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Abstract—The computational complexity and problem sizes
of power grid applications have increased significantly with
the advent of renewable resources and smart grid technologies.
The current paradigm of solving these issues consist of in-
house high performance computing infrastructures, which have
drawbacks of high capital expenditures, maintenance, and limited
scalability. Cloud computing is an ideal alternative due to its
powerful computational capacity, rapid scalability, and high
cost-effectiveness. A major challenge, however, remains in that
the highly confidential grid data is susceptible for potential
cyberattacks when outsourced to the cloud. In this work, a
security and cloud outsourcing framework is developed for the
Economic Dispatch (ED) linear programming application. The
security framework transforms the ED linear program into a
confidentiality-preserving linear program, that masks both the
data and problem structure, thus enabling secure outsourcing to
the cloud. Results show that for large grid test cases the perfor-
mance gain and costs outperforms the in-house infrastructure.

Index Terms—Cloud computing, economic dispatch, high-
performance computing

I. INTRODUCTION

With the advent of renewable resources and smart grid

technologies, power grid applications, e.g., economic dispatch

(ED), have increased in computational complexity and prob-

lem size. As a solution, high-performance computing (HPC)

infrastructure is a necessity for system operators (SO) to solve

such intensive power grid applications. Traditionally, however,

HPC infrastructure is hosted by SOs in local computing

environments (e.g., by ISO New England [1]), which mandate

high capital expenditures and maintenance, while limiting

rapid scalability.

On the other hand, cloud computing is an ideal alternative

to in-house HPC. Cloud computing provides powerful compu-

tational capacity, rapid scalability, and high cost-effectiveness

[2]–[4]. Therefore, by outsourcing grid applications to the

cloud, the SOs can potentially reduce computational solve

time, reduce ongoing operating costs [5], and exploit enhanced

applications (e.g., contingencies, uncertainty management,

among others). The benefits and challenges associated with

cloud computing for power grid applications have been studied

extensively in the literature, such as in [3], [4], [6]. A major

challenge remains in the confidential-nature of power grid data

within the applications, which makes direct deployment in
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the cloud nonviable because of the potential for cybersecurity

attacks [7]. If proper measures can be developed to safeguard

applications from insider and outsider attackers, and even

malicious cloud service providers (CSP), then it will offer

significant benefits to the power system field.

ED [8] is a power grid application that is performed in

the real time by SOs (e.g., PJM [9], ERCOT [10], ISO-NE

[11], among others) to ensure the generation dispatch meets

the demand requirements at the least cost, while ensuring

transmission limits are met. However, the ED applications

include confidential grid data, such as generation-specific

and network-specific data, that must be safeguarded. Access

to such data by malicious entities, i.e., those attempting to

exercise market power for profitability [12], [13] or worst-

case forcing system blackouts, may cause significant economic

damages [14]. The challenge remains for these SOs to deploy

frequently run ED into the cloud while assuring confidentiality

of power grid data. Intensive research has been conducted

on the potential adverse outcomes of cyberattacks on the

grid. A series of works in [12], [13] looked at the potential

profitability of malicious entities when false data injection

attacks are performed on ED. Another work [15] studied

the economic profitability of entities that conduct power grid

network topology data attacks with virtual market bids. Such

challenges in [12], [13], [15] will be even more imminent as

ED is openly outsourced to the cloud. Therefore, it will be

necessary that proper techniques are used to ensure the cloud

is secured against cyberattacks.

From a security perspective, extensive research has fo-

cused on protecting data transfers and storage via various

authentication and authorization approaches (e.g., encryption-

based in [16], [17] and/or public key infrastructure in [18]).

Although these types of work add a mandatory layer of

security, they still present risks if a malicious entity is able

to obtain the stream of data and authentication/authorization

scheme information. On the other hand, these works do not

hide the mathematical structure of the cloud application being

solved. Other categories of research performed in [19]–[21]

explored methods to transform linear programs (LP), which is

the mathematical technique used to solve ED, to a masked LP

outputting an identical optimal solution. Such approaches have

dual benefits, where (1) the confidential power system data is

masked to the extent that a malicious entity cannot discern the

context, and (2) the LP problem itself is transformed in a way

that does not reveal the specific application being solved.

Limited pioneering works exist on bridging the gap from

a public to a confidentiality-preserving ED application in
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[22]–[25]. In [22], a multi-party model is developed that

is then masked to ensure each participating party does not

obtain knowledge of another party. A distributed algorithm

for solving ED was developed in [23] while considering a

secure sum protocol to ensure power grid data confidentiality.

