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Abstract—Attacks on cyber systems continue to plague public
and private sector enterprises. While cyber zone defense is
an appealing strategy to prevent, disrupt and tolerate these
attacks, existing approaches assign hosts to zones based on
their function (for example, printer zones and sensor zones)
or place in the architecture (for example, corporate zones
and demilitarized zones). This leaves the large number of
human-operated commodity workstations within an enterprise
unaddressed. We propose a dynamic zoning algorithm which
periodically or asynchronously assigns hosts to zones based on
peer requests made by their human operators. The proposed
algorithm runs quickly on basic hardware for a large enterprise,
and the zone statistics converge to values that match what simple
mathematical models predict. We conclude that dynamic cyber
zone defense calls for additional research and is a candidate for
technology transfer.

I. INTRODUCTION

Mitchell, et al. introduce the concept of cyber zone

defense in [8] and [7]; the authors propose a math model

and simulation in order to predict its effectiveness. While

these studies are focused on creating homogeneous zones,

we investigate a dynamic zoning technique for the large

class of devices comprising the human-operated commodity

workstations of an enterprise.

Dynamic zoning connects the concept of cyber zone defense

to the realm of moving target defense (MTD). In particular, a

dynamic cyber zone defense is a network-based MTD. Figure

1 illustrates where dynamic cyber zone defense and other

network-based approaches fit in the MTD literature. Okhravi

et al. proposed this MTD taxonomy in [9].

The two components of a threat model are the capabilities

and goals of a notional attacker. Our threat model assumes

the adversary can implant malware in a host within the

subject network, thus creating an insider threat. We assume the

primary goals of an attacker are data exfiltration and lateral

movement. We also assume command and control (C2) is an

intermediate objective.

The rest of this paper is organized as follows: First, Section

II surveys the state of the art for this topic. Next, Section

III formulates the problem and proposes an algorithm which
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Fig. 1. Moving target defense taxonomy.

solves the problem. Third, Section IV presents numerical

data and figures that quantify the algorithm’s performance.

Finally, Section V contains our conclusions from the study

and identifies future lines of research.

II. LITERATURE SEARCH

Calls for static cyber zone defense frequently come from the

supervisory control and data acquisition (SCADA) community.

Effendi and Davis survey the history of cyber attacks on

industrial control systems (ICSs) and identify best practices

for SCADA security in [4]. In particular, the authors advocate

the familiar ICS security approach of establishing Internet-

facing (Zones 1 and 2), demilitarized (Zone 3) and industrial

(Zone 4) segments. They discuss man in the middle (MitM)

attacks but do not provide any numerical data demonstrating

the effectiveness of their best practices. In contrast, our

investigation proposes a dynamic zoning strategy for enterprise

networks faced with a specific threat model and provides

quantitative data.

Within the realm of network-based MTD, researchers have

pursued many approaches, ranging from the crowded topic of

Internet Protocol (IP) address randomization [2], [12], [5], [13]

to dynamic protocol stacks [10], [11].

Ehab Al-Shaer proposes an MTD architecture called

Mutable Networks (MUTE) in [2]. MUTE is an MTD
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which allows hosts to change configurations randomly and

dynamically. In [2], host configuration consists of IP addresses,

routing tables and “fingerprint.” The author defines fingerprint

as an outsider’s perception of a host’s operating system (OS)

and application load. Their threat model includes scanning,

denial of service (DoS) attacks and botnets. This study

includes a thought experiment and a brief formal analysis;

Al-Shaer does not provide any numerical data. While we

also propose a network-based MTD technique, our approach

uses dynamic zone memberships and includes quantitative

evidence.

Van Leeuwen, et al. propose a rich set of metrics for

characterizing the impact of an MTD for the defender in

[12]. The authors demonstrate how to calculate two of these

metrics (usable network capacity and jitter) for a network-

based MTD that uses IP randomization. They do not consider a

specific threat model. Our work expands on [12] by proposing

a network-based MTD that uses dynamic zone memberships,

studies new defensive work factors and identifies a specific

threat model.

Jafarian, et al. investigate a network-based MTD called

OpenFlow Random Host Mutation (OF-RHM) in [5]. The

authors’ MTD is based on changing the IP addresses of hosts

using OpenFlow-based Software Defined Networking (SDN).

