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Why do we need more 
efficient computers?
 Google Deep Learning Study

 16000 core, 1000 machine GPU cluster
 Trained on 10 million 200x200 pixel images
 Training required 3 days
 Training set size set by what can be 

completed in less than one week

 What would they like to do?
 ~2 billion photos uploaded to internet per day (2014)
 Can we train a deep net on one day of image data?
 Assume 1000x1000 nominal image size, linear scaling 

(both assumptions are unrealistically optimistic)
 Requires 5 ZettaIPS to train in 3 days

(ZettaIPS=1021 IPS; ~5 billion modern GPU cores)
 Data is increasing exponentially with time

 Need >1016-1018 instruction-per-second on 1 IC
 Less than 10 fJ per instruction energy budget

Q. Le, IEEE ICASSP 2013
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Modified from 
Hasler and Marr,
Frontiers in 
Neuroscience, 2013

“Let physics do 
the computation” 
Our brain is the 
ultimate example 
of this paradigm

Improvements Due to 
Transistor scaling 
(Moore’s Law and 
Denard Voltage 
Scaling)
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G1,2

 Electronic Vector Matrix Multiply

How does a crossbar perform a 
useful computation per device?
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Neuromorphic Accelerator Device 
Requirements

For training accuracy want:

 Low Write Variability

 Low Write Nonlinearity 

 Low Asymmetry

 Low Read Noise

For scalable crossbars want:

 Low operating current

 Low operating voltage

S. Agarwal, et. al. “Resistive Memory Device Requirements for a Neural 
Algorithm Accelerator,” International Joint Conference on Neural Networks, 
(2016) 
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Resistive RAM (ReRAM)
 Bipolar Metal Oxide Redox RAM

 Resistance is modulated in a metal oxide

 Scalable to 5nm, sub pJ switching energies

 TiN/Ta/TaOx/TiN Device Stack
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Fast Pulsing / Coplanar Waveguides

 Ground Signal

 Conductor backed

 Agilent B1530 module

 10 ns RT/FT, 10 ns PW

 1 V nominal

 ~140 mV overshoot
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Repeated Pulsing
SET RESET

 1000 repeated SET and RESET pulses for analog/neuromorphic 
operation

 Blind updates

 Nominal pulse values 
 SET: +1V 10ns RT/PW/FT

 RESET: -1V 10ns RT/PW/FT

 READ: 100 mV 1 ms RT/PW/FT
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 Shorter pulses may be employed to lower conductance switching range

 Linearity qualitatively similar across Pulse Width (PW) and Edge Time (ET)

 Best for SET at 100 ns

 Best for RESET at 1 us

 Relative conductance change increased with shorter Pulse Width / Edge 
Time

Effect of Pulse Width and Edge Time

Nominal Pulse Voltage Values: SET: +1 V RESET: -1 V
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Repeated Pulsed Cycling
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 Tested 100 cycles of 1000 SET+RESET pulses with 10, 100, 1000 ns PW/ET

 Devices stable over large number of pulsing cycles 

 Large discontinuity in conductance when changing PW and ET is not from 
device instability over time/repeated cycling
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10 ns 100 ns 1 µs

Data set
# Training 
Examples

# Test 
Examples

Network Size

MNIST Large Digits 60,000 10,000 784×300×10

CrossSim Training Results

 Trained CrossSim on MNIST Large Digit set of handwritten images

 Higher image recognition after training for devices operated at 10 ns 
and 100 ns than 1 µs



14

 Intro and Key Concepts

 Experimental Results
 Ultrafast Pulsing

 CrossSim Training Results

 Conclusions and Future Work

Outline



Conclusions
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 Relative conductance change increased with shorter Pulse Width / 
Edge Time

 Ultrafast pulses may be employed to lower conductance switching 
range without reducing overall conductance change

Ultrafast pulses down to 100s of ps are possible to implement 
in-silico!

 Achieved repeated analog operation of TaOx/Ta devices for 
neuromorphic computation

 Progress has been made toward “fab friendly” devices suitable for 
image recognition, but still a long way to go before achieving 
numerical equivalent
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Thank you! 

17

Questions? 
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Advantage of Coplanar Waveguides

 Without coplanar waveguide - Path to ground is through large inductor

 With coplanar waveguide, inductor is replaced by small capacitors

 If full GSG configuration, should be able to carry RF signals up to 40 Ghz

 Since only using GS probes, frequency is limited, but only need 1 Ghz
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100 ns Pulswidth delta G / G

10 ns 1 µs100 ns

SET

RESET


