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Complex 
chemistry

Comprehensive kinetic 
mechanism

Elementary reaction 
kinetics

In-cylinder ignition
C. G. Mueller, CRF

When do we need to understand detailed chemistry?

• Pollutant formation
• Autoignition

Why do we need it?

• Model extrapolation
• Model development for new fuel class (biofuels…)



• Detailed probing of primary products and intermediates is key to constraining models

• Many unstable or metastable species – time-resolved probing is important
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Low-T oxidation chemistry
(a moderately – detailed view)



• Thermal decomposition of -
hydroxybutyl radicals

• QOOH decomposition pathways 
in propane oxidation

• Competing channels in the 1st-
and 2nd-O2 addition reactions in 
THF oxidation
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theory:
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How to study isomer-specific 
reactivity of radical intermediates?

• start with OH + 2-butene
• probe by time-resolved OH LIF



optical access
P = 1 – 100 bar
T = 300 – 1000 K

t

pump pulse
probe pulse

LIF detection

time

+ OH
pump

266 nm

t = 0

probe

282 nm
LIF (308 – 312nm)

t

OH OH + products • OH produced by 266-nm photolysis of 
acetylacetone in He bath

• OH kinetics probed by LIF
excite (0,1) A2+ ← X2 282 nm
LIF (0,0) and (1,1) 308 – 312 nm

• Experimental conditions
P = 1 – 20 bar
T = 400 – 800 K

Justin Kwok Ivan Antonov

High-P laser-induced fluorescence OH probing



4 bar, 800 K

4 bar, 650 K

2 bar, 400 K
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OH + cis-2-butene

• OH LIF probing reveals competition between

Irreversible loss 
(H abstraction, wall losses)

Establishing equilibrium
OH + butene ⇄ 3-hydroxy-2-butyl

vs.



OH + cis-2-butene, P = 2 bar, T = 600 K

T

(K)

P 

(bar)

[2-butene] 

1014 cm-3

# 

traces

trans-2-butene

400 2 0 – 83 37

450 2 0 – 42 44

500 2 0 – 21 35

550 2 0 – 4.3 19

575 1,3 0 – 35 35

600 2 0 – 59 31

625 2 0 – 31 30

650 1,3 0 – 26 56

675 2,4 14 – 80 22

700 2,4 0 – 140 47

725 4 72 – 41 11

750 4 72 – 40 12

775 4 72 – 21 12

800 4 0 – 22 18

cis-2-butene

500 1 0 – 88 24

600 2 0 – 37 10

650 2 0 – 110 31

750 2 0 – 19 15
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• 3 fit parameters ↔ 5 rate coefficients
• Vary experimental conditions, constrain fits

kadd – depends on T, P, [butene]
kdiss – depends on T, P
kH abs – depends on T, P, [butene]
wall loss – depends on P, T (weakly)
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Combination of experiments and theory

• Calculations guide the construction of a 
core sub-mechanism

• Experimental fitting provides high-P limit 
reaction rate coefficients

• Experiments benchmark master-equation 
calculations

Total OH + 2-butene reaction rate coefficient



• Thermal decomposition of -
hydroxybutyl radicals

• QOOH decomposition pathways 
in propane oxidation

• Competing channels in the 1st-
and 2nd-O2 addition reactions in 
THF oxidation
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Propane: target fuel for Argonne-Sandia HPCC

C. F. Goldsmith, W. H. Green, S.J. Klippenstein,
J. Phys Chem. A, 2012, 116, 3325

Low-T propane oxidation

R + O2

n-propyl, 
i-propyl

t-resolved mass spectrometry 
(Slagle, Gutman)

HO2 elimination
propene

HO2

t-resolved mass spectrometry (Gutman)
GC (Walker, Battin-Leclerc)

t-resolved laser absorption (Taatjes)

OH elimination
OH t-resolved laser absorption (Taatjes)

GC (Walker, Battin-Leclerc)

Outstanding questions:

• Conflicting experimental data on C3H6O
• Models don’t capture T-dependence of OH



Multiplexed synchrotron PIMS
• Developed by Sandia NL, in collaboration with 

Lawrence Berkeley Lab’s Advanced Light Source
D. Osborn, C. Taatjes, S. Leone, M. Ahmed

photolysis
laser

1 – 10 Torr
300 – 1000 K

< 10-4 Torr < 10-5 Torr

~10-6 Torr

Tunable
VUV

pulsed
mass spec
(50 kHz)

reactants

intermediates
products

100s of ms

Cl· + C3H8 n-C3H7· ∼50%
i-C3H7· ∼50%

 < 10 s

C3H7· + O2 products 0 – 100s ms

time

photolysis 
pulse

t0

248 nm
2 CO + 2 Cl·

• Laser photolysis Cl – initiated oxidation reactions

Experimental scheme

• Homogeneous flow reactor at constant T, P

• Continuous 50-kHz sampling by orthogonal TOF 
mass spectrometry

Sensitive (single-ion) near-universal detection
Multiplexed – complete mass spec every 20 s
Time-resolved – can see chemical intermediates
Tunable VUV ionization – isomer selectivity

