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Images of the R2DTO resolution target were obtained during laser-driven-radiography 
experiments performed at the TRIDENT laser facility, and analysis of these images using the 
Bayesian Inference Engine (BIE) determines a most probable full-width half maximum (FWHM) 
spot size of 78 μm. However, significant uncertainty prevails due to variation in the measured 
detector blur. Propagating this uncertainty in detector blur through the forward model results in an 
interval of probabilistic ambiguity spanning approximately 35-195 μm when the laser energy 
impinges on a thick (1 mm) tantalum target. In other phases of the experiment, laser energy is 
deposited on a thin (~100 nm) aluminum target placed 250 µm ahead of the tantalum converter. 
When the energetic electron beam is generated in this manner, upstream from the bremsstrahlung 
converter, the inferred spot size shifts to a range of much larger values, approximately 270-600 
µm FWHM. This report discusses methods applied to obtain these intervals as well as concepts 
necessary for interpreting the result within a context of probabilistic quantitative inference. 
 
I. INTRODUCTION 
 
Quantitative uncertainty analysis is a critical aspect of data reduction and inference from 
experimental observation. In comparison to sensitivity analysis [Bode 1945, Wigner 1945], which 
aims to understand how the variation of an outcome depends on the variation of independent 
variables, quantification of the uncertainty inherent to inference of the independent variables 
allows one to develop definitive metrics for given experiments and instrumentation, even develop 
methods for increasing the precision of new data [Rabinovich 2000, Ronen 1988]. This is of the 
utmost importance, for example, in qualifying experimental design for compliance with 
measurement specifications. This paper describes methods applicable to quantitatively 
determining uncertainty by comparison of a single radiographic image of a 2D resolution target to 
an inherently imperfect synthetic diagnostic model. The inferences made by this comparison, as 
will be discussed, are dependent upon the quality of the model and the quality of prior information 
about input parameters. 
 
Quantitative discussions of the reliability of an inference are often subject to the choice of metric. 
To wit, so long as the fitting metric, or appropriately defined χ2, is monotonic and well-behaved 
around a single optimum solution, a single most probable solution exists and it is possible to 
portray all other solutions as less likely by some degree [Laplace 1774, 1814]. One may 
encapsulate uncertainty with a confidence interval, or a region over which the single-valued 
posterior probability varies within given limits [BIPM 2008]. However, the threshold that defines 
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these limits (e.g. 68% confidence, 95% confidence, etc.) is chosen in a rather arbitrary manner. 
That arbitrariness is avoided in this work by ignoring less likely solutions--no attempt is made to 
directly evaluate the probability of a given solution or to evaluate the change in probability relative 
to an optimal solution. Instead, uncertainty is quantified by recognizing that some parameters of 
the model cannot be simultaneously optimized, but are defined a priori, either through external 
experiments or independent measurement, and carry with them some inherent uncertainty that 
must be propagated through the analysis until it imparts, effectively, an error bar on the probability 
of values assigned to other independent variables. By way of propagating errors (or in some 
contexts the convolution of probability distribution functions), the fitting metric may become 
decidedly less well-behaved. It is this choice of paradigm, the situation in which multiple values 
of χ2 correspond to the same set of independent variables, and likewise multiple solutions with 
equal probability may co-exist, that an unambiguous interval of uncertainty in the quantity of 
interest can be established. 
 
The uncertainty analysis developed in Sections II and III is applied in Section IV to the inference 
of radiographic spot size from resolution target imaging data. This application provides an example 
of the analysis algorithm in a relatively simple situation having a minimal number of assumptions 
and free parameters that are easily classified as either variables of interest or parameters taken 
from prior knowledge. Furthermore, many of the secondary variables exhibit no covariance with 
the primary variable of interest in their impact on χ2 and can be fit independently. For example, 
within the analysis model, the definition of the photon energy spectrum has no bearing on the 
blurring of the image. These and other important approximations that are validated by inspection 
of the data allow the analysis to be carried out efficiently and in a manner that emphasizes the most 
important, most basic, aspects of the uncertainty model. 
 
For the discussion that follows, it is assumed that the fitting error metric is well-behaved and that 
a single optimal maximum likelihood solution exists within the parameter space of interest. If these 
assumptions are violated, then the significance of these findings is limited to the resolution of a 
local minimum in the value of χ2. This analysis does not address the inherent uncertainty associated 
with the question as to whether other local minima exist. 
 
