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Energetic (hundreds of keV) electrons in the radiation belt slot region have

been found to exhibit the butterfly pitch angle distributions. Resonant in-

teractions with magnetosonic and whistler-mode waves are two potential mech-
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anisms for the formation of these peculiar distributions. Here we perform a
statistical study of energetic electron pitch angle distribution characteristics
measured by Van Allen Probes in the slot region during a three-year period
from May 2013 to May 2016. Our results show that electron butterfly dis-
tributions are closely related to magnetosonic waves rather than to whistler-
mode waves. Both electron butterfly distributions and magnetosonic waves
occur more frequently at the geomagnetically active times than at the quiet
times. In a statistical sense, more distinct butterfly distributions usually cor-
respond to magnetosonic waves with larger amplitudes and vice versa. The
averaged magnetosonic wave amplitude is less than 5 pT in the case of nor-
mal and flat-top distributions with a butterfly index BI = 1 but reaches
~ 35-95 pT in the case of distinct butterfly distributions with BI > 1.3.
For magnetosonic waves with amplitudes > 50 pT, the occurrence rate of
butterfly distribution is above 80%. Our study suggests that energetic elec-
tron-butterfly distributions in the slot region are primarily caused by mag-
netosonic waves.

Keypoints:

e Electron butterfly distributions occur more frequently at the geomag-
netically active times than at the quiet times

e A positive relation between magnetosonic waves and electron butterfly

distributions
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e No close relation between whistler-mode waves and electron butterfly dis-
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1. Introduction

The Van Allen radiation belts are normally two zones of energetic particles separated by
the slot region. In contrast to the relatively stable inner belt protons, the outer radiation
belt electrons often exhibit dramatic variations [e.g., Baker et al., 1986, 2013; Li et al.,
2001; Reeves et al., 2003; Reeves et al., 2013; Su et al., 2014a, 2016; Anderson et al., 2015;
Ni et.al., 2015; Ni et al., 2016a]. Outer radiation belt electrons can penetrate significantly
into the slot region during the geomagnetic storms [Li et al., 2001] and these slot electrons
experience a slow decay during the quiescent period [Lyons and Thorne, 1973; Thorne
et-al., 2013a; He et al., 2016].

One of the important indicators of radiation belt dynamics is the particle pitch angle
distribution pattern. In particular, the formation and flattening of butterfly pitch an-
gle distributions (with a minimum around 90°) have attracted much attention. At the
nightside large L-shell region, the butterfly distributions of electrons with energies from
~ 100 keV to several MeV can frequently occur [Gannon et al., 2007; Gu et al., 2011; Ni
et-al, 2015; Ni et al., 2016b; Yu et al., 2016], primarily due to adiabatic transport [Su
et al:; 2010, 2011a; Kim et al., 2010], drift-shell splitting [Sibeck et al., 1987; Selesnick and
Blake, 2002] and magnetopause shadowing [Hudson et al., 2014]. The rapid flattening of
butterfly distributions at energies from hundreds of keV to several MeV on a timescale
of several hours has been interpreted as a consequence of chorus-driven local acceleration
[Horne et al., 2003; Yang et al., 2016]. Recently, the butterfly distributions of electrons
with energies of hundreds of keV have been found to occur at the low L-shell regions

(inner belt and slot region) [Zhao et al., 2014a, b], which are considered a result of res-
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onant interactions with magnetosonic waves [Horne et al., 2007; Xiao et al., 2015a; Li
et al:;; 2016a] or whistler-mode waves (plasmaspheric hiss, lightning-generated whistlers,
and very low frequency transmitters) [Albert et al., 2016]. For the former mechanism, the
energy diffusion by magnetosonic waves can produce the electron distributions peaking
at intermediate pitch angles [Horne et al., 2007]. For the latter mechanism, the cross
diffusion is expected to cause the peaks of distributions away from 90° [Albert et al.,
2016]. In this letter, to determine the dominant mechanism for the formation of butterfly
distributions, we present a statistical study of energetic electron pitch angle distributions
and magnetosonic/whistler-mode waves observed by Van Allen Probes over a three-year

period (from May 2013 to May 2016) in the radiation belt slot region.

