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A GAME THEORETIC MODEL OF THERMONUCLEAR CYBERWAR

BRADEN C. SOPER

1. INTRODUCTION

In this paper we propose a formal game theoretic model of thermonuclear cyberwar based
onideas found in [1] and [2]. Our intention is that such a game will act as a first step toward
building more complete formal models of Cross-Domain Deterrence (CDD). We believe
the proposed thermonuclear cyberwar game is an ideal place to start on such an endeavor
because the game can be fashioned in a way that is closely related to the classical models
of nuclear deterrence [4-6], but with obvious modifications that will help to elucidate the
complexities introduced by a second domain.

We start with the classical bimatrix nuclear deterrence game based on the game of
chicken, but introduce uncertainty via a left-of-launch cyber capability that one or both
players may possess. The Nash equilibria of the resulting game can be categorized based
on the players’ left-of-launch cyber capability. Informally that categorization is as follows:

(1) If neither player’s cyber capabilities are advanced, then the resulting game is
strategically equivalent to the original game of chicken.

(2) If a single player’s cyber capabilities are advanced while the other player’s cyber
capabilities are not advanced, then the player with advanced cyber capabilities
has a decisive strategic advantage in which standing firm is a strictly dominating
strategy for him, and the other player is forced to submit.

(3) If both players have advanced cyber capabilities, standing firm is a strictly domi-
nating strategy for both players.

We discuss various extensions of this simple matrix game. The first extension is to the
incomplete information case where the players do not know the exact cyber capabilities of
their opponents. A second extension is to consider the strategic nature of cyber intrusion
and detection. Thus the strategy space of the game is increased to include how aggressively
a player tries to infiltrate the opponent’s nuclear command and control system as well as
how sensitive a player should be in detecting possible intrusions. Finally, we examine
the effects of the cyber capabilities on the players’s resolve in the dynamic brinksmanship
version of the nuclear deterrence game.

2. A MobiriEp GAME OF CHICKEN

The classic game of “chicken” has been used as a simple model for nuclear deterrence
and brinksmanship [4-6]. We borrow the notation and game set-up from Powell [5]. As
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Ficure 1. The Game of Chicken

11
stand firm submit
stand firm dy, di wr, SiI
submit SI, Wit C1, Cl1

noted by Powell, the game is probably too simple to shed much light on the dynamics of
escalation and brinksmanship in nuclear crises. Nevertheless, it serves as a useful starting
point for constructing more complex games.

The game of chicken is a 2x2 matrix game, meaning there are two players, labelled I
and II, each having two strategies. The players are usually taken to be states (e.g. USA
and USSR in the classic application). The states have to decide between standing firm and
submitting in a nuclear stand-off. If both states stand firm, the game ends in a general
nuclear exchange. Under this strategy profile, the payoff for player i = I,1I is d; and it
is the least desirable outcome for both players. If both players submit, the game ends
in a compromise with payoff ¢; for player i = I,1I. Finally if one player stands firm and
the other player submits, the game ends with the standing-firm player as the “winner”
and the submitting player the “loser”. Winning the standoff in this manner is the most
desirable outcome for both players, while losing in this manner is undesirable but more
preferred than the destruction of a general nuclear exchange. We label these outcomes w;
(if player i = I, II stands firm and is the winner) and s; (if player i = I, II submits and is the
loser). With these interpretations we have the ordering of payoffs as follows:

w1>c1>sl>d1,
wi > crp > Si1 > dH.

In matrix form, the game is shown in Figure 1.

The game has two pure Nash equilibria, namely the two strategy profiles in which one
player stands firm and the other submits. There is also one Nash equilibria in mixed
strategies:

. . . wir — €1
Player I stands firm with probability ¢; = ,
4 P y e wyr —cpp + s —dyp
wr — (1

Player II stands firm with probability ¢ = —_

We are interested in understanding the effects on the above nuclear deterrence (ND)
game when possible cyber attacks are included. To this end we will modify the above
game to include uncertainty about a left-of-launch (LOL) cyber capability as described
in [2]. A successful LOL cyber attack on a nuclear command and control (C&C) system
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is assumed to undermine the opponent’s ability to launch a nuclear weapon. To model a
LOL cyber capability we introduce the two probabilities, p; and py;, which are defined as

pr = P(player I's attack will fail due to player II LOL intervention),
pu = P(player II's attack will fail due to player I LOL intervention).

As an example of how these probabilities will affect the outcome of the game, consider
the case where both players choose “stand firm” as their strategy. Interpreting this as both
players launching nuclear weapons, there are four cases to consider:

(1) Both players” attacks fail due to the other players” LOL preemption.
(2) Player I's attack fails while player II's succeeds.

(3) Player II's attack fails while player I's succeeds.

(4) Neither players’ attacks fail.

One way to assign costs to each of these scenarios is to interpret each of the four above
outcomes as strategically equivalent to one of the four outcomes in the original game of
chicken. Specifically we equate outcomes (1),(2), (3) and (4) above with the original nuclear
deterrence game outcomes resulting from the strategy profiles (“submit”,”submit”), (“sub-
mit”,”stand firm”), (“stand firm”,”submit”), and (“stand firm”,”stand firm”) respectively.
Thus the associated payoffs with each of the above outcomes are as follows.

