

Modeling and Experimental Study of Propagating Exothermic Reactions in Al/Pt Multilayers

D.P. Adams, M. Abere, R.V. Reeves, and C. Sobczak
Sandia National Laboratories, P.O. Box 5800
Albuquerque, NM, 87185

The propensity of sputter-deposited Al/Pt multilayers to undergo rapid, self-propagating formation reactions is evaluated across a broad range of stoichiometry ($n\text{Al}:m\text{Pt}$) and layer periodicity. Experiments demonstrate self-propagating reactions in ~ 1.6 micron-thick Al/Pt multilayers when the molar ratio of reactants is in the range 4Al:1Pt to 1Al:4Pt. This rather large compositional range is characterized by different heats of reaction, reaction rates and reaction modes. High-speed photography shows that equimolar Al/Pt multilayers undergo the most rapid reactions with wavefront speeds as large as 80 m/s. Al- and Pt-rich multilayers react at reduced rates with speeds as low as 1 m/s. A previously developed, analytical method by Mann et al. (J. Appl. Phys. 1997) is utilized to reveal additional details of reactions in the various Al/Pt multilayers. Models that account for the reactant layer thicknesses, composition, the adiabatic temperatures, the flame temperatures, and the measured heats of reaction are used to predict wavefront speeds that closely match measured values. These results are further analyzed to extract information regarding the mass transport characteristics of reactant species.

This work was supported by a Sandia Laboratory Directed Research and Development (LDRD) program. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.