2. Methods

The electron differential fluxes j are measured by Magnetic Electron Ion Spectrometer
(MagEIS) instrument [Blake et al., 2013] of Energetic Particle, Composition,and Thermal
Plasma (ECT) suite [Spence et al., 2013]. The time resolution of Level 3 data is ~ 11s and
we smooth the data over ~ 33s. We introduce the butterfly index BI = max{j(«)/j(a =
90°)} [Yang et al., 2016] to quantitatively describe the local pitch angle a distribution
pattern. The butterfly index BI equals 1 for normal or flat-top distributions and a
larger BI corresponds to a more distinct butterfly distribution. There are some minor
differences between the electron energy channels of the MagEIS instruments onboard Van
Allen Probes A and B, for example, the counterpart of the energy channel 232 keV of the
Probe A is 242 keV of the Probe B. We therefore combine the similar energy channels of

Van Allen Probes A and B to obtain more data for the statistics.
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The wave spectra were detected by Waveform Receiver (WFR) instrument of Electric
and Magnetic Field Instrument and Integrated Science (EMFISIS) suite [Kletzing et al.,
2013]. The singular value decomposition technique [Santolik et al., 2003] is used to cal-
culate the wave ellipticity and normal angle. The magnetosonic wave, with a frequency
range between the proton gyro-frequency f., and the lower hybrid frequency fiur, usually
have-a ellipticity close to 0 and a propagation direction nearly perpendicular to the back-
ground magnetic field [Santolik et al., 2002, 2004; Ma et al., 2013, 2016]. The following
criteria are used to identify the magnetosonic waves: (1) the wave frequency lies in the
range between the proton gyrofrequency f., and the lower hybrid frequency frur , (2)
the absolute value of wave ellipticity is less than 0.2, and (3) the wave normal angle is
larger than 80°. In the slot region, the whistler-mode waves mainly include plasmaspheric
hiss with a frequency range from tens to hundreds of Hz and lightning-generated whistlers
with frequencies around several kHz [Abel and Thorne, 1998; Meredith et al., 2007]. These
whistler mode waves are right-hand polarized and the wave normal angles are generally
less than 60° [Dunckel and Helliwell, 1969; Thorne et al., 1973; Li et al., 2013, 2015]. The
criteria for the identification of whistler-mode waves are specified as follows: (1) the wave
frequency is larger than the proton gyrofrequency fe, (fop =30 Hz at L = 2.5), (2) the
wave ellipticity is larger than 0.5, and (3) the wave normal angle lies between 0° and 60°.

The wave amplitude B; is defined as

B =[S B Af 1)
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where i denotes the frequency band with the width A f? (in unit of Hz) and the power spec-
tral density P} (in unit of nT?/Hz), and the summation is performed over the frequency

bands meeting the previously described criteria.

3. Correlated data and statistical analysis

Figure 1 shows a 1-day overview of geomagnetic indices, plasma waves and energetic
electron local pitch angle distributions in the slot region. On 27 August 2015, a moderate
geomagnetic storm was trigged with a minimum Dst ~ —91 nT and strong substorm
activities occurred with a maximum AF =~ 1800 nT (Figure la). When the spacecraft
passed through L = 2.5 (Figure 1b-1d), whistler-mode waves can be always observed but
intense magnetosonic waves occurred only around 07:58 UT and 17:00 UT. Corresponding
to the intense magnetosonic waves, energetic electrons clearly exhibited the butterfly
distributions (Figure 1f and 1h). However, in the absence of distinct magnetosonic waves,
energetic electrons displayed the normal or flattop distributions at 00:27 UT (Figure le)
and 09:29 UT (Figure 1g).

