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Abstract—Attacks on cyber systems continue to plague public
and private sector enterprises. While cyber zone defense is
an appealing strategy to prevent, disrupt and tolerate these
attacks, existing approaches assign hosts to zones based on
their function (for example, printer zones and sensor zones)
or place in the architecture (for example, corporate zones
and demilitarized zones). This leaves the large number of
human-operated commodity workstations within an enterprise
unaddressed. We propose a dynamic zoning algorithm which
periodically or asynchronously assigns hosts to zones based on
peer requests made by their human operators. The proposed
algorithm runs quickly on basic hardware for a large enterprise,
and the zone statistics converge to values that match what simple
mathematical models predict. We conclude that dynamic cyber
zone defense calls for additional research and is a candidate for
technology transfer.

I. INTRODUCTION

Mitchell, et al. introduce the concept of cyber zone
defense in [8] and [7]; the authors propose a math model
and simulation in order to predict its effectiveness. While
these studies are focused on creating homogeneous zones,
we investigate a dynamic zoning technique for the large
class of devices comprising the human-operated commodity
workstations of an enterprise.

Dynamic zoning connects the concept of cyber zone defense
to the realm of moving target defense (MTD). In particular, a
dynamic cyber zone defense is a network-based MTD. Figure
1 illustrates where dynamic cyber zone defense and other
network-based approaches fit in the MTD literature. Okhravi
et al. proposed this MTD taxonomy in [9].

The two components of a threat model are the capabilities
and goals of a notional attacker. Our threat model assumes
the adversary can implant malware in a host within the
subject network, thus creating an insider threat. We assume the
primary goals of an attacker are data exfiltration and lateral
movement. We also assume command and control (C2) is an
intermediate objective.

The rest of this paper is organized as follows: First, Section
IT surveys the state of the art for this topic. Next, Section
IIT formulates the problem and proposes an algorithm which
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Fig. 1. Moving target defense taxonomy.

solves the problem. Third, Section IV presents numerical
data and figures that quantify the algorithm’s performance.
Finally, Section V contains our conclusions from the study
and identifies future lines of research.

II. LITERATURE SEARCH

Calls for static cyber zone defense frequently come from the
supervisory control and data acquisition (SCADA) community.
Effendi and Davis survey the history of cyber attacks on
industrial control systems (ICSs) and identify best practices
for SCADA security in [4]. In particular, the authors advocate
the familiar ICS security approach of establishing Internet-
facing (Zones 1 and 2), demilitarized (Zone 3) and industrial
(Zone 4) segments. They discuss man in the middle (MitM)
attacks but do not provide any numerical data demonstrating
the effectiveness of their best practices. In contrast, our
investigation proposes a dynamic zoning strategy for enterprise
networks faced with a specific threat model and provides
quantitative data.

Within the realm of network-based MTD, researchers have
pursued many approaches, ranging from the crowded topic of
Internet Protocol (IP) address randomization [2], [12], [5], [13]
to dynamic protocol stacks [10], [11].

Ehab Al-Shaer proposes an MTD architecture called
Mutable Networks (MUTE) in [2]. MUTE is an MTD



which allows hosts to change configurations randomly and
dynamically. In [2], host configuration consists of IP addresses,
routing tables and “fingerprint.” The author defines fingerprint
as an outsider’s perception of a host’s operating system (OS)
and application load. Their threat model includes scanning,
denial of service (DoS) attacks and botnets. This study
includes a thought experiment and a brief formal analysis;
Al-Shaer does not provide any numerical data. While we
also propose a network-based MTD technique, our approach
uses dynamic zone memberships and includes quantitative
evidence.

Van Leeuwen, et al. propose a rich set of metrics for
characterizing the impact of an MTD for the defender in
[12]. The authors demonstrate how to calculate two of these
metrics (usable network capacity and jitter) for a network-
based MTD that uses IP randomization. They do not consider a
specific threat model. Our work expands on [12] by proposing
a network-based MTD that uses dynamic zone memberships,
studies new defensive work factors and identifies a specific
threat model.

Jafarian, et al. investigate a network-based MTD called
OpenFlow Random Host Mutation (OF-RHM) in [5]. The
authors” MTD is based on changing the IP addresses of hosts
using OpenFlow-based Software Defined Networking (SDN).
They measure consistency with ground truth (percentage) over
time, worm propagation (host count) over time, size of IP
address pool over mutation interval and average flow table size
over session establishment rate; this is a rich mix of defender
and attacker-based statistics. The threat model of Jafarian, et
al. focuses on worms. While we also propose a network-based
MTD technique, our study measures different defender-based
statistics, uses dynamic zone memberships and considers a
different threat model.

