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Energetic (hundreds of keV) electrons in the radiation belt slot region have

been found to exhibit the butterfly pitch angle distributions. Resonant in-

teractions with magnetosonic and whistler-mode waves are two potential mech-
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anisms for the formation of these peculiar distributions. Here we perform a

statistical study of energetic electron pitch angle distribution characteristics

measured by Van Allen Probes in the slot region during a three-year period

from May 2013 to May 2016. Our results show that electron butterfly dis-

tributions are closely related to magnetosonic waves rather than to whistler-

mode waves. Both electron butterfly distributions and magnetosonic waves

occur more frequently at the geomagnetically active times than at the quiet

times. In a statistical sense, more distinct butterfly distributions usually cor-

respond to magnetosonic waves with larger amplitudes and vice versa. The

averaged magnetosonic wave amplitude is less than 5 pT in the case of nor-

mal and flat-top distributions with a butterfly index BI = 1 but reaches

∼ 35–95 pT in the case of distinct butterfly distributions with BI > 1.3.

For magnetosonic waves with amplitudes > 50 pT, the occurrence rate of

butterfly distribution is above 80%. Our study suggests that energetic elec-

tron butterfly distributions in the slot region are primarily caused by mag-

netosonic waves.

Keypoints:

• Electron butterfly distributions occur more frequently at the geomag-

netically active times than at the quiet times

• A positive relation between magnetosonic waves and electron butterfly

distributions
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• No close relation between whistler-mode waves and electron butterfly dis-

tributions
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1. Introduction

The Van Allen radiation belts are normally two zones of energetic particles separated by

the slot region. In contrast to the relatively stable inner belt protons, the outer radiation

belt electrons often exhibit dramatic variations [e.g., Baker et al., 1986, 2013; Li et al.,

2001; Reeves et al., 2003; Reeves et al., 2013; Su et al., 2014a, 2016; Anderson et al., 2015;

Ni et al., 2015; Ni et al., 2016a]. Outer radiation belt electrons can penetrate significantly

into the slot region during the geomagnetic storms [Li et al., 2001] and these slot electrons

experience a slow decay during the quiescent period [Lyons and Thorne, 1973; Thorne

et al., 2013a; He et al., 2016].

One of the important indicators of radiation belt dynamics is the particle pitch angle

distribution pattern. In particular, the formation and flattening of butterfly pitch an-

gle distributions (with a minimum around 90◦) have attracted much attention. At the

nightside large L-shell region, the butterfly distributions of electrons with energies from

∼ 100 keV to several MeV can frequently occur [Gannon et al., 2007; Gu et al., 2011; Ni

et al., 2015; Ni et al., 2016b; Yu et al., 2016], primarily due to adiabatic transport [Su

et al., 2010, 2011a; Kim et al., 2010], drift-shell splitting [Sibeck et al., 1987; Selesnick and

Blake, 2002] and magnetopause shadowing [Hudson et al., 2014]. The rapid flattening of

butterfly distributions at energies from hundreds of keV to several MeV on a timescale

of several hours has been interpreted as a consequence of chorus-driven local acceleration

[Horne et al., 2003; Yang et al., 2016]. Recently, the butterfly distributions of electrons

with energies of hundreds of keV have been found to occur at the low L-shell regions

(inner belt and slot region) [Zhao et al., 2014a, b], which are considered a result of res-
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onant interactions with magnetosonic waves [Horne et al., 2007; Xiao et al., 2015a; Li

et al., 2016a] or whistler-mode waves (plasmaspheric hiss, lightning-generated whistlers,

and very low frequency transmitters) [Albert et al., 2016]. For the former mechanism, the

energy diffusion by magnetosonic waves can produce the electron distributions peaking

at intermediate pitch angles [Horne et al., 2007]. For the latter mechanism, the cross

diffusion is expected to cause the peaks of distributions away from 90◦ [Albert et al.,

2016]. In this letter, to determine the dominant mechanism for the formation of butterfly

distributions, we present a statistical study of energetic electron pitch angle distributions

and magnetosonic/whistler-mode waves observed by Van Allen Probes over a three-year

period (from May 2013 to May 2016) in the radiation belt slot region.