II. ERROR ANALYSIS AND OPTIMIZATION 
 
The analysis performed using the BIE [Hanson 1993, Hanson and Cunningham 1996] compares a 
single radiographic image obtained in experiment with a synthetic image produced by forward 
modeling. The fit to the data is evaluated by computing a standard χ2 error metric that sums the 
discrepancy of the ith pixel over all N pixels. This figure of merit consists of three components: a 
model parameter error that encapsulates differences between the state of the model at the current 
iteration step and the optimal state that will be obtained when all parameters of the model are 
optimized, a random error that results from stochastic processes producing noise in the 
experimental data, and a systematic error that may be attributed to inadequacies of the model. If 
the random processes are assumed to be Gaussian, then this may be expressed by the following 
equation: 
  
𝜒" = 𝑀% 	𝒂, 𝒃 − 𝑀% 	𝒂𝟎, 𝒃𝟎 + 𝜎% + 𝜑% "/

%01 ,	 	    (1) 
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where the integer i refers to an individual data point amongst N data points, Mi refers to the modeled 
data, vectors a and b contain the model parameters and the independent variables to be inferred, 
respectively, σi is the ith realization of the random process with Gaussian distribution, and φ 
represents all errors that are not accounted for by well-modeled effects or zero-mean stochastic 
processes. If the forward model is properly optimized, the minimum χ2 that results is the sum of 
contributions from random and systematic errors only. Note that this χ2 is defined in accordance 
with its use in a least-squares fitting approach to model optimization; in the example problem 
presented later, the BIE is operated in a least-squares fitting mode of optimization. Were one to 
begin their analysis using the method of maximum likelihood, alternative definitions of χ2 would 
be possible for which the variance associated with stochastic processes may appear as a weighting 
denominator [Bevington 1969]. This is discussed further in Section V. 
 
For a small number of data points, N, random errors may cause the value of χ2 to vary unpredictably 
as the inputs to the forward model, a and b, are varied. Noise in a single pixel may add to or cancel 
a localized error induced by variation of an input parameter. However, if the impact of varying a 
given input parameter is not highly localized within the image, then for large values of N the 
random error term reduces to a constant, Nσ2 for a Gaussian probability distribution, appearing 
outside the summation: 
 
𝜒" = 𝑀% 𝒂, 𝒃 − 𝑀% 𝒂𝟎, 𝒃𝟎 "/

%01 + 𝑁𝜎" + 𝛷".      (2) 
 
In this limit, comparison of the least-squares fitting data to the contribution from random noise, 
i.e., 
 
𝛷" 𝒂, 𝒃 = 𝜒" − 𝑀% 𝒂, 𝒃 − 𝑀% 𝒂𝟎, 𝒃𝟎 "/

%01 − 𝑁𝜎",     (3) 
 
can reveal the relative importance and dependent behavior of the accumulated systematic errors, 
𝛷" = (𝜙%" + 2𝑀%𝜙%)	/

%01 . This is illustrated in Figure 1. The model error term, 𝑀% 𝒂, 𝒃 −/
%01

𝑀% 𝒂𝟎, 𝒃𝟎 ", can be evaluated externally, and empirical statements about the adequacy of the 
model, M, can be made. If the model properly represents the physics of the measurement (and 
assumptions of separability noted above are valid), then one should expect a vanishingly small 
contribution from the systematic error term, Φ2, and a contribution from random errors that is 
independent of a and b. 
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Figure 1. Illustrative representation of the terms described in Equation (2). The total χ2 is the 
sum of a well-behaved and well-understood error in the optimization of the forward model, an 

asymptotically converged term encompassing all random, stochastic processes, and a term 
encompassing all systematic errors that are not accounted for by the model and that may be 

dependent on variation of model parameters. 
 

In the analysis discussed so far, the synthetic diagnostic forward model produces a synthetic image, 
M, as a function of input vectors a and b. These two input vectors are distinguished as containing 
either model parameters, aj, that are determined by external means and to which prior probability 
distributions may be assigned, or as optimizable variables, bk. The latter may correspond either to 
unknown quantities that are simply unimportant to the experimental objectives, i.e. fitting 
parameters such as those describing the alignment of the image in the analysis grid, or to quantities 
of interest that are to be inferred from the analysis. If there are m parameters aj and n parameters 
bk, then χ2 is single-valued at all points within a space having dimensions m+n. Treating all aj and 
bk as independent variables and optimizing along all of these axes would result in a least-squares 
fit that corresponds to the maximum likelihood solution for a single image. However, it becomes 
difficult to quantify the certainty of that solution in unambiguous terms. Ignoring the possibility 
of a dead band in the measurement apparatus or degenerate solutions, χ2 is larger at all points 
𝒂 ≠ 𝒂9 ∪ 	𝒃 ≠ 𝒃9  around the optimal solution. Evaluation of the directional gradients along a 