Wang, et al. propose another IP address rotation scheme
in [13]. Like [5], the authors’ network-based MTD is also
implemented in OpenFlow. Their main contribution is to
expand the pool of available IP addresses used in previous
work. While Wang, et al. do instrument an experiment that
proves the concept, the authors do not provide any numerical
data.

Pohly, et al. investigate Dynamically Insertable Bumps
in the Stack (DIBS) in [10]. The authors’ design goals
are transparency, flexibility and agility, and they do not
consider a specific threat model. Pohly, et al. conduct a
rigorous experiment as part of their investigation: The authors
measure connection throughput (MB/s) and microprocessor
load (percentage used) for a TCP/IP stack, a DIBS stack and a
stack including a Virtual Private Network (VPN). While they
study a dynamic protocol-based MTD on mobile networks,
our work investigates dynamic zone memberships on wireline
networks and has a specific threat model.

Kaliappa Ravindran studies a model for a network operator
to manage multiple protocols in [11]. While the author’s
primary goal is to increase network performance, they
demonstrate how the same solution can improve security with
a case study. Ravindran does not consider a threat model. The

author measures resource usage (unitless) for various levels of
ambient hostility, utility (unitless) for various quality of service
(QoS) settings and traffic latency (ms) and network overhead
(message count) for various levels of traffic intensity. While we
don’t want our security technique to degrade the performance
of the subject network, our primary goal is security, and we
have a threat model.

Although it relies heavily on prior work, Kampanakis,
et al. distinguish themselves from other IP randomization
and dynamic protocol studies in [6]. The authors study two
previously published SDN-based MTD techniques: Random
Host Mutation (RHM) and Random Route Mutation (RRM).
Their threat model focuses on reconnaissance; specifically,
network mapping and software version detection. Kampanakis,
et al. propose a mathematical model for the attacker cost of
scanning. The authors report the total and differential amount
of time and traffic Nmap required to determine service versions
and OS. Our work uses a dynamic zone membership approach
instead of mutating hosts or routes, measures defender-based
metrics and considers a different threat model.

Two recent papers pursued dynamic platform technique
(DPT) based MTD research that relates to our work:

Zhuang, et al. investigate an MTD framework in [14].
The authors consider attack graphs in their analysis. Their
simulation uses a DPT-based MTD that simply resets virtual
machines (VMs) periodically. Zhuang, et al.’s metrics of
interest are percentage of successful attacks and attack
prosecution time. We will incorporate attacker-based metrics
such as these in an extension of this article.

Anderson, et al. study models to measure the effectiveness
of DPT-based MTDs in [3]. The authors derive closed-
form mathematical and stochastic Petri net (SPN) models to
predict the probability of an attack’s success. Our paper will
lead to future work that will extend [3] with a closed-form
mathematical model, SPN model and simulation that predicts
the effectiveness of a network-based MTD. This will increase
the coverage of predictive models for the MTD taxonomy
illustrated in Figure 1.

III. ALGORITHMS

This section discusses the metrics of interest, describes the
problem at hand and proposes a solution to this problem.

A. Metrics of Interest

The metrics used to gauge the quality of our solution are
the following.

1) average number of hosts assigned to a zone
2) average number of zones a host is assigned to
3) number of disruptions

Managing the number of hosts per zone is important because
if any zone grows too large, this zone becomes a high value
target (HVT). Likewise, managing the number of zones per
host is important because if any host achieves too much access,
this host becomes an HVT. The number of disruptions is
a practical matter of interest. This metric can estimate the



number of service calls the enterprise information technology
(IT) manager can expect.

B. Formulation

Previous cyber zone defense work [8], [7] proposes limiting
malware communication without interfering with useful work
by organizing similar devices or activities into the same zone
and by allowing only essential communication within and
between those zones. We seek to address the large fraction
of human-operated commodity hosts in the enterprise by
allowing these humans to request additional network visibility
on demand. Our proposed algorithm will broker these requests
and grant the network visibility required to accomplish the
mission while thwarting or disrupting cyber attackers.