(1) c,cn
(2) s;,wy
() wy, s
(4) dp, dy

For notational simplicity we will define the strategy “stand firm” as 2 and “submit” as
s. Let ur(x, y) and up(x, y) be the expected payoff under strategy profile (x, y) for player’s I
and II respectively. Then the expected payoffs under strategy profile (4, 2) can be written
as follows.

ur(a,a) = di(1 — pr)(1 — pn) + wi(1 = pr)pn + sip1r(1 — pu) + cipipn
ur(a,a) = dp(1 = pr)(1 = pu) + w1 = pu)pr + supu(l — p1) + cupipu
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Ficure 2. “Left-of-Launch” Nuclear Deterrence Game

I
stand firm submit
. % * * *
stand fl}rm d}’ d{] w*l, S*H
submit Sp, Wy . Cy

Similar reasoning gives us the following payoffs for the two players under all other possible
strategy profiles.

ug(a,s) = wi(1 - pr) + cipr
uyr(a,s) = sy(1 = pr) + cupr
ug(s,a) = si(1 — pu) + cipn
ug(s,a) = wy(1 — pn) + cupn
ui(s,s) = c

ug(s,s) = e

To analyze the effects of introducing the uncertainty of LOL capabilities we introduce the
payoff variables wj, ¢}, s}, dj, wy;, cj;, 87, d;;, which we define as the corresponding payoffs
in a new left-of-launch nuclear deterrence (LOLND) game.

dp = ui(a,a) = di(1 = p)(1 = pur) + wi(1 — popu + sipi(1 = p) + cipipn
dy; = ug(a,a) = dp(1 = pr)( - pu) + wi(1 = pu)pr + supu(l — p1) + cuprpn
wy; = uy(a,s) = wi(1 —pr) +cpr

sy = ug(a,s) = sp(1 = pr) + cupr

sy = uy(s,a) = s;(1 = pu) + cipn
wy; = ug(s,a) = wi(1 — pr) + cupn

¢y = u(s,s) =

¢y = un(s,s) = c

The expected payoff matrix for the LOLND game is shown in Figure 2.
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3. GAME ANALYSIS

We now investigate what happens to the new LOLND game equilibria as the probabil-
ities pr and pyr are varied. Label the original ND game payoff matrix by M and the new
LOLND expected payoff matrix by M*. First consider the extreme cases. When pr = p;; = 0,
then M* = M, and we have the original game of chicken. When p; = p;; = 1 all payoffs in
M are (cy, crr), thus both players are indifferent to all strategies as they all lead to the same
outcome. When p; = 0 and pjr = 1 we get the following M":

I
stand firm submit
stand firm wy, Si1 wy, Si1
submit 1, CII Cr, CI1

In this case “stand firm” is a strictly dominating strategy for player I, while player II is
indifferent to her strategy. Thus the strategy profile (“stand firm”, “submit”) is the unique
pure Nash equilibrium while there are an infinite number of mixed strategies for player
IT as long as player I stands firm. An analogous result is obtained in the case p; = 1 and
prn = 0.

Ignoring these extreme cases, we focus on the more interesting case that both 0 < p; < 1
and 0 < pyp < 1. The values of p; and pjr are fixed parameters of the game, but for the
purposes of analysis we consider them to be continuous, real variables in the open interval
(0,1). Thus the payoffs wj, cj, s}, d;, wy,, ¢}, 57, dy, are all differentiable, linear functions of p;
and py;. Note that as pr | 0 and p;r | 0 we have M* — M. Thus for small enough pr and
pu, M" is strategically equivalent to M, which we write as M* ~ M. Intuitively this makes
sense, since if the probability of a successful LOL preemption is low, it should have little
effect on the game.

We begin by assuming that both p; and pjy are sufficiently small so that M* ~ M. Keeping
pr fixed and increasing p;; we observe several different regimes for the game parameters

resulting in different Nash equilibria.
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Differentiating the payoffs in M* with respect to pj gives us

i ( dr)(1 —pr) +( )
— = (wy - —p1) + (c; = s))pr,
3PH 1 I pI 1 1)PI
ow?
—L-y,
ap
s}
T
— =cr—5],
. T —SI
act
I — O,
apu
ady,
o = (sir — di)(1 = pr) + (cir — wi)pr,
(41
ow?
i}
— =y —wy,
i = Wi
dJs?
o 0,
apn
act
_H — 0_
apu

Given the relatlons on the payoffs in M the above implies gg’ 50,250 and “ <0.

7 8p
si—dy

The sign of L is ambiguous. Solvmg a = 0 and defining p} = —— =/ — we see that

ad;] O ‘f *
u > 0if pr <pj,
od;

i

=0if

apl =01 pr= p I
oy
% <Uitpr > pr-

Recall we started assuming that p; is “small enough”. Making this more precise we assume
ad;
* : _n
pr < ;.91, from which we have > 0- ‘ '
With both pr and prr close enough to zero we can insure the relations
wy >c; >8> dj,
Wiy > € > sy > dyy,
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both hold. Then as we increase p;; we will observe the following shifts in these relations.

lim d} = wi(1 - pp) + cipr = wy,
puTl

lims; =s; <c;=¢j,

puTl
limdy; = su(1 —pr) + copr = sy,
puTl
lim w}; = cip = ¢y,
puTl

Given these limits and signs of derivatives, we see that with p; fixed small, and increasing
pir we pass through several regimes. First note that the order wj, > ¢}, > s}, > dj, is fixed in
the limit. Thus we only need to consider the order of player I's payoffs. The two distinct
regimes are defined by the relations s; > d; and d; > s]. By symmetry the same analysis
can be applied to the payoffs when pj is held fixed and p; increases. Thus there are two
regimes for player II's payoffs as p; varies defined by the relations s}, > dj, and dj, > sJ;.

