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Overview

o Multigroup thermal radiation transport requires an averaging choice (weight
function) for the opacity in each energy group.

o Classic choices are accurate in a specific solution regime:
o Planck average (correct in emission-dominated limit)
o Rosseland average (correct in equilibrium-diffusion limit)

o For problems such as ICF, where x-ray burn-through timings are critical, we
prefer using Rosseland.

o But we'd like to use Planck where appropriate, such as emission from a hot
interior boundary (e.g., hohlraum).

@ There are several methods that attempt to satisfy both of these limits, each
in a certain sense.

o We'll review several approaches and compare results.

Lo Aames
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Overview

o Multigroup thermal radiation transport requires an averaging choice (weight
function) for the opacity in each energy group.

o Classic choices are accurate in a specific solution regime:
o Planck average (correct in emission-dominated limit)
o Rosseland average (correct in equilibrium-diffusion limit)

o For problems such as ICF, where x-ray burn-through timings are critical, we
prefer using Rosseland.

o But we'd like to use Planck where appropriate, such as emission from a hot
interior boundary (e.g., hohlraum).

@ There are several methods that attempt to satisfy both of these limits, each
in a certain sense.

o We'll review several approaches and compare results.

Primary goal

@ Accurate results for a minimum (or at least affordable) number of groups.
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Background

For simplicity, assume coherent isotropic scattering and LTE emission. Then the
radiation intensity /(x, t, v, Q) satisfies

1
200 +Q-Vi+o,d =0,B+-—0.E,,
c A

where cE, = [, 1dQ, B = B(v, Te), 0.(x,t,v). Integrate over vy < v < gy
(group-g):
c

4+ — <0'5El,>g )

1
Eat/g + Q- Vg + (oel), = (02B), py

Typically written in the form:

1 c
Eat/g + Q . V/g + Ut,glg = O'a,ng + EJS’gEg .

How do we specify the group-averaged opacities 0z, 05, and o5 g7 J

Lo Aames
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Some options for the opacity averages

Exact removal Planck average Rosseland average
O—Lg(Q) = <Utl>g/<l>g Uf,g = <UaB>g/<B>g Utg (Br g/ 3 BT>
— Too difficult — LTE emission is exact —> Equi-diff exact
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Some options for the opacity averages

Exact removal Planck average Rosseland average
Ué,g(Q) = <‘7tl>g/<l>g Uf,g = (UaB>g/<B>g Utg (Br g/ 3 BT>
— Too difficult — LTE emission is exact —> Equi-diff exact

Alternatives

@ Multiband: Strives to resolve opacity variation. May use either Planck or
Rosseland as a weighting, within each group.

@ Solution adaptive: Dynamic choice based on local solution conditions
(Sampson 1965, Ludwig 1992, Clouet 2000). Rough idea: Detect
optically-thick regions and use Rosseland; transition to Planck in thinner
regions.

o Artificial scattering: Use Planck emission, but add scattering to ensure
Rosseland limit is also satisfied (Pomraning 1971).

@ Reconstruction: Use Rosseland and Planck values to reconstruct new values
that satisfy Rosseland and/or Planck in a certain sense (e.g., over expanded
group ranges).

Los Alamos
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Example of iron spectrum and group averages
Te =1keV, p=1 g/cc, 32 groups

100w T T T T rrrIr { T T T T rrrIr { T T T T T Trrr { T T L
p—
4 by
A Ly
L4 Lo — Planck
[N — Rosseland
L ‘ll. 4096 groups|
r 1{" i ] ]
I 1 ! ]

100

g, (Uem)
T
—
1l
'._i
e
|

L L L A
g A N E
E Rosseland less b \ ]
3 sensitive to line ‘L -l 1
|- = 4

structure than v} —|
o Planck |A
1 1 11 1111 l 1 1 11 1111 l 1 1 11 111l l 1 1 11 111l
001 01 1 10 100 N
hv (keV) Los Alamos
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Artificial Scattering
oeo

A Py approach to artificial scattering

o Write the first two angular moment equations as:
OEg +V -Fg =0l (4nBg — cEy) ,

1 R
~O0Fg +cV Py =0 F,.

@ Using different opacity averages is common for nonequilibrium diffusion.
@ Desirable properties:
o Emission is exact, aing.
o In optically-thick regions, F; ~ — (c/30f,) VE;.
o The higher-order moment equations, using Rosseland or Planck, don’t change

these properties.