principle curvature of this space reveals the sensitivity of the model on input parameters [Myers 
1971, Hanson and Cunningham 1994], but it takes on quantitative meaning only in relation to 
another model, different data, or statistical fluctuations. It provides no definitive quantitative 
interval of uncertainty in the inference of a single parameter: the maximum likelihood solution is 
the most probable and any chosen threshold in the change of χ2 that would define a confidence 
interval is arbitrary. However, we may reduce the dimensionality of the χ2 surface to the n 
dimensions corresponding to the optimizable variables, bk, by considering the model parameters, 
aj, separately. They are each associated with prior probability distributions, P(aj), that propagate 
through the model to produce error bars on χ2 [Shapiro and Gross 1981, Ronen 1988, Cowen 1998, 
Rabinovich 2000]. The prior probability distribution P(aj) is not regarded as a range that may be 
considered, but rather as a range that must be considered, and an increase in χ2 does not justify 
dismissal of a value for aj as it would the rejection of a solution bk. This allows one to quantify an 
interval of uncertainty as a function of the curvature of the fitting metric, ;

<

;𝒃𝒌
< 𝜒", and the height of 

an error bar that corresponds to the nested probability distribution, P(χ2|P(a)). 
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III. UNCERTAINTY ANALYSIS 
 
In this paper, the uncertainty interval is defined as the largest contiguous region of parameter space 
about an inferred quantity of interest, within the domain of the assigned prior probability 
distribution functions, where equal values of the least-squares fitting error may be obtained. The 
first step toward obtaining this interval is the construction of a synthetic diagnostic forward model 
that generates synthetic image data from the known experimental conditions and the researcher’s 
understanding of physical processes utilized by the instrumentation. Here, this is realized in the 
form of a BIE canvas that manipulates both the data and a simplified model of photon transport 
through the radiographic target. Typical manipulations in this canvas include: 2D scaling (effective 
variation of radiographic magnification); shifting within the 2D plane and rotating of the image 
data (with interpolation onto a uniform grid); definition of convolution kernels representing 
sources of image blur; multiplicative gain modification; and modulation of an additive field 
representing scattered radiation. The photon spectrum may also be manipulated, but within this 
simplified model those changes impact only the direct photon transport and can be compensated 
for with multiplicative and/or additive fields without requiring re-optimization of the image blur 
kernels. The quantity of interest in the application example to be discussed here is the radiographic 
source blur kernel, or equivalently the radiographic spot size. An algorithm for identifying the 
most likely spot size, and an uncertainty interval about this solution, by classifying the available 
manipulations and resultant χ2 data is described in terms of the framework introduced in Section 
II above. 
 
Within the BIE canvas, the optimizable variables, those parameters to which one assigns no prior 
knowledge (within reasonable limits), include the degree of image scale, shift, and rotation 
required to geometrically align the data and the model. These geometric manipulations are, in 
general, independent of other manipulations of the canvas and therefore do not need to be re-
optimized subsequent to changing the value of other parameters (except as periodic verification of 
the initial image re-orientation). Other optimizable variables include the parameterization of 
multiplicative and additive fields that represent the effects of detector gain and photon scatter 
(these manipulations tend to absorb errors in the definition of the photon spectrum and target 
thickness). Each of the optimizable variables described thus far can be adjusted with great freedom 
to best fit the data. A single optimizable variable, the resolving power of the source blur kernel, or 
the inferred spot size, is identified as the quantity of interest. This parameter will be the principle 
axis of the subsequent uncertainty analysis. 
 
The most important model parameter, a quantity to which one assigns a prior probability 
distribution function based on the outcome of separate analysis, is the resolving power of the 
detector, i.e. the detector blur function. For the given experiment, phosphor image plates [Sayag 
2004, Seely 2008] are stacked between sheets of tantalum intensifier material. Estimates of the 
blur function for this arrangement have been developed previously, with the best-case resolving 
power found to have a cutoff frequency of 0.59 lp/mm. The resolving power of the specific image 
plates used throughout the experiment was obtained by analyzing images of the resolution target 
at a radiographic magnification of unity, i.e. the resolution target was placed in direct contact with 
the image plate, on location at the TRIDENT laser facility. Analysis of 4 image plates exposed 
simultaneously during a single laser discharge, resulted in a range of values from 0.3 to 0.4 lp/mm. 
A reasonable prior probability distribution function for this limited data is then a rectangular 
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function with these limits. (Note: under-estimating the resolving power of the detector image plates 
will correspond with under-estimating the source spot size. Therefore, substituting 0.59 lp/mm for 
the values obtained during the laser experiment would result in a larger estimate for the source full 
width at half maximum metric.) 
 