Multiplexed Photoionization Mass Spectrometry (PIMS)



m/z

E

timeE

photolysis
laser

1 – 10 Torr
300 – 1000 K

< 10-4 Torr < 10-5 Torr

~10-6 Torr

Tunable
VUV

pulsed
mass spec
(50 kHz)

“3-D” experimental dataset

• Ion intensity as a function of m/z, t, E

• photoionization spectra for species identification

• time evolution for kinetics measurements

Multiplexed Photoionization Mass Spectrometry (PIMS)
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15 methyl
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30 formaldehyde
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44 acetaldehyde
47 methyl peroxy
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76 i-, n-propyl hydroperoxide
86 C6H14 isomers
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Active variables

Theoretical kinetics
• Es, Qs, Edown, …

Secondary chemistry
• Rate coefficients

Physical parameters
• P, T, [X]0, …

ME 
solver

Chemkin
model 

outputs OH time 
traces

R + O2 rate 
coefficients

PES calculations

Modeling: Multi-Scale Informatics
M.P. Burke, S.J. Klippenstein, L.B. Harding, Proc. 
Comb. Inst., 2013, 34, 547

Michael Burke

PIMS product
measurements

HO2

Modeling advances:
• global optimization against a diverse set of targets
• includes oxetane + OH pathway
• non-Boltzmann energy distribution of reactants and products
• QOOH + O2 pathways

Multi-Scale Informatics (MSI) Modeling



propene (PIMS)

T = 530 K

600 K

670 K

time (ms)
0 10 20

Multi-scale modeling solution:
• Major product – propene + HO2

- abs. concentration
- time evolution

MSI model

HO2 (IR absorption)

time (ms)
0 1 2 3 4 5

• propyl peroxy

- no abs. concentration
- time evolution
- T-dependence

i-RO2 + n-RO2

(PIMS)

670 K
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530 K

time (ms)
0 10 20

0.01
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C3H6O yield (PIMS)
530 K
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exp.
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acetone propanal oxetane methyloxirane

time (ms)
0 1 2

MSI model

30 Torr
687 K

OH (IR absorption• critical measurement – product 
yields of C3H6O + OH

- primary products: oxetane, 
methyloxirane

- individual probing of OH 
elimination channels 



• Thermal decomposition of -
hydroxybutyl radicals

• QOOH decomposition pathways 
in propane oxidation

• Competing channels in the 1st-
and 2nd-O2 addition reactions in 
THF oxidation
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96.4

• in cyclopentane all CH bonds 
equivalent

k(700K) ~ 107 s-1

Simmie, JPC A, 2012

k(700K) = 3.5×103 s-1

Manion, PROCI, 201133.5
• ring opening barrier ~33.5 

kcal/mol in cyclopentane

cis- trans-

+ O2• conformer-dependent 
reactivity

• -CH bond is 4.5 kcal/mol 
weaker than -CH 

O

93.7 kcal/mol

98.2





C-H bond strength

O
30.6

32.6

22.0

32.6

• lowest ring opening barrier 
~22 kcal/mol in -CH

Ring-opening

O

O
O

H

ROO ↔ QOOH
• effects of ring strain on TS 

energies

Rigid ring structure



photolysis

1 – 100 atm
300 – 1000 K Tunable

VUV

Experimental conditions

• P = 10 – 2000 Torr

• T = 400 – 700 K

248 nm
2 CO + 2 Cl·

Cl· + -R·

 ~10 s
-R·

O
products

0 – 100 ms

+ O2

Cl – initiated oxidation of THF

Ivan Antonov

Photoionization Mass Spectrometry at Elevated Pressures

P = 1 – 100 atm

pinhole
10 – 100 m

10-4 torr

photolysis window

photolysis
free jet 
expansion

to mass 
spec

High-P reactor (version 1.0)



20 40 60 80 100
m/z

10 Torr

10 Torr

O

600 K

2,2,5,5-THF-d4

m/z
74 75

600 K

650 K

initiation reactions

C3H6

42
C2H4

28

ring-opening

• almost exclusively -THF-yl at T ≤ 700K
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• almost exclusively -THF-yl at T ≤ 700K
initiation reactions
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
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• < 5% at T ≤ 650K
ring-opening

• -ROO → 2,3-DHF + HO2 ~20%
• -ROO → '-QOOH → butanedial + OH  ~70%
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• '-QOOH + O2 → GBL-OOH + OH
• '-QOOH + O2 → 2,3-DHF-OOH + HO2

'-QOOH + O2 products

products



O

OO

H

O

O

O
3.2

-ROO
'

0.7

-13.2

-13.0
2,3-DHF

+ HO2

+ OH

-60.2
butanedial

0

-10

-20

-30

-40

-50

-60

E
 (

kc
a

l/
m

o
l)