For the grey case, Pomraning derived a family of methods that yield the moment
equations above?

aJQSRT, vol. 11, pp. 597-615 (1971)

October 20, 2017 8 /34
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Artificial Scattering

Based on Pomraning's 1971 “effective scattering” approach

o Add a term proportional to of, — of,:
¢ P R
,8t +Q-Vi, —|—0th gB +EUS’gEg+ (O’tg—(Ttﬁg) Se .

and select S, to satisfy the moment equations on the previous slide.
@ Isotropic:
o S; =l — =E,.
o Most accurate in Pomraning’s numerical results (grey cases).
o But may result in negative total scattering.
o Linear: S, = %Q -Fg.

@ Mixed: Use isotropic approach, unless the total scattering is negative, in
which case use linear.

o Approach taken in this study.

@ Any of these choices satisfy the equilibrium-diffusion limit. Gt
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Reconstruction
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Reconstruction of o, ,

e Given: of, oF,, ... for each group-g.

@ Use these integral moments to reconstruct the underlying function o,(v).
@ Unlike artificial scattering, a pre-processing step.

@ Some options:

@ Finite element: Reconstruct a function o,(v) for each v € [vg, Vg41] that
satisfies moments (“modal” approach):

o Example: o4(v) = C/vP. Select C and p to satisfy both Planck and Rosseland.
o Not robust when line structure is present.

@ Our current multigroup implementations require modification.

o Leave for future work.

@ Double interval: For each odd-g, find reconstructed values o, and 0,41 so
that both the Planck and Rosseland averages are satisfied over the double
interval [vg, vg12] (Lowrie & Haut 2014; related to Cullen & Pomraning 1980).

@ Weighted Planck. Described next.

Lo Aames
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Weighted Planck

@ Scale all Planck opacities by «, to give the grey Rosseland:
1 -1
Z (oza;g + 0sg) (dB/dT), = Z (O’Sg) (dB/dT), .
g g
o Set 0, = aol; scattering unchanged.
o Borrowed from idea used for neutron transport.?
o Typically, 0 < a < 1.
@ Requires nonlinear solve for «, but there's only one root.

ISaller, Larsen, Downar, “An Asymptotic Scaling Factor for Multigroup Cross Sections,” ANS
Mathematics & Computation Conference, Nashville, TN (2015). e
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Weighted Planck spectrum: T, =1 keV

p =1 g/cc, 32 groups

10000 T T T T T T T T T T T T T T T T T T

T T TTTTIT
L

~ 100 —
% — Planck
a — Rosseland |
° Weighted Planck
— 4096 groups
L = 0.529 A
1 — —
1 1 11 1111 l 1 1 11 1111 l 1 1 11 111l l 1 1 11 111l
0.01 0.1 1 10 100 .
hv (keV) ez
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Weighted Planck spectrum: T, = 0.1 keV

p =1 g/cc, 32 groups

L

— Planck
— Rosseland —
Weighted Planck

— 4096 groups

10000

T T T TTTTIT
Lo

g
o
3
o 100 .
F =0.939 ]
lW —
1 1 11 11111 1 1 11 11111 1 1 11 11111 1 1 I
0.01 0.1 10 100
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Weighted Planck spectrum: T, = 10 keV

p =1 g/cc, 32 groups

— Planck
— Rosseland B
Weighted Planck

100 — 4096 groups —

a

o_(Ycm)

T T T
Lo

T
!

