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Introduction and proposed goals. The proposed work aimed to establish metal-organic frameworks 
(MOFs) as new classes of high-surface area microporous electronic and ionic conductors. MOFs are 
crystalline materials with pore sizes ranging from 0.2 to ~ 2 nm (or larger for the latter) defined by 
inorganic or organic building blocks connected by rigid organic linkers. Myriad applications have been 
found or proposed for these materials, yet those that require electron transport or conductivity in 
combination with permanent porosity still lag behind because the vast majority of known frameworks 
are electrical insulators. Prior to our proposal and subsequent work, there were virtually no studies 
exploring the possibility of electronic delocalization in these materials. Therefore, our primary goal was 
to understand and control, at a fundamental level, the electron and ion transport properties of this class 
of materials, with no specific application proposed, although myriad applications could be envisioned for 
high surface area conductors. Our goals directly addressed one of the DOE-identified Grand Challenges 
for Basic Energy Sciences: designing perfect atom- and energy-efficient syntheses of revolutionary new 
forms of matter with tailored properties. Indeed, the proposed work is entirely synthetic in nature; 
owing to the molecular nature of the building blocks in MOFs, there is the possibility of unprecedented 
control over the structure and properties of solid crystalline matter. The goals also tangentially 
addressed the Grand Challenge of controlling materials processes at the level of electrons: the scope of 
our program is to create new materials where charges (electrons and/or ions) move according to 
predefined pathways. 
 
Achievements towards electronically conducting MOF.  

A) Through-space charge transport formalism. In the previous reports, we reported that 
incorporation of tetrathiafulvalene in a porous MOF, Zn2TTFTB (H4TTFTB = tetrathiafulvalene-
tetrabenzoate), leads to a material with high charge mobility, 0.2 cm2·V-1·s-1, as determined by flash-
photolysis time-resolved microwave conductivity measurements. We also showed the correlation 
between the single crystal electrical conductivity and the shortest S…S interaction defined by 
neighboring TTF cores, which inversely correlates with the ionic radius of the metal ions in the 
isostuctural MOFs M2(TTFTB) (M = Mn, Co, Zn and Cd). In these frameworks, TTF moieties form one-
dimensional infinite helical π-stacks with 65 symmetry, which are responsible for charge transport along 
the crystallographic c axis (Figure 1a). The larger cations cause a pinching of the S···S contact, which is 
responsible for better orbital overlap between pz orbitals on neighboring S and C atoms. Density 
functional theory calculations show that these orbitals are critically involved in the valence band of 
these materials, such that modulation of the S···S distance has an important effect on band dispersion 
and, implicitly, on the electrical conductivity. 

Because of the anisotropic structure, the electrical conductivity in M2(TTFTB) along the c axis (σ∥c, 
the direction of TTF stacks) is expected to be higher than that perpendicular to the c axis (σ⊥c). In the last 
two years, we studied the anisotropy of electrical conduction in Cd2(TTFTB). 
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We measured the electrical conductivity in 
pressed pellets of Cd2(TTFTB) by 2-contact 
probe, 4-contact probe, 4-point probe, and van 
der Pauw methods, developed various 
approaches to fabricate 2-contact-probe single-
crystal devices, and measured single-crystal 
electrical conductivity in the direction either 
parallel or perpendicular to the crystallographic 
c axis. All electrical measurements were 
conducted at 297 K, in air with relative 
humidity of 30%~50%, and in the absence of 
light. The results are shown in Figure 1c. From 
this data, it is clear that the two most 
important factors affecting the conductivity 
value, when all external variables are controlled 
for, are the crystallographic direction and the 
physical form of the sample. Thus, σ∥c is higher 
than σ⊥c by 2~3 orders of magnitude, clearly 
attesting the anisotropy of electrical 
conductivity in this material, and confirming the 
TTF stacks, which run parallel to the 
crystallographic c axis, as the major charge 
transport pathway in Cd2(TTFTB). The 
anisotropy also suggests that charge hopping 
between neighboring TTF stacks, which are 
approximately 19.6 Å apart, is less efficient 
than within the stacks. Additionally, we find 
that the electrical conductivity of pressed 
pellets of Cd2(TTFTB) lies between σ∥c and σ⊥c. 
This is expected and in line with the single 
crystal studies because crystallites of 
Cd2(TTFTB) in the pressed pellet are randomly 
oriented, and the electrical conductivity of the 
pellet is the weighted average of the two 