The approach hides only the generator cost functions, limits,

and power output from other generation companies in order to

minimize market power. However, a more holistic approach is

needed to hide all power grid data such that all malicious en-

tities, whether that be a generation company or outside/inside

attackers, have no access to confidential power grid data. The

works in [24], [25] developed a data-masked OPF problem that

preserves the power system structure. However, by revealing

the structure, critical power grid information becomes public,

which enables malicious entities to learn about the power sys-

tem. An ideal solution method is to not only mask the sensitive

power system data (e.g., system connectivity, generation limits,

among others) but also the structure of the ED problem; i.e.,

problem constraints should not be easily distinguishable from

one another.

The work in this paper focuses on implementing a holistic

cloud security and outsourcing framework for the ED appli-

cation. Within the security framework, the traditional ED is

transformed into a confidentiality-preserving linear program

(CPLP) formulation. This formulation is used to generate a set

of masked random matrices with the classified power grid data

in an offline manner. The process does not publicly reveal any

confidential data or problem structure of the ED. Within the

outsourcing framework, the SO transmits the masked matrix

data to the cloud, where the CPLP problem is solved. The

holistic framework ensures (1) the SO’s computing infrastruc-

ture is reduced, (2) the grid data transmission and storage is

highly secured, and (3) the SO invokes the cloud to provide

the equivalent ED solution in a confidential manner.

The major contributions of this work are as follows:

• Development of a holistic cloud outsourcing and security

framework for LP applications, such as ED,

• Development of a CPLP for the ED application that

ensures security of sensitive power system data, and

• Assessment of computation times and costs when imple-

menting the framework on cloud infrastructure.

The remainder of this paper is organized as follows. Section

II describes the benefits and challenges of cloud computing,

discusses the potential cyberattacks, and formulates the CPLP.

Section III and Section IV discuss the security and cloud

outsourcing framework, respectively. Section V presents the

results of the framework applied on the cloud and Section VI

concludes the paper.

II. CLOUD COMPUTING FOR POWER SYSTEMS

Fig. 1 shows the connectivity scheme for the local in-

house and the cloud infrastructure. The current computing

paradigm for an SO is in-house HPC infrastructure, which

has the benefit of data and infrastructure security because

minimum outgoing communication of sensitive grid data is

required under a local infrastructure. However, the flexibility

to enhance computational capacity becomes a bottleneck,

because marginal performance increases require high capital

Fig. 1. Connectivity between SO’s in-house computing infrastructure and
the cloud. Individually, it is assumed each entity employs standard security
protocols (e.g., encryption).

expenditures and maintenance. On the other hand, a paradigm

shift to cloud computing introduces numerous benefits. The

intensive computational capacity and rapid scalability available

in the cloud opens new opportunities for SOs to perform

complex grid simulations at a typically lower cost [1]. The

interested reader is encouraged to refer to [1], [6] for the

benefits of cloud computing.

The major challenge of cybersecurity attacks exists when

power grid applications are performed on the cloud. Attacks

may occur in three distinct locations in the connectivity

between the SO and the cloud: (1) at the local infrastructure,

(2) the communication channel, and (3) on the cloud itself,

as illustrated in Fig. 1. The worst-case attacks at all locations

will occur from outsiders who are categorized as passive (i.e.,

only monitors the data throughput) or active (i.e., alters data

maliciously) entities. The outsiders do not have system-level

privileges to perform such tasks and are treated as malicious

entities.

Other categories of attacks may originate from insiders,

either passively or actively. These may include malicious local

administrators in the computing infrastructure under the SO’s

jurisdiction. Alternatively, the CSP may passively (honestly

yet curiously) monitor the data or even, in the worst case,

actively alter data. However, active data manipulation by the

CSP would drastically reduce trust in the provider and would

violate data privacy policies (see [26], [27] for details on cloud

policies and trust maintenance). In general, proper protocols

must be enacted by the SO to protect against such attacks.

A holistic security and outsourcing framework must ensure

appropriate mechanisms are established so that outsiders and

insiders, either actively or passively, cannot gain proprietary

knowledge or alter operations of the power grid, in this case

ED. In general, it is assumed the local in-house infrastructure

has basic security measures (e.g., data encryption, vetted

administrators, and others) and the interested reader is en-

couraged to refer to [18], [28] for design of such secured

infrastructure. On the other hand, and in general for the

cloud, CSPs provide multilayer trust and security mechanisms

within their services [26], [27]. The framework developed in

this work is therefore an additional layer of security against

potential cyberattacks for sensitive power grid data used in

cloud-based ED.

A. Holistic Security and Outsourcing Framework

Fig. 2 shows the process of data transfer between the SO and

the cloud, and the timeline. The holistic framework consists

of two sub-frameworks: SO offline security and the online

cloud outsourcing framework. Within the SO’s offline security
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Fig. 2. Security and cloud outsourcing framework process.

framework, local computing infrastructure is used to secure

the ED application demanding τ secure time, and then the data

is transmitted to the cloud demanding τ↑ time. The benefits

of the security framework are twofold. First, the sensitive

grid data is stored on locally SO managed computing, and

second, the sensitive data is masked so that it can be securely

outsourced to the cloud. It is important to note that the security

framework should be performed in advance (offline) of the

actual real-time period when ED is to be solved. For example,

the SO may perform the framework immediately after the

real-time market closure. Such an option does not require

alterations to the current market operating structure of the SO.