Figure 2 plots the butterfly index BI for indicated energy channels as a function of
magnetic local time (MLT) and magnetic latitude (MLAT) at L = 2.5 during the three-
year-period. The electron butterfly index is found to be nearly independent of MLT
probably because energetic electrons experience an azimuthal drift around the Earth.
However, the butterfly distributions with BI > 1 appear to be confined near the equator,
which may be explained by the fact that the observed butterfly distributions usually peak
around the equatorial pitch angles |aeq—90°| = 16° (Figures 1f and 1h). The electrons with

|teq — 90°] < 16° are trapped within the magnetic latitudes A < 7.5° and the local pitch
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angle distributions at A > 7.5° are more likely to obey the normal or flat-top distributions.
Consequently, considering that magnetosonic waves stay primarily close to equator within
a few degrees of latitude [Santolik et al., 2004; Horne et al., 2007; Ma et al., 2013]), we
focus on those nearly equatorial events (with A < 3°) of both waves and electrons.
Figure 3 presents the histograms of magnetosonic and whistler-mode wave amplitudes
By at. L = 2.5 as functions of geomagnetic indices Dst and AFE. Clearly, there is a posi-
tive correlation between magnetosonic wave amplitude and geomagnetic activity strength.
During geomagnetic quiet times (Dst > —20 nT), the averaged magnetosonic wave am-
plitude is very small (B; < 5 pT). The magnetosonic wave amplitude increases to By ~ 20
pT for small storms (=50 nT < Dst < —30 nT) and reaches B; = 50 ~ 100 pT for
moderate or strong storms (Dst < —50 nT). Similarly, B; < 10 pT for AE < 400 nT
but By ~ 60 pT for AE ~ 1000 nT. The results above are reasonable because magne-
tosonic waves are generated by a ring distribution of ~ 10 keV energetic protons injected
from the plasmasheet into the inner magnetosphere [Meredith et al., 2008; Gary et al.,
2010].. During high geomagnetic activities, such proton injection becomes larger under
the drive of enhanced plasma convection, leading to higher magnetosonic wave growth
[Chen et al., 2010a, b; Xiao et al., 2012, 2013, 2015b; Ma et al., 2016]. In contrast, the
correlation between whistler-mode wave amplitude in the slot region and geomagnetic ac-
tivity strength becomes relatively poor. The average wave amplitude peaks in the range
30 pT < By < 50 pT and exhibits minor variations when AE < 800 nT. The averaged
wave amplitude is about 20 pT during quiet times and increases to 40 pT during strong

substorms (AE > 800 nT), roughly comparable to the previous statistical results [Mered-
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ith et al., 2007]. At L = 2.5, the whistler-mode wave power are mainly provided by
the plasmaspheric hiss. The statistical behavior of whistler-mode wave amplitude may
be caused by the combination of external source and internal instability [Bortnik et al.,
2008, 2009; Chen et al., 2012; Li et al., 2015; Su et al., 2015a; Liu et al., 2017]. Regardless
of substorms or not, the dayside chorus can serve as the external source of plasmaspheric
hiss [Liu et al., 2017]. However, the amplification of hiss waves is favorable under the
condition of strong substorm injections [Chen et al., 2012].

Figure 4 gives the histograms of geomagnetic indices and wave amplitudes as functions of
butterfly index for the indicated energy channels at L = 2.5. Larger B[ events correspond
to larger values of —Dst and AFE, indicating that more distinct butterfly distributions
occur during higher geomagnetic activities. For all the four groups of energy channels,
there is a positive correlation between BI and magnetosonic wave B;. The averaged
magnetosonic wave amplitude By is less than 5 pT for the normal or flat-top distributions
with Bl = 1.0, and stays in the range 35-85 pT (depending on the energy channel) for the
distinct butterfly distributions with BI > 1.3. At the first two groups of energy channels
169-226 keV, BI weakly correlates with whistler-mode B;. As BI increases from 1.0
to 1.3, whistler-mode wave B; increases by about 2 times. For the other two groups of
energy channels 232-350 keV, BI and whistler-mode wave By appear to be independent
of each other. No matter how large BI is, the averaged whistler-mode wave B; keeps to
be ~ 20 pT. In order to further show the correlation between butterfly distributions and
waves, we present the scatter plots of butterfly indices as functions of magnetosonic and

