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Abstract

Performing stochastic inversion on a computationally expensive forward simulation
model with a high-dimensional uncertain parameter space (e.g. a spatial random field)
is computationally prohibitive even when gradient information can be computed effi-
ciently. Moreover, the ‘nonlinear’ mapping from parameters to observables generally
gives rise to non-Gaussian posteriors even with Gaussian priors, thus hampering the use
of efficient inversion algorithms designed for models with Gaussian assumptions. In this
paper, we propose a novel Bayesian stochastic inversion methodology, which is charac-
terized by a tight coupling between the gradient-based Langevin Markov Chain Monte
Carlo (LMCMC) method and a kernel principal component analysis (KPCA). This ap-
proach addresses the ‘curse-of-dimensionality’ via KPCA to identify a low-dimensional
feature space within the high-dimensional and nonlinearly correlated parameter space.
In addition, non-Gaussian posterior distributions are estimated via an efficient LM-
CMC method on the projected low-dimensional feature space. We will demonstrate
this computational framework by integrating and adapting our recent data-driven
statistics-on-manifolds constructions and reduction-through-projection techniques to
a linear elasticity model.
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Chapter 1

Introduction

The advent of computational science and engineering has enabled researchers to model
complex and large-scale physical processes such as elasticity and plasticity simula-
tion [1], climate and energy projection [2], subsurface flow and reactive transport [3],
seismic wave propagation [4, 5], and power grid simulation and planning [6]. However,
uncertainty in the model parameters renders corresponding modeling and simulation to
be essentially stochastic. Applying uncertainty quantification (UQ) to improve model
predictability usually requires modelers to solve an inverse problem (e.g., inverse UQ)
by ‘fusing’ prior knowledge, modeling and simulation, and experimental observations.
Deterministic approaches to solve the inverse problems, such as regularized weighted
nonlinear least square methods, are capable of providing an optimal statistical es-
timator with the associated error bars for the inverse solutions. However, these ap-
proaches by their deterministic nature cannot produce solutions with a full deseription
of the posterior probabilistic density functions (PDFs). Unlike deterministic inversion,
stochastic inversion aims to provide a full PDF representation of the inverse solutions.
This full PDF representation of the inverse solutions is critical to model prediction of
the extreme events and event probabilities so that appropriate decisions can be made
by decision makers according to the probability and risk associated with that specific
event.

Alternatively, Bayesian inference provides a systematic framework for integrating
prior knowledge and measurement uncertainties to compute detailed posteriors [7].
However, it can be computationally intractable [8] to compute the full PDF of the
inverse solutions for each grid point (i.e., curse of dimensionality) resulting from the
discretized parametric random field by solving a large-scale stochastic inversion prob-
lem. Moreover, unreasonable choices of prior knowledge due to ignorance of the abun-
dant information embedded in the underlying dataset for model parameters can have



major cffects on inferring posterior PDF's. In addition, the nonlinear mapping between
the observables and parameters leads to non-Gaussian posteriors even with additive
noise and Gaussian prior assumptions [8]|. In general; it is computationally expensive
to sample from the non-Gaussian and multi-modal posterior except for a few simple
cases, where MCMC methods are considered as relevant techniques for sampling the
non-standard posteriors. Despite the computational intensity encountered in MCMC,
they have grown in rigor and sophistication with recent technical developments such as
delayed rejection (DR) [9, 10], adaptive Metropolis (AM) [11, 12, 13], delayed rejection
adaptive Metropolis (DRAM) [14], Langevin [15], stochastic Newton [8] and transport
map accelerated MCMC [16].

The gradient-free MCMC methods, e.g., random walk MCMC, DR, AM, and
DRAM, become computationally intractable as the dimension of the parameter space
increases just moderately. Even though the gradient-enhanced MCMC algorithms
such as Langevin [Citation] and stochastic Newton methods [Citation] have decreased
the computational complexity of MCMC to O(n'/?), expensive high-fidelity forward
model runs, mesh-dependent high-dimensional parameter space, and multi-modal non-
Gaussianity cause significant computational challenges in practice, thus making these
algorithms not suitable for computationally intensive and large-scale real-world prob-
lems. One way to address the computational complexity of MCMC is through a con-
struction of low-fidelity surrogate models using design of experiments (DOE) with the
help of machine learning techniques, e.g., global polynomials [17, 18, 19], radial basis
functions [20, 21], Gaussian processes [22], neural networks [23, 24|, and/or proper or-
thogonal decomposition (POD) based reduced modeling. The use of low-fidelity model,
based on surrogate and/or reduced-order modeling, greatly helps reduce the computa-
tional cost of the stochastic inversion. The low-fidelity model-based stochastic inver-
sion, however, tend to produce entirely different inverse solutions or sub-optimal solu-
tions compared to the true posterior obtained by high-fidelity model-based stochastic
inversion.

Instead of performing forward model reduction, another way to reduce MCMC
complexity is through control reduction by performing Bayesian inference in a low-
dimensional subspace embedded in the high-dimensional parameter space while still
controlling the high-fidelity forward model constrained onto the low-dimensional space.
Karhunen-Loéve or principal component analysis (PCA) is a well-known choice for such
parametric control dimension reduction. Traditionally, PCA is designed for the repre-
sentation of linear correlation of the underlying data. Most of the realistic parametric
random fields like channelized subsurface, however, exhibit non-linear correlations in
the underlying data. The subspace obtained by PCA might not even cover the solution



domain. Furthermore, one has to perform exhaustive scarch to reach to the true pos-
teriors due to the widely scattered reduced space represented by linear PCA-extracted
subspace.

