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Abstract—Decentralized and hierarchical microgrid control 

strategies have lain the groundwork for shaping the future 

smart grid. Such control approaches require the cooperation 

between microgrid operators in control centers, intelligent 

microcontrollers, and remote terminal units via secure and 

reliable communication networks. In order to enhance the 

security and complement the work of network intrusion 

detection systems, this paper presents an artificially intelligent 

physical model-checking that detects tampered-with circuit 

breaker switching control commands whether, due to a cyber-

attack or human error. In this technique, distributed agents, 

which are monitoring sectionalized areas of a given microgrid, 

will be trained and continuously adapted to verify that 

incoming control commands do not violate the physical system 

operational standards and do not put the microgrid in an 

insecure state. The potential of this approach has been tested 

by deploying agents that monitor circuit breakers status 

commands on a 14-bus IEEE benchmark system. The results 

showed the accuracy of the proposed framework in 

characterizing the power system and successfully detecting 

malicious and/or erroneous control commands. 
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I. INTRODUCTION 

Decentralized and hierarchical microgrid control requires 
judicious cooperation between several cyber and physical 
entities in which communication signals could be regarded 
as feedback signals from sensory devices or control 
commands to actuators, forming a closed loop. 

The recent history has repeatedly shown the ability of 
attackers to exploit vulnerabilities in power system 
communication networks and maliciously tamper with 
exchanged signals, especially those targeting control 
fields[1], [2]. This class of attacks pose a serious threat to 
power systems as they can lead to catastrophic consequences, 
such as overloading of transmission lines and/or generators 
[1]. The study conducted in [3] showed that the sequential 
removal of substation or transmission lines by attackers can 
cause large blackouts. Similarly, authors in [4] studied and 
proposed several attack scenarios that could cause cascaded 
failures in power systems. Also, recent public disclosures 
have emphasized the disastrous consequences of control-
related attacks on critical processes such as the Stuxnet 
malware, the Crash Override malware targeting the Ukraine 

power grid, and several other incidents present in the media. 
Aside from targeting critical infrastructure, the gravity of 
these attacks is emphasized by their ability to remain 
undetectable by conventional network Intrusion Detection 
Systems (IDSs). This is due to the fact that the modified 
control fields are re-encoded in the proper packet format 
before being transmitted [1], [5]. In light of that, several 
efforts have been placed to detect control-related attacks in 
the energy sector using cyber and physical rules. In [1], a 
semantic analyses framework which integrates network IDS 
with power flow analyses was proposed to detect malicious 
control commands. This technique targets only DNP3 
packets and requires a complex mathematical representation 
of the power system, which increases in complexity as the 
system grows. The framework also requires adapting the 
power flow analyses leading to a tradeoff between accuracy 
and latency. The authors in [6] proposed an anomaly 
detection algorithm for detecting and mitigating attacks on 
automatic generation control. The control signal in [6] is 
processed only if it is regarded as legitimate by an anomaly 
detection engine, otherwise, a signal from a model-based 
automatic generation control is utilized. This work assumes 
that the feedback frequency and tie-line measurements are 
trusted and do not discuss their security requirements. In [7], 
a multi-agent system that utilizes cyber and physical rules 
was introduced to detectcyber-attacks and distinguish them 
from physical faults. Similarly, [8] introduced an algorithm 
to detect tripping cyber-attacks on protection systems using 
physical properties. Both [7] and  [8] rely solely on static 
physical rules. 

The work in this paper proposes an Artificially Intelligent 
Physical Model-Checking (AI-PMC) multi-agent microgrid 
security framework that detects malicious and/or erroneous 
circuit breaker switching control commands. Unlike the 
work presented in the literature, the proposed approach does 
not need online load flow analyses, instead it uses a coupled 
Artificially Intelligent - Expert System (AI-ES) to 
characterize the power system and benefits from their fast 
responses to produce accurate power flow solutions. 
Moreover, the ES has the ability to decide on whether an 
incoming control command contains malicious/bad content 
or not. The performance of the proposed framework was 
tested in simulation on a 14-bus IEEE benchmark system. 

The rest of the paper is organized as follows: Section II 
describes the details of the proposed model-checking 



approach. Section III presents and discusses the results. 
Section IV concludes the paper and proposes future work. 

