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Introduction and proposed goals. The proposed work aimed to establish metal-organic frameworks
(MOFs) as new classes of high-surface area microporous electronic and ionic conductors. MOFs are
crystalline materials with pore sizes ranging from 0.2 to ~ 2 nm (or larger for the latter) defined by
inorganic or organic building blocks connected by rigid organic linkers. Myriad applications have been
found or proposed for these materials, yet those that require electron transport or conductivity in
combination with permanent porosity still lag behind because the vast majority of known frameworks
are electrical insulators. Prior to our proposal and subsequent work, there were virtually no studies
exploring the possibility of electronic delocalization in these materials. Therefore, our primary goal was
to understand and control, at a fundamental level, the electron and ion transport properties of this class
of materials, with no specific application proposed, although myriad applications could be envisioned for
high surface area conductors. Our goals directly addressed one of the DOE-identified Grand Challenges
for Basic Energy Sciences: designing perfect atom- and energy-efficient syntheses of revolutionary new
forms of matter with tailored properties. Indeed, the proposed work is entirely synthetic in nature;
owing to the molecular nature of the building blocks in MOFs, there is the possibility of unprecedented
control over the structure and properties of solid crystalline matter. The goals also tangentially
addressed the Grand Challenge of controlling materials processes at the level of electrons: the scope of
our program is to create new materials where charges (electrons and/or ions) move according to
predefined pathways.

Achievements towards electronically conducting MOF.

A) Through-space charge transport formalism. In the previous reports, we reported that
incorporation of tetrathiafulvalene in a porous MOF, Zn,TTFTB (HJTTFTB = tetrathiafulvalene-
tetrabenzoate), leads to a material with high charge mobility, 0.2 cm?-V1s?, as determined by flash-
photolysis time-resolved microwave conductivity measurements. We also showed the correlation
between the single crystal electrical conductivity and the shortest S-S interaction defined by
neighboring TTF cores, which inversely correlates with the ionic radius of the metal ions in the
isostuctural MOFs My(TTFTB) (M = Mn, Co, Zn and Cd). In these frameworks, TTF moieties form one-
dimensional infinite helical m-stacks with 6s symmetry, which are responsible for charge transport along
the crystallographic ¢ axis (Figure 1a). The larger cations cause a pinching of the S--:S contact, which is
responsible for better orbital overlap between p, orbitals on neighboring S and C atoms. Density
functional theory calculations show that these orbitals are critically involved in the valence band of
these materials, such that modulation of the S-S distance has an important effect on band dispersion
and, implicitly, on the electrical conductivity.

Because of the anisotropic structure, the electrical conductivity in My(TTFTB) along the c¢ axis (oj,
the direction of TTF stacks) is expected to be higher than that perpendicular to the c axis (0.c). In the last
two years, we studied the anisotropy of electrical conduction in Cd,(TTFTB).
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Figure 1. (a) Portions of the crystal structure of Cd,(TTFTB) viewed
along the c axis. (b) An optical image of a single crystal of
Cd,(TTFTB) along the ab plane. (c) Electrical conductivity data for
Cdy(TTFTB). Blue, yellow, red, and grey spheres represent Cd, S, O,
and C atoms, respectively. H atoms and solvent molecules have
been omitted for clarity.

We measured the electrical conductivity in
pressed pellets of Cd,(TTFTB) by 2-contact
probe, 4-contact probe, 4-point probe, and van
der Pauw methods, developed various
approaches to fabricate 2-contact-probe single-
crystal devices, and measured single-crystal
electrical conductivity in the direction either
parallel or perpendicular to the crystallographic
c axis. All electrical measurements were
conducted at 297 K, in air with relative
humidity of 30%~50%, and in the absence of
light. The results are shown in Figure 1c. From
this data, it is clear that the two most
important factors affecting the conductivity
value, when all external variables are controlled
for, are the crystallographic direction and the
physical form of the sample. Thus, o is higher
than o, by 2~3 orders of magnitude, clearly
attesting the anisotropy of electrical
conductivity in this material, and confirming the
TTF stacks, which run parallel to the
crystallographic ¢ axis, as the major charge
transport pathway in Cdy(TTFTB). The
anisotropy also suggests that charge hopping
between neighboring TTF stacks, which are
approximately 19.6 A apart, is less efficient
than within the stacks. Additionally, we find
that the electrical conductivity of pressed
pellets of Cdy(TTFTB) lies between oy and oy..
This is expected and in line with the single
crystal studies because crystallites of
Cd,(TTFTB) in the pressed pellet are randomly
oriented, and the electrical conductivity of the
pellet is the weighted average of the two