When all applicable approximations hold, the above model and definitions dictate the following 
algorithm for determining the maximum likelihood solution and uncertainty interval for the 
source spot size: 
 

1- Using established best practices for the BIE [Disterhaupt 2015], all optimizable variables 
and model parameters are optimized to obtain the best least-squares fit to the data. In the 
example problem, this is done for each laser discharge, each image plate, and each pre-
selected functional form of the source spot size. Given that all optimized values lie within 
their physically allowable ranges, or prior probability distribution functions, the optimal 
point corresponds to the maximum likelihood solution, (a0, b0). Furthermore, the value 
𝜒" 𝒂9, 𝒃9  obtained here may be related, with certain caveats discussed in Section V, to 
the inverse logarithm of the solution’s posterior probability [Bevington 1969]. 

2- All model parameters are varied across the extent of their prior probability distributions 
so as to establish an upper bound on the value of χ2 for the best optimization parameters. 
The maximum value of χ2 found in this step is identified and recorded as 𝜒>?@" 𝒃9 . 

3- The optimization parameter of interest, b1, is forced away from its optimized value, b1,0. 
This step re-centers the analysis at a new point on the principle axis, 𝑥 = 𝑏 − 𝑏9, and 
provides the value 𝜒" 𝒂9, 𝒃 . 

4- All other optimizable variables, bk, are optimized while keeping the optimization 
parameter of interest, b1, fixed. This ensures that one remains on a principle curvature of 
the multi-dimensional surface 𝜒" 𝒂9, 𝒃 . In other words, one translates in the 
optimization parameter space along the direction of slowest ascent. 

5- The model parameters are again varied across their prior probability distributions to 
generate error bars. In practice, this requires optimization of the model parameters, a, to 
locate the lower extent of the error bar, 𝜒>%C" 𝒃 . The upper extent of the error bar may 
correspond to either limit of the prior probability distribution for a. (Note: this step 
requires, in general, a multi-dimensional optimization. However, the given task is 
simplified by the fact that there is only a single model parameter, the detector blur 
kernel.) 

6- For simplicity at this step, consider the situation illustrated in Figure 2. The value of 
𝜒>%C" 𝒃  is compared to 𝜒>?@" 𝒃9 . If 𝜒>%C" 𝒃 < 𝜒>?@" 𝒃9  , then the current value of b1 
is within the uncertainty interval. Conversely, if 𝜒>%C" 𝒃 > 𝜒>?@" 𝒃9 , then the current 
value of b1 is rejected by the data. (Note that this simple formula is adequate when a 
continuous uncertainty interval is well-centered on the maximum likelihood solution. A 
slightly more complicated scenario will be considered in Section IV.) 

7- The analysis is iteratively repeated from Step 3 until the limits of the uncertainty interval 
are located to the desired degree of resolution. 
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Figure 2. Illustration of inference of the uncertainty interval in the optimizable variable of 
interest, b. The maximum likelihood solution corresponds to the least-squares solution obtained 

at point (a0, b0). The maximum value of χ2 at b0 is obtained for an extremum of the model 
parameter a. For all other points along the principle axis x=b-b0, the minimum value of χ2 is 
obtained by re-optimizing all other parameters, including a (within the bounds of its prior 
probability distribution). Locations along the ordinate axis where a value of χ2 less than 
χGHI" b9  cannot be obtained lie outside the uncertainty interval. The dashed curve shown 

represents a principle curve of the surface χ" a, b . 
 
The implementation of model parameter priors as error bars on a least-squares fitting error metric 
may be compared to the Bayesian approach of multiplying these priors by the likelihood to produce 
a posterior probability. In the former analysis, one evaluates a χ2 that is akin to the quantity 
– 𝐿𝑜𝑔[𝑃 𝑑 𝒃 ], where d is the image data and the prior probability distribution for b is unity 
everywhere and omitted from the analysis. One then adds (or subtracts, if appropriate) a value due 
to the propagation of prior information about the additional parameters, a. So long as 𝑃 𝒂  is a 
simple function, it is straightforward to demonstrate the equivalence to the posterior likelihood, 
𝑃 𝑑|𝒃, 𝒂 ∗ 𝑃 𝒂 . When more sophisticated prior information is available, i.e. 𝑃 𝒂  is not 
rectangular, more sophisticated analysis, e.g. direct evaluation of the posterior probability, may be 
required. However, for the given task, one may consider this method of generating an uncertainty 
interval as equivalent to defining a contiguous range in a given parameter bk over which equal 
values of the posterior probability are available: the uncertainty interval corresponds to the 
contiguous region in the space (𝒂, 𝒃) where equivalent values of −𝐿𝑜𝑔 𝑃 𝑑|𝒃, 𝒂 ∗ 𝑃 𝒂  exist. 
A single, most probable solution, (𝒂𝟎, 𝒃𝟎), may exist within this interval, but one must keep in 
mind that they are not free to solve for a0. Rather, one must consider all possible values of a.  
 
