict the next data sequence pattern based on the 
resembled pattern as well as the current inputs. 

Our experiments on the PJM dataset show that the 
LSTM model learned from past ACE time series data is 
able to make very accurate predictions for the next ACE 
sequence. We split the PJM ACE data into two parts, 
training data and testing data. Then training dataset (size: 
1 million records) is used to train the model and then the 
testing dataset is fed into the model to do the prediction 
for each data point. The prediction results are shown in 
Fig. 7. The red ones are predicted data which fits the 
real data (blue ones) very well. 

Since the LSTM model has very high prediction 
accuracy, we can compare the predicted ACE sequence 
with the measured ACE sequence to detect abnormal 
measurements.  In each comparison, we calculate the 
distance between a predicted ACE data sequence with 
the corresponding measured ACE sequence by using 
Manhattan Similarity. 

In particular, the LSTM model is first trained with 
historical ACE data and can be updated dynamically 
(e.g., every day or every week) to include the newly 
generated ACE data. Then the current ACE data 
sequence is fed into the trained model to do the 
prediction. The length of the input data sequence can be 



adjusted based on the datasets to achieve better 
prediction results. Suppose the input length is , and  
is the ith ACE measurement. We use the input data 
sequence  to predict . 
When predicted data sequence with n values is available, 
it is compared with the measured data sequence at the 
same time points to check whether the measured data 
sequence deviates too much from it. The detailed steps 
of the method are shown as follows which are run every 

 ACE cycles. 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
B. Fast Fourier Transform based Detection 

The prediction accuracy of LSTM model mainly 
depends on data sequence pattern, but it is not very 
sensitive to data’s value. Since the scale attack just 
scales the data’s value up or down and does not change 
the data sequence patterns, LSTM model cannot detect 
such attacks very well. 

However, if the data sequence values change 
unexpectedly, the change will be reflected on its 
average. We can calculate the moving average [15] of 
normal ACE data and attacked ACE data to observe 
their differences. Figure 8 shows the moving average. 
The blue line shows the moving average without any 
attack and the red one is the moving average with the 
scale attack ( = 0.2) and the length of one attack period 
is 10 AGC cycles. It can be seen that the moving 
average of the data with scale attacks is more fluctuated 
than the normal data.  Then we use Fast Fourier 
Transform (FFT) [16] to convert the moving average 
data from time domain to frequency domain to explore 
the fluctuation. For each 10-data sequence, we use FFT 
to convert its moving average to frequency domain and 
get the minimum transformed value (MTV) of each 
sequence.  As shown in Fig. 9, the MTV of normal 
moving average is around 0.0. However, the MTV of 
moving average with scale attack is around -0.2. The 
MTVs of data under scale attack and normal data have 
very obvious differences. Then we can set a threshold. 
If a data sequence’s MTV is larger than the threshold, it 

is normal data. Otherwise, it is regarded as attacked data. 
Such threshold can be set by observing the differences 
between MTVs of attacked data and normal data.  

V. EVALUATIONS 

A. LSTM-based Detection  
The data used in the experiments are as described in 

Section III.C. We split the data into two parts: 67% as 
training data and 33% as testing data. The training 
dataset is used to train the LSTM model, which has a 
hidden layer with 6 neurons and an output layer to make 
the prediction. The sigmoid activation function is used 
for the LSTM neurons. Here  is set as 10 because the 
shortest attacked sequence which can negatively 
influence the system is 10.  The input data sequence size 

 is set as 5, which can be adjusted based on different 
datasets. The attacked data are generated by adding the 
attack periodically into testing data every 10 cycles.  To 
test the model’s performance, we feed the attacked data 
into the model to check the True Positive (TP) detection 
rate which is defined as the fraction of attacks 
successfully detected. We also feed the normal data 
without attacks into the model to see the False Positive 
(FP) detection rate which is defined as the fraction of 
normal data sequences falsely detected as attacked data. 

The setting of the threshold Θ is critical. If the 
threshold is too low, some normal data sequences will 
be detected as attacked data. If the threshold is too high, 
the attacked data sequences may not be detected. The 
FP rates of different threshold settings are shown in 
Table 1. The higher is the threshold and the lower is the 
FP rate. In the following, we set the threshold as 0.3, 
which has a FP rate of less than 5%.  
     When Θ =0.3, the detection results for ramping 
attacks are shown in Fig. 10. The results show that when 

 (lambda) is higher, the TP detection rate is also 
higher. This is because higher  means the attacks have 
more significant modifications on ACE data and thus 
such attacks are easier to be detected (note that these 
attacks also have higher impact to the power grid). 
When , the impact of attack is very small 
under this parameter setting, but our algorithm can still 
detect most of attacks. 

In the random attack, the attacker tries to inject 
positive data to increase the ACE rather than decreasing 
it. Thus, we set the lower bound a  as 0 which means 
the injected data are positive values which range in 

. The TP detection rates for random attacks are 
shown in Fig. 11. The results have similar trending with 
ramp attack. Higher upper bound  means larger 
amount of modifications. Thus the detection rate is 
higher. When , the detection rate is above 92%. 

 
Table 1. FP rates for different thresholds 

Threshold 0.5 0.4 0.3 0.25 
FP rate 0.2% 0.7% 4.5% 8.1% 

Step 1: predict the next data sequence using the 
trained model. 

 ˆ, , ...,1 2 3 1X X X X Xi mi i i i m   

 ˆ, , , ...,2 3 4 1 2X X X X Xi i i i m i m   

  … 
 ˆ, , , ...,1 2X X X X Xi n i n m i m ni n i n   

Step 2: use Manhattan Similarity to compute the 
distance between the predicted sequence and the 
measurements. 

                  1 ˆ| |
1

n
d X Xi m j i m jjn

  

Step 3: compare the distance with the threshold Θ. If 
it is larger than the threshold (d >Θ), it is regarded as 
attacked data. Otherwise, it is normal data. 



 
   
 

 

 
 
 

 
 

 

B. FFT-based Detection Method  
We first calculate the moving average of the ACE 

data and divide them into subsequences. Each 
subsequence has 10 data points. Then we use FFT to 
transform each subsequence to frequency domain and 
get the MTVs for each subsequence. Then a threshold is 
set to separate the MTVs of attacked data from the ones 
of normal data. By observing the MTVs’ distribution, 
the threshold is set as -0.08. If MTV is less than -0.08, 
the subsequence is regarded as attacked data. Otherwise, 
it is normal data.   The FP rate is 5% when the threshold 
is -0.08. The TP rates are shown as Fig.12. When 

 , more than 90% attacks can be detected. 

VI. CONCLUSIONS  
    In this work we proposed two methods, LSTM-

based method and FFT-based method, to detect data 
forgery attacks in AGC. We test our methods on the real 
dataset and these methods achieve high detection 
performances. Both LSTM-based and FFT-based 
methods can detect about 90% attacks with less than 5% 
FP detection rate.  
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Fig.11. TP rate for random 
attack with LSTM-based method 

Fig. 10. TP rate for ramp 
attack with LSTM-based method 

Fig.9. FFT of Moving 
Average with scale attacks 

Fig. 8. Moving average of 
scale attacks 

Fig. 12. TP rate for scale attack 
with FFT-based method  

Fig. 7. Prediction with LSTM 