whistler-mode wave amplitude B; (Figures S1 and S2) and the histograms of butterfly
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indices as functions of magnetosonic wave amplitude, whistler-mode wave amplitude and
their ratio (Figure S3) in the Supporting Information. All these observations suggest that
the butterfly distributions in the slot region are more closely related with magnetosonic
waves than whistler-mode waves.

Figures 5 and 6 display the occurrence rates of different pitch angle distribution at
the different levels of wave strength at L = 2.5. In each panel, the occurrence rate
is defined by event number in each BI range divided by the total number for all BI
under the given condition of wave amplitude. Clearly, the occurrence rate of butterfly
distributions with BI > 1 increases with the increasing magnetosonic wave amplitude By
(Figure 5). In the case of weak magnetosonic waves (1 pT < By < 5 pT), the occurrence
rate is approximately 40% — 50% for butterfly distributions with BI > 1. For strong
magnetosonic waves with By > 50 pT, the occurrence rate of butterfly distributions reaches
> 80%. As magnetosonic wave amplitude By increases from the range 1-5 pT to the range
> 50 pT, the occurrence rate of distinct butterfly distributions with BI > 1.3 increases
from the range 2-5% to the range 8-28% (depending on energy channels). In contrast,
the enhancement of whistler-mode waves cannot significantly increase the occurrence rate
of butterfly distributions. Even for the large amplitude (> 50 pT) whistler-mode waves,
the occurrence rate of butterfly distributions lies in the range 50% — 60%. As shown in
Figure 5, electrons with higher energies tend to exhibit more distinct butterfly patterns
(e.g. BI > 1.3) than those with lower energies, which can be reasonably explained by
the energy dependence of Landau resonance between magnetosonic waves and electrons

[Horne et al., 2007; Li et al., 2016a, b]. As simulated by Li et al. [2016a], magnetosonic
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waves at L = 2.4 produce butterfly distributions most efficiently for F) = 467 keV, and
the efficiency gradually drops with the decrease of electron energy. For the electrons of
E < 100 keV, magnetosonic waves are difficult to produce distinct butterfly distributions
(with large BI). This is further confirmed by statistical results at lower energy channels
(54-134 keV) (Figures S4-S6) in the Supporting Information. For the higher energy
channels (Eyx > 467 keV), due to the relatively poor integrity of the electron flux data,
it is difficult to carry out a valid statistical analysis. These observations demonstrate
once again the importance of magnetosonic waves for the generation of energetic electron
butterfly distributions in the radiation belt slot region.

In the statistics above, we focus on the heart of the slot region L = 2.5, because it can
basically reflect the whole slot region. We have also carried out some statistical research
at L = 2.0 and 3.0 (Figure S7-S12) in the Supporting Information. Compared to the
situation at L = 2.5, the butterfly distribution has a less (or more) chance to occur at
L =3.0 (or L =2.0). The correlations between butterfly distributions and magnetosonic

or whistler-mode waves at these L-shells are similar to those at L = 2.5.

4. Conclusion and Discussion

Radiation belt electrons often exhibit significant variations [e.g., Li et al., 2001; Baker
et al., 2013; Su et al., 2014a, b; Reeves et al., 2016] due to various adiabatic [e.g., Lyons,
1977; Kim and Chan, 1997; Su et al., 2010] and non-adiabatic [e.g., Horne and Thorne,
1998;. Summers et al., 1998; FElkington et al., 1999; Horne et al., 2005; Shprits et al.,
2006; Omura et al., 2007; Su et al., 2011b, 2015b; Mann et al., 2013; Thorne et al.,