2. Methods

The electron differential fluxes j are measured by Magnetic Electron Ion Spectrometer

(MagEIS) instrument [Blake et al., 2013] of Energetic Particle, Composition,and Thermal

Plasma (ECT) suite [Spence et al., 2013]. The time resolution of Level 3 data is ∼ 11s and

we smooth the data over ∼ 33s. We introduce the butterfly index BI = max{j(α)/j(α =

90◦)} [Yang et al., 2016] to quantitatively describe the local pitch angle α distribution

pattern. The butterfly index BI equals 1 for normal or flat-top distributions and a

larger BI corresponds to a more distinct butterfly distribution. There are some minor

differences between the electron energy channels of the MagEIS instruments onboard Van

Allen Probes A and B, for example, the counterpart of the energy channel 232 keV of the

Probe A is 242 keV of the Probe B. We therefore combine the similar energy channels of

Van Allen Probes A and B to obtain more data for the statistics.
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The wave spectra were detected by Waveform Receiver (WFR) instrument of Electric

and Magnetic Field Instrument and Integrated Science (EMFISIS) suite [Kletzing et al.,

2013]. The singular value decomposition technique [Santoĺık et al., 2003] is used to cal-

culate the wave ellipticity and normal angle. The magnetosonic wave, with a frequency

range between the proton gyro-frequency fcp and the lower hybrid frequency fLHR, usually

have a ellipticity close to 0 and a propagation direction nearly perpendicular to the back-

ground magnetic field [Santoĺık et al., 2002, 2004; Ma et al., 2013, 2016]. The following

criteria are used to identify the magnetosonic waves: (1) the wave frequency lies in the

range between the proton gyrofrequency fcp and the lower hybrid frequency fLHR , (2)

the absolute value of wave ellipticity is less than 0.2, and (3) the wave normal angle is

larger than 80◦. In the slot region, the whistler-mode waves mainly include plasmaspheric

hiss with a frequency range from tens to hundreds of Hz and lightning-generated whistlers

with frequencies around several kHz [Abel and Thorne, 1998; Meredith et al., 2007]. These

whistler mode waves are right-hand polarized and the wave normal angles are generally

less than 60◦ [Dunckel and Helliwell , 1969; Thorne et al., 1973; Li et al., 2013, 2015]. The

criteria for the identification of whistler-mode waves are specified as follows: (1) the wave

frequency is larger than the proton gyrofrequency fcp (fcp ≈30 Hz at L = 2.5), (2) the

wave ellipticity is larger than 0.5, and (3) the wave normal angle lies between 0◦ and 60◦.

The wave amplitude Bt is defined as

Bt =
√∑

i

P i
B ×∆f i (1)
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where i denotes the frequency band with the width ∆f i (in unit of Hz) and the power spec-

tral density P i
B (in unit of nT2/Hz), and the summation is performed over the frequency

bands meeting the previously described criteria.

3. Correlated data and statistical analysis

Figure 1 shows a 1-day overview of geomagnetic indices, plasma waves and energetic

electron local pitch angle distributions in the slot region. On 27 August 2015, a moderate

geomagnetic storm was trigged with a minimum Dst ≈ −91 nT and strong substorm

activities occurred with a maximum AE ≈ 1800 nT (Figure 1a). When the spacecraft

passed through L = 2.5 (Figure 1b-1d), whistler-mode waves can be always observed but

intense magnetosonic waves occurred only around 07:58 UT and 17:00 UT. Corresponding

to the intense magnetosonic waves, energetic electrons clearly exhibited the butterfly

distributions (Figure 1f and 1h). However, in the absence of distinct magnetosonic waves,

energetic electrons displayed the normal or flattop distributions at 00:27 UT (Figure 1e)

and 09:29 UT (Figure 1g).

Figure 2 plots the butterfly index BI for indicated energy channels as a function of

magnetic local time (MLT) and magnetic latitude (MLAT) at L = 2.5 during the three-

year period. The electron butterfly index is found to be nearly independent of MLT

probably because energetic electrons experience an azimuthal drift around the Earth.