With these observations it is possible to characterize all Nash equilibria in the LOLND
game, which is done in Proposition 1 below. We first define the following values:

. sip —dn
p] - d 4
S —dag + Wi —Cq1
P = sp—dp
I S[—d1+wl—C1’
£ *
¢ = Wy~ ¢y
1~ * % * %)
(wyy = ) + (s —dfy
wt— ¢

(P* — I I .
I (wr — ¢ + (53— dy)

The Nash equilibria of the game M can be defined in terms of p}, pj;, ¢7, ¢7;-

Proposition 1. Assuming py, pi; € (0, 1), the Nash equilibria in the LOLND game M" are
as follows.
(1) If pr < pj and pyy < pj;, then M ~ M" and the Nash equilibria are analogous to the

AT

ND game. Namely there are two pure Nash equilibria, (“stand firm”, “submit”)

VT

and (“submit”, “stand firm” ), and one mixed equilibria given by player i standing
firm w.p. ¢; fori=[,II !
(2) If p; < pj and py; > pj;, then (“stand firm”, “submit”) is the unique Nash equilibria.

(3) If p1 > pj and py1 < pj;, then (“submit”, “stand firm” ) is the unique Nash equilibria.
4) Iftp; > v; fori =1,II, (“stand firm”, “stand firm”) is the unique Nash equilibria.

INote that in the degenerate case where both inequalities obtain, the mixed equilibria is actually pure with
both players standing firm w.p. 1. If one inequality obtains, then one player plays “stand firm” w.p. 1 in the
mixed equilibria.
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) If pi = p; and p; > p;, then for any ¢ € [0,1] there is a mixed equilibria given
by player i standing firm w.p. 1 and player j standing firm w.p. ¢ for i # j and
i,j € {L1I}.

Proof: Fix p; < pj. This implies % > 0, from which we have

si(1 = p1) + copr > du(1 = p1) + wppr = sy > dp(1 — pr) + wypr.

%

The strict monotonicity of dj; in pj, implies that dj; € (limy,, |0 d
in p; we have

*

7 limy; 11 d7)). Taking limits

lim d;[ = d[[(l - P[) + wipr,
prl0

limd;, = s};.
pyt o

It follows that dj; € (di(1 —py) + wHZ{, s}, giving us dj, <'sj;.
Conversely if p; > p; we have Wﬁ < 0and s}, < dip(1 — p1) + wyp;. Again the strict
monotonicity implies dj; € (limy,11 dj;, limy, 0 d,). From this we have d}; € (s}, du(1 —p1) +
. - . . . ) ad:
wrpr), giving us dy, > s}, Finally we consider the marginal case p; = p}. In this case WZ =0,

*

which implies s = di(1 = pr) + wpr. Since d;l is constant we must have d;l =5y .
By symmetry, analogous arguments show that

pu <py = d;<sj,
pn=py = d;=s],
pn > py = d; > s

Combing the above results we have the following, in which equalities imply equalities
and inequalities imply inequalities:

pr<p;andpy <p;, = dj; <sjandd; <sj,

pr <pjand py > p;, = dj; <sjandd) > s,

pr=p;and py < p;, = dj; > s and d] <sj,

pr = p;and py > p;;, = dj; > s and d; > 5.

Since the relations w; > ¢; > s} are maintained in all cases, the result follows from
standard Nash equilibrium analysis of the game matrix M". m|

Note the relationship between the threshold LOL probabilities and the mixed equilibria
of the original nuclear deterrence game. If ¢; and ¢ are the equilibria probabilities of
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players I and II standing firm, respectively, then we have the following relation:

pr=1-¢1

Pn=1-¢u
This relation is perhaps not surprising since 1 — ¢; is the mixed equilibria probability of
player i submitting and py is the probability of player I's attack failing, which we have
interpreted as being forced to submit. Furthermore since mixed Nash equilibria make

opponents indifferent to their strategies it becomes clear why p; = p; = 1 — ¢; implies
player II becomes indifferent when player I stands firm.

4. DiscussioN

If we look at the distinct Nash equilibria regimes in Proposition 1, we can gain some
insight into the effects of cyber capabilities on the simple nuclear deterrence game. In case
(1) both probabilities of successful LOL are lower than the thresholds p; and pj;. As such
there is not a significant effect on the original game. Even though payoffs are altered, the
characterization of Nash equilibria is not changed. When one or both of p; and pj; reach
the thresholds p; and pj,, the mixed equilibria changes in character. Whichever player
obtains p; = p; will play “stand firm” with probability 1 in the mixed equilibria.

Recall that p; is the probability that player i’s command and control (C&C) system
will fail due to his opponent’s LOL capabilities. Thus it is a measure of the opponent’s
cyber capabilities. For concreteness assume player II increases his cyber capability to the
point that p; = pj. In this case player II is indifferent to player I's “stand firm” posture.
This actually has the somewhat undesirable effect of forcing player I to “stand firm”
with probability 1 in the unique mixed strategy equilibria. Thus we see the presence of
increased cyber capabilities creates a more hostile posture in the mixed strategies equilibria.
Note however that the LOL capabilities mitigate this increased hostility by decreasing
the likelihood of successfully launching a nuclear weapon, thus increasing payoffs in
expectation.

Once player II increases his cyber capabilities to the point that p; > p; the nature of the
game changes considerably. At this point player I] has “stand firm” as a strictly dominating
strategy forcing player I to submit in equilibria. Thus increasing cyber capabilities over
the threshold creates a distinct strategic advantage, essentially guaranteeing a victory in
the nuclear stand off.

