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Overview

Developing strong, concurrent, multiphysics, multiscale coupling to understand 
the impact of microstructural mechanisms on the structural scale

 Applications invoke microstructure

 Explicitly connecting scales

 Resolving strong multiphysics 

 Developing discrete microstructural models 

 Resolution through manycore/GPUs

Goal: Predict void nucleation at the microscale
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Hydrogen activates microstructure (stainless steel) 
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 Localizes deformation (m)

 Aids deformation bands/twinning (nm)

 Accentuates boundary interactions (nm)

Hydrogen activates microstructure

extensive slip and 
deformation twinning

premature void 
nucleation*

*Nibur, Somerday, Balch, San Marchi, The role of localized deformation in hydrogen-assisted crack propagation in 21Cr–6Ni–9Mn 
stainless steel, Acta Materialia, 2009.



Temperature/strain-rate activates microstructure (Ta)
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Strain rate & temperature activates
microstructure and localizes deformation

 Increased strain rate (103, 104) and 
decreased temperature aids twinning (nm)

 Accentuates grain boundary interactions (nm)

TEM micrograph of deformation twins in Ta1

(T=77 K and     =2.2x104 s-1). 

1Chen, C. Q., Hu, G., Florando, J. N., Kumar, M., Hemker, K. J., Ramesh, K. T., Interplay of dislocation slip and deformation 
twinning in tantalum at high strain rates, Scripta Materialia 69 (2013) 709 – 712. 

Length scales span 10m – 1mm 

 Extensive slip within grains

 Twins evolve within steep gradients
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Agile components of crystal plasticity
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Multiple methods facilitate learning and lower the barrier for new advances.    

modular physics

modular numerics

localization in 
tantalum

localization in 
stainless steel



Predictions in single crystal Ta with physics++
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Exponential hardening

Saturation hardening

Taylor hardening
(dislocation density)

 Increment physics through an array of hardening models in crystal plasticity framework 
 Parameterize through BCC Ta single crystal experiments in [100] orientation
 Predict response in [110] and [111] orientations.

 Dislocation density based Taylor hardening model most accurately reflects anisotropy.

Exponential 
hardening

Saturation 
hardening

Taylor 
hardening

saturation
hardening

exponential
hardening

Taylor
hardening



Automatic differentiation enables modularity
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Official Use OnlyLessons learned: Powerful but requires idealized BVPs (single slip) to permit verification. 

minimal coding required!

Crystal plasticity model

Residual Equation

Evaluates 
correctness of plastic 

slip values 

Evaluate with
automatic differentiation

returns derivative 
information

FEM solver

Standard 
constitutive model 

evaluation

returns stress

Evaluate with
automatic differentiation

returns derivative 
information

Standard residual 
evaluation

returns residual

 Goal:  Allow users to mix and match crystal plasticity features

 Crystal structure, flow rule, hardening law, etc. 

 Challenge:  Altering the crystal plasticity equations requires difficult 
changes to the model’s state update routine (implicit update)

 Strategy:  Automatic differentiation using the Sacado package 
dramatically reduces the required changes to material model

implicit
update

Hessian
via

Saccado



Measuring robustness through application
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Official Use Only

single-slip
multi-slip

Rubik’s
cube

polycrystal
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large
step

small
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medium
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increasing
complexity

Robustness suite

871 steps 929 steps 1062 steps 1170 steps 1545 steps

Rubik’s cube case
 Random texture
 100% engr. strain
 Vary elements/grain
 Vary step size
 Vary solution methods

Sample microstructures with
 Voxelated grain boundaries
 Conformal grain boundaries 



Update on the Schwarz alternating method
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Initial conditions for Partial Differential Equation (PDE)

 Solve PDE by any method on  using an initial 
guess for Dirichlet BCs on .

Iterate

 Solve PDE by any method on  using Dirichlet BCs 
on  that are the values just obtained for .