They measure consistency with ground truth (percentage) over

time, worm propagation (host count) over time, size of IP

address pool over mutation interval and average flow table size

over session establishment rate; this is a rich mix of defender

and attacker-based statistics. The threat model of Jafarian, et

al. focuses on worms. While we also propose a network-based

MTD technique, our study measures different defender-based

statistics, uses dynamic zone memberships and considers a

different threat model.

Wang, et al. propose another IP address rotation scheme

in [13]. Like [5], the authors’ network-based MTD is also

implemented in OpenFlow. Their main contribution is to

expand the pool of available IP addresses used in previous

work. While Wang, et al. do instrument an experiment that

proves the concept, the authors do not provide any numerical

data.

Pohly, et al. investigate Dynamically Insertable Bumps

in the Stack (DIBS) in [10]. The authors’ design goals

are transparency, flexibility and agility, and they do not

consider a specific threat model. Pohly, et al. conduct a

rigorous experiment as part of their investigation: The authors

measure connection throughput (MB/s) and microprocessor

load (percentage used) for a TCP/IP stack, a DIBS stack and a

stack including a Virtual Private Network (VPN). While they

study a dynamic protocol-based MTD on mobile networks,

our work investigates dynamic zone memberships on wireline

networks and has a specific threat model.

Kaliappa Ravindran studies a model for a network operator

to manage multiple protocols in [11]. While the author’s

primary goal is to increase network performance, they

demonstrate how the same solution can improve security with

a case study. Ravindran does not consider a threat model. The

author measures resource usage (unitless) for various levels of

ambient hostility, utility (unitless) for various quality of service

(QoS) settings and traffic latency (ms) and network overhead

(message count) for various levels of traffic intensity. While we

don’t want our security technique to degrade the performance

of the subject network, our primary goal is security, and we

have a threat model.

Although it relies heavily on prior work, Kampanakis,

et al. distinguish themselves from other IP randomization

and dynamic protocol studies in [6]. The authors study two

previously published SDN-based MTD techniques: Random

Host Mutation (RHM) and Random Route Mutation (RRM).

Their threat model focuses on reconnaissance; specifically,

network mapping and software version detection. Kampanakis,

et al. propose a mathematical model for the attacker cost of

scanning. The authors report the total and differential amount

of time and traffic Nmap required to determine service versions

and OS. Our work uses a dynamic zone membership approach

instead of mutating hosts or routes, measures defender-based

metrics and considers a different threat model.

Two recent papers pursued dynamic platform technique

(DPT) based MTD research that relates to our work:

Zhuang, et al. investigate an MTD framework in [14].

The authors consider attack graphs in their analysis. Their

simulation uses a DPT-based MTD that simply resets virtual

machines (VMs) periodically. Zhuang, et al.’s metrics of

interest are percentage of successful attacks and attack

prosecution time. We will incorporate attacker-based metrics

such as these in an extension of this article.

Anderson, et al. study models to measure the effectiveness

of DPT-based MTDs in [3]. The authors derive closed-

form mathematical and stochastic Petri net (SPN) models to

predict the probability of an attack’s success. Our paper will

lead to future work that will extend [3] with a closed-form

mathematical model, SPN model and simulation that predicts

the effectiveness of a network-based MTD. This will increase

the coverage of predictive models for the MTD taxonomy

illustrated in Figure 1.

III. ALGORITHMS

This section discusses the metrics of interest, describes the

problem at hand and proposes a solution to this problem.

A. Metrics of Interest

The metrics used to gauge the quality of our solution are

the following.

1) average number of hosts assigned to a zone

2) average number of zones a host is assigned to

3) number of disruptions

Managing the number of hosts per zone is important because

if any zone grows too large, this zone becomes a high value

target (HVT). Likewise, managing the number of zones per

host is important because if any host achieves too much access,

this host becomes an HVT. The number of disruptions is

a practical matter of interest. This metric can estimate the



number of service calls the enterprise information technology

(IT) manager can expect.

B. Formulation

Previous cyber zone defense work [8], [7] proposes limiting

malware communication without interfering with useful work

by organizing similar devices or activities into the same zone

and by allowing only essential communication within and

between those zones. We seek to address the large fraction

of human-operated commodity hosts in the enterprise by

allowing these humans to request additional network visibility

on demand. Our proposed algorithm will broker these requests

and grant the network visibility required to accomplish the

mission while thwarting or disrupting cyber attackers.