directions (σaverage). Indeed, the pressed pellet conductivity lies closer to σ⊥c, as expected given that σ⊥c 
corresponds to both a and b crystallographic directions, and is 
2~3 orders of magnitude smaller than σ∥c. These results also 
illustrate how measuring pressed pellets eliminates 
anisotropy information and in fact tends to underestimate 
the highest possible conductivity even when grain boundary 
resistance is minimal. Our results also show that when care is 
taken to eliminate external variables (e.g. light, atmosphere, 
temperature), the electrical conductivity values obtained for 
either single crystals or polycrystalline pellets are consistent 
across the methods employed, as expected for samples 
whose conductivity is smaller than the conductivity of the 
contacts and wires/probes. 

Figure 2. (a) A portion of the X-ray crystal 
structure of MIT-25 featuring distinct mesopores. 
(b) The walls are constructed from TTF trimeric 
stacks aligned along the c axis. 

Figure 1. (a) Portions of the crystal structure of Cd2(TTFTB) viewed 
along the c axis. (b) An optical image of a single crystal of 
Cd2(TTFTB) along the ab plane. (c) Electrical conductivity data for 
Cd2(TTFTB). Blue, yellow, red, and grey spheres represent Cd, S, O, 
and C atoms, respectively. H atoms and solvent molecules have 
been omitted for clarity. 



3 
 

Because understanding intermolecular π-
stacking interactions is important for designing 
through-space charge transport materials, we 
studied the significance of how the organic 
secondary building unit (SBU), which is 
energetically competitive with the formation of 
common inorganic SBUs, can also define MOF 
topology. Typically, the topology of a 
MOF is dictated by the geometries of both the 
inorganic secondary building units (SBUs) and 

the ligands. Predicting topology by combining SBUs and ligands with predefined geometry is a feature of 
reticular chemistry. Because reticular chemistry relies on strong, directional bonding between ligands 
and metals/metal clusters, its predictions break down when non-covalent interactions compete 
energetically with coordination bonds. 

In this study, we show that organic building units relying on strong π interactions that are 
energetically competitive with the formation of common inorganic SBUs can also play a role in defining 
topology. Hints of strong π interactions influencing topology in MOFs came from previous work with 
H4TTFTB, which formed unusual helical stacks of TTF within frameworks made with transition metals. 
We reasoned that reacting this ligand with metals exhibiting even more ionic metal-carboxylate bonds, 
such as Mg2+, would promote the isolation of topologies where organic SBUs play prominent roles. As a 
result, a new three-dimensionally 3,3,6-connected MOF, Mg2H6(H3O)(TTFTB)3 (TTFTB = 
tetrathiafulvalene-tetrabenzoate), denoted as MIT-25, whose topology is defined by strong 
intermolecular π and hydrogen bonding interactions, is formed. MIT-25 exhibits permanent 26.4 × 30.5 
Å mesopores running parallel to smaller pores occluded by hydronium ions (Figure 2). Spontaneous 

Figure 3. The calculated spin density (𝝆𝝆↑ − 𝝆𝝆↓) of (a) (H4TTFTB)2•+ 
and (b) (H4TTFTB)3•+ show full hole delocalization across the TTF 
core. 

Figure 4. Portions of crystal structures of four families of MOFs emphasizing pores (top) and coordination environment of metal 
ions (bottom). H atoms  and part of DMF molecules have been omitted for clarity. 
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oxidation of the TTFTB ligand and subsequent formation of the highly stable trimeric TTFTB π-stacked 
organic SBUs simultaneously gives rise to a novel mononuclear octahedral Mg2+ inorganic SBU. This 
supported by three additional protons that bridge pairs of dangling carboxylates. A delocalized 
electronic hole is critical in the stabilization of the TTF triad organic SBUs are supported by density 
functional theory calculations (Figure 3). This study exemplifies a design principle for future through-
space charge transport MOF synthesis. 