After processing the security framework and as the time ap-

proaches for ED initiation, the online outsourcing framework

solves the CPLP in τ solve time after receiving the secured

data. The optimal results are then transmitted back to the SO

in τ↓ time. The CPLP model does not resemble the typical ED

model, so malicious entities are unable to observe the type of

simulation being performed, which is a major benefit of the

cloud outsourcing framework. This process shown in Fig. 2

is repeated based on the specific market rules (e.g. every 5-

minutes) set forth by the SO.

The total computation time for an instance of ED solved

within the holistic framework is calculated as follows

T =
[

τ secure + τ↑
]

+
[

τ solve + τ↓
]

(1)

where the first and second bracket represents the computation

time for the security and cloud framework, respectively, as

illustrated in Fig. 2.

The following section will introduce the basis of the CPLP

problem, which is then applied to the ED problem under the

security framework, and then followed by the process of cloud

outsourcing.

B. Confidentiality-Preserving Linear Program (CPLP)

In linear programs, the variables, parameters, and problem

structure are visible. However, such visibility can enable

malicious entities (e.g., outsider/insider attackers) to curiously

monitor, extract data, or perform false data injections. For

example, exposing the ED problem structure can enable ma-

licious entities to understand (1) the specific power system

application being solved at that time instance, and (2) the

connectivity of generators and transmission lines in a network

(i.e., via the power balance constraints). Such open disclosure

will enable the malicious entities to recreate the transmission

network and effectively learn about its vulnerabilities.

As a solution, the research work in [19] introduced the

notion of a CPLP with equality constraints, and then in [20]

the approach was enhanced to include inequality constraints.

In [19], [20], the CPLP was developed for hiding confidential

data from multiple entities participating in a linear program.

However, this work assumes a single entity (i.e., an SO)

initiates the solution process of the CPLP in the form of

ED. The following notations are used in the CPLP problem

formulation:

Parameters

M Number of constraints

V Number of variables

A Constraint coefficient matrix with R
M×V

b Right-hand side vector with R
M×1

c
T Price row vector with R

1×M

H,U Diagonal monomial matrix with R
M×M

I Identity matrix

Variables

x Main decision variables

xs Auxiliary slack variables used for transfor-

mation

C. Formulation

Consider a LP in the form of

min c
Tx (2a)

where c
T is the price vector and x is the variable. The

objective function is subject to

Ax ≤ b (2b)

x ≥ 0 (2c)

where A is the constraint coefficient matrix with M by V
elements (i.e., R

M×V ) and b is the right-hand side (RHS)

column vector with M elements (i.e., R
M ) where M rep-

resents the number of constraints and V is the number of

decision variables in the LP. Note that in the ED application,

the A matrix holds the variable coefficients of the generator

outputs and voltage angles, and b holds the generator, line,

and voltage limits, and the demand at each bus. This standard

LP problem in (2a)–(2c) must be transformed into the CPLP

structure in order to mask the coefficient matrix A and RHS

vector b, which hold confidential data.

The standard LP problem includes inequality constraints as

shown in (2b), which are transformed into equality constraints

with the introduction of slack variables, xs. Note that each

constraint requires a single slack variable, such that M slack

variables are needed. The constraint is now formulated as

Ax+ Ixs = b.

The slack variables xs in this constraint are multiplied by

an identity1 matrix, I. However, by observing the structure

of the problem, it is straightforward for a malicious entity

to differentiate exactly the variables which are tied to the A

coefficients, which must remain secure, and those that are for

transformation purposes with the identity I coefficients. To

1An identity matrix is a square matrix in which all the elements of the
main diagonal are ones and all other elements are zeros.
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amend this, as discussed in [20], a privately held and diagonal

monomial matrix2 U is generated with M by M elements (i.e.,

R
M×M ). The elements of U are randomly chosen positive real

numbers. This matrix is multiplied by the slack coefficients

and variable, xs.

The transformed yet not confidential LP can be rewritten as

min c
Tx

s.t. Ax+UIxs = b

x, xs ≥ 0

To mask the data, the entity locally generates a privately

held and random diagonal monomial2 matrix H ∈ R
M×M .

Similar to U, the elements of H are randomly chosen positive

real numbers. All coefficients (cT, A, UI, b) of the transformed

LP are now multiplied by the random matrix H.

