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• Development of a fast atomic-scale chemical 

imaging technique based on STEM-EDS that 

can be used for: 

1. Time-resolved EDS mapping 

2. Study of the electron beam sensitive materials 

3. Study of dynamic phase transformations

4. In-situ TEM experiments  

 Fast – on order of few seconds or  on a time-scale comparable to 

HAADF imaging

 Current atomic-scale EDS mapping typically requires few hundred 

seconds

• Study of dynamic phase transformation in 

Lithium-rich, manganese-rich (LMR)  layered 

oxides - Li[LixMnyTM1-x-y]O2 (TM = transition 

metal)

Outlines 



AC-STEM capabilities for atomic-scale chemical characterization

Aberration correction and four in-lens 

EDS X-ray detector technologies.

 Sub-atomic-scale imaging (0.8Å at 200 kV)

& Atomic-scale chemical mapping by EDS 
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P. Lu et al, Sci. Rep. 2014, 4, 3945-3950.



Fast Atomic-scale Chemical Imaging of Crystalline Materials 

Unit cell • Does not need a lot of x-rays  

(~100) to produce a clear, and 

recognizable pattern when the x-

rays are localized to the atomic 

columns

• An averaged chemical map over 

an area of ~10nm2

• Collection time can be 

less than 1 s
P. Lu et al. Nano Lett. 2016, 16, 2728

• Lattice-vector translation 

method (lattice averaging) 

- Single x-ray count

20 – x-ray counts

~ 100 ms collection time
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Experimental data from SrTiO3 crystal 

A collection time of ~2 s
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The summed spectrum  

The EDS peaks of high P/B ratio enable 

the technique.
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X-rays localization to the atomic column is the key! 

S=200; N=42 

Signal (S):

- localized to atomic 

column with a certain 

radius R; 

Noise (N): 

- randomly distributed 

R= 0.09nm

or 4 pixels
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or 8 pixels 

R= 0.13nm

or 6 pixels



Multislice image simulation  the thin specimen is preferred 
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 Conditions for achieving the fast atomic-scale EDS

 Usual conditions: 

– probe size, beam convergence, probe current, 

EDS detector, low index zone 

 Specimen conditions:

– Clean specimen – free of amorphous layers on 

the top/bottom surface 

– Thin specimen  conditions – limiting the 

specimen to certain thickness (<30nm for STO) 



• Lithium-rich, manganese-rich (LMR) layered oxides 

- Li[LixMnyTM1-x-y]O2 (TM = transition metal, e.g., 

Ni, Co or Fe)

Li[Li0.2Ni0.2Mn0.6]O2 (LNMO) – this study

 Cathode materials for lithium-ion batteries 

 Specific capacities as high as 250 mAh/g 

× The capacity loss, and voltage fade commonly seen 

during the battery charge-discharge cycling 

 The local structure and its evolution by using 

aberration corrected STEM (AC-STEM)  

Study of the dynamic phase transformation   



Phase transformation in layered lithium oxides   

Li[Li0.2Ni0.2Mn0.6]O2 (LNMO) 

–a cathode material for lithium ion battery  
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Capacity loss and voltage fade 

A gradual phase transformation – from the layered structure 

to defect spinel and/or rock-salt structure on the surface or in 

the bulk

References: 
A. Boulineau, et al, Nano Lett. 2013, 13, 3857-3863. Chem. Mater. 2012, 24, 3558-3566.

B. Xu, et al.,   Energ. Environ. Sci. 2011, 4, 2223-2233.

M. Gu, et al, ACS Nano 7, 2013, 760-767

F. Lin, et al. Nat. Commun. 2014, 5, 3529-3537. 
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Electron beam irradiation induces same phase 

transformation 

c
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“Mimic” the phase transformation in the battery 

environment by using high-energy election beam  

P. Lu et al.  Chem. Mater. 2015, 27,1375-1380
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Summary 

• We have developed a fast atomic-scale chemical imaging  based 

on STEM-EDS.

- Lattice-vector translation method

- Chemical structure averaged over area of ~10 nm2

- Acquisition time on order of  1 s, a 100X reduction

- Conditions for achieving the fast EDS mapping
• Thin specimen condition is preferred 

• For STO, thickness < 30 nm 

• Time-resolved atomic-scale EDS mapping has been applied to 

the study of phase transformation in Lithium transition-metal 

oxide (LNMO). 

- A new kinetic transformation mechanism is uncovered  

- Ni atoms jump preferably over Mn atoms in the transformation

- The new mechanism corroborates the electrochemical data 
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Bulk Structures Li[Li0.2Ni0.2Mn0.6]O2 (LNMO) 
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Charge-discharge cycling 
• Charging 

– removal of Li+, formation of O vacancies,  TM cations 

hopping into Li-sites, structural transformation;

• Discharging  (a recovery process)  

– Li+ insertion

Electron beam irradiation 
– removal of Li+ by high energy electrons  (critical energy 

for direct displacement <30keV) 

– removal of O by high energy electrons  O vacancies

(direct displacement + radiolysis)  

– TM cations hopping into Li-sites

– structural transformation

No recovery process

Why do the charge-discharge cycling and electron 

beam irradiation lead to same phase evolution?  



LNMO NPs after 45 charge-discharge cycles 

• Ni-rich layers are visible on some but not all facets. 

• The Ni-rich facets are typically associated with SRLs. 

 Not all surfaces are with the SRLs 

– do not seem to be strongly dependent on the 

crystallographic orientations 

 The SRLs can be developed quickly under electron beam 

irradiations. 
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Synthesis and electrochemical measurements

(1) a co-precipitation process - nickel sulfate hexahydrate (NiSO4.6H2O), manganese sulfate 

monohydrate (MnSO4.H2O), sodium hydroxide (NaOH), and ammonium hydroxide 

(NH3.H2O) as the starting materials to prepare Ni0.25Mn0.75(OH)2 precursor

(2) washing, filtering and drying the precursor,  and mixing it with Li2CO3 at a stoichiometric 

ratio and final calcination at 900°C for 14 hours. 

(3)   80 wt.% of active material, 5 wt.% SFG-6 carbon, 5 wt.% Super-C45 carbon and 10 wt.% 

polyvinylidene difluoride (PVDF) binder were mixed thoroughly, forming a cathode slurry 

which was then coated on Al foil to make a laminate.

(4) After drying, electrode discs were punched out from the laminate and assembled into half 

cells with Li as the anode in an Argon-filled glove box. The electrolyte was 1.2 M LiPF6 in 

ethylene carbonate and ethyl methyl carbonate (EC:EMC = 3:7 by weight). 

(5) The cell was activated at C/20 rate (1C = 200 mA/g) in the first cycle and cycled at C/10 rate 

between 2.0 and 4.7 V vs. Li/Li+ at the room temperature. All the samples are at fully 

discharged state where the potential stopped at 2 V vs. Li metal.

Reference:

Zhang, X.; Xu, R.; Li, L.; Yu, C.; Ren, Y.; Belharouaka, I.  J. Electrochem. Soc. 2013, 160, A1079-

A1083.



First cycle charge/discharge profile (left figure); and charge-

discharge capacities as function of cycle numbers at voltage 

window 2.0-4.7V vs. Li/Li+ (right figure).  

Electrochemical performance
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The SRLs are Ni-rich. 
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