However, the butterfly distributions with BI > 1 appear to be confined near the equator,

which may be explained by the fact that the observed butterfly distributions usually peak

around the equatorial pitch angles |αeq−90◦| = 16◦ (Figures 1f and 1h). The electrons with

|αeq − 90◦| < 16◦ are trapped within the magnetic latitudes λ < 7.5◦ and the local pitch
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angle distributions at λ > 7.5◦ are more likely to obey the normal or flat-top distributions.

Consequently, considering that magnetosonic waves stay primarily close to equator within

a few degrees of latitude [Santoĺık et al., 2004; Horne et al., 2007; Ma et al., 2013]), we

focus on those nearly equatorial events (with λ < 3◦) of both waves and electrons.

Figure 3 presents the histograms of magnetosonic and whistler-mode wave amplitudes

Bt at L = 2.5 as functions of geomagnetic indices Dst and AE. Clearly, there is a posi-

tive correlation between magnetosonic wave amplitude and geomagnetic activity strength.

During geomagnetic quiet times (Dst > −20 nT), the averaged magnetosonic wave am-

plitude is very small (Bt < 5 pT). The magnetosonic wave amplitude increases to Bt ≈ 20

pT for small storms (−50 nT < Dst < −30 nT) and reaches Bt = 50 ∼ 100 pT for

moderate or strong storms (Dst < −50 nT). Similarly, Bt < 10 pT for AE < 400 nT

but Bt ≈ 60 pT for AE ≈ 1000 nT. The results above are reasonable because magne-

tosonic waves are generated by a ring distribution of ∼ 10 keV energetic protons injected

from the plasmasheet into the inner magnetosphere [Meredith et al., 2008; Gary et al.,

2010]. During high geomagnetic activities, such proton injection becomes larger under

the drive of enhanced plasma convection, leading to higher magnetosonic wave growth

[Chen et al., 2010a, b; Xiao et al., 2012, 2013, 2015b; Ma et al., 2016]. In contrast, the

correlation between whistler-mode wave amplitude in the slot region and geomagnetic ac-

tivity strength becomes relatively poor. The average wave amplitude peaks in the range

30 pT < Bt < 50 pT and exhibits minor variations when AE < 800 nT. The averaged

wave amplitude is about 20 pT during quiet times and increases to 40 pT during strong

substorms (AE > 800 nT), roughly comparable to the previous statistical results [Mered-
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ith et al., 2007]. At L = 2.5, the whistler-mode wave power are mainly provided by

the plasmaspheric hiss. The statistical behavior of whistler-mode wave amplitude may

be caused by the combination of external source and internal instability [Bortnik et al.,

2008, 2009; Chen et al., 2012; Li et al., 2015; Su et al., 2015a; Liu et al., 2017]. Regardless

of substorms or not, the dayside chorus can serve as the external source of plasmaspheric

hiss [Liu et al., 2017]. However, the amplification of hiss waves is favorable under the

condition of strong substorm injections [Chen et al., 2012].

Figure 4 gives the histograms of geomagnetic indices and wave amplitudes as functions of

butterfly index for the indicated energy channels at L = 2.5. Larger BI events correspond

to larger values of −Dst and AE, indicating that more distinct butterfly distributions

occur during higher geomagnetic activities. For all the four groups of energy channels,

there is a positive correlation between BI and magnetosonic wave Bt. The averaged

magnetosonic wave amplitude Bt is less than 5 pT for the normal or flat-top distributions

with BI = 1.0, and stays in the range 35–85 pT (depending on the energy channel) for the

distinct butterfly distributions with BI > 1.3. At the first two groups of energy channels

169–226 keV, BI weakly correlates with whistler-mode Bt. As BI increases from 1.0

to 1.3, whistler-mode wave Bt increases by about 2 times. For the other two groups of

energy channels 232–350 keV, BI and whistler-mode wave Bt appear to be independent

of each other. No matter how large BI is, the averaged whistler-mode wave Bt keeps to

be ∼ 20 pT. In order to further show the correlation between butterfly distributions and

waves, we present the scatter plots of butterfly indices as functions of magnetosonic and

whistler-mode wave amplitude Bt (Figures S1 and S2) and the histograms of butterfly

c⃝2017 American Geophysical Union. All Rights Reserved.



indices as functions of magnetosonic wave amplitude, whistler-mode wave amplitude and

their ratio (Figure S3) in the Supporting Information. All these observations suggest that

the butterfly distributions in the slot region are more closely related with magnetosonic

waves than whistler-mode waves.