In general our method builds on unsupervised learning techniques to obtain rel-
evant subspaces. Recent advances in unsupervised machine learning algorithms have
provided ways to explore non-linear datasets using manifold learning techniques. For
instance, Kernel PCA [25] (KPCA) as one such technique has been demonstrated
to perform better clustering than linecar PCA on complex non-linear data. Recently,
Sarma [26] and Ma [27] demonstrated the efficiency and benefits of KPCA for deter-
ministic inverse analysis and forward uncertainty propagation.

In the current work, we propose a novel framework for efficient stochastic in-
version using adjoint partial differential equations (PDEs), automatic differentiation
(AD), and KPCA. We will demonstrate this framework by integrating and adapting
our recent data-driven statistics-on-manifolds constructions and reduction-through-
projection approaches to the linear elasticity model. Essentially, a full statistical anal-
ysis in the high-dimensional ambient space spanned by the model parameters due to
spatial discretization is computationally prohibitive. In addition, the model output is
typically represented as very high-dimensional vectors defining the solution variables
over the whole spatial discretization. Thus, we have a picture of an ambient space
where each point is a high-dimensional vector obtained as an expensive model eval-
uation. The solution, however, is constrained: it does not occupy the whole ambient
space, but merely a low-dimensional manifold within it. Examples of simple mani-
folds are: a spiral embedded in a 2-dimensional space, or a doughnut embedded in a
3-dimensional space.

Specially, we first derive a system of self-adjoint PDEs, which facilitates computa-
tion of the gradient with only one additional run besides the forward model run. The
self-adjoint nature of the PDEs allows us to compute derivative of the cost functional
with respect to the model parameters, i.e., first differentiation then discretization.
Next, we use geostatistical methods such as the single normal equation simulation
(SNESIM) algorithm [28] and intrinsic Gaussian process model [29] to generate a se-
ries of realizations of the complex structural model for building a prior model. Then, a
low-dimensional feature space is obtained by performing non-linear control reduction in
the high-dimensional ambient space through KPCA on the generated realizations. The
feature random variables obtained from the KPCA are uncorrelated but not Gaussian,
and Bayesian framework requires frequent sampling on these feature random variables.
In this work, we sample them using polynomial chao expansion (PCE) constructed
based on ICDF transformation. We then construct AD-based discretized adjoint model



(i.c., first discretization then differentiation) of the KPCA-based ICDF transformation
and couple the discretized adjoint model with the continuous adjoint PDE model to
obtain gradients of the objective functional with respect to the low-dimensional fea-
ture random variables. Bayesian inference is performed on the low-dimensional feature
space using an efficient Langevin MCMC scheme performed on the high-fidelity for-
ward models. The convergence rate of this KPCA-based and gradient-based stochastic
inversion through MCMC has been greatly improved, thanks to the nonlinear control
reduction with good classification and clustering retained. Unlike traditional machine
learning problems, this process in each MCMC iteration step requires the projection
of the low-dimensional feature space back to the high-dimensional parameter, since
the high-fidelity forward models are functions of the mesh-dependent parameters. The
projection is obtained by using both local fixed-point iteration and non-iterative alge-
bra approaches with their efficiency and reliability discussed. Finally, this projection
from the manifold back to parameter space gives us access to posterior PDF's of the
mesh-dependent high-dimensional model parameters.

The remainder of this paper is organized as follows: Section 2 provides the mathe-
matical framework of our procedure, which gives a detailed formulation of the proposed
method. In Section 3, we apply the proposed method to identify material properties
of geologically complex channelized subsurface. Section 4 gives some insights on ad-
vantages of KPCA and the implementation of the proposed method on the stochastic
inversion. Finally, the conclusions are given in the Section 5 with an outline of the
future work.
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Chapter 2

Mathematical formulation

2.1 Preliminaries and notations

The following mathematical notation is used throughout the paper. Let the domain
D c R, d =2, 3 be a bounded, connected, open and Lipschitz continuous physical
domain with a boundary I' = 9€). Assume I'p and 'y are two subsets of ' such that
I'pNTy =0 and I'p UTl'y =T. Let the Dirichlet and Neumann boundary conditions
be specified along the I'p and T'y, respectively. For an integer m > 0, we follow the
classical notation of a standard Sobolev space H™(D) with norm ||-||,, in accordance
with Adams et al. [30]. Let 2 be a sample space associated with probability triplet
(Q, F,P) where F C 2% is a o-algebra of the events in ) and P is the probability
measure P : F — [0,1]. In addition, vector variables are represented by boldfaced
letters, e.g. X = [z, 29, ..., 24]T.

In this paper we consider a system of stochastic PDEs with random coefficients.
The PDE coefficients in Equation (2.1) p(z,w) : Dx Q2 — Rand A(z,w) : Dx Q2 - R
are assumed to be random fields belonging to an infinite-dimensional probability space.
The goal of the present work is to estimate these random coefficients based on prior
knowledge and sparse measurements.

~V - (u(Vu+Vu')+Vp=0inQ x D,
Viu+p/A=0in() x D,
(—p1 + p(Vu+Vu®))n =h on Q x T'p,

u—ronly.

(2.1)

Here, p(x,w) and A(z,w) are Lamé parameters; u(z,w) and p(x,w) are displacement
and pressure fields; h(x) and r(x) are prescribed traction and displacement vectors
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on  and ., respectively; n is the unit outward normal on 9€2; and the super-
script T' denotes the transpose. The set of PDEs in (2.1) represents the balance of
linear momentum within an incompressible elastic solid with prescribed traction and
displacement boundary conditions.