Such multiplication transforms the problem into the CPLP

structure and is formulated as follows:

min c
T
Hx (3a)

s.t. HAx+HUIxs = Hb (3b)

x, xs ≥ 0 (3c)

In this formulation, the entity (SO) only makes public the

secured matrices HA, Hb, cTH, HU. Therefore, the original

data in c
T, A, and b is kept confidential when transmitting

and performing the CPLP on the cloud. Without knowledge

of the underlying monomial matrices H and U, the data is

secured from potential cyberattacks.

Implementation of the CPLP has three distinct benefits:

1) The CPLP structure includes M randomly generated

constraints with random coefficients in each constraint.

Therefore, from the perspective of malicious entities, it

is not possible to distinguish what type of problem is

being solved.

2) Although the output solutions (values of x and xs) are not

masked, it is not possible for a malicious entity to depict

the context of each variable without the underlying data

in A and b, which in turn is confidential because of H,U.

3) The optimal solution obtained under CPLP is the same as

under standard LP. This is because the feasible region of

the original LP (2a)–(2c) is equivalent to that of the CPLP

(3a)–(3c). The objective function, while scaled, produces

the same optimal solution.

III. OFFLINE SECURITY FRAMEWORK DESIGN

To safeguard sensitive grid data when transmitting data or

performing the CPLP on the cloud, offline pre-processing of

ED data must take place in a local in-house computing envi-

ronment. The basis of the offline security framework design

is shown in Fig. 3. The local computing environment of the

SO is assumed to be secured from potential cyberattacks. The

interested reader is encouraged to refer to [18] for discussion

regarding local computing security.

Within this offline framework, the SO performs the (1)

ED LP transformation, (2) unsecured matrix generation

2A monomial matrix is a matrix where in each row and column there is
only one nonzero element. U and H are diagonal monomial matrices, where
only the main diagonal elements include a nonzero element.

LP

transformation
(1)

Unsecured

matrix generation
(2)

Secured

matrix calculation
(3)

System Operator

Local Computing

Confidentiality-preserving ED

Fig. 3. Offline security framework is performed at the in-house computing
infrastructure prior to ED being solved. A three-step process is established
to perform an LP transformation, generate the unsecured matrices, and then
calculate the secured matrices. It is assumed the in-house infrastructure has
preexisting security measures to safeguard against cyberattacks.

of A, b, c
T, and (3) matrix calculations to secure such

matrices against cyberattacks. As a benefit of implementing

the holistic framework, the in-house computing infrastructure

is not expected to be as powerful as the cloud or currently

deployed HPC infrastructure. This is because the ED will

be solved in the cloud, and only matrix calculations are

performed locally and offline before the actual real-time

period when ED must be solved, according to the SO’s

market rules. Sections III-A through III-C will discuss each

of the steps in Fig. 3 in further detail. The notation used for

the ED formulation is stated below for reference:

Sets

S Set of buses with index b and m

R Set of all generators with index r

Rb Set of generators connected to bus b

L Set of lines connecting bus b to m

ED Parameters

Bb,m Admittance of line connecting bus b to m

Cr Marginal price of generator r

Db Demand at bus b

Fmax

{b,m} Power limit of line connecting bus b to m

π Voltage angle limit

I|R|, I|S| Square identity matrix (1,0) of size |R| and

|S|, respectively

N Arc-node network incidence matrix of size

|S| by |S|

Variables

pr Power output of generator r

θb Voltage angle of bus b

A. ED LP transformation

For the SO to understand the structure of the CPLP matrices,

the ED formulation must be transformed into the LP form

shown in (2a)–(2c). The transformed model is formulated as

follows:

min
∑

r∈R

Cr · pr (4a)
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where Cr is the marginal price and pr is the power dispatch

of generator r. The objective function (4a) minimizes the cost

of dispatching the generators and is subject to the following

constraints:

−

[

∑

r∈Rb

pr −
∑

{b,m}∈L|m≥b

Bb,m · (θb − θm)

+
∑

{b,m}∈L|m≤b

Bb,m · (θm − θb)

]

≤ −Db

∀b ∈ S (4b)

pr ≤ Pmax

r ∀r ∈ R (4c)

−pr ≤ −Pmin

r ∀r ∈ R (4d)

Bb,m · (θb − θm) ≤ Fmax

{b,m} ∀{b,m} ∈ B (4e)

−Bb,m · (θb − θm) ≤ Fmax

{b,m} ∀{b,m} ∈ B (4f)

θb ≤ π ∀b ∈ B (4g)

−θb ≤ π ∀b ∈ B (4h)

In (4c), the system attempts to dispatch generators to meet

demand Db at each bus b, while also considering the power

flow through the network. Note that in traditional formulations

the power balance constraint is formulated as an equality;

however, without altering the solution, it can be formulated as

an inequality to conform to the CPLP structure. The next set

of constraints in (4c) and (4d) are the maximum and minimum

power limits of the generators. The transmission lines within

the network have maximum power limits that are modelled as

in (4e) and (4f). Similarly, each bus has limits to its voltage

angles, which are modelled as shown in (4g) and (4h).

