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Fracture Continuum Model (FCM)

 The Fractured Continuum Model (FCM)  incorporates fully 
three-dimensional representations of multiple independent 
fracture sets.  

 Based on discrete fracture and effective continuum 
approaches (McKenna and Reeves, 2005, Kalinina et al. 2012, 
and Hadgu et al. 2016). 

 FCM applications: 
 Multiple sets of natural and induced fractures with different 

orientations. 

 Different fracture spacing and aperture in different fracture sets. 

 Different fracture density with depth
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FCM Approach

 Uses method developed by Chen et al. (1999) to compute 
permeability tensors as a function of fracture parameters

 Fracture parameters are: strike, dip, aperture and spacing of 
each fracture set (defined as probability distributions)

 Fracture parameters are defined for each block of uniform 
orthogonal mesh using 3 different methods: 

Sequential Gaussian Simulation SGSIM 

Ellipsim

DFN generated output 
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Evolution of FCM Approach
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Original SGSIM

Permeability and 
Porosity Fields

Modified SGSIM

ELLIPSIM

DFN Output

Calculating Effective 
Grid Block Permeability 

and Porosity 

Defining Grid Block 
Parameters 

 Aperture
 Spacing
 Orientation 
 Radius

Defining Fracture 
Network Properties.
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Definition of Grid Block Permeability 
Tensor (same for all methods) 

Permeability of grid block with one fracture set  
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b - fracture aperture 
d - fracture spacing
α - fracture plunge (900 - dip) 
ω - fracture trend (strike - 900)

Kxx, Kyy, Kzz

Number of fractures=
[block size]/[spacing]
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Permeability of Grid Block with Multiple 
Fracture Sets

kij
m is permeability tensor of fracture set m 

Assumption: The summation assumes that the total porosity within a grid-cell changes 
very little. 
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Definition of Fracture Parameters in a Grid 
Block: I. Sequential Gaussian Simulation (SGSIM)

SGSIM:
 Correlation Ranges in x, y, z 
 Correlation angles in x, y, z 

Fracture Parameters:
Spacingx,y,z(Px,y,z)
Aperturex,y,z(Px,y,z)
Strikex,y,z(Px,y,z)
Dipx,y,z(Px,y,z)

Spatially Correlated 
Number  Px,y,z

Original  SGSIM Method

Modifications 

Number of fractures k in a grid block is calculated using Poison distribution f(k,λ). 

Correlation Ranges in x, y, z – based on fracture radius 
Correlation angles in x, y, z – based on fracture orientation

Probability f(k,λ) is assigned to each grid block using spatially correlated number Pxyz

Fracture aperture (b) is calculated as:

Fracture Plunge (α) and Trend (Θ) are defined with univariate Fisher distribution.  

where R is fracture radius distribution and γ	and ω are parameters.

� = γ ∙ ��

: 

Any distribution can be defined.
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Definition of Fracture Parameters in a Grid 
Block: II. Boolean Simulation of Ellipsoids (Ellipsim)

 Ellipsim generates a specified number 
of ellipses.

 Each ellipse set represents a specific 
fracture set.

 Ellipse centers are randomly placed 
within the modeling domain.

 The ellipse radius is drawn from the 
power-law distribution.

 The ellipse orientation is drawn from 
the triangular distribution 
approximating Fisher distribution.

 The grid blocks located within a 
specific ellipse are assigned its radius 
and orientation.  

Example of One Fracture Set with 2,300 
E-W Trending Fractures
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Converting Ellipsim Output to FCM 
Permeability (continued)

Ellipsim Output for 
Each Grid Block

Fracture Radius Fracture Orientation

log � = log	(� ∙ �ω), � =
��

��
	
��

�
Ϭ is fracture transmissivity, γ and ω are parameters, 
ρ is fluid density, g is gravity acceleration and ϻ is a 
fluid viscosity

Fracture Aperture Dip Strike

Fracture Spacing=Grid Block Size (one fracture 
per grid block)

Converting to FCM Permeability & Porosity

Aperture (b) is calculated from radius R as:

Example of Permeability Field with 3 
Fracture Sets (6,500 fractures)

Permeability (Porosity) Field

Fracture Spacing



11

Definition of Fracture Parameters in a Grid 
Block: III. Converting DFN Output to FCM Permeability

DFN Realization of 
Fracture Network

Dip Strike

Permeability (Porosity)  Field

Fracture Spacing

Example of DFN Realization of Fracture 
Network with 3 Fracture Sets  

Fracture Aperture Fracture Normals

Converting to FCM Permeability & Porosity

Converting DFN Output into 
Continuous Grid
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Example of Three Fracture Sets Generated 
with ELLIPSIM

Vertical Fractures N-S Vertical Fractures E-W Horizontal Fractures W-E 

All Three Sets 
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kxx, kyy, and kzz Permeability Fields for the 
Fracture Network with Three Fracture Sets
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Theoretical Power-Law Distributions with Different 
Parameter and Sampled by DFN Distributions of 
Fracture Radius
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Fracture Network with Original (Left) and 
Modified (Right) Fracture Parameters
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Summary of Methods: FCM (SGSIM)

 No assumption regarding fracture shape is required.