2.2 Discretization of the random field and kernel
principal component analysis

Let Y(x,w) := In(pu(x,w)) be a random field, then the covariance function can be de-
fined as Cy(z,y) =< Y(z,w)Y (y,w) >,, where Y(z,w) =Y (z,w)— < Y(z,w) >,
and < . >, is the expectation operator. Assuming Cy is bounded, symmetric and
positive definite, it can be represented as [31] (Charan, what does this mean?). Here,
for the sake of simplicity we assume Lamé parameters are equal (Charan, what does
‘equal’ mean? Do you mean it is a constant?).

o0
Cy(z,y) = Z%ei(m)ei(y)} (2.2)
i1
where 7 > 7, > --- are the eigenvalues , e;(z) and e;(y) are deterministic and

mutually orthogonal functions i.e.,
f ei(x)ej(x) de = oy, 4,5 > 1. (2.3)
D

Using KarhunenLoeve (KL) expansion, the random process Y (z,w) can be expressed
in terms of e;(x) as

Y(@w) =) &w)vre(@), (2.4)

where {£(w);} are zero-mean and uncorrelated random variables, i.e.; < &(w) >= 0
and < &(w);(w) >= 0;;. The cigenvalues {7;} and the eigenfunctions {f,(x)} are
obtained by solving the following integral equation either analytically or numerically,

L Cy (,y)f (@) de = 7e(y). (2.5)



The attenuation of the cigenvalues {7;} allows truncation of the infinite sum in Equa-
tion (2.4) up to Np terms,

Ng

Viw) = 3 6whie(e) (2.6)

where Np is the stochastic dimension. The KL expansion is optimal [17] in the sense
that it minimizes the mean-square error out of all possible orthonormal bases in L?(D x

In practice, a closed form expression for the Cy is rarely available. Instead, a
numerical approximation to the Cy (z,y) is obtained using realizations of Y (x,w) as:

Cy(@,y) ~ 7 3 (¥ (,0)~ < YV (2,0) ) (Vy,0)- < Y(g,0) >)7,  (27)

w

where M is number of realizations extracted from the random field Y (z,w). Given Cy,
approximation to Equation (2.5) can be obtained using the Nystrom algorithm [32] as

iwicy(%,y)e(mi) = ve(y). (2.8)

Here, N, is the number of sample points where realizations x;’s are provided, and w;’s
are weights of the quadrature rule. Assuming we have enough sample points and equal
weights i.e., w; = N%, Equation (2.8) can be solved by simple eigen-decomposition of
Cy(z;,y), for which principal component analysis (PCA) can be used to reduce the
dimension.

The applications considered in this paper are related to elastic deformation of the
subsurface due to self-weight or any external loads. The subsurface medium exhibits
high levels of heterogeneity due to geological features such as channels. For the applica-
tions of interest, the prior models are generally generated based on their measurements
(hard data) at a few sparse locations; and other data such as seismic logs (soft data)
are often generated using geostatistical algorithms based on two point statistics such
as kriging [33, 34, 35] or multi-point statistics (MPS). Here, we use MPS to generate
elastic properties of the medium based on complex geological channelized structures.

The stochastic dimension of the prior model obtained using MPS is equal to the
number of finite element grid points in the model. Equation (2.8), which is an equiva-
lent of performing PCA of the covariance matrix, can be used to reduce the dimension.



However, in general, PCA can only obtain efficient embeddings for lincar data. Re-
cently, Sarma [26] and Ma [27] showed that KPCA can represent data better than
PCA for the channelized subsurface structures.

We use two motivating examples shown in Fig 2.1 to demonstrate the efficiency
of the KPCA. Figure 2.1 (top) depicts a classification problem and the objective is
to classify the XOR dataset. It shows that KPCA with a second-order polynomial
kernel can classify data perfectly, while PCA has 75% accuracy, thus demonstrating
that KPCA has the capability to furnish a better representation for non-linear dataset.
Figure 2.1 (bottom) shows another example [36], the goal of which is to reduce the
dimension of a non-linear dataset that lies across a curve. It indicates that KPCA-based
one-dimensional (1D) subspace is closer to true data than PCA-based 1D subspace.
We take advantages of both dimension reduction and better feature representation
properties of KPCA to increase the efficiency of stochastic inversion.

For the sake of completeness, we include a brief matrix derivation of KPCA below.
More comprehensive derivations can be found in Schélkopf [37, 38] and Sarma [26]. Let
Ng be a positive integer representing the dimension of the random field (in this case it
is equal to the number of mesh grid points), and M be the number of observations of the
random field. Given a set of discrete realizations {y;}}, of the random field (which are

also called snapshots), where each component (or snapshot) is y; = [y, - - -, yni]" €
RN 1=1,2,..., M, we define a linear or nonlinear mapping & as:
O:RVE SRV 4y = B(y) e RV 1=1,2,..., M, (2.9)

where RY7 is the new induced feature space. Here, Np > Np, and the feature space
RN* in general contains much more information (that is, higher dimension) than the
original space RV®. For the the purpose of convenience, we also introduce matrix
notations Y := [y1,y2,...,yum] and @ = [(y1), D(y2), ..., P(ym)]. In addition, let
1y = ﬁlNﬂxM be a matrix with all its elements equal to ﬁ; andlet Y=Y Y1y
and ® := & — $1,; be the centered matrix of Y and &, respectively.