Note that the SO does not solve this transformed ED LP in-

house as would be done in the current paradigm. This step in

the security framework (Fig. 3) is used to assist in the matrix

generation discussed in the following subsection.

B. Unsecured matrix generation for ED

The constraint structure shown in (4b)–(4h) identifies the

coefficients of the variables (pr and θb) and the RHS (e.g.,

Db, P
max
r , among others). With this, the coefficient matrix A

and RHS vector b are generated for the CPLP problem in the

context of ED. The size of these matrices is determined as

follows,

M = 2 · |R|+ |Rb|+ 2 · |L|+ 2 · |B|, (5)

V = |R|+ |B| (6)

where equation (5) calculates the total number of constraints,

M , and equation (6) does the same for the total number

of variables, V . Note in (5)–(6), the cardinality operator is

used to determine the number of elements in each set. To

illustrate with an example, for a three-bus system with three

lines and two generators, M = 19 and V = 5, and thus

matrix A ∈ R
19×5 and b ∈ R

19×1. The general matrices can

be represented as follows:

A =

C
o

n
st

ra
in

ts

pr · · · p|R| θb · · · θ|B|









































(4b) Rb B

(4c) I|R| 0

(4d) −I|R| 0

(4e) 0 −B ·N

(4f) 0 B ·N

(4g) 0 I|S|

(4h) 0 I|S|

, b =

RHS








































−D

Pmax

−Pmin

Fmax

Fmax

π

π

(7)

where for the purpose of clarity, each row is labelled with

the ED problem constraints (4b)–(4h) that are represented

by the coefficients. The matrix A includes two columns that

correspond to the decision variables’ coefficients. The first

column represents the coefficients of the generator power

outputs, pr, whereas the second column is tied to the voltage

bus angles, θb. The price row vector is also created as shown

in (8), where each element represents the marginal price of

generator r.

c
T =

[

Cr · · ·C|R|

]

(8)

An advantage of this approach is that the data involved in

the matrices (A, b, and c
T) are preexisting in the current

operating paradigm of the SO. The matrices, however, hold

sensitive data regarding the power grid and generator operating

conditions. To conform to the security framework, the matrices

must be secured.

C. Secured matrix calculation for ED

Under the CPLP structure, the privately held random ma-

trices H and U are constructed by the SO as shown in (9).

H =







h1,1 · · · 0
...

. . .
...

0 · · · hM,M






, U =







u1,1 · · · 0
...

. . .
...

0 · · · uM,M






(9)

To mask the sensitive matrices, the SO calculates the follow-

ing: HA, Hb, cTH, and HU. The communication between

the SO and the cloud consists of only these secured matrices,

which to malicious entities appear as random sets of data with

no distinguishable characteristics to the power system. Without

knowledge of H and U, attackers cannot obtain the grid data,

and therefore the SO must privately safeguard these original

random matrices.

D. Enhancements to ED-based CPLP

The unique structure of ED enables enhancements to be

made on the CPLP to improve computations and security. Four

enhancements are discussed below.

1) Reduced matrix generation and calculations

Depending on the size of the ED problem (i.e., M and V ),

frequent instantiation of the coefficient, RHS and cost matri-

ces, and random matrice calculations may be computationally

intensive. Data in A consists of the power grid network

(generator, line, and bus connectivity, and line admittance),

which do not change for ED. Similarly in the RHS matrix b,

the bottom portion (line flow and voltage angle limits) does

not change, but the upper portion (D and Pmax/Pmin) varies

in every instance of ED. On the other hand, the price row
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vector cT is based on the generator bids that change in every

instance of ED as well. Given these facts, the instantiation

of the non-variable A and bottom portions of b should be

performed once by the SO, unless changes are made to the

overall grid network, and updates can be made as needed to

the variable portion of b and the price vector cT. Therefore,

secured matrix calculations for HA and HU do not need to

occur in every instance of ED. However, frequent generation

of the random H and U matrices will lead to a more secure

outsourcing framework because each instance will be different

from the previous one.
2) Improving security with randomly ordered A,b
The overall security can be increased by randomly or

systematically sorting the rows of the A and b matrices prior

to multiplying them with H. According to (7), the structure

shown presents all power balance coefficients followed by

generator limits coefficients, and so on, which may lead to

possible pattern detection by attackers. Sorting the rows (e.g.,

a single bus power balance coefficients can be followed by

a single generator limit coefficients, and so on) adds another

layer of obscurity to the data without a distinguishable pattern.

