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Abstract—The computational complexity and problem sizes
of power grid applications have increased significantly with
the advent of renewable resources and smart grid technologies.
The current paradigm of solving these issues consist of in-
house high performance computing infrastructures, which have
drawbacks of high capital expenditures, maintenance, and limited
scalability. Cloud computing is an ideal alternative due to its
powerful computational capacity, rapid scalability, and high
cost-effectiveness. A major challenge, however, remains in that
the highly confidential grid data is susceptible for potential
cyberattacks when outsourced to the cloud. In this work, a
security and cloud outsourcing framework is developed for the
Economic Dispatch (ED) linear programming application. The
security framework transforms the ED linear program into a
confidentiality-preserving linear program, that masks both the
data and problem structure, thus enabling secure outsourcing to
the cloud. Results show that for large grid test cases the perfor-
mance gain and costs outperforms the in-house infrastructure.

Index Terms—Cloud computing, economic dispatch, high-
performance computing

I. INTRODUCTION

With the advent of renewable resources and smart grid
technologies, power grid applications, e.g., economic dispatch
(ED), have increased in computational complexity and prob-
lem size. As a solution, high-performance computing (HPC)
infrastructure is a necessity for system operators (SO) to solve
such intensive power grid applications. Traditionally, however,
HPC infrastructure is hosted by SOs in local computing
environments (e.g., by ISO New England [1]), which mandate
high capital expenditures and maintenance, while limiting
rapid scalability.

On the other hand, cloud computing is an ideal alternative
to in-house HPC. Cloud computing provides powerful compu-
tational capacity, rapid scalability, and high cost-effectiveness

[2]-[4]. Therefore, by outsourcing grid applications to the
cloud, the SOs can potentially reduce computational solve
time, reduce ongoing operating costs [5], and exploit enhanced
applications (e.g., contingencies, uncertainty management,
among others). The benefits and challenges associated with
cloud computing for power grid applications have been studied
extensively in the literature, such as in [3], [4], [6]. A major
challenge remains in the confidential-nature of power grid data
within the applications, which makes direct deployment in
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the cloud nonviable because of the potential for cybersecurity
attacks [7]. If proper measures can be developed to safeguard
applications from insider and outsider attackers, and even
malicious cloud service providers (CSP), then it will offer
significant benefits to the power system field.

ED [8] is a power grid application that is performed in
the real time by SOs (e.g., PIM [9], ERCOT [10], ISO-NE
[11], among others) to ensure the generation dispatch meets
the demand requirements at the least cost, while ensuring
transmission limits are met. However, the ED applications
include confidential grid data, such as generation-specific
and network-specific data, that must be safeguarded. Access
to such data by malicious entities, i.e., those attempting to
exercise market power for profitability [12], [13] or worst-
case forcing system blackouts, may cause significant economic
damages [14]. The challenge remains for these SOs to deploy
frequently run ED into the cloud while assuring confidentiality
of power grid data. Intensive research has been conducted
on the potential adverse outcomes of cyberattacks on the
grid. A series of works in [12], [13] looked at the potential
profitability of malicious entities when false data injection
attacks are performed on ED. Another work [15] studied
the economic profitability of entities that conduct power grid
network topology data attacks with virtual market bids. Such
challenges in [12], [13], [15] will be even more imminent as
ED is openly outsourced to the cloud. Therefore, it will be
necessary that proper techniques are used to ensure the cloud
is secured against cyberattacks.

From a security perspective, extensive research has fo-
cused on protecting data transfers and storage via various
authentication and authorization approaches (e.g., encryption-
based in [16], [17] and/or public key infrastructure in [18]).
Although these types of work add a mandatory layer of
security, they still present risks if a malicious entity is able
to obtain the stream of data and authentication/authorization
scheme information. On the other hand, these works do not
hide the mathematical structure of the cloud application being
solved. Other categories of research performed in [19]-[21]
explored methods to transform linear programs (LP), which is
the mathematical technique used to solve ED, to a masked LP
outputting an identical optimal solution. Such approaches have
dual benefits, where (1) the confidential power system data is
masked to the extent that a malicious entity cannot discern the
context, and (2) the LP problem itself is transformed in a way
that does not reveal the specific application being solved.