II. THE AI-PMC APPROACH 

A. Physical System Description 

The proposed AI-PMC framework was applied on the 
14-bus IEEE benchmark system shown in Fig. 1. The 
minimum and maximum limits of voltage magnitude are 
considered to be 0.95 p.u. and 1.05 p.u., respectively. This 
follows the ANSI C84.1-2006 standard [9]. Details of all 
system parameters and ratings can be found in [10]. The 
system is divided into three areas such that each area has at 
least one synchronous machine and one load point, as shown 
in Fig. 1. An agent is assigned to each of the three areas. 
Each agent is responsible for the security and control actions 
within its area. The three agents have a communication link 
with the main system operator for the hierarchal control of 
the microgrid. 

B. Cyber Threats and the AI-PMC Security Algorithm 

Two of the most commonly used protocols for microgrid 
operation and control are the Distributed Network Protocol 
(DNP3) in case of Supervisory Control and Data Acquisition 
(SCADA) systems and IEC 61850 Manufacturing Message 
Service (MMS), Generic Object Oriented Substation Event 
(GOOSE), and Sampled Measured Values (SMV) messages 
in more recent systems [1], [11]. Each of these protocol suits 
has its own vulnerabilities that have been exploited to launch 
successful attacks on power grids. The work in [1] presents a 
successful data manipulation attack on a DNP3 packet which 
has 4 control relay objects to operate 4 circuit breakers in a 
substation. A Man-in-the-middle attack was also presented in 
[5] to generate malicious circuit breaker control commands 
as GOOSE messages. Again, these attacks were established 
as legitimate network packets with malicious content. It is 
important to mention here that such networks are required to 
operate in real-time. This imposes strict time delay 
requirements on the transfer of control commands especially 
when current microcontrollers and IEDs have low processing 
powers. This leaves such industrial control networks 
unencrypted. In fact, a study conducted in [12] shows that 
even the latest processors cannot meet the 4 ms time delay 
requirement set by IEC 61850 on GOOSE messages. 

To complement the work of network IDSs, this paper 
proposes a multi-agent framework based on a physical 
model-checking approach to detect cyber-attacks targeting 
circuit breakers in a microgrid or a distribution system. The 
objective of this framework is to add an intelligent layer 
which assesses the consequences of incoming circuit breaker 
control commands on a model of the power system and 
decide whether these commands are malicious or not. The 
System Operating Limits Methodology for the Operations 
Horizon Standard (FAC-011-2) indicates that power systems 
operating limits should be designed such that single or 
multiple contingencies do not result in cascading outages 
[13]. In this work, the classical N-1 contingency criterion is 
adopted. The power system shown in Fig. 1 is divided into 
three areas and an agent is assigned to each area. When a 

control command is issued from the control center, each 
agent checks whether this command will actuate a breaker 
within its area. If this is the case, then this agent’s security 
feature will be activated and the remaining agents will stay 
idle.  

The security module in the agents consists of two layers. 
The first layer takes in the control command as input, solves 
the power flow problem, and produces the bus number with 
the minimum voltage, the value of that minimum voltage, 
and the maximum transmission line loading as outputs. Since 
topology changes due to circuit breaker activities in one area 
might affect other locations, each agent is trained to assess 
the consequences of the control commands within its area 
and their effect on the neighboring areas. The second layer, 
which consists of an expert fuzzy module, processes the 
results of the first layer and produces a decision on whether 
the newly arrived control command is malicious or not. The 
security module in the agents is described in the flowchart of 
Fig. 2 and explained below. 
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Figure 1.  14-bus IEEE benchmark system. 

 

The power system characterization process occurs in the 
first layer utilizing the AI module. The power flow problem 
of the 14-bus IEEE benchmark system shown in Fig. 1 is 
solved offline using the Newton-Raphson method. 
PowerWorld software was used to calculate the power flow 
problem solutions for the different N-1 contingency cases. 
For the system under study, 36 contingency cases were 
populated along with 1 control case corresponding to the 
normal case. The generated database of power flow solutions 
was then used to train a feed-forward neural network. The 
input to the neural network is a binary coding corresponding 
to the contingency case number. For example, the code 
000010 will be utilized to represent a control signal to 
actuate circuit breakers connecting bus 1 to bus 2. The output 
of the neural network is the load flow solution. This output 
will then be passed into an algorithm which will produce a 3-



element vector containing the minimum voltage in per unit, 
the bus number which has the minimum voltage, and the 
transmission line loading in percent. The minimum voltage is 
selected here since the voltage value will heavily reflect the 
system status. Maximum voltage was not considered as an 
input to the second layer because the severe over-voltage 
case will occur only if multiple loads were disconnected 
from the system and this will be detected and stopped by the 
proposed technique. This vector will then be passed into the 
expert fuzzy system for decision making. 
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Figure 2.  AI-PMC algorithm. 