3) Improving security with randomly ordered HA, HU, x∗

Since the output solutions (x and xs) are not masked, mali-

cious entities can still obtain the solutions to the optimization

problem. To remedy this, a column-based randomization of

the masked matrices can occur locally by the SO prior to

outsourcing the problem to the cloud. After creation of HA

and HU, these both can be augmented and instead of two

variables (x and xs), a single representative variable x∗ can

be used. This transforms equation (3b) as follows

(HA|HU) · x∗ = Hb

where as-is with no randomization, the order of x∗ =
(

x
xs

)

,

which remains similar to equation (3b) where the terms are

separate instead of augmented. To ensure security of the

optimal solutions, however, column-based randomization is

performed on the augmented matrix HA|HU and its corre-

sponding variable x∗ column vector.

For example, assume an LP with two constraints M = 2
and two decision variables V = 2. With the CPLP transfor-

mation, an additional two auxiliary variables are required for

masking. Therefore, the augmented matrix has a size of 2-

by-4 and x∗ is a column vector with 4 variables (i.e., two

decision and auxiliary variables, respectively). Without ran-

domization x∗ = [x1 x2 xs
1

xs
2
]
T

and thus the malicious

entity knows the first two columns correspond to decision

variables. With randomization, x∗ can be randomized, e.g.,

x∗ = [xs
1

x2 xs
4

x1]
T

, with a similar corresponding col-

umn order in the augmented matrix. Given this, the malicious

entities now have no knowledge of which variables are related

to the optimal decisions.
4) Enhanced ED problems

The standard ED problem can be further enhanced to

consider contingencies (i.e., security-constrained ED) by ex-

panding the data matrix A and b with each contingency

data. The benefit is that the SO can use the CPLP structure

developed in Section III-A to perform the standard or enhanced

versions of ED.

The following section discusses the cloud outsourcing

framework based on the secured matrices and the CPLP

problem residing on the cloud.

IV. CLOUD OUTSOURCING FRAMEWORK DESIGN

The SO outsources the simulation process of the CPLP

problem to the cloud to exploit its powerful computational

capacity, scalability, and cost-effectiveness. The outsourcing

process can be separated into secure data transmission to and

from the cloud, and solving the optimization in the cloud.

As discussed, the SO only transmits the secured random

matrices (HA, Hb, cTH, HU) developed in Section III-C.

The SO transmits the secured matrices by leveraging existing

Internet-based communication channels (e.g., File Transfer

Protocol (FTP)). An illustration of the communication con-

nectivity between the SO and the cloud is shown in Fig. 1.

The cloud holds the ready-to-solve standard CPLP in equations

(3a)–(3c) and waits for the SO to transmit the matrices and

invoke the simulation. The cloud solves the CPLP with the

given matrices and the solutions are then transmitted back to

the SO.

V. SIMULATION RESULTS

The proposed framework is applied to the 2383-bus Polish

system, which is a portion of the greater European system.

The system includes 327 generators connected to 2383 buses,

with 2896 lines supplying 24,558 MWh of total demand.

The data for this system was obtained from the MatPower

library [29]. The test case was studied in a local in-house

environment under Argonne National Laboratory’s Blues HPC

(ANLBlues) [30]. On the other hand, four types of Amazon

EC2 instances were employed to showcase the proposed cloud-

based framework similar to [1]. Amazon EC2 is an elastic

cloud computing infrastructure that provides rapid scalability

with various cost-effective pricing structures [26]. Note the ED

framework was performed on one computing cloud instance;

however, different families of instances were tested to deter-

mine the one that provides the best performance. The local

and cloud infrastructures are summarized in Table I. The data

for Amazon EC2 instances (c4.2xlarge, c4.4xlarge, c4.8xlarge,

and m4.16xlarge) and the ANLBlues was obtained from [31]–

[32] and [30], respectively. The hourly usage price for a local

in-house infrastructure (e.g., ANLBlues) was obtained from

a total cost analysis performed in [5], while assuming the

16 central processing units (CPUs) were being used to full

capacity at all times, thus providing the least-cost estimate.

The Amazon C4 instances are equipped with high-

performance processors ideal for computationally intensive

applications, whereas the M4 instances provide an overall

balance of computing, memory, and network resources. Note

that it is not in the scope of this work to compare and contrast

the architectures of the infrastructures; instead, the purpose of

this work is to present the benefits of cloud computing for

power grid applications in terms of computational times and

costs. In general for ED, the data transmission times τ↑, τ↓ in
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TABLE I
COMPUTING INFRASTRUCTURE CHARACTERISTICS

CPU RAM SSD Intel Processor $/h

1) ANLBlues 16 64 X Xeon Nehalem 2.880

2) c4.2xlarge 8 16 X Xeon E5-2666v3 0.419

3) c4.4xlarge 16 30 X Xeon E5-2666v3 0.838

4) c4.8xlarge 36 60 X Xeon E5-2666v3 1.675

5) m4.16xlarge 64 256 X Xeon E5-2686v4 3.830

equation (1) are negligible3 compared to the matrix generation

and/or solve times. For simplicity, the data transmission times

are ignored in consequent computational analysis.