Figures 5 and 6 display the occurrence rates of different pitch angle distribution at

the different levels of wave strength at L = 2.5. In each panel, the occurrence rate

is defined by event number in each BI range divided by the total number for all BI

under the given condition of wave amplitude. Clearly, the occurrence rate of butterfly

distributions with BI > 1 increases with the increasing magnetosonic wave amplitude Bt

(Figure 5). In the case of weak magnetosonic waves (1 pT < Bt < 5 pT), the occurrence

rate is approximately 40% − 50% for butterfly distributions with BI > 1. For strong

magnetosonic waves withBt > 50 pT, the occurrence rate of butterfly distributions reaches

> 80%. As magnetosonic wave amplitude Bt increases from the range 1–5 pT to the range

> 50 pT, the occurrence rate of distinct butterfly distributions with BI > 1.3 increases

from the range 2–5% to the range 8–28% (depending on energy channels). In contrast,

the enhancement of whistler-mode waves cannot significantly increase the occurrence rate

of butterfly distributions. Even for the large amplitude (> 50 pT) whistler-mode waves,

the occurrence rate of butterfly distributions lies in the range 50% − 60%. As shown in

Figure 5, electrons with higher energies tend to exhibit more distinct butterfly patterns

(e.g. BI > 1.3) than those with lower energies, which can be reasonably explained by

the energy dependence of Landau resonance between magnetosonic waves and electrons

[Horne et al., 2007; Li et al., 2016a, b]. As simulated by Li et al. [2016a], magnetosonic
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waves at L = 2.4 produce butterfly distributions most efficiently for Ek = 467 keV, and

the efficiency gradually drops with the decrease of electron energy. For the electrons of

Ek < 100 keV, magnetosonic waves are difficult to produce distinct butterfly distributions

(with large BI). This is further confirmed by statistical results at lower energy channels

(54–134 keV) (Figures S4–S6) in the Supporting Information. For the higher energy

channels (Ek ≥ 467 keV), due to the relatively poor integrity of the electron flux data,

it is difficult to carry out a valid statistical analysis. These observations demonstrate

once again the importance of magnetosonic waves for the generation of energetic electron

butterfly distributions in the radiation belt slot region.

In the statistics above, we focus on the heart of the slot region L = 2.5, because it can

basically reflect the whole slot region. We have also carried out some statistical research

at L = 2.0 and 3.0 (Figure S7–S12) in the Supporting Information. Compared to the

situation at L = 2.5, the butterfly distribution has a less (or more) chance to occur at

L = 3.0 (or L = 2.0). The correlations between butterfly distributions and magnetosonic

or whistler-mode waves at these L-shells are similar to those at L = 2.5.

4. Conclusion and Discussion

Radiation belt electrons often exhibit significant variations [e.g., Li et al., 2001; Baker

et al., 2013; Su et al., 2014a, b; Reeves et al., 2016] due to various adiabatic [e.g., Lyons ,

1977; Kim and Chan, 1997; Su et al., 2010] and non-adiabatic [e.g., Horne and Thorne,

1998; Summers et al., 1998; Elkington et al., 1999; Horne et al., 2005; Shprits et al.,

2006; Omura et al., 2007; Su et al., 2011b, 2015b; Mann et al., 2013; Thorne et al.,

2013b; Ni et al., 2015; Gao et al., 2016; Wang et al., 2016] processes. Electron pitch
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angle distribution pattern is an important indicators of radiation belt dynamics. Recent

observational studies have found the occurrence of butterfly pitch angle distributions of

energetic (∼100s keV) electrons in the inner belt and slot region [Zhao et al., 2014a, b].