Limited pioneering works exist on bridging the gap from
a public to a confidentiality-preserving ED application in



[22]-[25]. In [22], a multi-party model is developed that
is then masked to ensure each participating party does not
obtain knowledge of another party. A distributed algorithm
for solving ED was developed in [23] while considering a
secure sum protocol to ensure power grid data confidentiality.
The approach hides only the generator cost functions, limits,
and power output from other generation companies in order to
minimize market power. However, a more holistic approach is
needed to hide all power grid data such that all malicious en-
tities, whether that be a generation company or outside/inside
attackers, have no access to confidential power grid data. The
works in [24], [25] developed a data-masked OPF problem that
preserves the power system structure. However, by revealing
the structure, critical power grid information becomes public,
which enables malicious entities to learn about the power sys-
tem. An ideal solution method is to not only mask the sensitive
power system data (e.g., system connectivity, generation limits,
among others) but also the structure of the ED problem; i.e.,
problem constraints should not be easily distinguishable from
one another.

The work in this paper focuses on implementing a holistic
cloud security and outsourcing framework for the ED appli-
cation. Within the security framework, the traditional ED is
transformed into a confidentiality-preserving linear program
(CPLP) formulation. This formulation is used to generate a set
of masked random matrices with the classified power grid data
in an offline manner. The process does not publicly reveal any
confidential data or problem structure of the ED. Within the
outsourcing framework, the SO transmits the masked matrix
data to the cloud, where the CPLP problem is solved. The
holistic framework ensures (1) the SO’s computing infrastruc-
ture is reduced, (2) the grid data transmission and storage is
highly secured, and (3) the SO invokes the cloud to provide
the equivalent ED solution in a confidential manner.

The major contributions of this work are as follows:

o Development of a holistic cloud outsourcing and security

framework for LP applications, such as ED,

o Development of a CPLP for the ED application that

ensures security of sensitive power system data, and

o Assessment of computation times and costs when imple-

menting the framework on cloud infrastructure.

The remainder of this paper is organized as follows. Section
IT describes the benefits and challenges of cloud computing,
discusses the potential cyberattacks, and formulates the CPLP.
Section III and Section IV discuss the security and cloud
outsourcing framework, respectively. Section V presents the
results of the framework applied on the cloud and Section VI
concludes the paper.

II. CLOUD COMPUTING FOR POWER SYSTEMS

Fig. 1 shows the connectivity scheme for the local in-
house and the cloud infrastructure. The current computing
paradigm for an SO is in-house HPC infrastructure, which
has the benefit of data and infrastructure security because
minimum outgoing communication of sensitive grid data is
required under a local infrastructure. However, the flexibility
to enhance computational capacity becomes a bottleneck,
because marginal performance increases require high capital
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the cloud. Individually, it is assumed each entity employs standard security
protocols (e.g., encryption).

expenditures and maintenance. On the other hand, a paradigm
shift to cloud computing introduces numerous benefits. The
intensive computational capacity and rapid scalability available
in the cloud opens new opportunities for SOs to perform
complex grid simulations at a typically lower cost [1]. The
interested reader is encouraged to refer to [1], [6] for the
benefits of cloud computing.

The major challenge of cybersecurity attacks exists when
power grid applications are performed on the cloud. Attacks
may occur in three distinct locations in the connectivity
between the SO and the cloud: (1) at the local infrastructure,
(2) the communication channel, and (3) on the cloud itself,
as illustrated in Fig. 1. The worst-case attacks at all locations
will occur from outsiders who are categorized as passive (i.e.,
only monitors the data throughput) or active (i.e., alters data
maliciously) entities. The outsiders do not have system-level
privileges to perform such tasks and are treated as malicious
entities.

Other categories of attacks may originate from insiders,
either passively or actively. These may include malicious local
administrators in the computing infrastructure under the SO’s
jurisdiction. Alternatively, the CSP may passively (honestly
yet curiously) monitor the data or even, in the worst case,
actively alter data. However, active data manipulation by the
CSP would drastically reduce trust in the provider and would
violate data privacy policies (see [26], [27] for details on cloud
policies and trust maintenance). In general, proper protocols
must be enacted by the SO to protect against such attacks.

A holistic security and outsourcing framework must ensure
appropriate mechanisms are established so that outsiders and
insiders, either actively or passively, cannot gain proprietary
knowledge or alter operations of the power grid, in this case
ED. In general, it is assumed the local in-house infrastructure
has basic security measures (e.g., data encryption, vetted
administrators, and others) and the interested reader is en-
couraged to refer to [18], [28] for design of such secured
infrastructure. On the other hand, and in general for the
cloud, CSPs provide multilayer trust and security mechanisms
within their services [26], [27]. The framework developed in
this work is therefore an additional layer of security against
potential cyberattacks for sensitive power grid data used in
cloud-based ED.