C. Solution

Algorithm 1 fulfills peer requests and requires five inputs:
reqs is the list of peer requests, mhpz is the maximum number
of hosts per zone, mzph is the maximum number of zones
per host, mz is the maximum number of zones and ad is
the assignment dictionary. For ad, the zone identifier is the
key and the value for each key is a list of hosts assigned
to the zone. The algorithm iterates over every pair of hosts
(p) in reqgs. If the components of the pair are the same, the
request is degenerate or if the hosts are already members of
the same zone, then there is nothing more to be done and
the algorithm continues on to the next request pair. If there
are less zones than mz allows, the algorithm creates a new
zone with the two hosts as members. (new_zone_id simply
generates a unique new zone name.) Otherwise, the algorithm
identifies the smallest zone and places the two hosts in this
zone. For each host added to the smallest zone, if necessary,
the algorithm will remove the oldest member of that zone and
increase the disruption count. Note that the algorithm applies
the first in, first out (FIFO) method by adding hosts to the end
of the list for a specific zone and, when necessary, removing
the oldest host in the zone.

Algorithm 2 aggregates some repetitive logic in Algorithm
1. This is the procedure for removing a host from one of the
zones it is a member of, if necessary. It requires three inputs:
host is the subject device, ad is the assignment dictionary and
mzph is the maximum number of zones per host. If the host
is a member of more zones than mzph allows, the algorithm
finds the largest zone and removes the host from that zone.

IV. RESULTS
A. Method

We obtained a list of the host names for all network

devices for an enterprise. We wused an information
technology  management database and a  human
resources database to add human and department
fields to this host name list. The resulting list of

< host name, human name, department name > tuples
was our raw data set. For the initial conditions, we assigned
each host to one zone which corresponded with the department
of its human owner. Our assumption was that people typically

Algorithm 1 Peer Request Fulfillment
1: function FULFILL_REQUESTS(reqs, mhpz, mzph, mz, ad)

2: disruptions < 0

3 flag «+ 0

4 for p in reqs do

5 if po == p1 then

6: continue

7 end if

8 for hl in ad.values() do

9: if hl.count(py) and hl.count(p;) then
10: flag < 1

11: break

12: end if

13: end for

14: if flag then

15: flag < 0

16: continue

17: end if

18: if |ad.keys()| < mz then

19: ad.update(new_zone_id(ad): [po, p1])
20: continue

21: end if

22: smallest_zone_size <+ MAX_ZONE_SIZE
23: for zone in ad do

24: if |ad[zone]| < smallest_zone_size then
25: smallest_zone < zone

26: smallest_zone_size < |ad[zone]|
27: end if

28: end for

29: for host in p do

30: if host not in ad[smallest_zone] then
31: ad[smallest_zone].append(host)
32: end if

33: if |ad[smallest_zone|| > mhpz then
34: ad[smallest_zone].pop(0)

35: disruptions += 1

36: end if

37: remove_if_necessary(host, ad, mzph)
38: end for

39: end for

40: return disruptions

41: end function

work with everybody in their department. To generate each
day’s peer requests, we simulated humans forming new
collaborations at some rate. We assumed this rate was guided
by an exponential distribution because this distribution
describes the time between events that occur continuously
and independently at a constant average rate. [1] A single
parameter, ), informs the exponential distribution. For each
day’s peer requests, we iterated over each human in the
enterprise and used an exponentially-distributed random
variable to determine if they began collaborating with another
human that day. If so, we used uniformly-distributed random
variables to determine which of their hosts needed to peer



Algorithm 2 Remove If Necessary
1: function REMOVE_IF_NECESSARY(host, ad, mzph)

2: zones < zone_memberships(host, ad)
3: if |zones| > mzph then
4: largest_zone_size < -1
5: for zone in zones do
6: if |ad[zone]| > largest_zone_size then
7: largest_zone < zone
8: largest_zone_size < |ad[zone]|
9: end if
10: end for
11: ad[largest_zone].remove(host)
12: end if
13: end function
TABLE I
SYSTEM PARAMETERS.
Parameter Description Source
Name
Amax maximum hosts per zone System Manager
bmax maximum zones System Manager
Cmax maximum zones per host System Manager
h number of hosts Enterprise
u number of humans Enterprise
A new collaboration frequency | Enterprise
a average hosts per zone Zoning Algorithm
c average zones per host Zoning Algorithm
d average disruptions per day Zoning Algorithm

with another and which of the other hosts in the enterprise
this host needed to peer with.