In classical PCA, a discrete covariance matrix [39] is obtained as

Coi= 37 Z;;‘qg{ - —YYT (2.10)

Here, thc sct {¥:1}M, is a centered measurement vector given by y; = y; — ¥, where
V=1 E =1 Y- Slmlla;r to the continuous version of the KL expansion with given mean
and covariance kernel function, the KL expansion of the random fields for the discrete
case can be characterized with following equation based on the Mercer’s theorem:

y = DAY +Y1,, (2.11)
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Fig. 2.1. KPCA motivating examples: XOR data classification (top) and non-linear
dimension reduction of a non-linear dataset (bottom).

where D, is a matrix of eigenvectors associated with C,; A, is a diagonal matrix
of the eigenvalues of C,; & = [£1,&,--- ,&yr]T € RV® is a column random vector
with statistical properties E[¢;£;] = 6, ; and E[{;] = 0. A nonlinear choice for the ®
such as radial basis functions leads to the nonlinear form of PCA. Next, we computc
the ccntralmcd form of the feature vectors {®, (y:)}M, where ®(y;) = ®(y1) —

o = =3 I‘I)(y;) Similar to PCA, we have the followmo discrete covariance aftcr
the nonlinear mapping

- Z By, By = 5 B (2.12)

Since N is usually much larger than Ng, it is infeasible in practice to perform PCA
on the feature space due to the very high dimensionality of the covariance matrix. For
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instance, for the polynomial kernel (x - y)? of order d, dimension of the feature space

will be [37]

N — (Np+d—1)!
FZ d(Ng— 1)1

Alternatively, the nonlinear mapping can be seen as a kernel map, thus allowing us
to handle the high dimensionality by using a technique called "kernel trick”. A kernel
trick introduces a virtual mapping @, from beginning to the end, where the mapping
® only acts as an intermediate functional, resulting in smaller dimension for C;. The
eigen-problem of the covariance matrix Cy in the feature space is now given as:

(2.13)

C/Vy=V/A;. (2.14)

Here, Vy is the matrix of eigenvectors and Ay is a diagonal eigenvalue matrix. The
relationship between the eigenvectors {v;} of V; and the data set of {®(y;)}, can be
written as

M M
1 ~ - 1 - -
Crvi=37 220", vi= 52 (B ™V)(y;) =wvi,  (215)
j=1

j=1

which shows that the eigenvectors {v;} are elements in the space spanned by ®(y;), I =
1,...,M. )

Let a = [ay, ..., ap] with oy = [ 1, 019, ..., N, )T, qnd eigen matrix Vy = ®a
where each component of the eigenvector v; = ;El a1 ;®(y;) = Pay. Substituting
this into Equation (2.15) leads to

C;Pa = daA;. 2.16
f f

Using the definition of Cy from Equation (2.12) and multiplying both sides by o7
and further setting K, = ®7®, we have

1

K2V = Keal,. (2.17)

Assuming K. is a nonsingular matrix, the equation above is equivalent to the following
kernel eigenvalue problem
1
M

where K, is a matrix of M x M. This ‘kernel trick’ allows us to perform KPCA in the
high dimensional feature space, with almost similar computational expense as PCA.

K.V = aly, (2.18)
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[rrespective of the dimension of the feature space, we just need to perform cigen-
decomposition on a relatively small space RM, which is independent of the selection
of the nonlinear mapping and the feature space.

Solving Equation (2.18) leads to the eigenvector matrix V, and the corresponding
V¢ in Equation (2.14) can be retrieved using,

V;=®V. (2.19)
Here, V has the property that
VIV, =VToTdV = VI K,V = MA;. (2.20)
Using the same notation of V;, we have the orthonormal eigenvector matrix
1
VM

Let K = ®7®, then the centered K, can be easily obtained using

Vi=—=0VA;"" (2.21)

K= (@~ ®)"(®—®) = (¢~ Ply,)" (D — Ply,)
=070 — " P1y, — 1}, "D+ 15,0  P1y,
=K-K1-1K+1K1

Thus, we have the KL expansion in the feature space as

L
VM
where & = [£;,...,&n,]" i1s a random vector with properties E[¢;] = 0,E[£¢;] = ;5.

The polynomial kernel and Gaussian kernel defined below are frequently used in prac-
tice, which are given by

Y;=VAY2 +® = SVALPAN2E + & = \/Lﬂévg + @, (2.22)

k(x,y) =c+(x-y)% d> 1, (2.23)
k(x,y) = exp(—1E=2L) 5 > 0, (2.24)

respectively. Kernel functions directly calculate dot product in the space of R¥ using
elements in the input space RV2. Since there is no actual mapping of ®(y), kernels
play the role of the intermediate functional.

Although stochastic inversion is performed in the feature space, our interest is to
obtain the snapshots from the posterior in the original space RV%. In order to achieve

12



this, a pre-imaging problem is solved to project snapshots from the feature space back
to the original space. In general, due to the non-linearity of the mapping ®, neither
existence nor uniqueness of the pre-image is guaranteed.

Pre-imaging problem involves solving the following optimization problem [37],

min p(y) = [|B(y) = Y|I*, (2.25)

where the y € RV* and Y € RM% are points in the feature space and original space,
respectively, and | - || is the Euclidean norm. The above minimization problem can be
reduced to the following iterative fixed point problem [26, 37, 40]

N d . i
p1 | 2ot Bid i (i )y
- N d . 1
1 By 3 (yi - yF)t

(2.26)

2.3 Mapping non-Gaussian feature random vari-
ables to Gaussian random variables

Let €9 be the discrete observations of &€ obtained from the measurements of the snap-
shots {y;}4,. Letting Y; = ® and multiplying both sides of Equation (2.22) by ®7,

we obtain .

=3 Ply =
VM

Assuming K, is nonsingular, we have

1

Ve = K, = Nili

K. Vel (2.27)

Vel =VM1y (2.28)

which can be solved using a least-squares method or singular value decomposition
(SVD).

Random variables €4 computed from Equation 2.28 act as a prior distribution for
the Bayesian inversion framework. In general, £ are non-Gaussian, uncorrelated and
dependent random variables, which may complicate the Bayesian inversion procedures
(e.g. more frequent sampling from their distributions).

Determination of a unique map from the dependent &¢ to standard independent
random variable space 7 is an active research and development problem. One way to
achieve a non-unique mapping is using iso-probabilistic mappings such as the gener-
alized Nataf transformation [41] and Rosenblatt transformation [42]. However, these
transformations require information such as conditional distributions, which are hard
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to construct from the limited observations. Hence, we assume {7} are independent
similar to [43, 44] and to facilitate the sampling, we construct a polynomial chaos
expansion (PCE) for each §&.