The first input to the expert fuzzy system is the minimum 
voltage obtained from the previous layer. This input voltage 
will have membership functions in the fuzzy controller. The 
membership functions are designed to reflect the system’s 
behavior from the voltage point of view and according to the 
ANSI C84.1-2006 standard [9]. They are divided into four 
statuses: the two extreme cases are Very Low (VL) and Very 
High (VH) to represent a severe under or over voltage 
problem, respectively. The other two membership functions 
are High (H) and Low (L) to represent a normal operating 
condition or a mild under voltage problem that requires a 
corrective action (i.e reactive power support from the 
synchronous condenser or from the online tap changing 
transformer). The second input to the fuzzy system is the bus 
number. We assume that the system operator assigns 
different priority to each bus depending on the nature of the 
generation or the load connected to it. For example, buses 
that have main generator units or critical loads will have 
higher priorities while other buses that have small generation 
units or normal loads, that can be shed, will have a lower 
priority. In this paper, we assume that all buses with 
generation units are critical buses (buses 1, 2, 3, 6, and 8). 
We also assume that loads at buses 2, 3, 4, and 9 are critical 
loads. This priority will play a role in the decision-making 
process. The last input to the fuzzy system is the maximum 
transmission loading (TLLmax). It is divided according to the 

standard rating procedures in [12] to normal condition (N), 
allowable overloading (LTE), and unallowable overloading 
(STE). 

The fuzzy output is defuzzified based on the Sugeno 
technique. The output of the controller is a crisp value 
corresponding to one of three cases: a normal condition 
status in which the decision is to pass the command, an alert 
to the system operator and passing the command, or a 
malicious status activity which discards the command. Table 
I summarizes ranges set for each membership function. 

The fuzzy rules that dictate the controller decision are as 
follows: 
1. If there is severe over-voltage (VH), sever under-

voltage (VL) or severe overloading (STE), the fuzzy 

module will consider this command a malicious one 

since it is not expected that the system operator will 

perform a switching action that put the system in a 

critical condition or cause cascaded blackouts. 

TABLE I. RANGES OF MEMBERSHIP FUNCTIONS 
2.  

Variable Membership Function 

Vmin (p.u.) 
VL L H VH 

≤ 0.92 0.9 – 0.95 0.94-1.05 ≥ 1.03 

Bus Nb. 
Critical Bus Non-critical Bus 

1, 2, 3, 4, 6, 8, and 9 5, 7, 10, 11, 12, 13, 14 

TLLmax (%) 
N LTE STE 

≤ 105 103-130 ≥ 128 
 

 

2. If the voltage is low (L) on one of the main generator 

buses or on a critical load bus, the command will be 

considered as a malicious one since the voltage on these 

buses is expected to be maintained in a good condition. 

3. If the voltage is low (L) on one of the other buses, that 

is not included in Rule 2, or the loading condition is 

LTE, the command will be considered as an alert and 

will be passed. However, an alert signal will be sent to 

the operator to double check if an action needs to be 

done. 

4. Other cases, which do not put the power system in a 

contingency or disturbance state, will be considered as 

normal conditions and the command will be passed. 
In some cases, the operator will need to temporary power 

off some transmission lines or other power equipment for 
maintenance or other critical reasons. In order to allow that, 
each agent will have an additional network interface through 
which it will be communicating with the operator over an 
isolated network. Through this isolated tunnel, the operator 
can send an encrypted override signal to bypass the operation 
of the agent and perform necessary changes. 

III. RESULTS AND DISCUSSION 

The performance of the developed neural network to 
model the power system under study was investigated in 
terms of the maximum mean squared error of its three output 
categories spanning all contingency cases. Fig. 3 (a) shows 
the maximum error in the active (P) and reactive (Q) power 
at the buses with generation units. The maximum error 



produced by the neural network for this category was 2.6% 
corresponding to the reactive power of bus 1. Fig. 3 (b) 
shows maximum error of the voltages on each bus. The 
maximum error in bus voltages was 2.22x10-4 which was at 
bus 8. Since the voltages are dealt with in p.u., the small 
error range (of order 10-4) indicates the good performance of 
the neural network. Finally, Fig. 3(c) shows the maximum 
error in the transmission line loading. It indicates that the 
maximum transmission line loading error was 0.614% at 
transmission line 19 connecting busses 12 and 13. 