directions (Oaverage). Indeed, the pressed pellet conductivity lies closer to o, as expected given that o,

corresponds to both a and b crystallographic directions, and is
2~3 orders of magnitude smaller than oj.. These results also
eliminates
anisotropy information and in fact tends to underestimate
the highest possible conductivity even when grain boundary
resistance is minimal. Our results also show that when care is
taken to eliminate external variables (e.g. light, atmosphere,
temperature), the electrical conductivity values obtained for
either single crystals or polycrystalline pellets are consistent
across the methods employed, as expected for samples
whose conductivity is smaller than the conductivity of the

illustrate how measuring pressed pellets

contacts and wires/probes.

Figure 2. (a) A portion of the X-ray crystal
structure of MIT-25 featuring distinct mesopores.
(b) The walls are constructed from TTF trimeric
stacks aligned along the c axis.
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Figure 3. The calculated spin density (p' — p*) of (a) (HsTTFTB),** topology. Typically, the topology of a

ig?e(.b) (H4TTFTB)3"* show full hole delocalization across the TTF MOF is dictated by the geometries of both the

inorganic secondary building units (SBUs) and
the ligands. Predicting topology by combining SBUs and ligands with predefined geometry is a feature of
reticular chemistry. Because reticular chemistry relies on strong, directional bonding between ligands
and metals/metal clusters, its predictions break down when non-covalent interactions compete
energetically with coordination bonds.

In this study, we show that organic building units relying on strong m interactions that are
energetically competitive with the formation of common inorganic SBUs can also play a role in defining
topology. Hints of strong m interactions influencing topology in MOFs came from previous work with
H4TTFTB, which formed unusual helical stacks of TTF within frameworks made with transition metals.
We reasoned that reacting this ligand with metals exhibiting even more ionic metal-carboxylate bonds,
such as Mg?*, would promote the isolation of topologies where organic SBUs play prominent roles. As a
result, a new three-dimensionally 3,3,6-connected MOF, MgyHe(H3O)(TTFTB); (TTFTB =
tetrathiafulvalene-tetrabenzoate), denoted as MIT-25, whose topology is defined by strong
intermolecular 1t and hydrogen bonding interactions, is formed. MIT-25 exhibits permanent 26.4 x 30.5
A mesopores running parallel to smaller pores occluded by hydronium ions (Figure 2). Spontaneous
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M, (DOBDC)DMF), Fe,(DSBDC)(DMF}, M,CL(BTDDXDMF), M(1,2,3-triazolate),
M = Mg, Mn, Fe, Co, Ni, Cu, Zn M = Mn, Fe, Co, Ni, Cu M = Mg, Mn, Fe, Co, Cu, Zn, Cd

Figure 4. Portions of crystal structures of four families of MOFs emphasizing pores (top) and coordination environment of metal
ions (bottom). H atoms and part of DMF molecules have been omitted for clarity.
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oxidation of the TTFTB ligand and subsequent formation of the highly stable trimeric TTFTB n-stacked
organic SBUs simultaneously gives rise to a novel mononuclear octahedral Mg?" inorganic SBU. This
supported by three additional protons that bridge pairs of dangling carboxylates. A delocalized
electronic hole is critical in the stabilization of the TTF triad organic SBUs are supported by density
functional theory calculations (Figure 3). This study exemplifies a design principle for future through-

space charge transport MOF synthesis.