B. Steady State Metrics

We hypothesized that the metrics of interest for a
dynamically zoned enterprise approach some limit over time,
and these steady state trends are important to us. Our
simulations matched our theory; we found that such a system
does converge. Figures 2 through 4 show how various input
parameters effect where critical metrics for such a system
converge. To generate the steady state data, we considered
a number of parameterizations which simulated the proposed
algorithm’s performance for different maximum numbers of
hosts per zone (apax), maximum numbers of zones (byax),
numbers of hosts (h), numbers of humans (u), and new
collaboration rates (). Our domain for A extended from 1/day
to 1/month. For each simulation, we randomly selected a
subset of the enterprise hosts based on a uniform distribution
and assigned each host’s initial zone based on its human
owner’s department. The size of these subsets ranged from
2% to 80% in order to explore the domains of interest. For
each day, we created a number of peering requests, passed
these requests and the current zone assignments to the zoning

algorithm and calculated @ and ¢. We simulated additional days
until the these metrics converged.
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Fig. 2. Average hosts per zone versus maximum hosts per zone.

Figure 2 illustrates the impact of maximum hosts per
zone on the average hosts per zone. As expected, when the
system converges, a approaches a,,x. Figure 2 does not show
separate curves for different settings of A because A does not
impact steady state @ in the domains of interest.
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Fig. 3. Average zones per host versus o.

We found that the average zones per host approached
a function of three system parameters which we call a.
Specifically,

bmax * Omax

h

o=

Figure 3 visualizes the impact of a on ¢. When the system
converges, ¢ approaches «. This suggests that « is a useful
math model for predicting the steady state ¢ of a dynamically
zoned enterprise. Figure 3 does not show separate curves for
different settings of A because A does not impact steady state
¢ in the domains of interest.
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Fig. 4. Disruptions versus humans.

We propose the following theoretical model for the average
number of disruptions per day for a converged system:

d = u - P(peer request per human per day)

—u-CDF(\1) 1
:u~(1—e_’\'1) b
=u-(1—e?)

In other words, the average number of disruptions on a
given day will be equal to the number of humans times
the probability that a human will generate a peer request
on that day. The first factor is u. The second factor is the
cumulative distribution function (CDF) for an exponential
distribution given z = 1. The CDF for an exponential
distribution is 1 — e~** which reduces to 1 — e™* given
z = 1. Because peer requests are determined stochastically, the
number of disruptions will not converge. Figure 4 shows that
the simulations follow the trends predicted by this theoretical
model. As the data for A = 1/month show, this model is biased
high; this is because peer requests will already be fulfilled by
the existing zone assignments with some probability. We will
remove this bias from d in future work.

C. Transient Metrics

While Figures 2 through 4 visualized the steady state
trends for key metrics, Figures 5 and 6 show how quickly
network parameters will converge. We do not show a figure
for disruptions because this measurement moves little before
a and ¢ converge; however, d will converge as indicated in
Figure 4 at the same time as a and ¢. To generate the transient
data, we used the full enterprise configuration and considered
a number of parameterizations which simulated the proposed
algorithm’s performance for different new collaboration rates
(A). As with the steady state simulations, our domain for A
extended from 1/day to 1/month, and we assigned each host’s
initial zone based on its human owner’s department. For each
of 365 days, we created a number of peering requests, passed
these requests and the current zone assignments to the zoning
algorithm and calculated @ and c.
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Fig. 5. Average hosts per zone over time.

30

\ = U/day
A = 1/week -------
A =1l/month --------

25 B

maximum hosts per zone = 1404
20 1

average zones 15 4/,.—" 4
per host -

w0} B

0 L L L L L L L
0 50 100 150 200 250 300 350

time (days)

Fig. 6. Average zones per host over time.

We see that the zone statistics for this enterprise will
stabilize after 118 days given A is 1/day. For smaller settings
of ), statistics will take longer to converge but will do so at
the same values.

V. CONCLUSIONS

Dynamic zones are an important extension to static
homogeneous [8], [7] or functional [4] zones because they
bring the benefits of cyber zone defense to the enterprise at
large.

In future work, we will pursue a number of refinements and
enhancements to this study. First, we will remove the bias from
the current model of d by considering the probability that some
peer requests will already be fulfilled. Also, we will consider
additional metrics of interest. Specifically, new metrics will
address the attacker-based security aspects of a dynamic
zoning approach. Third, we will identify a more sophisticated
algorithm that will remove existing zone members in a more
elegant fashion (for example, based on priorities and least
recent use). Finally, we will survey implementation options



(for example, layer 2 versus layer 3 and centralized versus
distributed approaches).
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