If both players obtain significant cyber capabilities (p; > p} and p;; > pj;) we find that
they are no longer playing a game of chicken, but instead they are playing a game where
they both have “stand firm” as a strictly domination strategy. A further distinction can be
made in this regime. If cyber capabilities p; and py; satisfy the following bounds,

(cir = sm)pn + (e — dp)(X = pm)
(cr = sm)pur + (wr — di)(1 = pr)’
(cr = sppr + (er —dn)(1 —pr)

(c1 = sp)pr + (wy —dp)(1 = pp)’

pr <pr <

Py < pu <
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then the following relations will hold for both i = I, II:

w; > ¢ >d; >s].
This implies that the game being played is the the Prisoner’s Dilemma. Thus this mid
range cyber capability results in an inefficient allocation of payoffs: Both players choose
to stand firm, but both could collectively improve their payouts by coordinating to both
“submit”.

Note that the size of the regimes depends on the payoff matrix M from the original
nuclear deterrence game via the definitions of p; and pj;. Rewriting the definitions and
dropping subscripts we have

. 1

P'= e
=

Thus we see that the relation between w — ¢ and s — d determines the size of the various
Nash regimes. We can interpret w — c as the additional benefit from “winning” a game of
chicken versus both players submitting and s — d the additional benefit of submitting in
the face of a challenger versus a general nuclear exchange. In the case of nuclear stand-offs
one would expect s —d >> w — ¢, in which case p* = 1. Thus the left of launch capabilities
will have to be extremely robust to have any impact on the game. On the other hand if
being a dominant winner is valuable enough, i.e. s —d << w — c then we have p* = 0, in
which case a modest degree of LOL capabilities will transform the game into one of the
non-chicken regimes.

Finally we consider the overall probability of a general nuclear exchange, which we
denote by P(GNE) and P(GNE") in the ND and LOLND games respectively. In the original
game this depends on the the equilibrium being played. Specifically if one of the pure
Nash equilibria is being played we have P(GNE) = 0. If the mixed equilibria is being
played, then we have P(GNE) = ¢;¢y, i.e. the probability that both players stand firm.

For the LOLND game we consider each case separately. We ignore case (5) since it
is degenerate. Since case (1) is strategically equivalent to the ND game, we again have
P(GNE") = 0 in both pure equilibria. The mixed equilibria case, on the other hand, is not
quite analogous to the ND game. In this case we have P(GNE") = ¢;¢7,(1—pr)(1—pir) since
for a general nuclear exchange to occur we must have both players standing firm and both
LOL attacks failing. From the definitions of ¢} and ¢, it can be shown that

. Or
= >
(PI 1-— PI = (PI’
. bir
L .
¢H 1—py = ol

It follows that ¢7¢7,(1 — p)(1 = pi) = ¢p1pyr, which implies P(GNE) = P(GNE"). Thus even
though LOL attacks decrease the probability of a successful nuclear launch, they increase
the probability of players standing firm in such a way that the overall probability of a
general nuclear exchange is unchanged.

In cases (2) and (3) there is no chance of a general nuclear exchange, thus P(GNE") = 0.
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Finally in case (4) we have both players standing firm w.p. 1, giving us P(GNE") =
(1 —pr)(1 = pnr). But in this case p; > p;‘ fori =1,1I. Thus we have

A =pDA=pn) <A -p)A -py) = G111

It follows that P(GNE") < P(GNE). Thus if both players can achieve cyber capabilities
that exceed the threshold, the probability of a general nuclear exchange is decreased even
though both players are certain to stand firm. As noted above, in nuclear standoffs one
could reasonably expect the thresholds p* ~ 1, making this scenario very unlikely.

5. GaME EXTENSIONS

Several extensions of the above LOLND game may be considered. We start with con-
sidering an incomplete information game where players are not aware of their opponent’s
cyber capabilities. We then consider several extensions where players make strategic
choices regarding the LOL attack and detections. Finally we consider the effects of cyber
attacks on the dynamic bargaining version of the nuclear deterrence game.

5.1. Incomplete Information. Consider a Bayesian game in which the types of the players
are defined in terms of LOL capabilities. We introduce alternate notation for ease of
exposition. Instead of subscripts I and II we will use subscripts 1 and 2, respectively.
Also, for any variable x; associated with player i we use x_; to denote the same variable
associated with the opponent to player i. We assume a discrete-type game in which player
iis of type 0; € {0, 0} where 0 < 67 <p*. < 60F <1.

We assume players do not know the type of their opponents. As such the players do
not know which game they are playing with their adversary. For example, if player 1 is
of type 07, then he knows he is in one of two regimes: Regime (1) 4 < s; and d} < s] or
regime (2) d; > s; and d] < s], but he does not know which. Thus he is either playing a
game of chicken or a game in which player 2 has a strictly dominant strategy of “stand
firm”. On the other hand if player 1 is of type 0], he will know that “stand firm” is a
strictly dominating strategy for him, but he will not know if it is for his opponent.

Strategies in the Bayesian game are maps from types to pure strategies of the complete
information game. Denote the type spaces by ©; = {07, 0"} and the types by 0; € ©; for
i = 1,2. Then we denote incomplete information strategies by the maps o; : ®; — {0,1},
where we have taken the pure strategy space from the ND game to be {0,1}, where 0
denotes “stand firm” and 1 denotes “submit” . We also assume that player i is of type
0F wp. m; € (0,1) for i = 1,2. This prior distribution on player types is assumed to be
common knowledge among both players.

Note that the payoffs for players are now functions of type. Specifically, for i = 1,2 we
have d; = d;(61, 02), s} = s7(0;) and w; = w;(0-;), while ] is constant across types.