PCE, originally introduced by Wiener [45, 17], represents any L? random variable as
a summation of series of polynomials over the centered normalized Gaussian variables.
Since &7 are obtained from the measurements, they belong to L? space, thus allowing
us to represent each component of {£§}M, obtained from Equation (2.28) using PCE

as
00

&= enWn(nw)),l=1,2,.., (2.29)
n=0

where n;’s are i.i.d. standard Gaussian random variables, W, (m(w)) are Hermite poly-
nomials, and ¢,; are real valued deterministic coefficients. The associated orthogo-
nal system {V,(n)}.en forms the homogeneous polynomial chaos basis for the space
L?(Q,0(n),P). The coefficients in the equation above can be computed using Bayesian
inference [46] or using non-intrusive projection method [47]. The method described
below is based on empirical cumulative distributions to evaluate the coefficients.

Evaluating PCE coefficients using empirical inverse cumulative
distribution functions

We use a projection method [48] to find a continuous parameterized representation
similar to Equation (2.29) based on the discrete £€%. Let {m;} be a standard Gaussian
random variable, then by matching the cumulative density function (cdf) of £ and n;,
each component of & can be expressed in terms of random variables 7; by following
non-linear mapping:

& = Fgg' o Fyy(m), (2.30)
where F, ) and F;, denote the cdfs of ¢4 and 7. respectively. The coefficients of the

PCE are then computed using the projection of F! 5;1 o F;, on orthonormal chaos basis
system,

| =< &0, >= f Fgg' o Fy WydPy(w), (2.31)
Q

However, the cdf Fef is not known and it is to be estimated by the empirical cdf [49]

based on the discrete observations of €2, Empirical cdf (ﬁ' £?) of ¢! can be estimated
from sampling using,

Fa(@) =+ Z 1(e® < (2.32)
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where I(A) is the indicator function of event A. We then introduce the following
approximation

F L Féd , Where }2}1 :[0,1] = R (2.33)
which is uniquely defined as
Fsgl(y) = min{z € {Ezk)}g‘rl? Fed( z) > y}. (2.34)

Then the coefficients of the polynomial chaos expansion can be computed using a
numerical integration. Instead of using the indicator functions, we use kernel density
estimation [50] to construct the empirical cdf,

~ 1 M
F&)=5; Y Kn &), (2.35)

where K} (-) is the kernel function.

_nZ/Q
T, e Fo 0 dP _/ Fu,5 —d 2.36
Cn,l EE L d o d w) d O d m X ( )

The coeflicients ¢, can be efficiently calculated using the Gauss-Hermite quadrature
rules.

2.4 Bayesian Inference of the inverse problem

Bayesian inference treats the parameters p = p(x), A = p(x) of the forward model (2.1)
as a random process. Instead of performing Bayesian inference with respect to the pa-
rameters g, A of (2.1), we perform the inference in the parameterized feature space
of 17. We denote the stochastic elasticity forward model (2.1) as u = f(n), which
describes the relationship between the observed output state ugs and the uncertain
model parameters 7. As such, the posterior distribution from the Bayesian inference
can be expressed as

Wposteriw(ﬂ) = ﬂ—(n|uob3) o ﬂprior(ﬂ)ﬂlikelihood(uobslﬂ) (237)

The model above allows us to fuse modeling and measurement errors into the
inversion framework. Unlike deterministic inversion, the expression (2.37) provides
a probabilistic characterization of the solution [8] for the inverse problem. In this
context, the likelihood function mykencod(Uoss|) is a conditional probability of the
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model outputs with given model parameters . Also, the prior probability density
function (pdf) mprier(n) allows us to infuse prior knowledge into the model. In our
case, the prior density function 7y, is a multivariate Gaussian of the form:

1,
Torior (1) o exp(—5[ln — allr, 1 ). (2.38)

The simplification above is possible due to the independence of the 1. Specifically, the
covariance matrix [0 is an identity matrix and 7 is a zero vector. The representation
of likelihood function forms the core part to characterize the posterior density func-
tion Tpesterior- In the limiting case where the measurement and the model are exactly
unbiased, the Bayesian model can easily be reduced to

Wposteriw(ﬂ) = W(ﬂluobs) o Trprior(ﬂ)- (239)

For further simplification, we assume that the error between the measurement and the
model is unbiased and additive; and the noise follows a Gaussian distribution. This
leads to following expression for the likelihood function

1
Wukezmood(uobs|7?) (0.8 CXP(—§ ||f(”?) - uobs”%‘;;ise)- (2-40)

We note that our procedure is still valid for other choices of likelihood functions. Our
particular choice for likelihood is due to limited information on measurement and
modeling errors. The choice of the likelihood function of the form Equation 2.40 leads
to following log-likelihood function,

1
— log(7(uobs|n)) = §||f(7}') - Uobs||f~;;§se} (2.41)
and the corresponding posterior density can be derived as

Tposterior (1) < exp(V (1)), (2.42)
where V() is given by
1 1 _
V) =5 If ) —waslpn +5lm =l - (2.43)

Due to the non-linear relation between the parameters 7 and the measurements, direct
sampling from the posterior is not possible even with the chosen likelihood function [8].
MCMC methods provide a systematic way to sample from the corresponding posteri-
OrS.
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2.5 Gradient-based adjoint MCMC