C. Solution

Algorithm 1 fulfills peer requests and requires five inputs:

reqs is the list of peer requests, mhpz is the maximum number

of hosts per zone, mzph is the maximum number of zones

per host, mz is the maximum number of zones and ad is

the assignment dictionary. For ad, the zone identifier is the

key and the value for each key is a list of hosts assigned

to the zone. The algorithm iterates over every pair of hosts

(p) in reqs. If the components of the pair are the same, the

request is degenerate or if the hosts are already members of

the same zone, then there is nothing more to be done and

the algorithm continues on to the next request pair. If there

are less zones than mz allows, the algorithm creates a new

zone with the two hosts as members. (new zone id simply

generates a unique new zone name.) Otherwise, the algorithm

identifies the smallest zone and places the two hosts in this

zone. For each host added to the smallest zone, if necessary,

the algorithm will remove the oldest member of that zone and

increase the disruption count. Note that the algorithm applies

the first in, first out (FIFO) method by adding hosts to the end

of the list for a specific zone and, when necessary, removing

the oldest host in the zone.

Algorithm 2 aggregates some repetitive logic in Algorithm

1. This is the procedure for removing a host from one of the

zones it is a member of, if necessary. It requires three inputs:

host is the subject device, ad is the assignment dictionary and

mzph is the maximum number of zones per host. If the host

is a member of more zones than mzph allows, the algorithm

finds the largest zone and removes the host from that zone.

IV. RESULTS

A. Method

We obtained a list of the host names for all network

devices for an enterprise. We used an information

technology management database and a human

resources database to add human and department

fields to this host name list. The resulting list of

< host name, human name, department name > tuples

was our raw data set. For the initial conditions, we assigned

each host to one zone which corresponded with the department

of its human owner. Our assumption was that people typically

Algorithm 1 Peer Request Fulfillment

1: function FULFILL REQUESTS(reqs, mhpz, mzph, mz, ad)

2: disruptions ← 0

3: flag ← 0

4: for p in reqs do

5: if p0 == p1 then

6: continue

7: end if

8: for hl in ad.values() do

9: if hl.count(p0) and hl.count(p1) then

10: flag ← 1

11: break

12: end if

13: end for

14: if flag then

15: flag ← 0

16: continue

17: end if

18: if |ad.keys()| < mz then

19: ad.update(new zone id(ad): [p0, p1])

20: continue

21: end if

22: smallest zone size ← MAX ZONE SIZE

23: for zone in ad do

24: if |ad[zone]| < smallest zone size then

25: smallest zone ← zone

26: smallest zone size ← |ad[zone]|
27: end if

28: end for

29: for host in p do

30: if host not in ad[smallest zone] then

31: ad[smallest zone].append(host)

32: end if

33: if |ad[smallest zone]| > mhpz then

34: ad[smallest zone].pop(0)

35: disruptions += 1

36: end if

37: remove if necessary(host, ad, mzph)

38: end for

39: end for

40: return disruptions

41: end function

work with everybody in their department. To generate each

day’s peer requests, we simulated humans forming new

collaborations at some rate. We assumed this rate was guided

by an exponential distribution because this distribution

describes the time between events that occur continuously

and independently at a constant average rate. [1] A single

parameter, λ, informs the exponential distribution. For each

day’s peer requests, we iterated over each human in the

enterprise and used an exponentially-distributed random

variable to determine if they began collaborating with another

human that day. If so, we used uniformly-distributed random

variables to determine which of their hosts needed to peer



Algorithm 2 Remove If Necessary

1: function REMOVE IF NECESSARY(host, ad, mzph)

2: zones ← zone memberships(host, ad)

3: if |zones| > mzph then

4: largest zone size ← -1

5: for zone in zones do

6: if |ad[zone]| > largest zone size then

7: largest zone ← zone

8: largest zone size ← |ad[zone]|
9: end if

10: end for

11: ad[largest zone].remove(host)

12: end if

13: end function

TABLE I
SYSTEM PARAMETERS.

Parameter Description Source

Name

amax maximum hosts per zone System Manager

bmax maximum zones System Manager

cmax maximum zones per host System Manager

h number of hosts Enterprise

u number of humans Enterprise

λ new collaboration frequency Enterprise

ā average hosts per zone Zoning Algorithm

c̄ average zones per host Zoning Algorithm

d̄ average disruptions per day Zoning Algorithm

with another and which of the other hosts in the enterprise

this host needed to peer with.