1% —
= 0.985
il
1 1 - llll 1 1 - llll 1 1 - llll 1 1 11 111
0.01 0.1 10 100
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Pomraning '71 vs. Weighted Planck

Value Pomraning '71 Weighted Planck
Emission | o, B, ao?  Bg

ry Vel At
F) -3erVBO -5er VB
Scattering | =05 gE; + (of Z0s0Eg

Comments

@ Red indicates exact value.

° Fgl) is the O(e!)-value of the radiative flux from the equilibrium-diffusion
limit analysis.

o FO =y F)

o For smooth opacities, (1 — @) o maxg (of, — of,).
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Model Problems

(]

3 problems; extensions to Su & Olson (1997), but no analytic solutions.

(4]

1-D slab, 0 < x < 1. Reflection x = 0; vacuum x = 1.

(]

Constant volumetric material source S, applied over 0 < x < 0.25.

10eV 0 < x<0.25,

@ Initial condition: T, =0and T, =
0.001eV 0.25 < x < 1.

(]

Increasing S, drives the source region more out of equilibrium.
o Expect Planck accurate for emission-dominated problems.

o Temax is a good metric.

(4]

Unless optically thin, a Marshak wave propagates from the source region.
o Expect Rosseland accurate for optically-thick problems.

o Wave location a good metric.

(]

All results computed with Capsaicin (S12); opacities from TOPS.

Opacity Treatments October 20, 2017
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Sample Results for Model Problem, Iron, Small S,
v = 0.1 jerks/cm3/ns, t = 2 ns, 2048 groups

T T T T

T, n

—_—— Tr |
3

% 4
=

l -

Near equilibrium: ‘\
02 Rosseland likely -
best choice
L . i
\\
0 ! | L | ! | | L
0 02 04 06 0.8 1 -

x (cm)
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Sample Results for Model Problem, Iron, Large S,

v =1 jerks/cm3/ns, t = 0.6 ns, 2048 groups

T (keV)

05~ Nonequilibrium:
Rosseland or Planck?

x (cm)

Lo Aames
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Model Problem with Helium, Large S,

Sy=1 jerks/cm3/ns, t = 0.6 ns, 2048 groups

6 T { T { T { T { T
5% —
= Te -
T,
A _
N
g -
[
2~ Emission dominated: n
L Planck likely best choice A

Lo Aames

x (cm)
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Convergence of Tg max

Emission-dominated problem (Helium, S, = 1 jerks/cm3/ns)

T T T T rrrIr { T T T T rrrIr { T T T T T Trrr { T T T T T Trrr
[ R ]
570 —
5.60— —
- Planck q
< F ————— Rosseland 1
g L WP P71 1
5 550 Weighted Planck n
[ ]
540l Converged1% _|
* . Converged |
5.30 - P/ Converged-l%;
[ P71 ]
520 L 1 1 11 1111 l 1 1 11 1111 l 1 1 11 111l l 1 1 11 111 J

1 10 100 1000 10000 -

#groups
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Convergence of Marshak Wave Position

Near-equilibrium problem (Iron, S, = 0.1 jerks/cm?/ns)

T T T T rrrIr ‘ T T T T rrrIr ‘ T T T T T Trrr ‘ T T T T T Trrr
L o7 J
055 B =
L wpP y
B | — Pk ]
s | = Rosseland 4
S P71
§ 0.50— Weighted Planck n
d . 4
3 L J
= L ]
045 —
= P 4
040 1 1 11 1111 l 1 1 11 1111 l 1 1 11 111l l 1 1 11 111
1 10 100 1000 10000
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Convergence of Marshak Wave Position

Nonequilibrium problem (lron, S, = 1 jerks/cm3/ns)

100 T T T T rrrIr { T T T T rrrIr { T T T T T Trrr { T T L
+ P71 g
0.90— — R —
. = WP d
E, 0.80 — —
o E 4
2 | Planck i
8 I Rosseland ]
S P71
% 070 [ Weighted Planck b
= L J
0.60 — —
L P d
0'50 1 1 11 1111 l 1 1 11 1111 l 1 1 11 111l l 1 1 11 111
1 10 100 1000 10000 e
#groups o