Next, the multi-agent system was simulated on Matlab in 
two scenarios. The first scenario is to perform a switching 
command while the initial status is the normal operation 
condition where all CBs are on. In the second scenario, the 
control commands were sent in a sequential manner one after 
the other 

without getting back to the normal case. The results of 
both cases are presented in Table II. In the first case, i.e. 
comparing to the normal case after every new control 
command is received, it is noticed that every command to 
disconnect a generator or a critical load is automatically 
considered malicious without invoking the AI module. This 
is because the override signal from the operator was set to 
zero in these cases. Table II also shows that for every 
simulated case, the proper corresponding agent was activated. 
For example, in case 1, the control command is intended to 
actuate the circuit breakers on the transmission line 
connecting bus 1 to bus 2. In this case, the change is in Area 
1 only. Thus, only Agent 1 was activated. On the other hand, 
in case 7, the control command is intended to actuate the 
circuit breakers on the transmission line connecting bus 4 to 
bus 5. This line connects Areas 1 and 3. Therefore, Agent 1 
and Agent 3 were activated. 
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As mentioned earlier, the decision of the agents is based 
on the allowable operating limits of bus voltages, 
transmission line loading, and criticality of the affected buses. 
It can be noticed from the results in Table II that in all 
situations that passed the control commands but resulted in 

an alert to the system operator, the system did not violate its 
standard operational limits and the microgrid did not enter 
into an insecure operation state. Here, in the event of an alert 
situation, the final decision on overriding or reversing the 
current control actions is left to the system operator. It is 
noteworthy to highlight the cases where the agents regarded 
the disconnection of certain transmission lines or uncritical 
loads as normal. In cases 5, 6, 13, 16, and 17, the received 
control command resulted in the disconnection of 
transmission lines that connect buses within the same area. 

In all the cases mentioned, the minimum voltage and the 
maximum transmission line loading did not violate the 
system standards. In fact, within the aforementioned cases, 
the minimum voltage recorded was 0.9989 p.u. and the 
maximum transmission line loading was 117%. It is also 
noticed that there was no generation overloading or power 
loss on any of the loads. Although these commands might be 
malicious or erroneous, they were passed by the multi-agent 
system since they did not put the microgrid in a contingency 
state and the microgrid’s resiliency was maintained. 
Therefore, the multi-agent system was successful in 
satisfying its purpose by ensuring that only signals that do 
not violate the secure operational limits of the microgrids 
will be passed. In cases 32 and 33, non-critical loads were 
disconnected form the system. The changes in the minimum 
bus voltage and maximum transmission line loading from the 
normal case were negligible compared to other contingencies. 
Again, the multi-agent system passed these commands since 
they did not incur critical consequences on the system. 
Therefore, out of the 36 tested cases, the multi-agent system 
allowed the passage of a command that lead to disconnection 
of a non-critical load 2 times, equivalent to 5.56% of tested 
cases. To compensate for this, each agent generates and 
periodically sends a log report to the system operator over 
the isolated and encrypted network interface. By that, the 
system operator could get feedback on the state of the circuit 
breakers and can take corrective actions when deemed 
necessary. 

For the second scenario, the results showed similar 
responses to the previous cases. When not accompanied by 
an override signal from the isolated network interface, the 
commands which will result in the disconnection of a 
generator unit or a critical load are automatically regarded as 
malicious and are discarded. Also, cases 5, 6, 13, 16, 17, 32, 
and 33 had the same responses as previously discussed. The 
major difference in this case is the number of agents being 
activated. For instance, after executing case 4 in Table II, 
returning to the normal case, then executing case 5, only 
Agent 1 was activated and gave normal. However, when 
executing case 4 then directly executing case 5, Agent 1 and 
Agent 3 were activated and gave normal condition. This is 
because Agent 1 sensed a change in the status of the CB 
connecting bus 2 to bus 4 (from 0 back 1) and Agent 2 
sensed a status change in the CB connecting bus 2 to bus 5 
(from 1 to 0). 

Fig. 4 shows a sample of the post processing done by the 
system operator based on the log reported by the agents. Fig. 
4 (a) shows a comparison between the real and reactive 
power of generation units, bus voltages, and transmission 



line loading of the base case and case 3, which is a malicious 
situation. Fig. 4 (b) shows the same for case 9, which is an 
alert situation. The reported data for case 3 shows that if the 
agent were to process that control command, the system 
would significantly deviate from its normal case. The graphs 
corresponding to the alert state shows that the processing of 

the control command would not result in a significant 
deviation from the normal case in terms of generators power 
and bus voltage. However, the transmission line loading 
would change but will not exceed the allowable limits. These 
graphs are useful visualization tools for system operators and 
designers that will assist in future plans and lessons learned. 