In ANLBlues, the model was fully developed in GAMS [33]

and solved using IBM’s CPLEX [34]. For the cloud-based

framework, Matlab R2016b [35] was first used to develop

the secured matrices (see Fig. 3) on local in-house computing

infrastructure. It was then outsourced to Amazon EC2, where

the CPLP model was developed under GAMS and solved using

IBM’s CPLEX. Regardless of the computing paradigm, the

optimal solution to ED is equivalent in all cases.

A. Computational analysis of the security framework

In the typical operating paradigm, the ED application is

fully processed and solved using commercial solvers (e.g.

CPLEX) on locally based HPC infrastructure. However, with

the proposed holistic framework, additional matrix calcula-

tions within the security framework (see Fig. 3) are mandatory

before being outsourced to the cloud and solved using CPLEX.

Thus, it is crucial to ensure the additional computational

burden of the security framework is minimal for the SO.

Based on the unique ED problem structure, secured matrix

calculations for HA and HU do not need to take place in

every ED instance. The remaining matrices (Hb and c
T
H),

however, must be calculated prior to every ED solve, in

other words, after real-time market closure. Note that further

details regarding this enhancement were discussed in Section

III-D1. Table II categorizes the matrices based on one-time

and variable calculations and then presents their dimensions,

computational complexities, and calculation time for the 2383-

bus test system. The breakdown of the calculation time shows

the total variable calculations (1.326 seconds) are an order

of magnitude less than the total one-time calculations (51.47

seconds). Furthermore, performing the optional security en-

hancements discussed in Section III-D2 and Section III-D3

requires an additional 1.24 and 0.98 seconds for the row-

based and column-based randomization, respectively. Note

that the best practice is to perform the data randomization

frequently, such that the variable time shown in Table II

will require an additional 2.22 seconds thus totaling 3.546

seconds. Given this, the security framework adds minimal

computational burden to the operations of the SO prior to

cloud outsourcing.

B. Computational analysis for outsourcing framework

To be viable, the performance gain in terms of the solve time

τ solve for the online outsourcing framework must outperform

3Maximum file size that includes the secured matrices for the 2383-bus
data is 740 kB, which can be transmitted in milliseconds, especially with C4
and M4 network limits of 4 Gbps [31].

TABLE II
SECURITY FRAMEWORK MATRIX CALCULATIONS FOR CPLP ED

Dimensions
Complexity

Time (s),

M V τ secure

One-time

HA 13595 2710 O
(

M2V
)

9.390

HU 13595 13595 O
(

M3
)

42.08

Total 51.47

Variable

Hb 13595 — O
(

M2
)

1.230

cTH — 13595 O (V ) 0.096

Total 1.326

c4.2xlarge c4.4xlarge c4.8xlarge m4.16xlarge

Computing Infrastructure

-25
-20
-15
-10

-5
0
5

10
15

-3.0%

+13.6%+12.7%

-22.7%

Fig. 4. Performance gain or loss (%). For each instance, the percent change
was determined using the average computation time over all trials on Amazon
EC2 against the average computation time on ANLBlues.

the same framework applied to a in-house HPC (ANLBlues).

To obtain an average solve time, Monte Carlo simulations of

the framework were performed over 1000 trials of the same ED

data. Numerous trials are needed for accurate time estimates,

because cloud infrastructures are multi-user facilities with

shared resources. Note that such a study should be performed

by the SO to compare performance gains of their specific local

computing environment and the cloud.

Fig. 4 shows the performance gain or loss for each cloud

instance. The average time was obtained over all the trials,

and then the percent change was calculated against the average

time for ANLBlues. Compared to ANLBlues, the C4 family

of instances from Amazon EC2 has a performance change

of -22.7%, +12.7%, and +13.6% for c4.2xlarge, c4.4xlarge,

and c4.8xlarge, respectively. The c4.2xlarge instance exhibits

a large loss in performance (-22.7%) due to the 50% decrease

in CPUs available for processing as compared to ANLBlues

(see Table I). On the other hand, even though the M4 family

(m4.16xlarge) is equipped with the largest number of CPUs

(64) and RAM (256 GB), it performs at a loss of -3.0%

compared to ANLBlues, and consequently at a loss compared

to the other EC2 instances. This is because the M4 instances

are characterized as general purpose, whereas C4 instances

are compute-optimized, featuring high-performance proces-

sors. The typical ED problem size does not require extensive

RAM, as compared to more dynamic grid applications, and

instead benefits from high-performing CPUs. CPLEX exploits

CPUs by performing concurrent optimization, where different

algorithms (such as primal simplex, dual simplex, and barrier,

among others) are deployed on multiple CPU threads to solve

the LP, which is terminated as soon as a CPU obtains the

optimal solution [34]. With this, the C4 instances, specifically

c4.4xlarge and c4.8xlarge, outperform M4 instances because

the tradeoff between high-performance CPUs outweighs the
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Fig. 5. Effective EC2 monthly usage costs under various purchasing options

larger number of CPUs and RAM.

