Multiscale characteristics of anisotropic,
heterogeneous pore structures and
compositions and its impact on
mechanical properties of shale
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Shale Poromechanics: Multiscale
Heterogeneity in Compositions, Pore
structure, and Mechanical Properties
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Mancos Shale

e Dark gray to black calcareous and
noncalcareous shale
e Offshore and open-shallow marine
Environments
e Late Cretaceous Interior Seaway

e Cheese Wheel
— Interlaminated fine mud, medium/
coarse mud, and very fine sand
— 1-3 mm laminae
— Parallel lamina, wavy-lenticular lamina,
ripple forms, and bioturbation
sandy medium mudstone (smM)

The Cheese Wheel



Multiscale Approach

¢ 40 cm diameter core of Mancos Shale

e Mineralogical and textural characterization
— Macroscopic
— Optical petrography/microscopy
— Micro-CT
— FIB-SEM
— BSE, X-ray mapping
— MAPS Mineralogy

e Mechanical tests
— Uni-/Tri-axial compression (1x2”)
— Brazilian Test (1x0.5%)
— Nano-indentation

e Mechanical modeling




Cretaceous Mancos Shale (Macro-lithofacies)
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Macro-lithofacies Composition
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Heterolithic facies are mechanically homogeneous




“Micro-lithofacies” Interpretation:
Optical Petrography
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Compositional Heterogeneity
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Compositional and Mechanical Heterogeneity

BSE Mineralogy Mechanical
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Mechanical Testing: Brazil or Cylinder
Splitting Tests with Phase Field Model
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Indirect Tension Results
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Tensile Strain Distribution
(Digital Image Correlation)
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Conceptual Model of Layered System



Numerical Simulations of Brittle Fracturing
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Shear Syess (WMPa)

Axisymmetric Testing Results
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MAPS Mineralogy

e FEI developed a new spatial mineralogy platform

e SEM-based automated mineralogical measurement,
analysis, interpretation, data integration
— Collection, overlay and re-registration of
multiple images from different modalities
— SEM, SEM-EDS, optical, CL, EBSD
— QEMSCAN measurement algorithms

v Quartz [Silica)
K.-feldzpar
Albite

e Mineral identification

— Spectral matching

— Each pixel can be a single
mineral or multiple minerals L —

— Ideal for minerals that show 4
elemental substitutions

— Simultaneous mineral,
element and count maps
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Mineralogy Mapping &

Nanoindentation
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Nano-indentation Results

Polished quartz area, 20 indents Polished Clay-rich area, 64 indents
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Nano-indentation Results




Summary

e Texture/mineralogical characterizations

— Considerable heterogeneity within macroscopic and sometimes
microscopic facies

— Relationship with grain size: finer facies have more clay and less quartz,
suggesting that coarser facies should be stronger than finer

e Mechanical tests

— Macroscopic and microscopic lithofacies have distinctively different
mechanical properties

— Bulk properties may be misleading as they can represent averages of
mechanically heterogeneous rock

— Microscopic heterogeneity controls the spatial distribution of fractures
— This heterogeneity should be taken into account for realistic mechanical
modeling and can scale up by examining other common lithofacies

¢ |Integrated multiscale imaging and mechanical testing with
numerical simulation provides a robust approach to advancing
our understanding of shale poro-mechanics



Thank You