B. Steady State Metrics

We hypothesized that the metrics of interest for a

dynamically zoned enterprise approach some limit over time,

and these steady state trends are important to us. Our

simulations matched our theory; we found that such a system

does converge. Figures 2 through 4 show how various input

parameters effect where critical metrics for such a system

converge. To generate the steady state data, we considered

a number of parameterizations which simulated the proposed

algorithm’s performance for different maximum numbers of

hosts per zone (amax), maximum numbers of zones (bmax),

numbers of hosts (h), numbers of humans (u), and new

collaboration rates (λ). Our domain for λ extended from 1/day

to 1/month. For each simulation, we randomly selected a

subset of the enterprise hosts based on a uniform distribution

and assigned each host’s initial zone based on its human

owner’s department. The size of these subsets ranged from

2% to 80% in order to explore the domains of interest. For

each day, we created a number of peering requests, passed

these requests and the current zone assignments to the zoning

algorithm and calculated ā and c̄. We simulated additional days

until the these metrics converged.
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Fig. 2. Average hosts per zone versus maximum hosts per zone.

Figure 2 illustrates the impact of maximum hosts per

zone on the average hosts per zone. As expected, when the

system converges, ā approaches amax. Figure 2 does not show

separate curves for different settings of λ because λ does not

impact steady state ā in the domains of interest.
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Fig. 3. Average zones per host versus α.

We found that the average zones per host approached

a function of three system parameters which we call α.

Specifically,

α =
bmax · amax

h

Figure 3 visualizes the impact of α on c̄. When the system

converges, c̄ approaches α. This suggests that α is a useful

math model for predicting the steady state c̄ of a dynamically

zoned enterprise. Figure 3 does not show separate curves for

different settings of λ because λ does not impact steady state

c̄ in the domains of interest.
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Fig. 4. Disruptions versus humans.

We propose the following theoretical model for the average

number of disruptions per day for a converged system:

d̄ = u · P (peer request per human per day)

= u · CDF (λ, 1)

= u · (1− e−λ·1)

= u · (1− e−λ)

(1)

In other words, the average number of disruptions on a

given day will be equal to the number of humans times

the probability that a human will generate a peer request

on that day. The first factor is u. The second factor is the

cumulative distribution function (CDF) for an exponential

distribution given x = 1. The CDF for an exponential

distribution is 1 − e−λx which reduces to 1 − e−λ given

x = 1. Because peer requests are determined stochastically, the

number of disruptions will not converge. Figure 4 shows that

the simulations follow the trends predicted by this theoretical

model. As the data for λ = 1/month show, this model is biased

high; this is because peer requests will already be fulfilled by

the existing zone assignments with some probability. We will

remove this bias from d̄ in future work.

C. Transient Metrics

While Figures 2 through 4 visualized the steady state

trends for key metrics, Figures 5 and 6 show how quickly

network parameters will converge. We do not show a figure

for disruptions because this measurement moves little before

ā and c̄ converge; however, d̄ will converge as indicated in

Figure 4 at the same time as ā and c̄. To generate the transient

data, we used the full enterprise configuration and considered

a number of parameterizations which simulated the proposed

algorithm’s performance for different new collaboration rates

(λ). As with the steady state simulations, our domain for λ

extended from 1/day to 1/month, and we assigned each host’s

initial zone based on its human owner’s department. For each

of 365 days, we created a number of peering requests, passed

these requests and the current zone assignments to the zoning

algorithm and calculated ā and c̄.
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Fig. 5. Average hosts per zone over time.
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We see that the zone statistics for this enterprise will

stabilize after 118 days given λ is 1/day. For smaller settings

of λ, statistics will take longer to converge but will do so at

the same values.

V. CONCLUSIONS

Dynamic zones are an important extension to static

homogeneous [8], [7] or functional [4] zones because they

bring the benefits of cyber zone defense to the enterprise at

large.

In future work, we will pursue a number of refinements and

enhancements to this study. First, we will remove the bias from

the current model of d̄ by considering the probability that some

peer requests will already be fulfilled. Also, we will consider

additional metrics of interest. Specifically, new metrics will

address the attacker-based security aspects of a dynamic

zoning approach. Third, we will identify a more sophisticated

algorithm that will remove existing zone members in a more

elegant fashion (for example, based on priorities and least

recent use). Finally, we will survey implementation options



(for example, layer 2 versus layer 3 and centralized versus

distributed approaches).
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