The following proposition characterizes the pure Bayesian equilibria in the incomplete
information LOLND game. We define the parameters 7; for i = 1,2, which will be needed
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in the sequel, as follows:

. w(02) - ¢
owi(07) - +5;(07) - di(07,05)

Under our assumptions on types and previous analyses, we are guaranteed for 7 € (0,1).
We also define two pure Bayesian strategies, 0, and og;, that will characterize all possible
pure Bayesian Nash equilibria. We drop the subscripts on 6 and © to denote the possibility
of defining the maps on either type space.

04(0)=0 forall 0 €®.
0 if 0 =06%,

om(6) = {1 if0 =0

Proposition 2. Assuming m; € (0,1,) for i = 1,2 the pure Bayesian Nash equilibria in
the incomplete information LOLND game are as follows.
o If ;; <77 for bothi=1,2, then there are two pure Bayesian Nash equilibria:
(1) 01() = ge() and 02(-) = 001(") ,
(2) 01() = 001(-) and 62(-) = G,(") -
o If ; < m; and 7t; > 7i_, then there is a unique pure Bayesian Nash equilibria given
by 0(-) = o01(-) and 0_(") = 0o(:).
o If t; > 77 for both i = 1,2, then there is a unique pure Bayesian Nash equilibria
given by 0;(-) = go1(-) and 0_;(-) = g01()-
Proof: Suppose 0i(-) = 04(-). Then no matter the type, or opponent strategy, player
i will stand firm. We will show that the best response to this strategy is for player —i
to choose 0_;(-) = 0o1(-). Letting x;,x_; € {0,1} denote the strategies for players i and i—
respectively, where 0 denotes “stand firm” and 1 denotes “submit”, the posterior expected
payoff for player —i, denoted by u_;(x;, x_;|0_;) can be written as

u—i(xi, x~i|0-;) =
i (1= x23)(1 = x)d" (03, 07) + (1 = x_g)xaw’ (67) + x (1 = x)s7,(0) + x_xict)
+(1 - ;) ((1 —x ) (1L —x)d”_ (0, 07) + (1 — x_)xw” ;(60;) + x_i(1 — x;)s”,(6-;) + x—ixicii)
Since 0;(-) = 04(-) we need only consider x; = 0. In this case we have
1-i(0,x10-) = 7 (1 = x_)d" (6, 0F) + x_5° (6))
+ (1= 70) (1= x-)d" (03, 67) + x_i5" (0-7))
From earlier analysis we know
6.1= 67, = s(6-) > d",(0-,0}) > d" (6, 67),
0_i=0". = s .(0) <d (6-,07) <d (6-,6;).
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From this it follows that
0 = argmaxu_;(0,x_;|0°)),
x_,'G{O,l}
1 = arg max u_;(0, x_;|67)).
X,iE{O,l}
This is equivalent to 0pi(-) being a best response to the strategy o,(-) in the incomplete
information LOLND game.
We now consider each case separately. First suppose m; < 7; for both i = 1,2. Fur-
thermore suppose o;(-) = 0¢1(+). It suffices to show that in this case 0_;(-) = 0,(*) is a best
response. Since 0;(-) = 001(") the posterior expected payoff for player —i can be written as

ui(001(), x-10-) = 7 (1 = x_)d" (0, 0F) + x_i5° (64))
+ (1= 1) (1= x)w (67) +xic,).
Recall that w* (6,) > ¢*, for any 0.. If 6_; = 67, then d* (6_;,0) > s* (6-;). Thus

0 = arg max u_i(0o1(-), x~i167).
x_;€{0,1}
On the other hand, if 6_; = 0, then 7; < 7; implies u_;(001(-),0160~,) > u_i(o01(-), 116~)),
giving us
0 = argmaxu_i(oo1(-), x-;|0_,).
x_;€{0,1}
Thus 0_i(-) = 0,(*) is a best response to 0;(-) = 001(-). By symmetryo;(-) = 0,(:) is a best
response to 0_(-) = oo () since T_; < 7T_.
Now suppose 7t; < 7; and 7—; > 7_,. In this case the same analysis as above applies
to proving that 0;(-) = 001(-) and 0_;(-) = 0,(-) is a pure strategy Bayesian equilibrium.
However, the analysis for the second equilibria is no longer valid. In this case player i’s
best response to 0p1(-) is 001(-), not o4(+).
Finally consider the case that ; > T for both i = 1,2. Again, following the same line
of reasoning as above we can arrive at the answer. The only difference in the analysis is
that when 0_; = 6~, we have 7i; < 7i;” implies u_;(001(), 010~;) < u_i(om(-), 1|6~,), giving us

1 =argmaxu_i(oo1(), x-i|02)).
x_;€{0,1}
The result follows.

Because the type space and number of players is small, there are not too many pure
strategies in the incomplete information game. Furthermore, since any best response
strategy must satisfy 6 — 0, the number of feasible best response strategies is cut in half.
Thus one can check all other feasible pure strategy profiles to conclude the above pure
equilibria are unique. m]

Note that while it is possible to derive mixed Bayesian equilibria in the incomplete
information LOLND game, the formula are quite complex and difficult to interpret. Thus
we omit them here.
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Ficure 3. Dis-coordination Game

II
don’t raise alarm do raise alarm
don’t intrude Aj, Aqr B, Cir
do intrude C;, B Dy, Dy

5.2. Strategic Left-of-launch. In CDD there are strategic actions associated with each
domain. Thus we should explicitly model the strategic aspects of using the LOL cyber
capability. To introduce such a feature we again start with a simple model, and extend it
in a straight forward way. Consider again the LOLND game above. We will incorporate
strategic actions that will determine the values p; and py;.

