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Outline

= A novel neuromorphic architecture: the Spiking Temporal
Processing Unit

= A neuro-inspired algorithm for the neuromorphic computing:
the Liquid State Machine

= Mapping the LSM onto the STPU
= Lessons learned and future development




Spiking Temporal Processing Unit

= Neuro-inspired
= Brain innately parallel
= Simple computational units (neurons)

= Functionality is encoded via:
= Sparse connectivity
= Unique efficacies
= Temporal latencies
= Binary spikes

= Fast
= Lower power consumption
= High band in and out

= Spiking Temporal Processing Unit (STPU)
= Composed of leaky-integrate and fire (LIF) spiking neurons
= Each LIF has a associated temporal stack



Spiking Temporal Processing Unit
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Spiking Temporal Processing Unit .
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= Signals along axon are 1
digital (binary spikes) 1
= Synapses are analog 2

and have exponential
behavior

= Generally ignored in
other neuromorphic
architectures
= Expensive to implement
in hardware

= Can be implemented via
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in Digital Hardware
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Neuromorphic Architectures

True North

= Specific neuron
implementations

= Only communicate with a
single neuron (1to 1

mapping)
= Low power

SpiNNaker

Neuron implementation is
more flexible (basic
instructions)

Routing table (1 to many
mapping)

Fast




Neuromorphic Architectures

True North SpiNNaker
= Specific neuron = Neuron implementation is
implementations more flexible (basic
= Only communicate with a instructions)
single neuron (1to 1 = Routing table (1 to many
mapping) mapping)
= Low power = Fast

Spiking Temporal Processing Unit
« Hardware implementation of neurons (specific)
« Routing table enabling 1 to many neuron mapping
« Each neuron has a temporal buffer




Outline

= A novel neuromorphic architecture: the Spiking Temporal
Processing Unit
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Liguid State Machine

= Developed by Wolfgang
Maass
= Reservoir computing
= Echo State Machines
= Liguid State Machines

= Different items at different
locations at different times

= Differences between the
patterns are amplified by the
liquid

= Mimics brain functionality

Maass, W., Markram, H., On the Computational Power of Recurrent Circuits of Spiking Neurons, Journal of Computer
and System Sciences 69(4): 593-616, 2004. 10




Cortical Microcircuit
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Maass, W., Liquid state machines: motivation, theory, and applications. In: Computability in context: computation and logic in
the real world (Cooper B, Sorbi A, eds), pp 275-296 (2010)




Liguid State Machine

" |nput (spike trains)
= Maps input streams to output streams
= Liquid (or microcircuit)

= Avrecurrent neural network of spiking .
neurons (leaky integrate and fire) ;

= Acts a preprocessor (temporal)

= State
= Measure the state of the liquid atany '~ state 2(t) .
given time t
= Readout neurons

= Plastic synapses

= By assumption, has no temporal
integration capability of its own

fi(z(8)) Falz(t))

Natschlager, T., “The Liquid State Machine Framework.” Neural Micro Circuits, http://www.lsm.tugraz.at/learning/framework.html.
Accessed 26 September 2016
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The Liquid

* Neurons are randomly = Serves a temporal preprocessor
(heuristically) connected = Provides all temporal integration

— Follow properties observed in of information for readout
cortical microcircuits neurons

— Some attempts to “learn” the liquid = Fadi
(Spike-timing-dependency afjlng memory
plasticity) = Maps input streams to output

— Multiplexing diverse computations streams

on a common input stream
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The Liquid

= Heuristic properties
= 80% excitatory neurons, 20% inhibitory neurons
= 30% connectivity
= Stochastic connectivity based on distance between neurons

= Accumulates information overtime
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The Liquid

= Two properties must be fulfilled for the system to work well

= Separation property for a class of basis filters §: if we have two input
functions u(-), v(+) with u(s) # v(s) for some s < t a basis filter
B € B with (Bu)(t) # (Bv)(t)
= The amount of distance between the trajectories of different input
streams into the liquid

= Approximation property: The ability of readout units to distinguish
trajectories from an input stream and connect them to the target
outputs




Living on the Edge of Chaos

= Fading memory

= Feedback loops and synaptic

properties

= Do not want to evolve to a

steady state
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Zhang, Y., Li, P, Jin, Y. & Choe, Y. (2015). A Digital Liquid State Machine With Biologically Inspired Learning and Its
Application to Speech Recognition.. IEEE Trans. Neural Netw. Learning Syst., 26, 2635-2649.




Readout Neurons

« Can be any function

* Theoretically, should be memory-
less

« Generally, use a linear readout
function (SVM...)
— Fast
— Cannot get stuck in local minima

— Entails superior generalization since
its VC-dimension is equal to the
dimensionality of its input plus 1

— Easier to train than a RNN

Multiple readouts for a given liquid
and input stream

= This means that the liquid only needs to
be computed once, giving the LSM an
inherent parallel processing capability

Can make a prediction at any time
= Before all of the inputs have arrived

Proven to be a universal function
approximator




Applications

= Speech and audio recognition
= |mage Pattern Recognition

= Music Classification

= Robot Path Planning

= Fingerprint Scanners

= Facial emotion recognition




Difficulties

= Applications lacking state awareness

= LSM research focuses on modeling dynamical and representational
phenomena in biological neural networks, rather more at engineering

applications
= How to bridge the gap between research and practicality
= Getting data into spike trains
= Looking at using raw input of the data

= Varying time between inputs
= Could vary the feedback time for different neurons
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LSM Hardware implementations

= Several implementations in academia

= 2006 (NIPS): Edge of chaos computation in mixed-mode VLSI-“A hard
liquid”

= 2008 (IJICNN): Compact hardware liquid state machines on FPGA for
real-time speech recognition

= 2015 (TNNLS): A digital liquid state machine with biologically inspired
learning and its application to speech recognition

= Cross-bar architecture with digital processing units

= One patent

= 2008 Physical neural network liquid state machine utilizing
nanotechnology




Mapping LSMs map onto the STPU

= Goals:
= |Implement the rich dynamics of a LSM efficiently
= Recurrence
= Exponential synaptic response functions

= Currently implemented LSM in simulator matlab code

= Can do speech recognition with minimal parameter tuning
using ridge regression
= Comparison with Zhang et al. 2015:

= Use state variables to keep track of synaptic responses. Time
constants are binary (division becomes bit shifting)

= STPU uses weights to put values into the temporal stack
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= A novel neuromorphic architecture: the Spiking Temporal
Processing Unit

= A neuro-inspired algorithm for the neuromorphic computing:
the Liquid State Machine

= Mapping the LSM onto the STPU

®" Future development and lessons learned




Research Directions

= Algorithmic drives improvements (STPU V2)
= |nternal recurrence
= |mproved routing

= On-line learning (on chip)

= Linear discriminator using spiking neurons




Lessons Learned

= Several neuromorphic architectures
= Some are used to better understand neuroscience

= Many lack applications
= Algorithmic instantiation provided insights into short comings

= LSMis a complex algorithm that exposed many un-foreseen
shortcomings of the STPU

= Shortcomings

= Converting to temporal domain
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