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Background Artificial Scattering Reconstruction Results Summary

Overview

Multigroup thermal radiation transport requires an averaging choice (weight
function) for the opacity in each energy group.

Classic choices are accurate in a specific solution regime:

Planck average (correct in emission-dominated limit)

Rosseland average (correct in equilibrium-diffusion limit)

For problems such as ICF, where x-ray burn-through timings are critical, we
prefer using Rosseland.

But we’d like to use Planck where appropriate, such as emission from a hot
interior boundary (e.g., hohlraum).

There are several methods that attempt to satisfy both of these limits, each
in a certain sense.

We’ll review several approaches and compare results.

Primary goal

Accurate results for a minimum (or at least affordable) number of groups.
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Background Artificial Scattering Reconstruction Results Summary

Background

For simplicity, assume coherent isotropic scattering and LTE emission. Then the
radiation intensity I (x, t, ν,Ω) satisfies

1

c
∂t I + Ω · ∇I + σt I = σaB +

c

4π
σsEν ,

where cEν =
∫

4π
IdΩ, B = B(ν,Te), σ∗(x, t, ν). Integrate over νg < ν < νg+1

(group-g):
1

c
∂t Ig + Ω · ∇Ig + 〈σt I 〉g = 〈σaB〉g +

c

4π
〈σsEν〉g .

Typically written in the form:

1

c
∂t Ig + Ω · ∇Ig + σt,g Ig = σa,gBg +

c

4π
σs,gEg .

How do we specify the group-averaged opacities σt,g , σa,g and σs,g?
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Background Artificial Scattering Reconstruction Results Summary

Some options for the opacity averages

Exact removal

σI
t,g (Ω) = 〈σt I 〉g

/
〈I 〉g

=⇒ Too difficult

Planck average

σP
a,g = 〈σaB〉g

/
〈B〉g

=⇒ LTE emission is exact

Rosseland average

σR
t,g = 〈BT 〉g

/
〈σ−1

t BT 〉g
=⇒ Equi-diff exact

Alternatives

Multiband: Strives to resolve opacity variation. May use either Planck or
Rosseland as a weighting, within each group.
Solution adaptive: Dynamic choice based on local solution conditions
(Sampson 1965, Ludwig 1992, Clouet 2000). Rough idea: Detect
optically-thick regions and use Rosseland; transition to Planck in thinner
regions.
Artificial scattering: Use Planck emission, but add scattering to ensure
Rosseland limit is also satisfied (Pomraning 1971).
Reconstruction: Use Rosseland and Planck values to reconstruct new values
that satisfy Rosseland and/or Planck in a certain sense (e.g., over expanded
group ranges).
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Example of iron spectrum and group averages
Te = 1 keV, ρ = 1 g/cc, 32 groups

0.01 0.1 1 10 100
hν (keV)

1

100

10000

σ a (1
/c

m
)

Planck
Rosseland
4096 groups

Rosseland less
sensitive to line
structure than

Planck
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A PN approach to artificial scattering

Write the first two angular moment equations as:

∂tEg +∇ · Fg = σP
a,g (4πBg − cEg ) ,

1

c
∂tFg + c∇ ·Pg = −σR

t,gFg .

Using different opacity averages is common for nonequilibrium diffusion.

Desirable properties:

Emission is exact, σP
a,gBg .

In optically-thick regions, Fg ≈ −
(
c/3σR

t,g

)
∇Eg .

The higher-order moment equations, using Rosseland or Planck, don’t change
these properties.

For the grey case, Pomraning derived a family of methods that yield the moment
equations abovea

aJQSRT, vol. 11, pp. 597–615 (1971)
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Artificial Scattering
Based on Pomraning’s 1971 “effective scattering” approach

Add a term proportional to σP
t,g − σR

t,g :

1

c
∂t Ig + Ω · ∇Ig + σP

t,g Ig = σP
a,gBg +

c

4π
σs,gEg+

(
σP
t,g − σR

t,g

)
Sg .

and select Sg to satisfy the moment equations on the previous slide.

Isotropic:

Sg = Ig − c
4π
Eg .

Most accurate in Pomraning’s numerical results (grey cases).

But may result in negative total scattering.

Linear: Sg = 3
4πΩ · Fg .

Mixed: Use isotropic approach, unless the total scattering is negative, in
which case use linear.

Approach taken in this study.

Any of these choices satisfy the equilibrium-diffusion limit.
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Background Artificial Scattering Reconstruction Results Summary

Reconstruction of σa,g

Given: σP
a,g , σR

a,g , . . . for each group-g .

Use these integral moments to reconstruct the underlying function σa(ν).

Unlike artificial scattering, a pre-processing step.

Some options:

1 Finite element: Reconstruct a function σa(ν) for each ν ∈ [νg , νg+1] that
satisfies moments (“modal” approach):

Example: σa(ν) = C/νp . Select C and p to satisfy both Planck and Rosseland.

Not robust when line structure is present.

Our current multigroup implementations require modification.

Leave for future work.

2 Double interval: For each odd-g , find reconstructed values σa,g and σa,g+1 so
that both the Planck and Rosseland averages are satisfied over the double
interval [νg , νg+2] (Lowrie & Haut 2014; related to Cullen & Pomraning 1980).

3 Weighted Planck. Described next.
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Weighted Planck

Scale all Planck opacities by α, to give the grey Rosseland:∑
g

(
ασP

a,g + σs,g
)−1

(dB/dT )g =
∑
g

(
σR
t,g

)−1
(dB/dT )g .