5.2.1. Simple Dis-coordination Game. A simple two-stage game we can consider is the fol-
lowing. Model the detection game as a dis-coordination game, similar to matching pen-
nies. In matrix form the game is shown in Fig. 3. The game of matching pennies has the
following orderings of payoffs:

C[ > A[,
B; > Dy,
Cu < Ap,
Bi < Dyj.

This bimatrix game is the simplest game that can capture the strategic nature of an
intruder and a defender trying to detect the presence of the intruder. The intruder must
decide whether or not to intrude while the defender must decide whether to raise and
alarm or not. The intruder clearly prefers to either intrude and not get caught (“intrude”,
“don’t raise alarm”) or to not intrude when a defender raises an alarm (“don’t intrude”,
“raise alarm”). On the other hand the defender prefers to avoid these exact scenarios
which correspond to a false negative and false positive, respectively.

There are no pure Nash equilibria in this game. Let p; be the probability that player i
plays “do”. Then the unique mixed Nash equilibria are given by the two probabilities

_ 1
pr= 1 4+ Du=Bu g
An—Cpy
_ 1
pII - 1 BI_DI .
Ci—A;p
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Recall that by definition, p; is a false negative in the LOLND game. Thus we have
1 1 1 1
pu = pi(l = pu) = ( Dp—By ] (1 B BI_DI) - [ Dy—-By )( Ci—A; ]
1+ An—Cp 1+ Cr—Ar 1+ An—Cit 1+ B;-Dj
Reversing the roles of intruder and defender gives us an analogous game but with

different parameters, say A;,B;, C;, D; for i = I,II. Similar reasoning gives the mixing
probabilities p; for i = I, II which we can relate to the parameter p;.

~ N 1 1
1= pu(l—pr) = — — .
P p ( P) D;-B; Cu—An
A=Cy Bi—Dy

We have thus related the LOL cyber capability parameters p; and pj; with the strategic
actions of attacking and defending nuclear C&C systems. Further analysis of this rela-
tionship will be taken up at a later time. In particular we would like to investigate an
incomplete information version and a dynamic brinksmanship version of this game.

5.2.2. Fixed N Observations. In this section we consider a more involved strategic model
of C&C intrusion detection based on making a fixed number of observations of the C&C
system on which the defender will make their decision as to whether it is compromised or
not. The defender wishes to avoid detection thus must decide how aggressively to attack
the C&C system. We assume that whether a player is able to infiltrate the other player’s
cyber command and control system is random. Thus we define

X1 = 1{ player [ infiltrates player II's C&C } ~ Bernoulli(6,),
X1 = 1{ player I infiltrates player II's C&C } ~ Bernoulli(0,),

for some given parameters 01,0, € [0,1]. If a player is successful in infiltrating their
opponents C&C, they will make a strategic decision as to how aggressively they interfere
with the system. We model this by the strategic parameter aj, a;; € [0,1], which we
interpret as the probability of successfully stopping a C&C operation. We further assume
there is some natural C&C failure rates 1, fir € [0, 1) that do not depend on any interference
by an adversary, i.e. this is a C&C failure rate independent of all other variables (strategic
or stochastic) in the game. Note that if there is a successful infiltration then the overall
probability of failure is 1 — (1 — r)(1 — ay) and 1 — (1 — Bi)(1 — ar) for player’s I and II
respectively. If there is no infiltration then the failure probability is simply the natural
failure rates Sy, f11.

Each player makes N > 1 observations of C&C operations. Each operation either fails or
succeeds. Based on these observations the players must decide whether or not their C&C
systems are compromised. The detection strategy of each player will be a threshold value
tr, tr € {0,1, ..., N}. If m; C&C operations fail for player I, then player I's observed failure
rate is 5. If m; > t; then player I raises an alarm and decides his system is compromised.
Similarly if mjr > t77, then player II raises an alarm and decides his system is compromised.
If a player detects an infiltration, we assume appropriate measures are taken to remove
the adversaries C&C access.
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Assuming each C&C operation potential failure is i.i.d., the above detection problem is
equivalent to a simple hypothesis testing problem. Namely
Hy : my ~ Binomial(N, 1) w.p. 1 - 0y
Hj : my ~ Binomial(N, 1 = (1 - 1)(1 — anr)) w.p. O11.
We denote the cumulative distribution functions for a random variable X ~ Binomial(n, 6)
by F,.6(-), i.e.
Lx]

Fro(x) = Z( i )9%1 -0

i=1
We assume the players want to minimize the costs from false negatives and false posi-
tives in their detections. We derive the expected cost for player I. Player II’s is analogous.
Let P(FN) denote the probability of a false negative and P(FP) denote the probability of
a false positive. Furthermore let cpy and cpp be the costs associated with a false negative
and a false positive respectively. Then the expected cost associated with the detection for
player I, which we denote by Dy, is

Di(ay, air, t, ti) = cenP(FN) + cppP(FP).

The probability of false negatives and false positives can be computed given the above
modeling assumptions.

P(FN) = P( no detection , successful infiltration )
=P(m <t Xp=1)
Xir = 1)P(XH =1)

=P (ml <t
= FN1-(1-1)(1—am) (D011

P(FP) = P( detection , unsuccessful infiltration )
= P(m; > t;, Xy =0)
= P(m1 > t|Xy = O)P(XH =0)
- (1 — Fng(tn)) (1= On)

Thus we arrive at the following expected cost function for player I:

Di(aur, tr) = ceNnFN1-1-g)(1-an) (D011 + crp (1 — Fng, (fl)) (1-06n).