 Solve PDE by any method on using Dirichlet BCs 

on that are the values just obtained for .0Hermann Schwarz (1870)

 ~68,000 nodes
 Mises plasticity
 16, 64, 512 cores

Parallelization via Data 
Transfer Toolkit

Laser weld with 
concurrent
coupling



Ingredients of a Schwartz analysis
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+

1 part mesoscale 2 parts 
macroscale 

voxelated microstructure derived 
from phase-field evolution 
(F. Abdeljawad)

Fix microstructure, investigate ensembles 

151 axial vectors 
from 3 of the 10 
ensembles of 
random rotations 
(blue, green, red)

Point of 
collaboration with 
Multiscale 
Reliability LDRD

 Load microstructural ensembles in uniaxial stress
 Convert load/displacements to flow curves
 Fit flow curves with a macroscale J2 plasticity model



Coupling components to microstructure
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Official Use Only

 Currently extending Schwarz coupling to dynamics

 Extending approach to multiphysics 

controller time stepper

time integrator for 

time integrator for 

Embed microstructure in 
ASTM tensile geometry



Coupling components to microstructure

Official Use Only



SCULPT, conformal boundaries, tet meshing

DREAM.3DDREAM.3D

DREAM.3D, KMC, or phase field SCULPT Cubit

voxelated
microstructure 

geometry
+ physics

hexahedral
discretization

interface
reconstruction

tetrahedral
discretization

mesh
geometry

 SCULPT powerful tool for microstructure

 Performs interface reconstruction & meshing

 All-hex meshes can be problematic 

 Mesh refinement requisite for solution

 Move from reconstruction to geometry

 Export STL or // tet mesh in SCULPT

 Leverage new surface & volume tet meshers

geometry for tetshexes problematic



Filling gaps and overcoming barriers
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Official Use Only

 Develop a more fundamental understanding of localization in

 Austenitic stainless steel structures exposed to hydrogen gas

 Tantalum structures subjected to high rates of loading

 Discovery enabled through 

 Intimate connection between structure and microstructure (Schwarz)

 Strong multiphysics capable of capturing autocatalytic processes

 Systematically increasing microstructural physics 

 Robust solution methods for increasing complexity 

 Extension to next generation platforms 

Part of a  top down strategy (macro to micro) to provide 
context, identify disconnects, and provide drivers.
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Additional slides
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localization in 
tantalum

localization in 
stainless steel

Phalanx for multiphysics

Teko & Data Transfer Toolkit for spatial multiscale

Massively parallel 
solvers

Kokkos for next 
generation platforms

Intrepid for 
element library

miniTensor for 
mechanics

Sacado for the 
Hessian

miniSolver for 
constitutive update

Intersection of materials science, engineering 
science, and computer science



Finite deformation, strong, multiphysics coupling
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Official Use Only

fast pathway mirrors grains insulates grains

grain 
diffusivity

grain boundary 
diffusivity

displacements (3) concentration (1) pressure (1)
redefine 
space

include jump in 
concentration

Fox and Simo (1990), Callari, Armero, Abati (2010)

finite element implementation is straightforward

Lessons learned: Block solves require robust methods for scaling. Work in progress.  

deformation twins

grain boundaries

s



Collaboration through Georgia Tech 
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Exploring microstructure-mechanical property relationship using statistical data analysis
Multiscale/multiphysics LDRD. SNL PI: Hojun Lim. GT PI: Professor Surya Kalidindi

KMC grain growth Voronoi tessellation EBSDPhase field grain growth

Rigorous statistical quantification of polycrystalline microstructures 

grain boundary chord lengths

Future work w/ focus on Data Science (~100K)

 Method for creating statistically equivalent microstructures from 
2-D EBSD data (03/17)

 Conduct CP-FEM simulations of Ta and stainless steel using 
statistically generated 3-D polycrystalline microstructures (09/17)

 At least two papers will be submitted to archival journals and a 
final report with the same information will be submitted (09/17)

Professor: S. Kalindini, Postdoc: E. Popova, PhD student: D. Patel