TABLE II. PERFORMANCE EVALUATION OF MULTI-AGENT SYSTEM IN COMPARISON WITH NORMAL CASE AND DURING SEQUENTIAL CONTROL COMMAND 

EXECUTION 

   Compare w. NC Sequential      Compare w. NC Sequential 

 Case 
Vmin 

(pu) 

Bus 

Nb. 

TLLmax 

(%) 

A1 A2 A3 A1 A2 A3  Case 
Vmin 

(pu) 

Bus 

Nb. 

TLLmax 

(%) 

A1 A2 A3 A1 A2 A3 

 NC 1.0224 4 103 A A A A A A  NC 1.0224 4 103 A A A A A A 

1 
B1-
B2 

1.0152 5 252 M   M   19 
12-
13 

1.0224 4 103  A   A A 

2 
B1-
B5 

1.0106 5 134 M   M   20 
13-
14 

1.0216 4 106  A A  A A 

3 
B2-
B3 

1.0099 3 156 M  M M  M 21 GB1 --- --- --- M   M   

4 
B2-
B4 

1.0127 4 180 M  M M  M 22 G B2 --- --- --- M   M   

5 
B2-
B5 

1.0146 5 113 N   N  N 23 G B3 --- --- ---   M M  M 

6 
B3-
B4 

1.0210 5 102   N N  N 24 G B6 --- --- ---  M   M M 

7 
B4-
B5 

1.0207 4 131 M  M M  M 25 G B8 --- --- ---   M  M M 

8 
B4-
B7 

1.0178 4 130   M M  M 26 CL B9      M   M 

9 
B4-
B9 

1.0221 4 123   A   A 27 L B6 1.0240 4 103  A   M M 

10 
B5-
B6 

0.9989 12 198 M M  M M M 28 L B5 1.0240 4 102 A    M  

11 
B6-
11 

1.0210 4 108  A  A A  29 CL B4 --- --- ---   M   M 

12 
B6-
12 

1.0221 4 103  A   A  30 CL B3 --- --- ---   M   M 

13 
B6-
13 

0.9990 13 108  N   N  31 CL B2 --- --- --- M   M  M 

14 
B7-
B8 

0.0237 8 100  M M  M M 32 L B14 1.0259 4 98   N M   

15 
B7-
B9 

1.0206 14 129   A   A 33 L B13 1.0249 4 103  A   A A 

16 
B9-
10 

1.0237 5 108   N   N 34 L B12 1.0232 4 102  N   A  

17 
B9-
14 

0.9989 14 117   N   N 35 L B11 1.0232 4 102  A   A  

18 10-11 1.0220 4 107  A A  A A 36 L B10 1.0254 4 102   A  A A 
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Figure 4.  (a) Comparison of real and reactive power, V, and TLL of 

malicious case to base case; (b) Comparison of real and reactive power, V, 

and TLL of alert case to base case. 

IV. CONCLUSIONS AND FUTURE WORK 

The work in this paper proposes an artificially intelligent 
physical model-checking approach to detect malicious and 
erroneous control commands controlling the state of circuit 
breakers in microgrids or distribution systems. The solution 
is presented as a multi-agent system, in which a given 
microgrid is sectionalized into separate areas and an agent is 
assigned to each area. The purpose of the work is to push 
enough intelli gence into the agents controlling the microgrid 
to enable them to assess the consequences of control 
commands before taking actions on the physical system. The 
proposed multi-agent control and security framework was 
tested on a 14-bus IEEE benchmark system. The results 
showed the accuracy of the AI module in characterizing the 
system under study and its effectiveness in not allowing the 



system to go into an insecure state. As future work, the work 
presented will be extended to include a defense mechanism 
that will deal with the cases related to the disconnection of 
non-critical loads. A higher level agent will also be added to 
the proposed framework that will continuously adapt the 
neural network parameters to reflect changes in the system 
topology, such as the addition of the new buses or power 
equipment. Finally, since recent incidents have shown that 
attackers are simultaneously tampering with more than one 
system component, the training database will be expanded to 
include a large set of N-k contingency situations. 
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