C. Usage cost analysis

Amazon EC2 has four pricing mechanisms: on-demand

pricing, reserved instances, spot instances, and dedicated hosts.

The spot instance is a market that allows end-users to bid on

spare EC2 capacity at significant discounts, with the drawback

that applications should have flexible start/end times and can

tolerate interruptions. Such instances are not ideal because ED

is time critical for the proper operations of the grid. On the

other hand, dedicated EC2s come at a price premium over

traditional on-demand EC2s. For the proposed framework, on-

demand and reserve instances will be analyzed because they

provide the structures that fit ideally with ED.

If an Amazon EC2 instance is launched, end-user billing

occurs for all full hours regardless of whether the instance is

stopped early due to an application completing in a fraction of

an hour. Since ED is performed on a scheduled basis in real

time (e.g., every 5 minutes), the EC2 instances are expected to

be consistently running. Given this behavior, the total effective

monthly usage costs under different purchasing options were

analyzed as shown in Fig. 5 for EC2 instances c4.8xlarge and

c4.4xlarge, since they both provide the largest performance

gain compared to ANLBlues (see Fig. 4). Note that only the

usage costs are analyzed because others include fixed costs

(i.e., licensing, personnel, among others), which vary highly

and will be reduced since CSPs manage the infrastructure.

Fig. 5 shows the costs for the on-demand payment option,

in which the SO pays for each instance without long-term

commitments. On the other hand, reserve instances, where the

SO commits to a 1-year no upfront payment (1-yr NoUp), 1-

year all upfront payment (1-yr AllUp), or a 3-year all upfront

(3-yr AllUp) payment contract are also shown in Fig. 5. In

comparison, the total monthly usage cost for ANLBlues is

$2073.60. Therefore, it is evident that a switch to Amazon

EC2’s c4.4xlarge and c4.8xlarge provides maximum savings

of 88.5% and 77.0%, respectively, if the longest term contract

is used. On the other hand, the cost increase from c4.4xlarge

to c4.8xlarge is approximately 50% for each of the purchasing

options. Consequently, the performance gain compared to the

in-house ANLBlues is 0.9% from c4.4xlarge to c4.8xlarge as

shown in Fig. 4. Theoretically, the tradeoff between the cost

and performance gain may not be worthwhile enough to justify

the more powerful yet expensive c4.8xlarge over the c4.4xlarge

instance.

The analysis presented in Fig. 5 presents an overview of

specifically the usage cost. However, when making decisions

whether to adopt cloud computing the SO must perform a

total cost analysis [5] (i.e., considering facilities, utilities,

manpower, among others) to explore the trade-off benefits

from in-house computing. The SO must also consider the

specific market timing rules, and the potential of other grid

applications exploiting the same cloud instances if they are

not being fully utilized.

VI. CONCLUSION AND PERSPECTIVES

Cloud computing introduces numerous opportunities for

power system entities, e.g., system operators (SO), to simulate

computationally intensive power grid applications at relatively

low costs. Two major challenges must be addressed to exploit

the benefits of cloud computing. The first is for these entities to

consider security measures to safeguard highly sensitive power

grid data when outsourced to the cloud. Second, for typical

applications, it is crucial to examine the availability, reliability,

and privacy policies of the server instances provided by cloud

service providers. It is important for entities to be vigilant

in their decision-making process when evaluating the cloud

computing paradigm.

In this work, a security and outsourcing framework is

developed that enables system operators to take advantage

of the powerful computational capacity, rapid scalability, and

high cost-effectiveness of cloud computing infrastructure for

Economic Dispatch (ED). However, in order to securely out-

source ED to the cloud, the confidential power grid data (e.g.,

generator- and network-related data) must be secured from ma-

licious entities attempting potential cyberattacks. To achieve

this, a confidentiality-preserving linear program (CPLP) trans-

formation is applied to ED within the security framework. This

approach provides dual benefits, where (1) the confidential

grid data is randomly masked so that no malicious entity can

discern the context, and (2) the linear program is transformed

in a manner that does not reveal the specific application being

solved. With the completion of the security framework, the

system operator then outsources the simulation process to

the cloud. The SO may implement this framework without

affecting the current operating paradigm.

The framework was applied to several Amazon EC2 in-

stances and a local in-house high-performance computing

infrastructure. Results show increased performance and de-

creased costs when employing Amazon EC2. Furthermore, it is

economic to commit to long-term upfront contracts since costs

decrease on average by 61% compared to on-demand usage.

In general, the system operator must appropriately choose the

specific cloud infrastructures that provide an ideal tradeoff

between performance gain and operating costs.
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