B) Through-bond charge transport formalism. Another strategy to realize porous and electrically
conductive MOFs is to enable charge transport through the skeleton of MOFs. In the previous reports,
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Figure 5. (a) Electrical conductivity and (b) activation energies of
M,(DOBDC)(DMF),, M2(DSBDC)(DMF),, M2Cl,(BTDD)(DMF),, and
M(1,2,3-triazolate),.

we showed high charge mobility in Mn,(DSBDC)
(DSBDC* = 2,5-disulfhydrylbenzene-1,4-
dicarboxylate) in which charges possibly
transport through (—Mn—-S-)- chains, compared
electrical conductivity in My(DEBDC) (M = Mn, Fe;
E =0, S; DOBDC* = 2,5-dihydroxybenezene-1,4-
dicarboxylate), and hypothesized that Fe?
improves electrical conductivity in MOFs. In the
last two years, to ascertain the influence of the
metal cation on electrical conductivity
systematically, we targeted MOFs that feature a
broad array of chemical connectivity and
composition, and studied M,(DOBDC)(DMF), (M
= Mg®, Mn%, Fe%*, Co%*, Ni*, Cu®, Zn*; DMF =
N,N-dimethylformamide), My(DSBDC)(DMF), (M
= Mn?%, Fe?*), MyCl,(BTDD)(DMF), (M = Mn?*, Fe?,
Co*, Ni?, Cu*; H,BTDD = bis(1H-1,2,3-
triazolo[4,5-b],[4,’5-i]dibenzo[1,4]dioxin), and
M(1,2,3-triazolate), (M = Mg®, Mn%, Fe?, Co%,
Cu?, Zn%, Cd?*).The first three families of MOFs
display honeycomb structures with 1D tubular
pores, whereas the M(1,2,3-triazolate), materials
exhibit cubic structures with three-dimensional
pore networks. The metal ions in all these MOFs
are formally divalent and octahedrally
coordinated (Figure 4).

We measured electrical conductivity (at 300
K) and activation energies (at 300-350 K) of these
four families of MOFs. The Fe-based MOFs
exhibit electrical conductivity on the order of
1078 — 107% S/cm, whereas the observed electrical
conductivity in all other MOFs is six orders of
magnitude lower, on the order of 107 — 1072
S/cm (Figure 5a). Similarly, the Fe analogs exhibit
significantly smaller activation energies than the
MOFs based on the other metal ions (Figure 5b).
To probe the possible existence of Fe3* in the Fe-
based frameworks, we characterized them with
>’Fe  Mossbauer spectroscopy and electron
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Figure 6. Calculated energy bands and projected
density of states of native Fe(1,2,3-triazolate), and

paramagnetic resonance. >’Fe Mdssbauer spectroscopy
indicated a majority of Fe?, while the more sensitive
technique, electron paramagnetic resonance, revealed
existence of Fe®* in Fe(1,2,3-triazolate),. Although EPR
spectra of Fe;(DOBDC)(DMF),, Fe,(DSBDC)(DMF),, and
Fe,Cl,(BTDD)(DMF); revealed only very broad signals, likely
due to significant spin-spin relaxation stemming from
closely connected high-spin Fe?" ions, these materials are
even more air-sensitive than Fe(1,2,3-triazolate),. It is
therefore reasonable to operate under the assumption
that all of our Fe MOFs contain Fe?*.

To further probe the influence of Fe on the electrical
properties of MOFs, we evaluated the electronic structures
of the M,(DOBDC), M,(DSBDC), and M(1,2,3-triazolate);
families using density functional theory (DFT) calculations.
In the M,(DOBDC) and M»(DSBDC) families where Fe? is in
high-spin state (S = 2), Fe,(DOBDC) and Fe,(DSBDC) display
higher valence band maximum energy and smaller band
gap compared with their analogs, respectively, which are

the hypothetical materials. Valence band minimum
energies are shown on the top and the band gaps
are shown in the middle of each sub-figure.

