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Outline

 A novel neuromorphic architecture: the Spiking Temporal 
Processing Unit

 A neuro-inspired algorithm for the neuromorphic computing: 
the Liquid State Machine 

 Mapping the LSM onto the STPU

 Lessons learned and future development
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Spiking Temporal Processing Unit

 Neuro-inspired
 Brain innately parallel

 Simple computational units (neurons)

 Functionality is encoded via:
 Sparse connectivity

 Unique efficacies

 Temporal latencies

 Binary spikes

 Fast

 Lower power consumption

 High band in and out

 Spiking Temporal Processing Unit (STPU)
 Composed of leaky-integrate and fire (LIF) spiking neurons

 Each LIF has a associated temporal stack
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Spiking Temporal Processing Unit
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Spiking Temporal Processing Unit

 Synapses encoded in 
efficacy mapping

 Signals along axon are 
digital (binary spikes)

 Synapses are analog 
and have exponential 
behavior

 Generally ignored in 
other neuromorphic 
architectures
 Expensive to implement 

in hardware

 Can be implemented via 
the temporal stack

Input Neuron ∆t Efficacy

1 4 3 3

1 7 1 5

1 7 2 7

2 6 1 5

… … … …
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Exponential Synaptic Response Functions 
in Digital Hardware
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 Static
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 First-order response
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 Second-order response
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Neuromorphic Architectures

True North

 Specific neuron 
implementations

 Only communicate with a 
single neuron (1 to 1 
mapping)

 Low power

SpiNNaker

 Neuron implementation is 
more flexible (basic 
instructions)

 Routing table (1 to many 
mapping)

 Fast
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Spiking Temporal Processing Unit
• Hardware implementation of neurons (specific)
• Routing table enabling 1 to many neuron mapping
• Each neuron has a temporal buffer
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Liquid State Machine

 Developed by Wolfgang 
Maass

 Reservoir computing
 Echo State Machines

 Liquid State Machines

 Different items at different 
locations at different times

 Differences between the 
patterns are amplified by the 
liquid

 Mimics brain functionality
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Cortical Microcircuit
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Maass, W., Liquid state machines: motivation, theory, and applications. In: Computability in context: computation and logic in 
the real world (Cooper B, Sorbi A, eds), pp 275–296 (2010)



Liquid State Machine

 Input (spike trains)
 Maps input streams to output streams

 Liquid (or microcircuit)
 A recurrent neural network of spiking 

neurons (leaky integrate and fire)

 Acts a preprocessor (temporal)

 State
 Measure the state of the liquid at any 

given time �

 Readout neurons
 Plastic synapses

 By assumption, has no temporal 
integration capability of its own
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Natschläger, T., “The Liquid State Machine Framework.” Neural Micro Circuits, http://www.lsm.tugraz.at/learning/framework.html. 
Accessed 26 September 2016
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The Liquid

 Serves a temporal preprocessor
 Provides all temporal integration 

of information for readout 
neurons

 Fading memory

 Maps input streams to output 
streams
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• Neurons are randomly 
(heuristically) connected
– Follow properties observed in 

cortical microcircuits
– Some attempts to “learn” the liquid 

(Spike-timing-dependency 
plasticity)

– Multiplexing diverse computations 
on a common input stream



The Liquid

 Heuristic properties
 80% excitatory neurons, 20% inhibitory neurons

 30% connectivity

 Stochastic connectivity based on distance between neurons

 Accumulates information overtime
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The Liquid

 Two properties must be fulfilled for the system to work well
 Separation property for a class of basis filters �: if we have two input 

functions � · , �(∙) with � � ≠ � � for some � ≤ � a basis filter 
� ∈ � with �� � ≠ (��)(�)

 The amount of distance between the trajectories of different input 
streams into the liquid 

 Approximation property: The ability of readout units to distinguish 
trajectories from an input stream and connect them to the target 
outputs
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Living on the Edge of Chaos
 Fading memory

 Feedback loops and synaptic 
properties

 Do not want to evolve to a 
steady state
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Zhang, Y., Li, P., Jin, Y. & Choe, Y. (2015). A Digital Liquid State Machine With Biologically Inspired Learning and Its 
Application to Speech Recognition.. IEEE Trans. Neural Netw. Learning Syst., 26, 2635-2649. 



Readout Neurons

 Multiple readouts for a given liquid 
and input stream
 This means that the liquid only needs to 

be computed once, giving the LSM an 
inherent parallel processing capability

 Can make a prediction at any time
 Before all of the inputs have arrived

 Proven to be a universal function 
approximator
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• Can be any function
• Theoretically, should be memory-

less
• Generally, use a linear readout 

function (SVM…)
– Fast
– Cannot get stuck in local minima
– Entails superior generalization since 

its VC-dimension is equal to the 
dimensionality of its input plus 1

– Easier to train than a RNN



Applications

 Speech and audio recognition

 Image Pattern Recognition

 Music Classification

 Robot Path Planning 

 Fingerprint Scanners

 Facial emotion recognition
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Difficulties

 Applications lacking state awareness
 LSM research focuses on modeling dynamical and representational 

phenomena in biological neural networks, rather more at engineering 
applications

 How to bridge the gap between research and practicality

 Getting data into spike trains
 Looking at using raw input of the data

 Varying time between inputs
 Could vary the feedback time for different neurons
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LSM Hardware implementations

 Several implementations in academia
 2006 (NIPS): Edge of chaos computation in mixed-mode VLSI-“A hard 

liquid”

 2008 (IJCNN): Compact hardware liquid state machines on FPGA for 
real-time speech recognition

 2015 (TNNLS): A digital liquid state machine with biologically inspired 
learning and its application to speech recognition 

 Cross-bar architecture with digital processing units

 One patent
 2008 Physical neural network liquid state machine utilizing 

nanotechnology
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Mapping LSMs map onto the STPU

 Goals:
 Implement the rich dynamics of a LSM efficiently

 Recurrence

 Exponential synaptic response functions

 Currently implemented LSM in simulator matlab code

 Can do speech recognition with minimal parameter tuning 
using ridge regression

 Comparison with Zhang et al. 2015:
 Use state variables to keep track of synaptic responses. Time 

constants are binary (division becomes bit shifting)

 STPU uses weights to put values into the temporal stack
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Recurrence
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Second-Order Synaptic Response Functions
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Research Directions

 Algorithmic drives improvements (STPU V2)
 Internal recurrence

 Improved routing

 On-line learning (on chip)

 Linear discriminator using spiking neurons
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Lessons Learned

 Several neuromorphic architectures
 Some are used to better understand neuroscience

 Many lack applications

 Algorithmic instantiation provided insights into short comings
 LSM is a complex algorithm that exposed many un-foreseen 

shortcomings of the STPU

 Shortcomings
 Converting to temporal domain
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