The presence of systematic errors can reduce the quality of inferences made from the above 
analysis. If, as in the ideal case, one may assume that there are no systematic errors present, and 
that random errors contribute a constant error in least-squares analysis, then uncertainty analysis 
is simplified to the point that it can be performed without returning to the data simply by evaluating 
the behavior of the forward model, i.e. 𝑀% 𝒂, 𝒃 − 𝑀% 𝒂𝟎, 𝒃𝟎 "/

%01 . In this scenario, it becomes 
possible to make rather definitive statements about the sources of uncertainty in the experiment, 
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even make prescriptions for improving the measurement. However, when systematic errors are 
present in the analysis due to inadequacies of the forward model in representing the experiment, it 
is no longer possible to ascertain the source of the uncertainty. The error metric, χ2, no longer 
varies in a predictable manner. In other words, systematic errors are accounted for in the analysis 
described above, but not resolved. This must be appreciated when interpreting the results obtained 
in the example problem of Section IV. 
 
Inspection of the spatially varying residual data, 𝜒@,V	 − 𝑀@,V 𝒂, 𝒃 − 𝑀@,V 𝒂𝟎, 𝒃𝟎

	
, shown in 

Figure 3 (c), reveals that it is comprised of three main components: a uniformly distributed noise 
with high spatial frequency and weak spatial correlations, a vertically oriented striation of the gain 
and background scattered fields, and a systematic warping of the image that makes some regions 
easier than others to align with the model. The last two artifacts are most likely a result of the 
scanning method used for these storage-phosphor image plates. The systematic errors (striation 
and warping) are minimized by optimizing the orientation of the image and a fitting a 
parameterized spatially varying background scatter field. It must be acknowledged that systematic 
error contributions are probably not constant versus variation of the model parameters or quantities 
of interest. Therefore, they probably do not make for a perfectly constant contribution to χ2 in this 
analysis. This effect, in general, increases the uncertainty of the analysis, widening the uncertainty 
interval. It is only in that their contribution appears to remain small compared to the modeled error 
and random error terms that one may proceed to obtain quantitative estimates for the parameters 
of interest. 
 
 

 
 
Figure 3. The radiographic image (a), forward model (b), and spatially varying residuals image 

(c) obtained from analysis of an image plate from TRIDENT laser discharge #26251 
(radiographic magnification of approximately 3.1). Inspection of this image suggests that the 

residual error is dominated by uncorrelated, random noise with high spatial frequency. 
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IV. ANALYSIS OF LASER-DRIVEN RADIOGRAPHY EXPERIMENTS AT THE 
TRIDENT LASER FACILITY 
 
A common method of generating high-energy photons for the inspection of 2D and 3D objects is 
the acceleration of a magnetically-focused relativistic electron beam [Ekdahl 2002] into a target 
of heavy ions where x-rays are produced by bremsstrahlung, or the braking of the electrons by 
collisions with an electron-photon converter target [Schiff 1951, Koch and Motz 1959]. The 
photon spectrum and radiographic spot size are manipulated by varying the electron energy 
spectrum, beam focusing, and converter target properties. In laser-driven radiography, a high 
intensity laser pulse is used to accelerate electrons into a plasma or a high-Z solid target [Perry 
1997, Edwards 2002, Glinec 2005, Courtois 2009, Courtois 2011, Compant 2012, Nakamura 2012, 
Nerush 2014]. This may have several advantages over the use of conventional electron beam 
acceleration schemes. For one, laser energy can be transmitted over large distances and relayed 
into the radiographic setup at arbitrary angles, allowing greater flexibility in the arrangement of an 
experiment for a given facility. Laser technology also continues to advance rapidly, which may 
allow for much more compact designs in the near future. And of great importance for radiographic 
resolution, space charge effects do not limit the intensity of laser energy deposition. Laser-driven 
radiography can therefore, in many regimes, produce smaller radiographic spot sizes than are 
possible with conventional electron beam accelerators [Edwards 2002, Cortois 2011, Cortois 
2013]. 
 