-36.8

-29.2 -24.2

-21.8
-16.0

-9.3

-4.5
-8.0

-10.1

-5.3

-39.9
2,3-epoxy-THF

+ OH

-29.4

+ OH

2,4-epoxy-THF

+ O2

-77.7 + OH
-butyrolactone

Judit ZádorIvan Antonov

• Nearest-neighbor search with high-energy cut-off
• Stationary points optimized at CBS-QB3

Automated PES exploration using Kinbot (J. Zádor)

• -R + O2: main products – 2,3-DHF + HO2

butanedial + OH

• '-QOOH dominant due to weak -C–H bond 

• low butanedial formation barrier (~5 kcal/mol lower than in alkanes)



cis- trans-

+ HO2

2,3-DHF-OOH
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• distinct reactivity for cis-OOQOOH and trans-OOQOOH

+ O2

• expanding studies on 2-methyl- and 3-methyl THF
competing pathways are a general feature of cyclic ethers, must be 
included in low-T oxidation models

• '-QOOH + O2 main products – 2,3-DHF-OOH + HO2

GBL-OOH+ OH

• DHF-OOH + HO2 directly competes with GBL-OOH + OH

ketohydroperoxide
analog
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• Incorporate competing OOQOOH 
reaction pathways

• P-, T- dependence 

Model development targets 

• OH, HO2 probing
• quantification of major products: 

butanedial, GBL-OOH, DHF-OOH



Extending High-P PIMS measurements
to engine-relevant pressures



Experimental challenge:

photolysis

1 – 100 atm
300 – 1000 K Tunable

VUV

< 10-4 Torr

• Instrument sensitivity
detection limit of ~1011 cm-3 (~1% product yields)
 ~3 ppm at 1 Torr
 ~4 ppb at 1 atm
 ~40 ppt at 100 atm

current 
limit

Solution: high-density ionization

• increase ion yields
~ 1/x2 (x – distance from nozzle)

x

z
y

• extract ions without inducing collisions
custom ion guides
custom time-of flight mass spectrometer
collisional simulation of gas expansion

High-P PIMS
version 1.0



h

Collisional simulation in free jet 
expansion
• ion trajectories modeled in SIMION 8
• neutral (bath gas) , T, v based on 

empirical molecular beam formulae
2mm
~100 nozzle dia.

P/P0 ~10-8

Vextract

cation
neutral

• “soft” ion extraction by electrostatic field
• additional Monte-Carlo simulations of 

collisions with bath gas

x

z
y

nozzle

P0 T0

M>>1

zone of silence

M<1

barrel shock

jet boundary

reflected
shock

Mach
disk

background P
~10-4 Torr

x

P(x) T(x)
y

• ionization creates highly divergent ion beam
large y, vy



ionization
reactor
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mesh
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region

to Reflectron TOF
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y

simulated ion 
trajectories

• compromise between signal intensity and 
mass resolution

• “typical” molecule of mass 56:
average # of collisions ~0.2
m/m = 1600
collection efficiency ~0.5

x

z
y

Optimized Mass Spectrometer Design



• Self-contained, mobile experiment
• Interfaces with Lawrence Berkeley Lab’s Advanced Light 

Source – tunable VUV ionization at Beamline 9.0.2
• can be operated in a lab using discharge lamps

in preparation for first field campaign at 
LBL, January 2016

pump

pumppump

pumpoptical
access

reactor
1 – 100 atm

~ 10-4

Torr

~ 10-5

Torr

~ 10-6

Torr

Reflectron

field-free region
~3700 V

acceleration

MCP

ion extraction

Optimized Mass Spectrometer Design



• Performance benchmarks – mass 
resolution, detection sensitivity

 Factor of 100 signal increase over 
first-generation prototype

 m/m >1800 for up to m/z = 128 –
136 (Xe isotopes)

• Extends the range of accessible experimental conditions to P ~100 atm

• Next field campaign – December 2016

• Commissioned at Sandia, January 2016
• First successful test at LBL, January 2016

High-P PIMS, version 2.0



Collaborators (CRF, Sandia NL, and ALS, Lawrence Berkely Lab, US)
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Example: propane oxidation
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+ OH• Key intermediates – ROO, QOOH, OOQOOH 
have substantial potential wells

• Collisions activate and stabilize these species

• P-dependent chemistry
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O

2-methyl THF

3-methyl THF

secondary
products
C4H6O2

m/z

• 2MTHF and 3MTHF oxidation 
potentially much more complex 

• Many pathways analogous to THF
• -R are primarily active

Similarities with THF derivatives

+O2
2 CH2O + OH

Similarities with DME oxidation



Key intermediates – ROO, QOOH, OOQOOH 
have substantial potential wells

Collisions activate and stabilize these species

P-dependent chemistry

chain 
branching

2nd O2 addition

chain
inhibition

chain
propagation

1st O2 addition
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