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= Intro and Key Concepts




Why do we need more

efficient computers?
= Google Deep Learning Study

= 16000 core, 1000 machine GPU cluster
= Trained on 10 million 200x200 pixel images

= Training required 3 days
= Training set size set by what can be
completed in less than one week

= What would they like to do?
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Feature 1 ‘. ' ° ﬁ“* v‘

~2 billion photos uploaded to internet per day (2014)
= Can we train a deep net on one day of image data?

(image with 8 ch;mncls)

= Assume 1000x1000 nominal image size, linear scaling |
(both assumptions are unrealistically optimistic)
= Requires 5 ZettalPS to train in 3 days
(ZettalPS=10?! IPS; ~5 billion modern GPU cores)
= Data is increasing exponentially with time

= Need >10'6-108instruction-per-second on 1 IC
= Less than 10 f) per instruction energy budget

Q. Le, IEEE ICASSP 2013




Evolution of Computing Machinery @mi
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How does a crossbar perform a
useful computation per device?
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Neuromorphic Accelerator Device
Requirements

For scalable crossbars want:
= Low operating current
= Low operating voltage

For training accuracy want:
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Small Large File Types
Images Images
Read Noise o (% Range) 3% 5% 9%
Write Noise o (% Range) 0.3% 0.4% 0.4%
Asymmetric Nonlinearity (v) 0.1 0.1 0.1
Symmetric Nonlinearity (v) >20 5 5
Maximum Current 160 nA 13 nA 40 nA
Minimum Retention (@ 85°C) 7 days 7 days 7 days
Minimum Nudge Endurance 107 107 107

Conductance versus Pulse
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Pulse Number (V,,ite=1V, toyse=118)

S. Agarwal, et. al. “Resistive Memory Device Requirements for a Neural
Algorithm Accelerator,” International Joint Conference on Neural Networks,
(2016) 6
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= Experimental Results
= Ultrafast Pulsing

= CrossSim Training Results




Resistive RAM (ReRAM) )

= Bipolar Metal Oxide Redox RAM
= Resistance is modulated in a metal oxide

= Scalable to 5nm, sub pJ switching energies
= TiN/Ta/TaOx/TiN Device Stack
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Fast Pulsing / Coplanar Waveguides @

Oscilloscope
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= Conductor backed

= Agilent B1530 module
= 10 ns RT/FT, 10 ns PW
= 1V nominal

= ~140 mV overshoot
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Repeated Pulsing ) .
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= 1000 repeated SET and RESET pulses for analog/neuromorphic
operation

= Blind updates

= Nominal pulse values Write Pulse ﬁ‘;giﬂ:emem
= SET:+1V 10ns RT/PW/FT
= RESET: -1V 10ns RT/PW/FT V Road Pulse
= READ: 100 mV 1 ms RT/PW/FT / A
t

10




Effect of Pulse Width and Edge Time® .
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= Shorter pulses may be employed to lower conductance switching range
= Linearity qualitatively similar across Pulse Width (PW) and Edge Time (ET)
= Best for SET at 100 ns
= Best for RESET at 1 us
= Relative conductance change increased with shorter Pulse Width / Edge
Time

Nominal Pulse Voltage Values: SET: +1 V RESET: -1V "




Repeated Pulsed Cycling 1) .

0.06

°© © ©
&
T T T L

100 ns PW

o
w

1000 ns PW

Conductance (S)
8
N

°© o
8 |
.

10 ns PW

0 ‘ 200000 300000 ' 400000 500000 600000
Pulse Number (#)

0.0030 +

_ 00025}

@
= 0.0020 |
2
gomns
200010}
S

0.0005

0.0000 -
0 2000 4000 6000 8000 10000
Pulse Number (#)

= Tested 100 cycles of 1000 SET+RESET pulses with 10, 100, 1000 ns PW/ET
= Devices stable over large number of pulsing cycles

= Large discontinuity in conductance when changing PW and ET is not from
device instability over time/repeated cycling
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CrossSim Training Results ) .
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= Trained CrossSim on MNIST Large Digit set of handwritten images

= Higher image recognition after training for devices operated at 10 ns
and 100 ns than 1 ps 13
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= Conclusions and Future Work




Conclusions )

= Relative conductance change increased with shorter Pulse Width /
Edge Time

= Ultrafast pulses may be employed to lower conductance switching
range without reducing overall conductance change

Ultrafast pulses down to 100s of ps are possible to implement
in-silico!

= Achieved repeated analog operation of TaO,/Ta devices for
neuromorphic computation

= Progress has been made toward “fab friendly” devices suitable for
image recognition, but still a long way to go before achieving
numerical equivalent
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Thank you! ) i,

Questions?
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Advantage of Coplanar Waveguides @

v AAA v

i} I . .

L AVACSL GSG shields as coplanar waveguide
v AAA v G S Floating

rs

GS Field lines go to Si layer/chuck

= Without coplanar waveguide - Path to ground is through large inductor

= With coplanar waveguide, inductor is replaced by small capacitors

= |If full GSG configuration, should be able to carry RF signals up to 40 Ghz
= Since only using GS probes, frequency is limited, but only need 1 Ghz 1s
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