MCMC approaches require many simulations of the forward models, leading to com-
putational intractability when the forward models are expensive to evaluate. Also,
when the dimension of the parameter space is high, MCMC methods require many
forward simulations for exploring the high dimensional probability space. In order
to accelerate the MCMC sampling, adjoint of the posterior density function is com-
puted and the Langevin MCMC (LMCMC) method is used instead of the Metropolis
Hastings MCMC (MHMCMC) based on random walk. Theoretically, LMCMC has a
computational complexity of O(n'/?), while MHMCMC has the complexity of O(n)
where n is the dimension of the inference parameters. LMCMC considers the following
overdamped Langevin Ito diffusion process,

dX = Vlog mposterior(X)dt + v/2dW. (2.44)

The probability distribution p(t) of X (¢) approaches a stationary distribution, which is
invariant under diffusion and p(¢) approaches the true posterior(pe, = Tposter) asymp-
totically. Approximate sample paths of the Langevin diffusion can be generated by
many discrete-time methods. Using the Euler-Maruyama method with a fixed time
step 7 > 0, the above Equation can be written as,

Xjp1 = Xi + 7V log w(Xy) + V2718, (2.45)

where each & is an independent draw from a multivariate normal distribution on RV#
with mean 0 and identity covariance matrix.
This proposal is accepted or rejected similar to the Metropolis-Hasting algorithm
using o,
7 (Xiet1) ¢(Xk| Xieta)
(X5 )q(Xes1| Xic)

a =min{1,

(2.46)
where

L,
q(#'|z) o< exp(—~[|2' — z = 7V log m(z) ) (2.47)

2.6 Adjoint Information of the posterior density
function

In this section, we introduce a technique to compute the gradient information of the
negative logarithm of the posterior function with respect to the random parameters
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m,

V) = 215 — anellZs -+ 2lm—all2 (2.48)

prior

= Vi(n) +Va(n), (2.49)

where Vi(n) = 3| f(n) — uobs||12ﬂ1—w1$";\‘E and Va(n) = i||ln — 'f}||%;r1m. It is nontrivial to
obtain the functional derivative of V(7). Here we use the adjoint model and auto-
matic differentiation to compute the gradients. Using the mathematical derivations
in the preceding sections, the relationship between the variables n, &, y, i, A, u can be

summarized as,
PCE_
n—:=§ Py = ks

The objective functional V' can be expressed in terms of n by

Prc—lmagc\ exp A forward modcl\

. (2.50)

VR >R (2.51)

n = 5(f(M) = obs, T (f(M) — o)) + 2(m — 2. T, 0, (n— 1)) (2.52)

The second part of V(n) is a quadratic form in the parameters 7. The expression
for the gradient of V5(n) can directly be obtained as

VaVa(n) =T i (m — 1) (2.53)

To derive the gradient of Vi, we follow the procedure similar to Giering et al. [51].
Consider the Taylor expansion V| with respect to the control variables at a given point

Tlo
Vi(n) = Vi(no) + (V4 Vi(no), n — m0) + O(|n — nol), (2.54)

or in short terms,

5Vi = (V,Va(mo), om). (2.55)

We use the shorthand notation above whenever linear approximations are involved.
Suppose V; is sufficiently regular, then for each paramecter vector ), variation of Y
can be approximated using

5Y = A(no)on. (2.56)

where A(7y) denotes the Jacobian of H at my. Due to the symmetry of the inner
product, applying the product rule of differentiation yields

(ﬂ/l - (P?_wlise(f(n) - uﬂbs)? Vw;f(”?o)é”?)- (257)
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Using the definition of the adjoint operator A* :
(v, Aw) = (A™v, w), (2.58)

we obtain
5Vi = (Vo (110)) Tk (F () = tete), ). (2.50)

Therefore, according to the definition of gradient, the gradient of the Vi with respect
tonis

VaVi(no) = (Vo f (110)) Trgice (f (11) — wons), (2.60)

Since the function f := f; o f5 o f3 0 f41, applying the chain rule yields
fli=flofyofiof, (2.61)
= VA puVyAVey 'V, & (2.62)

The gradient information can be rewritten as

VaVi(mo) = (Vo) (Vey) " (VyA) (Vaut) Trgiee (f (1) — obs), (2.63)

The linear operator V) ,u represents the tangent linear model of the forward problem
and its adjoint operator is (V u)?. Both operators depend on the point 7y at which
the model is linearized. The linear operator (V.,,é)T represents the adjoint model of the
PCE, and (ng)T represents the adjoint model of the pre-image iteration mapping.

Following a similar procedure, the adjoint model (V, ,u)” can easily be obtained
as detailed in [52]. The PCE mapping in Equation (2.29) and the pre-image mapping
methods are continuous smooth mappings. The adjoint models for these mappings are
obtained with automatic differentiation [53].

2.7 Algorithms

In this section, we summarize the above derivations into two simple algorithms to
facilitate the implementation of the proposed methodology.
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Algorithm 1 Computation of posterior density function and gradients

Read the snapshots {Y;}, of the parameters u, A

Compute KPCA reduced model using Equation (2.22)

Parameterize the random variables £ with PCE using Equation (2.29)

Compute prior density function ., as defined by Equation (2.38)

Compute likelihood function mireiinood as defined by Equation (2.40)

Compute the posterior density function using Equation (2.39)

Compute the gradient of the cost functional with respect to parameters A and p
using adjoint model

Compute the gradient of the cost functional in the feature space using automatic
differentiation

Algorithm 2 Posterior sampling using Langevin MCMC framework

Choose initial parameters 1
Compute Tposterior (10) using algorithm 1
for (=1 to N do
Draw sample y from the proposal density function

Compute Tppserior(y) using algorithm 1
Tposterior(Y)q(y|ni)

! Tposterior(M)a(m|y)

q(m|y) are computed using Equation 2.47

Draw u ~ U([0,1])
if u < a(n,y) then
Accept : Set 41 = v
else
Reject : Set mi41 = nre
end if
end for

