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Relevance and Objectives ) .

Developing inherently safe lithium-ion cell chemistries and systems

1. Evaluate Abuse Tolerance Improvements
= |mprove abuse tolerance in lithium-ion cells
= Develop strategies to reduce the negative effects of an energetic thermal runaway

= |dentify and develop advanced materials or combination of materials that will
minimize the sources of cell degradation during abuse events, leading to enhanced
safety

= Build and test full size cells to demonstrate improved abuse tolerance

2. Abuse Resilient Components
= Design and develop strategies to mitigate the severity of thermal runaway in lithium-
ion cells
3. Cell Fabrication
= Build and test full cells to demonstrate improved abuse tolerance
=  Work with other Labs to standardize electrode formulations

= Deliver cells and electrodes to ABR Partners to support materials development
programs
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Challenges with Inherent Cell Safety &
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Need to address these issues at the cell materials level in order
to field the most inherently safe energy storage products




Contribution to Runaway 1) .

As energy and power densities increase for PHEVs and EVs, materials level safety issues remain a
concern

=  Electrolytes
= Gas generation/flammability of electrolytes remain significant safety issues

= Using combinations of non-PFsalts and hydro-fluoro ether solvents as electrolytes to limit
gas generation and reduce flammability

= (Cathodes
= Reactivity and flammability of vented solvent
cathodes (LiM,0,)

= Energetic thermal runaway
= Gas generation upon decomposition & catalysis
= Mitigated largely through new materials:
= LiFePO,, LiMn,0O, spinel etc.
= Anodes
= Breakdown of SEl layer leads to reaction/runaway at elevated temperatures

= Mitigated through new materials and additives: LiTisO,, (but sacrifice energy density) and
vinylidene carbonate analogues

= Separators
= Thermal/mechanical stability under abusive conditions
= Susceptibility to internal short field failure
= Mitigated through new materials — ceramic coatings, shutdown layers, etc.




Calorimetry of Lithium-ion Cells ) .

Understanding the Thermal Runaway Response of Materials in Cells
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Can high energy cathodes behave like LFP during thermal runaway?
Where do high capacity Si/C anodes fit on this plot? 6




Si/C Anode Abuse Tolerance ) e,

Understanding Safety Issues with Si Materials in Lithium-ion Cells
18650 Cell

Electrode Processing Issues
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Si/C Anode Abuse Tolerance ) s,

Calorimetry on Si/C Materials Calorimetry on Si/C in 18650 Cells
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Thermal runaway enthalpy of Si/C-NMC cells is ~10% greater than Graphite-NMC cells
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Si/C Anode Abuse Tolerance ) S,

0.12 ~5x increase in the amount of gas generated
in the calorimeter during thermal runaway of
/\ cell 2, but comparable gas generation for cell 5
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Si/C Anode Abuse Tolerance ) s,

Thermal Abuse Testing
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Comparable performance between the Si-C and Graphite cells, but self-ignition observed with the Si-C cell
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NanoSi/Graphite Cell Design

Cathode
90 wt% Toda NCM 523
5 wt% Timcal C45
5 wt% Solvay 5130 PVDF
20 um aluminum foil

63 um total thickness
(40 um coating)

33.6 % porosity

0% Silicon Anode
91.83 wt% Hitachi MagE
graphite
2 wt% Timcal C45
6 wt% Kureha 9300 PVDF
0.17 wt% oxalic acid
10 pum copper foil

51 um total thickness (41 um
coating)

29.9 % porosity

5% Silicon Anode

83 wt% Hitachi MagE
graphite

5 wt% Nano&Amor Silicon
(50-70 nm)

2 wt% Timcal C45
10 wt% LiPAA (LiOH Titrate)
10 um copper foil

59 um total thickness (49 um
coating)

46.1 % porosity

Sandia
'I'l National

Laboratories

10% Silicon Anode
78 wt% Hitachi MagE
graphite
10 wt% Nano&Amor Silicon
(50-70 nm)
2 wt% Timcal C45
10 wt% LiPAA (LiOH Titrate)
10 um copper foil

43 pm total thickness (33 pm
coating)

46.0 % porosity

15% Silicon Anode
73 wt% Hitachi MagE
graphite
15 wt% Nano&Amor Silicon
(50-70 nm)
2 wt% Timcal C45
10 wt% LiPAA (LiOH Titrate)
10 um copper foil

40 pum total thickness (30 pm
coating)

46.4 % porosity
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° 4 4 Sandia
Cylindrical Cell Evaluations ) e,
18650 Evaluations for Abuse Response

— Coatings with lower Si loading were difficult to coat uniformly for
winding

— Coating difficulties may have implications for cell impedance
— Distinct color variation with Si loading — may not show in pictures
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Cylindrical Cell Evaluations ) i
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ARC Evaluation )

= ARC attempted for these materials — very high kinetic rates
and output enthalpies seen from nano silicon materials:

Complete rupture for entire ARC system seen with nano silicon electrodes
(both ARCs same result) — only a few instances of this occurring in SNL
abuse testing
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Single Cell Response ) .

Thermal ramp —
Runaway onset ~213 °C
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Narrow angle runaway video
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Conclusions )

" Electrochemical Performance

Silicon anodes offer good capacity increases over graphite

For electrode processing, silicon loading remains low — similar cell
level capacity to graphite

Lifetime remains problematic

= Thermal / Abuse Performance

Range of overall enthalpy release and runaway kinetics
Gas generation still unclear due to intermittent high volume releases
Depends on silicon morphology and composition

Generally see higher heating rates and increased peak runaway
temperatures

> 10% increase in overall response — potentially much higher for new
materials

Potential catalytic decomposition depending on alloy formation



Future Work ) &

= Continued understanding of contributions to increased
runaway for silicon based materials

= Evaluation of new silicon formulations and loadings

= Understanding fundamental contributions to runaway
(particle size, morphology, surface energy, phase, etc.)
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