consistent with

electrical conductivity and small activation energies of these
two frameworks. However, in the M(1,2,3-triazolate), family
where Fe?* is in low-spin state (S = 0), Fey(1,2,3-triazolate),
exhibits larger band gap compared with the Mn, Co, and Cu
analogs. Taking Fe* into account, we further calculated a
hypothetical material
wherein one sixth of all Fe?* centers are replaced by Fe®. In
this hypothetical material, Fe** contributes mid-gap states
that lower the activation energy and promote the formation
of hole carriers (Figure 6).
distribution reveals shows that unpaired electrons are
partially delocalized among Fe centers, facilitating inter-iron
charge hopping and improving charge mobility. Therefore,
we attributed the high electrical conductivity of Fe(1,2,3-
triazolate), to the presence of mixed-valent Fe

The unique role of Fe?* in promoting high electrical
conductivity across four different families of MOFs roots in
its intrinsic properties. Among Mg?*, Mn%, Fe?*, Co%, Ni%,
Cu?, Zn%, and Cd?*, Fe?* exhibits the smallest ionization
energy and the smallest Coulombic attraction between its
nucleus and its valence electrons, and the standard
reduction potential (298 K) of the aqueous Fe3*/?* couple,
0.771V, is smaller than those of the aqueous Mn3*/?*, Co®*/%*,
and Cu/?* couples. Together, these suggest that among the
metal ions studied here, the valence electrons of high-spin
Fe?* have the highest energy, easing the formation of mixe-
valent Fe*/?* in Fe-based frameworks. Based on this
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Figure 7. (a) Polarization curves of Ni3(HITP),. Scan
rate=5mV s, rotation rate = 2,000r.p.m.,
counter electrode = Pt mesh, reference electrode
= Hg/HgO (1.00M KOH), working electrode =
glassy carbon electrode (GCE). (b) Activation-
controlled Tafel plot for Ni3(HITP)2-
electrocatalyzed ORR, derived from the Koutecky—
Levich plots.



argument, we hypothesized that Cr* is also a good candidate for constructing electrically conductive
MOFs.

In conclusion, our studies in the past five years on through-bond charge transport in MOFs revealed
general design strategies of electrical conductive MOFs. First, redox-active metal ions, such as Fe?*,
contribute charge carriers and tend to form mixed valency thus promote electrical conductivity. Second,
redox-matching between metal ions and organic ligands is critical because it facilities charge transport.
We anticipate that these two design strategies will promote future development of MOFs with high
charge mobility and/or electrical conductivity.

C) Applications of electrically conductive MOFs. Developing the heterogeneous oxygen reduction
reaction (ORR) electrocatalysts for full cell remains difficult since achieving desired architectural and
electronic properties. Several variables must be optimized simultaneously, requiring synthetic tunability
which is rare for the solid state materials. The ORR electrocatalysts required high active site density,
reproducible synthesis and catalytic activity, stability in the electrolyte and in oxygen and peroxide, and
low overpotential relative to the thermodynamic 4e™ oxygen-to-water reduction potential of 1.23 V
(versus the reversible hydrogen electrode, RHE). One class of materials that could answer these
challenges is MOFs. These materials are compelling choices for electrocatalytic applications because
their high surface area maximizes active site density, and their tunable chemical structure affords tailor-
made microenvironments for controllable reaction conditions within the pores.

We studied electocatalytic activity (Figure 7) with Nis(HITP), (HITP = 2, 3, 6, 7, 10, 11-
hexaiminotriphenylene), which is conductive two-dimensionally layered (o = 40 S/cm) and structurally
reminiscent of the long-studied M-N, ORR electrocatalysts. Under O, atmosphere, the material reduces
oxygen with an onset potential (j = =50 pA cm™2) of 0.82 V in a 0.10 M aqueous solution of KOH (pH =
13.0). The measured ORR onset potential is competitive with the most active nPGM ORR electrocatalysts
reported thus far and sits at an overpotential of 0.18 V relative to Pt (Eonset = 1.00 V). To the best of our
knowledge, the foregoing results demonstrate for the first time electrocatalytic ORR activity in a well-
defined, intrinsically conductive MOF. This study highlights conductive MOFs as a powerful platform for
the development of tunable, designable electrocatalysts.
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