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 Development of a fast atomic-scale chemical
Imaging technique based on STEM-EDS that
can be used for:

1. Time-resolved EDS mapping

2. Study of the electron beam sensitive materials
3. Study of dynamic phase transformations

4. In-situ TEM experiments

v' Fast —on order of few seconds or on atime-scale comparable to
HAADF imaging

v' Current atomic-scale EDS mapping typically requires few hundred
seconds

« Study of dynamic phase transformation in
Lithium-rich, manganese-rich (LMR) layered
oxides - Li[Li,Mn,TM,, ,]O, (TM = transition
metal)
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AC-STEM capabilities for atomic-scale chemical characterization

Aberration correction and four in-lens
EDS X-ray detector technologies.

AC/ICL/IOL EDS

+

._;:,i"/"” Specimen Super efficient
EDS detector

‘ /\A Small, intense
(wa electron probe

- 4 SDD geometry
around the sample

FAADE mage
= Sub-atomic-scale imaging (0.8A at 200 kV)
& Atomic-scale chemical mapping by EDS

FEI Titan™ G2
80-200 STEM

' ' . Red - Fe Ka Map
Fe Ko Map Co Ka Map | Green - Co Ka Map

Collection time of > few 100 s

Collection time of ~5 s
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P. Lu et al, Sci. Rep. 2014, 4, 3945-3950.



t% JAtomic-scale Chemical Imaging of Crystalline Materials

® - Single x-ray count « Lattice-vector translation

20 — x-ray counts method (lattice averaging)
~ 100 ms collection time

Z

Unit cell  Does not need a lot of x-rays
(~100) to produce a clear, and
recognizable pattern when the x-
rays are localized to the atomic
columns

« An averaged chemical map over

an area of ~10nm?
 Collection time can be
less than 1s Sandia
m
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P. Lu et al. Nano Lett. 2016, 16, 2728




”ﬂ?erimental data from SrTiO, crystal

A collection time of ~2 s
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The EDS peaks of high P/B ratio enable
the technique.
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X-rays localization to the atomic column is the key!

S=200; N=42
Signal (S):
- localized to atomic R=0.09nm R=0.13nm R=0.18nm
column with a certain or 4 pixels or 6 pixels or 8 pixels
radius R;
Noise (N):

- randomly distributed
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Muitfslice Image simulation = the thin specimen is preferred

Elastic electron
Intensity distribution

0,04

0034
0.02-p

001

Q Z (nm)

_ " Surface _pi_lot

40

Intensity

0.1 -

0.08}

e
o
G

Intensity

iy
(=1
iy

Intensity line-profile

Atomic
columns no
longer
illuminated
at higher
thickness

60

_—
8 2
—_3
6
1+ 1 due to
.~ Probe at3
4 i 2 due to
! Probe at 3
1
1
2 |
1
1
1
P T
1] 20 40 &0
Z (nm)

Z {nm)

Integrated intensity line-profile

At higher
thickness,
Localized x-ray
no longer
produced; Non-
localized x-ray
increases with
the thickness.
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» Conditions for achieving the fast atomic-scale EDS

v Usual conditions:
— probe size, beam convergence, probe current,
EDS detector, low index zone

v’ Specimen conditions:
— Clean specimen — free of amorphous layers on
the top/bottom surface

— Thin specimen conditions — limiting the
specimen to certain thickness (<30nm for STO)
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Study of the dynamic phase transformation

* Lithium-rich, manganese-rich (LMR) layered oxides
- Li[Li,Mn,TM,,,]O, (TM =transition metal, e.g.,
Ni, Co or Fe)

v’ Cathode materials for lithium-ion batteries
v’ Specific capacities as high as 250 mAh/g

X The capacity loss, and voltage fade commonly seen
during the battery charge-discharge cycling

» The local structure and its evolution by using
aberration corrected STEM (AC-STEM)
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""Ighase transformation in layered lithium oxides

Li[Lio2Nig ,Mng 61O, (LNMO)
—a cathode material for lithium ion battery

Electrochemical

[010] projection cycling:

Mo M « Charging cycle
O v, 50 v — Li ions are forced out
OQ/ 3 ‘G - Discharging cycle
o °6° o ,°, o — Li ions are re-inserted
° 1
O, :E&exbg
& M
Mn/Ni: @ ©O: e
Li/Ni: @

Monoclinic unit
cell (a=0.4926 nm,
b=0.8527 nm,
c=0.5028nm, and
0=109.22°)
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“Capacity loss and voltage fade

A gradual phase transformation — from the layered structure
to defect spinel and/or rock-salt structure on the surface or in

the bulk

Defect Spinel Rock-salt

L
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A. Boulineau, et al, Nano Lett. 2013, 13, A

3857-3863 T
F. Lin, et al. Nat. Commun. 2014, 5, 3529-3537.
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"ETectron beam irradiation induces same phase
transformation

At mag 3600kx—> an
equivalent beam current
density of ~19 A/cm?
or 1.12x104 electrons/A2?/s
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30 s pre-exposure 90 s pre-exposure

“Mimic” the phase transformation in the battery
environment by using high-energy election beam
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Time:resolved atomic-scale chemical imaging

Beam exposure
Time scale

a - t=0.0s
— t=45s
Mn/Ni: @ O: o
Li/Ni: @
— t=9.0s
Before
—1=13.5s
Af » Preferred jumping of Ni atoms (relative to
ter Mn) from the TM layers to the Li layers

» Mn maintaining its position in the TM
layer ) Ntona
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‘ Summary

« We have developed a fast atomic-scale chemical imaging based
on STEM-EDS.