 Aperture, spacing, and orientation are defined based on 
distributions of field observations (not calculations).

 The fracture parameter distributions are not altered.

 The number of fractures can be very large.

 An exact number of fractures cannot be generated.

 Fractures are not explicitly modeled.

 Minimum fracture size is limited by the grid block size. 

 Uniform orthogonal mesh is required.
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Summary of Methods: FCM (ELLIPSIM)

 An exact number of fractures can be generated.

 The fracture parameter distributions are not altered.

 The number of fractures can be very large.

 Ability for flow and transport through fractures and rock matrix

 Fractures are not explicitly modeled. 

 Fractures are ellipses with fixed distribution of radius. 

 Minimum fracture size is limited by the grid block size. 

 Uniform orthogonal mesh is required.
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DFN-FCM Comparison 

 Direct Comparison: DFN versus FCM (DFN output) 

 DFN realization is converted to FCM realization - eliminates 
uncertainty in generating fracture network.

 The only difference is between explicit (DFN) and effective (FCM) 
representation of fracture network.

 Effective permeability of the modeling domain and breakthrough 
curves can be compared for each realization. 

 Indirect Comparison: DFN versus FCM ELLIPSIM

 Evaluates the difference in conceptual models – flow and transport 
through fractures (DFN) versus flow and transport through fractures 
and matrix (FCM). 

 Effective permeability of the modeling domain and breakthrough 
curves have to be compared based on statistics from multiple 
realizations. 
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Test Case Fracture Parameters 

Fracture Set
Mean 
trend 

(degrees)

Mean 
plunge 

(degrees)

 
Ru

(m)
R0

(m)

Number 
of 

fractures 

North-South Vertical 90 0 22 2.5 500 15 2,100
East-West Vertical 0 0 22 2.7 500 15 2,000
West-East	Horizontal 360 90 10 2.4 500 15 2,300

Fracture radius R follows a truncated power law distribution: 

� = �� ∙ 1 − � + � ∙
��

��

� �� �⁄

, 

� � =
�⋅����∙��∙����

������
, 

Fracture orientation ϴ follows Fisher distribution: 
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Benchmark Simulations - Model Setup

 Domain: 1000 m x 1000 m x 1000 m with cell size of:  10 m x 10 m x 10 m

 No. of Elements: 1,000,000

 Porosity: Anisotropic 

 Permeability: Anisotropic

 Initial Conditions: Hydrostatic pressure 

 Boundary Conditions:

 Pressure at West Face: 1.001 MPa

 Pressure at East Face: 1.0 MPa
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Anisotropic Permeability Field
Based on DFN Works Fracture Output Data
 5 Realizations (Permeability fields) 

 Permeability field of Realization 1 shown 
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Anisotropic Porosity Field
Based on DFN Works Fracture Output Data

 5 Realizations (Porosity fields) 

 Porosity field of a Realization 
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Effective Permeability Evaluation:
DFN Works Fracture Output Data

 PFLOTRAN numerical simulator used

 Steady state flow utilized to estimate effective permeability 
for each realization 

 Darcy’s law and east face flux used to calculate effective 
permeability

Realization Pressure

Difference

(Pa)

East Face 

Flux 

(kg/s)

Effective 

Permeability 

(m2)
1 1000 4.57E-05 4.67E-17
2 1000 3.88E-05 3.97E-17
3 1000 4.15E-05 4.24E-17
4 1000 3.60E-05 3.68E-17
5 1000 3.79E-05 3.87E-17
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Comparison of Tracer Breakthrough Curves:
DFN Works Fracture Output Data

 Tracer breakthrough curves using DFN (Particle Tracking), DFN (Advection-
Diffusion) and FCM (Advection-Diffusion) for Realization 0
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Tracer Distributions:
DFN Works Output Data

 FCM Tracer Transport Results (after 70 and 400 years simulation time) for 
Realization 0
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Tracer Distributions:
DFN Works Output Data (Contd.)

 FCM Tracer Transport Results (after 1.0E05 years simulation time) for 
Realization 0
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Tracer Breakthrough Curves:
FCM with Original Parameter Distributions

 FCM Tracer Transport Results (after 70 and 400 years simulation time)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

N
or

m
al

iz
ed

 B
re

ak
th

ro
ug

h

Time (year)

run92

run103

run117

run92 no diff

run103 no diff

run117 no diff

Mean of Modified FCM



28

Tracer Distributions:
FCM with Original Parameter Distributions

 FCM Tracer Transport Results (after 1.E03 and 1.E04 years 
simulation time)
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Tracer Distributions:
FCM with Original Parameter Distributions (Contd.)

 FCM Tracer Transport Results (after 1.E05 and 1.E06 years 
simulation time)
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