Laser-driven radiography experiments were carried out in order to explore the physics and 
potential benefits of features unique to the TRIDENT laser facility. TRIDENT is a 30 TW, high-
contrast laser capable of delivering more than 70 J at intensities greater than 1020 W/cm2 [Moncur 
1995]. Furthermore, pioneering work at TRIDENT has furthered the development of electron and 
ion acceleration techniques using thin metallic foil laser targets [Hegelich 2006, Fuchs 2005, 
Cowan 2004]. For the study presented here, BIE analysis is used to infer the radiographic spot size 
for both thick target (1 mm Ta) and thin-foil (~100 nm Al) laser-driven radiography techniques. 
 
Analysis of the data to infer radiographic spot size, or source blur, is dependent upon determination 
of the detector blur function. For shot #26262, shown in Figure 4, the laser energy was deposited 
on a 110 nm, optically flat, Al foil so as to accelerate relativistic electrons toward a 1 mm thick Ta 
converter target, the radiographic photon source, approximately 250 µm downstream. As a 
detector, three phosphor image plates are stacked between four 30 mil sheets of Ta. As mentioned 
earlier, limiting resolution as high as 5.9 lp/mm has been achieved by a similar arrangement. The 
10 cm x 10 cm resolution target plate was placed in direct contact with the first Ta intensifier sheet 
such that all blur in the image may be attributed, to a good approximation, to blur inherent to the 
detector. Analysis using the BIE determined maximum likelihood solutions for detector resolution 
at the three image plates in the range of 0.3 to 0.4 lp/mm. This is the range that was subsequently 
used in uncertainty analysis for inference of the source blur, or radiographic spot size. 
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Figure 4. (a) An image of the full 40 x 35 cm phosphor image plate, and (b) an enlargement of 
the region of interest where the R2DTO resolution target is in contact with the image plate stack. 

The image shown is taken from the 3rd downstream plate, plate C, at 100 µm resolution. The 
radiographic magnification is 1:1. 

 
Note that in Figure 4 (a) there appears to be a large degree of spatial variation in the contrast, or 
gain of the image, as well as the apparent background scatter field. These will ultimately be 
represented in the BIE as fitted additive and multiplicative fields with a large number of free 
parameters. However, by restricting the spatial frequency of these fields to be much lower than 
that of the detector and source blur kernels, competition between the two is effectively eliminated. 
The parameters describing additive and multiplicative fields bear no covariance with the source 
spot size in terms of their effect on χ2.  
 
After having established an error bar (or equivalently, a uniform prior probability distribution 
function) for the detector blur kernel, radiographic imaging at a radiographic magnification of 6.2 
is analyzed. At this magnification, blur is well-resolved by the 100 µm resolution image plate; BIE 
analysis is performed at an interpolated resolution of 15 µm in the resolution target, or object, 
plane. Figure 5 provides an example of the image data produced during shot #26270, along with 
the forward model produced by the BIE and residual data resulting from comparison of forward 
modeling and experimental results. In this shot, x-ray photons are produced by depositing laser 
energy on a relatively thick target (1 mm Ta) to generate free electrons, accelerating them by a 
combination of ponderomotive and wakefield acceleration mechanisms [Tajima and Dawson, 
1979] and converting them by bremsstrahlung in the same material. 
 



 11 

 
 

Figure 5. (a) Data from the phosphor image plate exposed during shot #26270 with a 
radiographic magnification of approximately 6.2. (b) The forward modeled image data from the 

region of interest (dashed square in (a)) produced by the BIE. (c) Residual data obtained by 
subtracting image (b) from image (a). A residual mask, or weighting function, is applied to 

isolate resolution target edges in the contribution to χ2. 
 
The algorithm described in Section III is applied to obtain the data shown in Figure 6. Both the 
minimum and maximum values of χ2 that may be obtained within the range of possible detector 
blur functions are shown where relevant. The blue triangles represent data that is obtained at the 
maximum value of detector blur, a detector resolving power of 0.3 lp/mm. For large values of 
source blur, these points produce large values of χ2. Conversely, at sufficiently small values of 
source blur, smaller radiographic spot sizes, these points constitute the minimum available χ2. This 
trade-off between source and detector blur persists for the minimum value of detector blur, a 
resolving power of 0.4 lp/mm (red diamonds). Green circles indicate points within the uncertainty 
interval where the detector blur has been optimized for the given source blur. The point in the 
middle of the plot where curves fitting these two sets of points would intersect identifies the upper 
bound on relevant values of χ2, a value that defines the uncertainty interval. Points lying below 
this are within the interval, which spans approximately 35 to 170 µm in Figure 6, part (a). This 
range of radiographic spot sizes is consistent with expectations developed from a survey of 
published results. 
 