Opacity Treatments October 20, 2017 24 /34



Results
00000000 e0000

Convergence of Maximum Temperature

Nonequilibrium problem (lron, S, = 1 jerks/cm3/ns)

T T T T rrrIr ‘ T T T T rrrIr ‘ T T T T T Trrr ‘ T T T T T Trrr
[ 2 ]
[ ———— Planck i
[ ——— Rossdland i
1801~ P71 4
- Weighted Planck B
170 = -
= L R— ]
3 [ ]
X
= 160 .
£ H i
=L wP i
150~ .
L Weighted Planck typically more
140l accurate than Pomraning '71.
L P71
130k 1 1 1 111111 1 1 1 111111 1 1 1 111111 1 1 1 llllj
1 10 100 1000 10000 .
#groups toshlames
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Weighted Planck with cutoff

@ High-energy groups are not optically-thick, so they should not be weighted:

_ P
Ua,g - agaa,g

where oz = 1 for large photon energies,

B

=14+ —
% = T T (g /we)

@ [ is a constant, to be determined so that grey Rosseland value is attained.
@ vc is the cutoff frequency.
@ 7 is selected so that ay transitions from a =1 to & = omin Over = 4 groups.

@ Apply only for 16 or more groups.

Lo Aames
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WP with spectrum cutoff: T, =1 keV

p =1 g/cc, 32 groups, hvc = 4.5T,

10000 T T T T T T T T T T T T T T T T T T T

L

!

100

1

— Planck
— Rosseland

Weighted Planck
— WP Cutoff

a

o_(Ycm)

T T TTTTIT
L

o = 0.529 (WP)
" Qmin = 0.225 (WP Cutoff)
1
Cutoff
1 1 1111111 1 1 1111111 1 1 1111111 1 1 11 111l
0.01 0.1 1 10 100 -
hv (keV) Los Alamos
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Cutoff: Convergence of Marshak Wave Position

Nonequilibrium problem (Iron, S, = 1 jerks/cm3/ns)

1.00 T T T T T T T T T T T T T T T T T T T

090 ¥/\\ i

E 0.80 - / ]
= E .
S I wP —————— Planck ]
8 / Rosseland |
3 WP Cutoff
o WPC Weighted Planck )
8 0.70 -
= J
0.60 —
ol ol L 111111A
050 100 1000 10000 oo
#groups o
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Cutoff: Convergence of Maximum Temperature

Nonequilibrium problem (Iron, S, = 1 jerks/cm3/ns)

1.90

T T T T T T T T T

Planck

Rosseland
WP Cutoff b
Weighted Planck B

1.80

(keV)
/2
T

170

Te,max

1.60

Cutoff less accurate than no cutoff (1) )

1.50 ! Lol ! Lol ! Lol ! [ ]

10 100 1000 10000
#groups
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Summary and Future Work

Summary

@ It's straightforward to devise a group treatment that's accurate in both the
equilibrium-diffusion and emission-dominated limits.

@ Unfortunately, the method may be inaccurate away from these limits.

@ A promising approach is Weighted Planck, but more work is needed.

@ The assumption “use Planck when thin" needs revisiting.

o Comparisons for a wider range of problems.
@ Error bounds.
@ Combine Weighted Planck with multiband.

Lo Aames
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Questions? |
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EXTRAS

Convergence of Marshak Wave Position

Emission-dominated problem (Helium, S, = 1 jerks/cm?3/ns)

080 T T T T rrrIr ‘ T T T T rrrIr ‘ T T T T T Trrr ‘ T T L
L Planck ]
L Rosseland 1
0.70— P71 _
+ Weighted Planck B
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= L 4
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EXTRAS

Convergence of T, max

Near-equilibrium problem (lron, S, = 0.1 jerks/cm3/ns)
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