Set σa,g = ασP
a,g ; scattering unchanged.

Borrowed from idea used for neutron transport.1

Typically, 0 < α ≤ 1.

Requires nonlinear solve for α, but there’s only one root.

1Saller, Larsen, Downar, “An Asymptotic Scaling Factor for Multigroup Cross Sections,” ANS
Mathematics & Computation Conference, Nashville, TN (2015).
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Weighted Planck spectrum: Te = 1 keV
ρ = 1 g/cc, 32 groups

0.01 0.1 1 10 100
hν (keV)

1

100

10000

σ a (1
/c

m
)

Planck
Rosseland
Weighted Planck
4096 groups

α = 0.529
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Weighted Planck spectrum: Te = 0.1 keV
ρ = 1 g/cc, 32 groups
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Weighted Planck spectrum: Te = 10 keV
ρ = 1 g/cc, 32 groups
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Pomraning ’71 vs. Weighted Planck

Summary

Value Pomraning ’71 Weighted Planck

Emission σP
a,gBg ασP

a,gBg

F
(1)
g - c

3σR
t,g
∇B(0)

g - c
3(ασP

a,g+σs,g )
∇B(0)

g

F(1) - c
3σR

t
∇B(0) - c

3σR
t
∇B(0)

Scattering c
4πσs,gEg +

(
σP
t,g − σR

t,g

)
Sg

c
4πσs,gEg

Comments

Red indicates exact value.
F

(1)
g is the O(ε1)-value of the radiative flux from the equilibrium-diffusion

limit analysis.

F(1) =
∑

g F
(1)
g .

For smooth opacities, (1− α) ∝ maxg
(
σP
t,g − σR

t,g

)
.
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Model Problems

3 problems; extensions to Su & Olson (1997), but no analytic solutions.

1-D slab, 0 ≤ x ≤ 1. Reflection x = 0; vacuum x = 1.

Constant volumetric material source Sv applied over 0 ≤ x ≤ 0.25.

Initial condition: Tr = 0 and Te =

{
10 eV 0 ≤ x ≤ 0.25,

0.001 eV 0.25 < x ≤ 1.

Increasing Sv drives the source region more out of equilibrium.

Expect Planck accurate for emission-dominated problems.

Te,max is a good metric.

Unless optically thin, a Marshak wave propagates from the source region.

Expect Rosseland accurate for optically-thick problems.

Wave location a good metric.

All results computed with Capsaicin (S12); opacities from TOPS.
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Sample Results for Model Problem, Iron, Small Sv
Sv = 0.1 jerks/cm3/ns, t = 2 ns, 2048 groups

0 0.2 0.4 0.6 0.8 1
x (cm)
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T 
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)

Te
Tr

Near equilibrium:
Rosseland likely

best choice
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Sample Results for Model Problem, Iron, Large Sv
Sv = 1 jerks/cm3/ns, t = 0.6 ns, 2048 groups
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Nonequilibrium:
Rosseland or Planck?
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Model Problem with Helium, Large Sv
Sv = 1 jerks/cm3/ns, t = 0.6 ns, 2048 groups
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Emission dominated:
Planck likely best choice
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Convergence of Te,max
Emission-dominated problem (Helium, Sv = 1 jerks/cm3/ns)
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Convergence of Marshak Wave Position
Near-equilibrium problem (Iron, Sv = 0.1 jerks/cm3/ns)
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Convergence of Marshak Wave Position
Nonequilibrium problem (Iron, Sv = 1 jerks/cm3/ns)
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Convergence of Maximum Temperature
Nonequilibrium problem (Iron, Sv = 1 jerks/cm3/ns)
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Weighted Planck typically more
accurate than Pomraning ’71.
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Weighted Planck with cutoff

High-energy groups are not optically-thick, so they should not be weighted:

σa,g = αgσ
P
a,g

where αg = 1 for large photon energies,

αg = 1 +
β

1 + (νg/νC )γ
.

β is a constant, to be determined so that grey Rosseland value is attained.

νC is the cutoff frequency.

γ is selected so that αg transitions from α = 1 to α = αmin over ≈ 4 groups.

Apply only for 16 or more groups.
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WP with spectrum cutoff: Te = 1 keV
ρ = 1 g/cc, 32 groups, hνC = 4.5Te

0.01 0.1 1 10 100
hν (keV)
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m
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Weighted Planck
WP Cutoff

Cutoff

α = 0.529 (WP)
αmin = 0.225 (WP Cutoff)
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Cutoff: Convergence of Marshak Wave Position
Nonequilibrium problem (Iron, Sv = 1 jerks/cm3/ns)
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Cutoff: Convergence of Maximum Temperature
Nonequilibrium problem (Iron, Sv = 1 jerks/cm3/ns)
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Cutoff less accurate than no cutoff (!)
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Summary and Future Work

Summary

It’s straightforward to devise a group treatment that’s accurate in both the
equilibrium-diffusion and emission-dominated limits.
Unfortunately, the method may be inaccurate away from these limits.
A promising approach is Weighted Planck, but more work is needed.
The assumption “use Planck when thin” needs revisiting.

Future work

Comparisons for a wider range of problems.
Error bounds.
Combine Weighted Planck with multiband.
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Questions?
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EXTRAS

Convergence of Marshak Wave Position
Emission-dominated problem (Helium, Sv = 1 jerks/cm3/ns)
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Convergence of Te,max
Near-equilibrium problem (Iron, Sv = 0.1 jerks/cm3/ns)
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