 
B) Through-bond charge transport formalism. Another strategy to realize porous and electrically 

conductive MOFs is to enable charge transport through the skeleton of MOFs. In the previous reports, 
we showed high charge mobility in Mn2(DSBDC) 
(DSBDC4- = 2,5-disulfhydrylbenzene-1,4-
dicarboxylate) in which charges possibly 
transport through (−Mn−S−)∞ chains, compared 
electrical conductivity in M2(DEBDC) (M = Mn, Fe; 
E = O, S; DOBDC4- = 2,5-dihydroxybenezene-1,4-
dicarboxylate), and hypothesized that Fe2+ 
improves electrical conductivity in MOFs. In the 
last two years, to ascertain the influence of the 
metal cation on electrical conductivity 
systematically, we targeted MOFs that feature a 
broad array of chemical connectivity and 
composition, and studied M2(DOBDC)(DMF)2 (M 
= Mg2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+; DMF = 
N,N-dimethylformamide), M2(DSBDC)(DMF)2 (M 
= Mn2+, Fe2+), M2Cl2(BTDD)(DMF)2 (M = Mn2+, Fe2+, 
Co2+, Ni2+, Cu2+; H2BTDD = bis(1H-1,2,3-
triazolo[4,5-b],[4,’5’-i]dibenzo[1,4]dioxin), and 
M(1,2,3-triazolate)2 (M = Mg2+, Mn2+, Fe2+, Co2+, 
Cu2+, Zn2+, Cd2+).The first three families of MOFs 
display honeycomb structures with 1D tubular 
pores, whereas the M(1,2,3-triazolate)2 materials 
exhibit cubic structures with three-dimensional 
pore networks. The metal ions in all these MOFs 
are formally divalent and octahedrally 
coordinated (Figure 4). 

We measured electrical conductivity (at 300 
K) and activation energies (at 300-350 K) of these 
four families of MOFs. The Fe-based MOFs 
exhibit electrical conductivity on the order of 
10−8 – 10−6 S/cm, whereas the observed electrical 
conductivity in all other MOFs is six orders of 
magnitude lower, on the order of 10−14 – 10−12 
S/cm (Figure 5a). Similarly, the Fe analogs exhibit 
significantly smaller activation energies than the 
MOFs based on the other metal ions (Figure 5b).  
To probe the possible existence of Fe3+ in the Fe-
based frameworks, we characterized them with 
57Fe Mössbauer spectroscopy and electron 

Figure 5. (a) Electrical conductivity and (b) activation energies of 
M2(DOBDC)(DMF)2, M2(DSBDC)(DMF)2, M2Cl2(BTDD)(DMF)2, and 
M(1,2,3-triazolate)2. 
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paramagnetic resonance. 57Fe Mössbauer spectroscopy 
indicated a majority of Fe2+, while the more sensitive 
technique, electron paramagnetic resonance, revealed 
existence of Fe3+ in Fe(1,2,3-triazolate)2. Although EPR 
spectra of Fe2(DOBDC)(DMF)2, Fe2(DSBDC)(DMF)2, and 
Fe2Cl2(BTDD)(DMF)2 revealed only very broad signals, likely 
due to significant spin-spin relaxation stemming from 
closely connected high-spin Fe2+ ions, these materials are 
even more air-sensitive than Fe(1,2,3-triazolate)2. It is 
therefore reasonable to operate under the assumption 
that all of our Fe MOFs contain Fe3+. 

To further probe the influence of Fe on the electrical 
properties of MOFs, we evaluated the electronic structures 
of the M2(DOBDC), M2(DSBDC), and M(1,2,3-triazolate)2 
families using density functional theory (DFT) calculations. 
In the M2(DOBDC) and M2(DSBDC) families where Fe2+ is in 
high-spin state (S = 2), Fe2(DOBDC) and Fe2(DSBDC) display 
higher valence band maximum energy and smaller band 
gap compared with their analogs, respectively, which are 
consistent with 
the high 

electrical conductivity and small activation energies of these 
two frameworks. However, in the M(1,2,3-triazolate)2 family 
where Fe2+ is in low-spin state (S = 0), Fe2(1,2,3-triazolate)2 
exhibits larger band gap compared with the Mn, Co, and Cu 
analogs. Taking Fe3+ into account, we further calculated a 
hypothetical material FeIII

1/6FeII
5/6(1,2,3-triazolate)2

1/6+, 
wherein one sixth of all Fe2+ centers are replaced by Fe3+. In 
this hypothetical material, Fe3+ contributes mid-gap states 
that lower the activation energy and promote the formation 
of hole carriers (Figure 6). In addition, spin density 
distribution reveals shows that unpaired electrons are 
partially delocalized among Fe centers, facilitating inter-iron 
charge hopping and improving charge mobility. Therefore, 
we attributed the high electrical conductivity of Fe(1,2,3-
triazolate)2 to the presence of mixed-valent Fe3+/2+. 