Note the trend in χ2 that is apparent in the vicinity of the maximum likelihood solution in Figure 
6, part (a). This is not due to systematic errors, but rather an effect that can be understood in terms 
of the features of the model. This is illustrated in Figure 6, part (b), where the model error term of 
Section II is evaluated off-line by comparing the modeled maximum likelihood solution to other 
models with other radiographic spot sizes. The χ2 at left (blue triangle) is zero, and variation as a 
function of spot size FWHM reproduces the behavior observed in part (a). The trend is attributed 
to the difference between the functional form of the phosphor image blur kernel and the source 
blur kernel. The former is defined as the Fourier transform of the following function: 
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,          (4) 

 
where C is a normalizing constant and α is proportional to the spatial cutoff frequency in inverse 
mm. For Figure 6, the source blur kernel is taken to be a symmetric 2D Bennett function [Bennett 
1934], 
 

𝑓 𝑥, 𝑦 = 1 + @_\@
?`

"
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" \"

,       (5) 

 
where the distribution is centered at (𝑥9 = 0, 𝑦9 = 0) and 𝑎@ = 𝑎V. 
 

 
 
Figure 6. (a) Analysis of χ2 as a function of the source spot size, FWHM, for shot #26270 using a 

symmetric Bennett function distribution. The uncertainty interval is indicated, spanning 
approximately 35 to 170 µm. (b) The error that may be induced by comparing the forward-

modeled maximum likelihood solution to forward models with different source spot sizes. The 
variation in this so-called modeled error accounts for variations in χ2 observed in (a), lending 

credence to the assertion that random and systematic errors do not have a significant impact on 
the behavior of χ2 in this region. 

 
In the analysis presented here, the functional form of the source blur kernel is chosen independently 
and for each evaluation of the source blur uncertainty interval. There is no external information 
presented here that dictates preference for one functional form or another, and, in principle, it could 
be parameterized and optimized along with all other optimizable variables, bk. It is strictly for 
convenience that this work focuses on only two functional forms: the Bennett distribution and an 
exponential form. The exponential form, defined by the radial point-spread function, 
 
𝑃𝑆𝐹 𝑟 = 𝑎𝜋𝑓h𝑒\"jklm,          (6) 
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where a is a normalizing constant and fc is the spatial cutoff frequency, is used to produce the data 
shown in Figure 7. Note that the behavior of χ2 has changed. The minimum values of χ2 are slightly 
lower, the trend near the maximum likelihood solution seen in Figure 6 is much less prominent, 
and the entire uncertainty interval has shifted toward larger spot sizes. 
 

 
 

Figure 7.  The behavior of χ2 vs. spot size FWHM is evaluated for shot #26270 using an 
exponential source blur kernel. The upper bound of this uncertainty interval is approximately 

195 µm. 
 
The images shown earlier in Figure 3 were obtained with a radiographic magnification of 
approximately 3.1. For that shot, #26251, the laser energy was deposited on a 110 nm Al foil set 
approximately 250 µm upstream from a 1 mm thick Ta converter target. The analysis of the third 
phosphor image plate in the detector pack, plate C, is shown in Figure 8. In part (a), a symmetric 
2D Bennett source blur kernel is used. In part (b), the blur kernel is a radial exponential point 
spread function. In both cases, the inferred spot size is much larger than in the case of the single, 
thick laser target (Figures 5, 6, and 7). Note that the fitting error is smaller when the model employs 
a Bennett distribution (FWHM 270-520 µm), which is opposite the results from the thick target 
case, shot #26270, where the exponential source blur kernel yielded better fits to the data. This 
implies that the shape of the spot may also be different. 
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Figure 8. (a) Analysis of χ2 vs. source spot size for shot #26251, radiographic magnification of 
approximately 3.1, using a Bennett function blur kernel. (b) The same, but using an exponential 
source blur kernel. The combined range of uncertainty is approximately 270-600 µm, FWHM. 

 
There are other meaningful differences between the data obtained for the thick and thin laser 
targets in this experiment. For shot #262651, the resolution in the resolution target (object) plane 
is interpolated to 30 µm (vs. 15 µm in shot #262670), and a larger region of the phosphor image 
plate is used for the analysis. This exacerbates issues with the alignment of a warped image to the 
ideal geometry of the BIE forward model. However, these differences are unable to account for 
the large increase in the inferred spot size. The mean values within the uncertainty intervals 
inferred for Bennett and exponential source blur kernels are roughly a factor of 4 larger than for 
the thick laser target. Values in the range of 100-200 µm, consistent with the results for thick target 
laser-driven radiography, are certainly excluded by the data in that case. And this discrepancy is 
only exaggerated by the fact that very favorable prior information about the detector source blur 
has been applied. The data obtained during this experiment provided estimates of detector 
resolution in the range of 0.3 to 0.4 lp/mm. If an assumption of higher resolution is applied, then 
much larger radiographic spot sizes are inferred by this analysis. 
 