With this functional form for the probabilities of false negatives and false positives, we
can augment the previous matrix game to include the larger strategy space

A=10,1] x{0,1,2, ..., N} X {submit, stand firm}.
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Thus a strategy is a triple («,t,s) where a is a measure of how aggressively a player
manipulates an opponents C&C operations, ¢ is a measure of how sensitive a player is to
detecting anomalous failures and s is the classic chicken strategy.

We would now like to relate the parameter p to the strategic variables o and t. Note
that in order for the intruder to have any chance at utilizing his cyber LOL capability, the
detector must experience a false negative in its observations of the previous CC actions.
Assuming the final game of chicken is played after the detection game, the probability of
a successful LOL attack will be

putar, tr) = (1= (1 = Bu)(1 — an)Fn,1-a-g)a-apn 01,
pr(ea, t) = (1= (1 = B = am)FNi-a-)a-an (D) O1r-

The probabilities of LOL failure are now functions of players strategies @ and t. Recall
the outcomes from the matrix game M* were denoted u;(-) and uj(-). These values are
now functions of the entire strategy profile (ay, ti, s1, am, tir, sir). Combing the detection
game and the nuclear deterrence game we can write the complete expected utility for each
player, denoted by UI((oq, t1, s, ag, ti, SH)) and UH((CKI, t1, s1, a, ti, SH)).

Ui(ar, t1, s1, a1, tin, sir) = u(ar, tr, 1, a, ti, si) — Di(aar, t)
Ur(ay, tr, s1, am, tir, sir) = un(ay, tr, s1, e, t, su) — Diar, tn)

We will consider a mixed strategy to be a profile o1 = (ay, q}, q%, .y q?’ -1 r}) e [0, 1]N*1. Here
aj is the pure strategy for intruder aggressiveness. We need not consider a mixed strategy
for this strategy since it is already in the unit interval. Standard equilibrium results will
apply. It will also simplify our search for mixed equilibria to do this. The parameters
q}, q%, e q?"l are probabilities on the set {1,2,..,N — 1} and define the mixed strategy on
threshold #;. To complete this mixed strategy we define g¥ =1 - y N q'. Finally we have
17 as the probability of playing “stand firm”. Again to complete the mixed strategy we
note that the probability of playing “submit” is 7% = 1 — r;. The mixed strategy for player
11, o1 = (aur, q3,, T - gy 17;) € [0,11N, is defined analogously.

To simplify the notation we will consider the pure strategies from the matrix game M*
to be the set {1,2} for both players. Thus playing “submit” is equivalent to playing 1
and playing “stand firm” is equivalent to playing 2. The expected utilities given a mixed
strategy profile o = (07, 077) can then be written as follows:

N N 2 2
Ui(o) = Z Z Z (ur(ar, i, k, ap, j, €) — Di(aq, 1)) lﬁq;ﬂ’]f”ﬂ
i1 j=1 k=1 (=1
N N 2 2 N
Uy (o) = Z Z Z Z (un(er, i, k, am, j, €) — Du(ar, §)) q}q{lr’;rfl.

Il
—_
l
—_
o~
Il
—_
S
Il

i 1

]

The following propositions establish the existence of mixed Nash equilibria in two
versions of the game.
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Proposition 2: There exists a Nash equilibria in mixed strategies for the fixed-N-
observation, strategic left-of-launch, nuclear deterrence game.

Proof: This follows directly from Glicksberg’s theorem for infinite games. See [3].
O

Proposition 3: There exists a Nash equilibria with pure strategies for @ and mixed
strategies for t and s for the fixed-N-observation, strategic left-of-launch, nuclear deter-
rence game.

Proof: This follows indirectly from another of Glicksberg’s theorems also found in [3].
First note that the strategy space is [0, 1]V*1, which is a nonempty, compact, convex subset
of RN*1. Furthermore, the utility functions are continuous in all strategies when we
consider mixed strategies for s and ¢. Since the payoffs are linear (thus quasi-concave) in
the mixing strategies, all that is left to prove is that U; is quasi-concave in the a; fori = I, II.
First note that

8Fn,¢(x)
P
Setting ¢ =1 — (1 — fir)(1 — ay) we then have

n

=—(n—|x J)( Lx] )¢in(1 —¢) 1 <o,

J )
8%111 ~ da; (1= (1= Bu)(1 = an)Fp(tn)6i

_ d1 -1 =B - ar)

d
Eno(tm)Or1 + ar5— [FN,qb(tH)QI]

dag dag
= (1 = Bu)Fnp(t)O1 + “faioq [FN,(p(l‘H)@I]
= (1= Bu)Fno(tn)O1 + aF%'—(g)(tH)%QI
= (1= Bu)Fn,e(tn)6r + 8131\(;,—2)(1511)(1 — )0

N
Lt

Define the functions r(¢) and £(¢) as follows:

= (1= Bi)Fnetn)0r — (N — LtHJ)( | )gb“’”(l — )N U=l — gy

) = (N - Lth)( ™ )qbl“”(l - N,

Lt N ' '
f<¢>=Z( : )cp’(l—cmN-l.

i=0
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With these definitions we have
. (2 ,
sign (%) = sign (é’(gi)) - r(gb))

Note the following properties:

(1) 1) = () 20

2) ) =0 &= ¢ €{0,1)

@) F() = ") =0 e ¢ = Lul
(4) #(0) = £(0)