The unique role of Fe2+ in promoting high electrical 
conductivity across four different families of MOFs roots in 
its intrinsic properties. Among Mg2+, Mn2+, Fe2+, Co2+, Ni2+, 
Cu2+, Zn2+, and Cd2+, Fe2+ exhibits the smallest ionization 
energy and the smallest Coulombic attraction between its 
nucleus and its valence electrons, and the standard 
reduction potential (298 K) of the aqueous Fe3+/2+ couple, 
0.771 V, is smaller than those of the aqueous Mn3+/2+, Co3+/2+, 
and Cu3+/2+ couples. Together, these suggest that among the 
metal ions studied here, the valence electrons of high-spin 
Fe2+ have the highest energy, easing the formation of mixe-
valent Fe3+/2+ in Fe-based frameworks. Based on this 

a 

b 

Figure 7. (a) Polarization curves of Ni3(HITP)2. Scan 
rate=5 mV s−1, rotation rate = 2,000 r.p.m., 
counter electrode = Pt mesh, reference electrode 
= Hg/HgO (1.00 M KOH), working electrode = 
glassy carbon electrode (GCE). (b) Activation-
controlled Tafel plot for Ni3(HITP)2-
electrocatalyzed ORR, derived from the Koutecky–
Levich plots. 

Figure 6. Calculated energy bands and projected 
density of states of native Fe(1,2,3-triazolate)2 and 
the hypothetical materials. Valence band minimum  
energies are shown on the top and the band gaps 
are shown in the middle of each sub-figure. 
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argument, we hypothesized that Cr2+ is also a good candidate for constructing electrically conductive 
MOFs. 

In conclusion, our studies in the past five years on through-bond charge transport in MOFs revealed 
general design strategies of electrical conductive MOFs. First, redox-active metal ions, such as Fe2+, 
contribute charge carriers and tend to form mixed valency thus promote electrical conductivity. Second, 
redox-matching between metal ions and organic ligands is critical because it facilities charge transport. 
We anticipate that these two design strategies will promote future development of MOFs with high 
charge mobility and/or electrical conductivity. 

C) Applications of electrically conductive MOFs. Developing the heterogeneous oxygen reduction 
reaction (ORR) electrocatalysts for full cell remains difficult since achieving desired architectural and 
electronic properties. Several variables must be optimized simultaneously, requiring synthetic tunability 
which is rare for the solid state materials. The ORR electrocatalysts required high active site density, 
reproducible synthesis and catalytic activity, stability in the electrolyte and in oxygen and peroxide, and 
low overpotential relative to the thermodynamic 4e− oxygen-to-water reduction potential of 1.23 V 
(versus the reversible hydrogen electrode, RHE). One class of materials that could answer these 
challenges is MOFs. These materials are compelling choices for electrocatalytic applications because 
their high surface area maximizes active site density, and their tunable chemical structure affords tailor-
made microenvironments for controllable reaction conditions within the pores.  

We studied electocatalytic activity (Figure 7) with Ni3(HITP)2 (HITP = 2, 3, 6, 7, 10, 11-
hexaiminotriphenylene), which is conductive two-dimensionally layered (σ = 40 S/cm) and structurally 
reminiscent of the long-studied M-Nx ORR electrocatalysts. Under O2 atmosphere, the material reduces 
oxygen with an onset potential (j = −50 μA cm−2) of 0.82 V in a 0.10 M aqueous solution of KOH (pH = 
13.0). The measured ORR onset potential is competitive with the most active nPGM ORR electrocatalysts 
reported thus far and sits at an overpotential of 0.18 V relative to Pt (Eonset = 1.00 V). To the best of our 
knowledge, the foregoing results demonstrate for the first time electrocatalytic ORR activity in a well-
defined, intrinsically conductive MOF. This study highlights conductive MOFs as a powerful platform for 
the development of tunable, designable electrocatalysts.  
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