Compute a(n;,y) = min{1 }, where ¢(y|n;) and
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Chapter 3

Numerical Simulations

In this section, we demonstrate the computational efficiency of the proposed method
for the stochastic inversion of an elasticity model (2.1) through a synthetic numerical
example. The objective is to recover the subsurface elasticity parameters of the com-
plex geological channelized field. Fig. 3.1 (a) shows the physical setup such as mesh
and boundary conditions of the numerical example to be used for our demonstration.
This setup mimics a compression test where the bottom boundary is supported by a
horizontal roller to curtail the vertical motion and other boundaries are free to ex-
pand. Measurements of the displacements due to self weight (gravity) are assumed
to be available at the top, left and right boundaries. For the sake of simplicity, both
elasticity fields A and p are assumed to be equal. Fig. 3.1 (b) depicts a realization Aq
of the elasticity parameters and Fig. 3.1 (c¢) shows the corresponding displacement in
the y-direction (u,) due to self weight. The cost function .J, which is the term V; in
Equation (2.49), is defined as

1
J= §||Umes — Upredl |3, (3.1)
where Upes and Upreq are measured and predicted displacement vectors, and ||. ||2 is

the L? norm. Fig. 3.2 (a) shows a different realization of the clasticity parameter Ao,
which is used to compute the adjoint solution. Fig. 3.2 (b) shows the corresponding
forward displacement in the y-direction (u,) due to self weight. Fig. 3.2 (c) depicts
adjoint displacement and Fig. 3.2 (d) shows the gradient of the cost function with
respect to Ay based on the measurements obtained with elasticity parameters A;.
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Fig. 3.1. a) Physical setup of the numerical example used for the demonstration
b) a realization A; of the elasticity parameters ¢) corresponding displacement in the
y-direction (u,) due to self weight.
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Fig. 3.2. (a) A realization of the elasticity parameter Ay (b) shows corresponding
forward displacement in the y-direction (u,) due to self weight (c¢) depicts adjoint
displacement (d) gradient of the cost function with respect to A2 based on the mea-
surements obtained with elasticity parameters A;.



3.1 Snapshot generation

Fig. 3.3. A few snapshots generated (right) with the SNESIM algorithm and the
training image used (left) for SNESIM.

In deep subsurface, elasticity parameters exhibit multiscale spatial fluctuations due
to inherent geological heterogeneity [54]. In our numerical experiment, we rely on the
single normal equation simulation (SNESIM) algorithm [28] based on training image
shown in Fig. 3.3 (left) similar to Ma et al. and Sarma et al. [27, 26] and generate 1000
realizations of the dimension 45 x 45 channelized subsurface. Figure. 3.3 (right) depicts
a few snapshots generated using the snesnim algorithm. Here, A for the channelized
zones and unchannelized zones are assumed to be 10 and 1000 MPa, respectively. In
order to have the positive values for elasticity parameters, the inversion procedure is
carried on In(A) and In(p).

3.2 Efficiency of the kernel PCA and the pre-
image

In contrast from the linear PCA, KPCA is preformed in a feature space instead of the

original space. For the polynomial kernel (x-y)9, an input space of realization in RV~

will correspondingly have feature space of dimension Ng which is given by
Np+d—1)!

( . .
M= ey =" )
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Compared to the original space, Ng is extremely large with higher order polynomial
kernels. In our channelized model, we have Np = 10% and d = 5, the Ny ~ 10%,
which allows kernel PCA to capture properties of the nonlinear data. The Kernel trick
permits us to preform the eigendecomposition in low dimensional space instead of the
high dimensional space.

Since our interest is inversion in the original space, a pre-imaging step is performed
to transform the feature snapshot to the original snapshot. Unlike linear PCA, the
solution to the pre-imaging is not unique and also suffers from the instability. In
order to choose the best kernel for our procedure, we test Gaussian, linear, quadratic,
cubic, 4th and 5th order polynomial kernels for their pre-imaging efficiency using a
few selected snapshots. Fig. 3.5 depicts the results from this procedure for a particular
snapshot. This figure shows that when the reduced dimension is 1000 (same as Np),
all the kernels are able to recover the original snapshot. In lower dimensions, increased
polynomial kernel order (d) lead to efficient mapping. Also, determination of the pre-
image became unstable for the polynomial kernels order greater than five.

Fig. 3.6 depicts eigenvalue decay of the snapshots for different kernels, which shows
that the dimensionality reduced by linear PCA and KPCA is generally the same.
Fig. 3.4 depicts a few snapshots generated using mean perturbation in KPCA space
with Gaussian, linear, quadratic, cubic, fourth and fifth order kernels. This figure
shows that as the order of the polynomial kernel increases, the mean perturbed data
looks more like a channelized structure i.e., higher order kernels are able to represent
data more efficiently. Based on Figs. 3.5, 3.6 and 3.4 we choose polynomial kernel with
order 5 and dimension 20 (about 75% contribution) for our problem.
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3.3 Efficiency of the PCE
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Fig. 3.7. Probability density function of a few £? obtained using true samples and

from the samples of PCE with different orders.

Nonlinear mapping of the parameter space ® : RV — RV* N > Np and solving
(2.28) leads to 1000 discrete realizations of the £%. In general, £ are non-Gaussian,
uncorrelated and dependent random variables. Assuming £¢ are independent similar
to [43, 44], we construct multiple PCEs for £ using ICDF mapping. Fig. 3.7 depicts
the probability density function of a few selected €4 constructed from the 1000 discrete
realizations (true) and also samples obtained from the PCE with different orders. This
figure shows that as the order of the PCE increases, PCE is able to capture true
distribution of the £%. Based on this plot PCE of order 10 is used to map &4 standard

Gaussian variable 7.
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3.4 Numerical test for the gradient
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Fig. 3.8. Gradient limit for different choices of € for 100 snapshots.