For t;; <1 or t = N — 1 we can show that r(¢) > €(¢) and r(¢) < £(¢), respectively, in

which case %’I’ > 0 and %’I’ < 0, respectively. In these cases, py is monotonic in a;, hence
it is quasi-concave. The other cases require a little work, but it is possible to show that for
tir € [1,N), there is at most one value ¢ such that r(¢*) = £(¢"). This fact, combined with
the above properties (1)-(4), implies pj; is quasi-concave in a;. Since Uj only depends on
aj through u; and u; is non-decreasing in p;; we must have

sign o) _ sign @
& aa[ -85 80(1 '
It follows that U] is quasi-concave in a;. An analogous result can be obtained for player I1

giving us the desired result.
O

5.2.3. Approximate Game. Due to the larger strategy space in this game, characterizing the
equilibria is much more difficult. One alternative representation of the game that may be
more tractable is to use the normal distribution approximation to the Binomial distribution
for the C&C failure process. If N is large enough and the failure rate for the system is 7, the
distribution of failures can be approximated by a normal distribution with mean u = Nnt

and standard deviation 0 = y/N7t(1 — 7). In this case we can reformulate the hypothesis
testing problem as follows:

Hp : m; ~ Normal(NpS;, Npi(1 = pr)) w.p. 1 = On
Hy :mp ~ Normal (N(1 - (1 - B —ar), N1 -1 -8 —an)d - B —ayr) w.p. O

We can then make the strategy a continuous threshold T € IR. We can use differential
calculus to look for Nash equilibria and we can visualize the results better, since the
strategy is in a lower dimension when considering pure threshold strategies. However,
it’s not clear that pure equilibria will exist in this game.
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5.3. Dynamic Bargaining. Wenow consider the dynamic, incomplete-information, brinks-
manship game in [5]. In this game the resolve of player i is not known to player —i, where
resolve R; is defined for player i as

w; — S;

R; = .
" wi—d;

In the complete information game, the sequential equilibria solution is completely deter-
mined by the players’ resolve: The state with the greatest effective resolve will prevail.
The sequential equilibria in the two-sided incomplete information game are more subtle
and not so easily characterized. We refer readers to [5] for a detailed description.

In either the complete or incomplete information game, it turns out that cyber capabili-
ties have a profound effect on the resolve of the players. In particular increasing one’s cyber
capability is equivalent to increasing one’s resolve. This is obvious from the definition of
resolve. In the LOLND game, resolve becomes

Note that this definition makes resolve in the LOLND game a function of cyber capability:
R = Ri(pi, p_).

For simplicity we consider a complete information game with slight modifications from
the static LOLND game considered earlier. We consider the following definition for the d*
payoffs:

dy = uy(a,a) = di(1 = pr)(1 = pu) + wi(1 — pp)pn + dipi(1 = pu) + sipipn
dy; = up(a,a) = dy(1 —pr)(1 = pn) + wn(1 = p)pr + dupu(1 = pr) + supipn

The rational behind this form of the game is that if both players launch a nuclear attack
and both player’s LOL preemption is successful, then the payoff should be less than if
both players had submitted. On the other hand, if one player’s LOL preemption does
not work, then that player should suffer the same consequences as the general nuclear
exchange. Furthermore we assume that LOL preemption only takes effect in the place of
a general nuclear exchange. The reasoning is that if one player submits prior to a nuclear
exchange then there is no need to use the LOL preemption. The resulting payoffs are as



A GAME THEORETIC MODEL OF THERMONUCLEAR CYBERWAR 21

follows:

d; = u(a,a) = di(1 - p) + wi(1 = p)pu + sipipn
dy; = ug(a,a) = dy(1 — pr) + wr(1 = pu)pr + supipn
w; = u(a,s) = wy

sy = un(a,s) = sy

s; = u(s,a) = sy

wy = ug(s,a) = wy

c; = uy(s,s) =cr

¢y = un(s,s) = cu

Analysis of this game is more straight forward. Notice that d’ is monotonically increas-
ing in p_; and monotonically decreasing in p; and
lim d° = w;(1-p;) +s;p; >s; =s;
p-i—1
lim d: = di(l - P—i) +S5ip-i <S;i = S;.
pi—1

It follows that
lim R = Wi _WiTs1 _wims1l 1
p-iml b wi— (Wil —pi) +sipi)  wi—sipi Wi—S;ipi pi
and
wr — s
lim R} = L < 1.

pi—1 w; — di(1 = p-i) = sip-i

By definition resolve is a probability, thus we must have R} < 1. For this reason in the
sequential LOLND game we set
o (U5
P =M s d:’

1

Notice that it is in the limit as p_; — p*; that we have R;(p;, p—i) — 1. Thus we can interpret
the cyber capability threshold p” ; as the point at which player i obtains infinite resolve in
the dynamic brinksmanship game.

Notice that R} is monotonic in both player’s cyber capabilities. Increasing one’s own
cyber capabilities increases one’s own resolve, while an increase in one’s opponent’s cyber
capability decreases one’s own resolve. Thus uncertainty in cyber capability is equivalent
to uncertainty in resolve in the dynamic brinksmanship game. More importantly players
must consider the possibility that the opposing player has unlimited resolve, i.e. R} = 1.
In this case the opponent will never back down.
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Examining the cases in which one or both players possibly have a resolve equal to one
in the incomplete information, dynamic brinksmanship game is the next step in better
understanding the effects of cyber LOL capabilities on nuclear deterrence. We hope to
take up this task at a later time.

5.4. Dynamic brinksmanship with strategic left-of-launch and incomplete information.
The ultimate goal of this modeling framework would be to combine all of the game
extensions above. Namely we would like to consider a dynamic brinksmanship game
with strategic left-of-launch and incomplete information. This will undoubtedly be a
difficult task and may require numerical explorations to explore the games sequential
Bayesian equilibria. We hope to take up this endeavor at a later time.
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