Two main plausible physical mechanisms for the formation of butterfly distributions at

such low L-shells are the resonant interactions with magnetosonic waves [Horne et al.,

2007; Xiao et al., 2015a; Li et al., 2016a] and whistler-mode waves [Albert et al., 2016].

Using Van Allen Probes data from May 2013 to May 2016, we have statistically in-

vestigated the electron pitch angle distribution characteristics and plasma waves in the

slot region. Butterfly distributions occur primarily near the equator (probably because

the butterfly peaks usually lie around the equatorial pitch angles |αeq − 90◦| = 16◦) but

display no preference for MLT (due to electron azimuthal drift around the Earth). The

occurrence rate of energetic electron butterfly distribution is higher during the stronger

geomagnetic storm and substorm activities. The amplitude of magnetosonic waves, as

compared to whistler-mode waves, exhibits a more positive correlation with the strength

of geomagnetic activities. In a statistical sense, more distinct butterfly distributions of

all the energy channels (169–350 keV) usually correspond to larger amplitude magne-

tosonic waves and vice versa. For the normal and flat-top distributions with a butterfly

index BI = 1, the averaged magnetosonic wave amplitude is less than 5 pT. In contrast,

for the distinct butterfly distributions with a butterfly index BI > 1.3, the averaged

magnetosonic wave amplitude increases to 35–95 pT. As magnetosonic wave amplitude

increases from 1–5 pT to > 50 pT, the occurrence rate of distinct butterfly distribution

with BI > 1.3 increases from 2–5% to 8–28% (depending on energy channels). Under
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the condition of large amplitude (> 50 pT) magnetosonic waves, the occurrence rate of

butterfly distribution BI > 1 is above 80%. However, the correlation between butterfly

index and whistler-mode wave amplitude appears to be quite weak. Even under the con-

dition of large amplitude (> 50 pT) whistler-mode waves, the occurrence rate of butterfly

distribution lies in the range 50%−60%. Our study supports that Landau resonance with

magnetosonic waves [Horne et al., 2007; Li et al., 2016a, b] is a primary cause of energetic

electron butterfly distributions in the slot region.

The whistler-mode waves (plasmaspheric hiss, lightning-generated whistlers, and very

low frequency transmitters) are usually invoked to explain the gradual loss of energetic

electrons in the slot region [e.g.,

; Lyons et al., 1972; Abel and Thorne, 1998;Meredith et al., 2007]. In fact, the scattering

of whistler-mode waves becomes quite weak for the near-equatorially trapped electrons

[e.g., Meredith et al., 2009; He et al., 2016]. The Landau resonance with magnetosonic

waves can act at the pitch-angles |α − 90◦| < 20◦ [Horne et al., 2007; Li et al., 2016a],

probably affecting the energetic electron lifetime in the slot region particularly during

the geomagnetically active periods. Hence, the magnetosonic waves should be taken into

account in future radiation belt models.
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Figure 1. (a) Geomagnetic indices Dst (black) and AE (blue) during 27 August 2015;

(b) Magnetic field wave spectra in the frequency range of 10-10000 Hz measured by Van Allen

Probe-B, overplotted with the electron gyro-frequencies fce (white dotted ) and the lower hybrid

frequencies fLHR (dashed); (c) Wave normal angle; (d) Wave ellipticity; (e-h) Electron differential

fluxes (color-coded according to energy) at selected times with the butterfly indices labeled in

the panels.
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Figure 4. Histograms of geomagnetic indices (a-d) Dst, (e-h) AE, (i-l) magnetosonic wave

amplitude Bt and (m-p) whistler-mode wave amplitude Bt as functions of butterfly index BI at

L = 2.5. The sample numbers in each BI range are labeled above the histograms.
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Figure 5. Histograms of the occurrence rates of different electron distributions as functions of

magnetosonic wave amplitude Bt at L = 2.5.
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Figure 6. Same as Figure 5 except for whistler-mode wave amplitude Bt.
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