The gradients in the feature space are computed using adjoint PDE and TAPE-
NADE [53], an automatic differentiation toolkit. In order to test the accuracy of com-
puted gradients, we make use of the properties Gateaux differential dyf. A Gateaux
differential is defined as,

4T — lim 21+ = ()

e—0 €

(3.3)

A property Gateaux derivative is if h = g—”jg? then € — 0, dpJ — 1. We use this
property to test the accuracy of the derivative of the cost functional with respect to 7).
Fig. 3.8 depicts gradient limit for different choices of € for 100 snapshots. This figure
shows that for sufficiently small € (> 0.1) the limit in Equation 3.3 goes to 1, thus
verifies the accuracy of the gradient computation.
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3.5 Stochastic inversion using MHMCMC and Langevin
MCMC

The goal of our stochastic inversion framework is to recover the elastic parameters
shown in Fig. 3.9 (a) based on the measurements of displacements at boundary grid
points. Since truncated KPCA space consists of only 20 dimensions and measurements
are only available at the boundaries, the goal here is to recover low dimension version
Fig. 3.9 (b) of the original snapshot. Inversion is carried out using LMCMC and random
walk MHMCMC algorithms. Adjoint PDE and automatic differentiation allowed us to
compute gradient with only one extra run of the forward model.

Fig. 3.9 (¢) and (d) show the posterior mean and standard deviation snapshots
obtained using MHMCMC. Fig. 3.9 (e) and (f) show the posterior mean and standard
deviation snapshots obtained using LMCMC. Fig. 3.10 shows the posterior distribution
of the 7 for the random walk MHMCMC and LMCMC. In both cases, posteriors are
concentrated near the original parameter showing that stochastic inversion leads to the
right solution. Three MCMC chains with initial guess for 7 as -2, 0 and 2 are used to
check the global convergence of the MCMC algorithms. Fig. 3.11 shows the convergence
MCMC chains for random walk MHMCMC and LMCMC. This figure shows that
chains started converging around 100th and 500th sample in case of LMCMC and
MHMCMC respectively, i.e., gradient information allows for a faster convergence.

31



(c) (d)

20 0 20
X 32 X

(e) (f)
Fig. 3.9. a) Original b) KPCA projected ¢) MHMCMC posterior mean d) MHMCMC

posterior standard deviation e) Langevin MCMC posterior mean and f) Langevin
MCMC posterior standard deviation snapshots.
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Fig. 3.10. Prior and posterior probability density functions for a few n’s with original
value for a) MHMCMC b) Langevin MCMC.
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Chapter 4

Discussion
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Fig. 4.1. Prior and posterior probability density functions for a few 7’s with original
value for obtained using PCA-based Langevin MCMC.

As showed in figure 3.6, the dimensionality reduced by linear PCA and KPCA is
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generally the same based on the existing data points but the reduced-order space they
represent could be very different. Since the proposed method is based on LMCMC
which has computational complexity of O(n'/3) compared to MHMCMC complexity
of O(n), thus its computational cost scales better compared to MCMC. Also, for the
numerical examples considered, the KPCA-based LMCMC and PCA-based LMCMC
have 33.66% and 10.10% acceptance rate respectively. We will explain why KPCA is
more useful than PCA in the background of KPCA-based stochastic inversion; The
posterior probability density functions (PDFs) inverted by PCA-based MCMC (as seen
in Fig. 4.1) are generally non-Gaussian and possibly multi-modal. By contrast, those
inverted using KPCA-based MCMC are nearly Gaussian-distributed and are gener-
ally unimodal as a result of the embedded nonlinear mapping from the feature space
to the parameter space. It is generally harder thus takes more iterations to converge
the non-standard PDFs with many peaks, especially when a gradient-based MCMC
is implemented, where the posterior is approximated by a local Gaussian during the
inversion process; For deterministic parameter estimation or calibration, the perfor-
mance between lincar PCA-based optimizations and those utilizing KPCA are gener-
ally not significantly different. However, KPCA-based MCMC (stochastic inversion)
achieves much better performance than PCA-based MCMC. The reason is that, com-
pared to the linear PCA, the embedded manifold identified by the data-driven KPCA
contains a more concentrated distribution of the underlying parameters that need to
be inverted. Even though inverting any particular point (deterministic inversion) in
the concentrated manifold may not be very distinguishable, inverting a distribution
of points (stochastic inversion) in such a manifold will be critical for achieving high
performance and accuracy. In specific, the neighborhood identified by linear PCA for
any given channelized material parameter point may contain very few channelized
structures, which can cause great difficulties for a high-dimensional random field in-
versions especially when considering stochastic inversions. Hence, the KPCA-based
MCMC will demonstrate improved efficiency even without gradient information, thus
making it useful for the applications where the adjoint model cannot be derived easily.
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Chapter 5

Conclusions

We have presented an efficient stochastic inversion framework for the linear elasticity
problem based on an adjoint model, automatic differentiation, and Kernel PCA. An
improved, reduced representation of the complex elastic properties of the subsurface
is captured using the low-dimensional feature space obtained from KPCA. Differ-
ent kernels such as Gaussian, first, second, third, fourth and fifth polynomial kernels
were tested and the kernel of KPCA is chosen based on snapshots obtained from the
pre-imaging and mean perturbation. The efficiency of the proposed method is demon-
strated through a synthetic numerical example with the objective of recovering the
subsurface elastic parameters of the complex geological channelized field. Gradient-
free MCMC and Langevin MCMC were able to sample from the true posterior after
500 and 100 forward model runs, respectively. The KPCA-based MCMC results in a
higher acceptance rate compared to the PCA-based MCMC since the neighborhood
identified by KPCA for any given channelized material parameter point contains more
channelized structures.
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