2013b; Ni et al., 2015; Gao et al., 2016; Wang et al., 2016] processes. Electron pitch
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angle distribution pattern is an important indicators of radiation belt dynamics. Recent
observational studies have found the occurrence of butterfly pitch angle distributions of
energetic (~100s keV) electrons in the inner belt and slot region [Zhao et al., 2014a, b].
Two main plausible physical mechanisms for the formation of butterfly distributions at
such low L-shells are the resonant interactions with magnetosonic waves [Horne et al.,
2007; Xiao et al., 2015a; Li et al., 2016a] and whistler-mode waves [Albert et al., 2016].
Using Van Allen Probes data from May 2013 to May 2016, we have statistically in-
vestigated the electron pitch angle distribution characteristics and plasma waves in the
slot region. Butterfly distributions occur primarily near the equator (probably because
the butterfly peaks usually lie around the equatorial pitch angles |aeq — 90°| = 16°) but
display no preference for MLT (due to electron azimuthal drift around the Earth). The
occurrence rate of energetic electron butterfly distribution is higher during the stronger
geomagnetic storm and substorm activities. The amplitude of magnetosonic waves, as
compared to whistler-mode waves, exhibits a more positive correlation with the strength
of geomagnetic activities. In a statistical sense, more distinct butterfly distributions of
all the energy channels (169-350 keV) usually correspond to larger amplitude magne-
tosonic waves and vice versa. For the normal and flat-top distributions with a butterfly
index BI = 1, the averaged magnetosonic wave amplitude is less than 5 pT. In contrast,
for the distinct butterfly distributions with a butterfly index BI > 1.3, the averaged
magnetosonic wave amplitude increases to 35-95 pT. As magnetosonic wave amplitude
increases from 1-5 pT to > 50 pT, the occurrence rate of distinct butterfly distribution

with BI > 1.3 increases from 2-5% to 8-28% (depending on energy channels). Under
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the condition of large amplitude (> 50 pT) magnetosonic waves, the occurrence rate of
butterfly distribution BI > 1 is above 80%. However, the correlation between butterfly
index and whistler-mode wave amplitude appears to be quite weak. Even under the con-
dition of large amplitude (> 50 pT) whistler-mode waves, the occurrence rate of butterfly
distribution lies in the range 50% — 60%. Our study supports that Landau resonance with
magnetosonic waves [Horne et al., 2007; Li et al., 2016a, b] is a primary cause of energetic
electron butterfly distributions in the slot region.

The whistler-mode waves (plasmaspheric hiss, lightning-generated whistlers, and very
low frequency transmitters) are usually invoked to explain the gradual loss of energetic
electrons in the slot region [e.g.,

; Lyons et al., 1972; Abel and Thorne, 1998; Meredith et al., 2007]. In fact, the scattering
of whistler-mode waves becomes quite weak for the near-equatorially trapped electrons
le.g., Meredith et al., 2009; He et al., 2016]. The Landau resonance with magnetosonic
waves can act at the pitch-angles | — 90°| < 20° [Horne et al., 2007; Li et al., 2016a),
probably affecting the energetic electron lifetime in the slot region particularly during
the geomagnetically active periods. Hence, the magnetosonic waves should be taken into

account in future radiation belt models.
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Figure 1. (a) Geomagnetic indices Dst (black) and AFE (blue) during 27 August 2015;

(b) Magnetic field wave spectra in the frequency range of 10-10000 Hz measured by Van Allen

Probe-B, overplotted with the electron gyro-frequencies f.. (white dotted ) and the lower hybrid

frequencies frur (dashed); (¢) Wave normal angle; (d) Wave ellipticity; (e-h) Electron differential

fluxes (color-coded according to energy) at selected times with the butterfly indices labeled in

the panels.
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Figure 3. Histograms of (a-b) magnetosonic wave and (c-d) whistler-mode wave amplitude B
as functions of geomagnetic indices Dst and AF at L = 2.5. The sample numbers are labeled

above the histograms.
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Figure 6. Same as Figure 5 except for whistler-mode wave amplitude B;.
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