- Lattice-vector translation method

- Chemical structure averaged over area of ~10 nm?
- Acquisition time on order of 1s,a 100X reduction
- Conditions for achieving the fast EDS mapping

« Thin specimen condition is preferred
 For STO, thickness <30 nm

« Time-resolved atomic-scale EDS mapping has been applied to
the study of phase transformation in Lithium transition-metal

oxide (LNMO).

- A new Kinetic transformation mechanism is uncovered
- Ni atoms jump preferably over Mn atoms in the transformation
- The new mechanism corroborates the electrochemical data
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Bulk Structures Li[Lig,Nig,Mng]O, (LNMO)
Monoclinic C2/m Li, ,Ni, ,Mn, O, Hexagonal R3m LiNi, sMn, 50,
Red: O
Green: Li
Purple: Mn
Blue: Ni
Simulated [100] zone
HAADF
C
120]

A. Jarvis et al., Chem. Mater. 2011, 23, 3614 fh oo
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" Charge-discharge cycling induced phase transformation
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Rock-salt

Defect spinel
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" Electron beam induced phase transformation

~320A/cm? for 30 s

OR

[OlO]LN MO //[1];0] rock-salt
(OO]-)LNMO//(:I-'I 1)rock-salt

d(001), \vo = 0.474nm,
2*d(111),ocp.sa = 0-475nm.

d(200), y\mo = 0.233nm,
d(111),,e.sart =0-237nM.
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A nearly perfect orientation relationship and lattice match
=» the rock-salt phase on the surface and within the bulk
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Why do the charge-discharge cycling and electron
beam irradiation lead to same phase evolution?

Charge-discharge cycling
« Charging

— removal of Li+, formation of O vacancies, TM cations
hopping into Li-sites, structural transformation;

« Discharging (arecovery process)
— Li+ insertion

Electron beam irradiation
—removal of Li+ by high energy electrons (critical energy
for direct displacement <30keV)
—removal of O by high energy electrons - O vacancies
(direct displacement + radiolysis)
— TM cations hopping into Li-sites
— structural transformation

No recovery process
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LNMO NPs after 45 charge-discharge cycles

* Ni-rich layers are visible on some but not all facets.
« The Ni-rich facets are typically associated with SRLs.
v Not all surfaces are with the SRLs

— do not seem to be strongly dependent on the
crystallographic orientations

» The SRLs can be developed quickly under electron beang”—
irradiations. () R
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Synthesis and electrochemical measurements

(1)

(2)
3)

(4)

()

a co-precipitation process - nickel sulfate hexahydrate (NiSO,.6H,0), manganese sulfate
monohydrate (MnSO,.H,0), sodium hydroxide (NaOH), and ammonium hydroxide
(NH3.H,0) as the starting materials to prepare Nij ,sMn, -5(OH), precursor

washing, filtering and drying the precursor, and mixing it with Li,CO; at a stoichiometric
ratio and final calcination at 900°C for 14 hours.

80 wt.% of active material, 5 wt.% SFG-6 carbon, 5 wt.% Super-C45 carbon and 10 wt.%
polyvinylidene difluoride (PVDF) binder were mixed thoroughly, forming a cathode slurry
which was then coated on Al foil to make a laminate.

After drying, electrode discs were punched out from the laminate and assembled into half
cells with Li as the anode in an Argon-filled glove box. The electrolyte was 1.2 M LiPF4 in
ethylene carbonate and ethyl methyl carbonate (EC:EMC = 3:7 by weight).

The cell was activated at C/20 rate (1C = 200 mA/g) in the first cycle and cycled at C/10 rate
between 2.0 and 4.7 V vs. Li/Li+ at the room temperature. All the samples are at fully
discharged state where the potential stopped at 2 V vs. Li metal.

Reference:
Zhang, X.; Xu, R.; Li, L.; Yu, C.; Ren, Y.; Belharouaka, I. J. Electrochem. Soc. 2013, 160, A1079-

A1083.
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Electrochemical performance
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Bulk Structures

HAADF
Experimental

Li, ,Niy ,Mn, O, in [010] zone
Monoclinic C2/m

Simulated

d001=0.474nm

d201=0.243nm
d200=0.233nm
d202=0.203nm
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~ «The SRLs are Ni-rich.
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—NiK EDS line profile
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