V. DISCUSSION 
 
Random errors resulting from stochastic processes, i.e. noise, do not increase uncertainty in the 
inference of the most likely value of a parameter of interest except when the analysis is 
predominantly impacted by a small number of data points or a subset of pixels within an image. 
This can be understood by contrasting the least-squares optimization approach and the associated 
choice of definition for χ2 with the method of maximum likelihood, where the weighting of χ2 due 
to random, stochastic processes is pre-defined in terms of a pre-determined probability distribution 
function [Bevington 1969]. Identifying the optimal parameters is reduced to optimizing the chosen 
probability distribution function when the parameterized model is substituted for the unknown 
parent distribution. For common probability distribution functions, the term that is to be minimized 
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includes the variance of the data as a normalizing coefficient. For example, if one maximizes the 
Gaussian probability distribution, 
 

𝑃 𝑥 ∝ 𝑒\
`oa
<p

<

,          (7) 
 
this corresponds to minimizing a weighted χ2 function, 
 

𝜒" ≡ @\V
"q

"
.          (8) 

 
In comparison with the earlier formulation for a simple least-squares optimization scheme, the 
derivative of χ2 in any direction is inversely proportional to the noise level. For 2𝜎" > 1, this can 
reduce the curvature about the maximum likelihood solution. However, one should not rush to 
assume that this would increase the uncertainty interval, or even makes the result dependent on the 
noise level. In fact, the analysis presented in this paper is already equivalent to the maximum 
likelihood approach when applying a uniform weighting coefficient. One may still use the resultant 
directional derivatives to resolve the uncertainty in an independent variable, Δa, from the 
corresponding variation of the imaging data, Δd, obtained from a random sampling of images by 
using an equation of the form, 
 
𝛥𝑑 ≃ 𝛥𝑎%

;t
;?u% .          (9) 

 
It is worth noting, however, that χ2 must be defined in a manner that includes the normalizing 
coefficient taken from the appropriate probability distribution function if it is to be taken as the 
posterior probability of the solution through inverse-logarithmic transformation. 
 
Systematic errors include all processes that are not both random and stochastic, including artifacts 
in the data that might, without quantitative analysis of their properties, be casually referred to as 
noise. Systematic errors are not properly represented by the forward modeling of the experiment. 
They may exhibit correlated behavior with the parameters that are included in the model, 
modifying the behavior of the error metric around the optimized least-squares solution. This 
increases uncertainty and rigorously encapsulates the intuitive principle that the certainty of 
inference by analysis of experimental data is directly related to the quality of the forward model 
available for replicating experimental conditions, properly representing physical processes utilized 
by the instrumentation, and producing synthetic diagnostic data. 
 
Reduction of systematic errors, a topic beyond the scope of this paper, is facilitated by the 
framework described here. An offline evaluation of the behavior of contributions to the error 
metric that can be accounted for by the forward model is possible in most cases and allows for an 
algebraic isolation of systematic effects. When it is possible to establish that systematic errors are 
either constant or insignificant, it may be said that they do not impact the uncertainty interval about 
the maximum likelihood solution. Conversely, when they are significant, quantification of their 
impact may yield important insights as to what aspects of the forward modeling technique must be 
improved. 
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A distinction between model parameters and optimizable variables within the forward model is 
essential for determining the uncertainty interval. The prior probability distribution function 
associated with a model parameter generates an error bar on the χ2 obtained in subsequent analysis. 
This obviates the need for improving prior information about these parameters. Furthermore, it 
motivates one to investigate the propagation of the prior distribution as an error throughout the 
forward model so as to prioritize external investigations according to those parameters that 
generate the greatest errors. With regard to optimizable variables, it is straight-forward to deduce 
that one should endeavor to reduce the number of these free parameters to a single quantity of 
interest. Any additional variables that can be freely optimized will tend to reduce the χ2 at locations 
away from the maximum likelihood solution, i.e. reduce the curvature along the principle axis of 
interest, and increase the uncertainty interval. Where possible, optimizable variables such as those 
describing detector gain or the form of the background scatter field should be replaced with 
physics-based models and assigned the most stringent priors possible. This ensures that variation 
of the optimization parameter of interest has the greatest possible impact on χ2 and cannot be 
compensated for by arbitrary re-optimizations of other variables within the forward model. 
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