A. Holistic Security and Outsourcing Framework

Fig. 2 shows the process of data transfer between the SO and
the cloud, and the timeline. The holistic framework consists
of two sub-frameworks: SO offline security and the online
cloud outsourcing framework. Within the SO’s offline security
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Fig. 2. Security and cloud outsourcing framework process.

framework, local computing infrastructure is used to secure
the ED application demanding 75°“"*® time, and then the data
is transmitted to the cloud demanding 7' time. The benefits
of the security framework are twofold. First, the sensitive
grid data is stored on locally SO managed computing, and
second, the sensitive data is masked so that it can be securely
outsourced to the cloud. It is important to note that the security
framework should be performed in advance (offline) of the
actual real-time period when ED is to be solved. For example,
the SO may perform the framework immediately after the
real-time market closure. Such an option does not require
alterations to the current market operating structure of the SO.

After processing the security framework and as the time ap-
proaches for ED initiation, the online outsourcing framework
solves the CPLP in 7%°'V® time after receiving the secured
data. The optimal results are then transmitted back to the SO
in 7+ time. The CPLP model does not resemble the typical ED
model, so malicious entities are unable to observe the type of
simulation being performed, which is a major benefit of the
cloud outsourcing framework. This process shown in Fig. 2
is repeated based on the specific market rules (e.g. every 5-
minutes) set forth by the SO.

The total computation time for an instance of ED solved
within the holistic framework is calculated as follows

T = [Tsecure + TT] + [Tsolve + T‘l'] (1)

where the first and second bracket represents the computation
time for the security and cloud framework, respectively, as
illustrated in Fig. 2.

The following section will introduce the basis of the CPLP
problem, which is then applied to the ED problem under the
security framework, and then followed by the process of cloud
outsourcing.

B. Confidentiality-Preserving Linear Program (CPLP)

In linear programs, the variables, parameters, and problem
structure are visible. However, such visibility can enable
malicious entities (e.g., outsider/insider attackers) to curiously
monitor, extract data, or perform false data injections. For
example, exposing the ED problem structure can enable ma-
licious entities to understand (1) the specific power system
application being solved at that time instance, and (2) the
connectivity of generators and transmission lines in a network
(i.e., via the power balance constraints). Such open disclosure
will enable the malicious entities to recreate the transmission
network and effectively learn about its vulnerabilities.

As a solution, the research work in [19] introduced the
notion of a CPLP with equality constraints, and then in [20]

the approach was enhanced to include inequality constraints.
In [19], [20], the CPLP was developed for hiding confidential
data from multiple entities participating in a linear program.
However, this work assumes a single entity (i.e., an SO)
initiates the solution process of the CPLP in the form of
ED. The following notations are used in the CPLP problem
formulation:

Parameters

Number of constraints
Number of variables
Constraint coefficient matrix with R¥ >V

Right-hand side vector with RA !
Rl X M

G BT

Price row vector with
Diagonal monomial matrix with R >M
Identity matrix

= o
c

Variables

Main decision variables

8

8

Auxiliary slack variables used for transfor-
mation

C. Formulation
Consider a LP in the form of
min cTz (2a)
where cT is the price vector and x is the variable. The
objective function is subject to
Ax <b
x>0

(2b)
(20)

where A is the constraint coefficient matrix with M by V
elements (i.e., RM*V) and b is the right-hand side (RHS)
column vector with M elements (i.e., RM) where M rep-
resents the number of constraints and V' is the number of
decision variables in the LP. Note that in the ED application,
the A matrix holds the variable coefficients of the generator
outputs and voltage angles, and b holds the generator, line,
and voltage limits, and the demand at each bus. This standard
LP problem in (2a)-(2c) must be transformed into the CPLP
structure in order to mask the coefficient matrix A and RHS
vector b, which hold confidential data.

The standard LP problem includes inequality constraints as
shown in (2b), which are transformed into equality constraints
with the introduction of slack variables, x®. Note that each
constraint requires a single slack variable, such that M slack
variables are needed. The constraint is now formulated as

Az +1z° =b.

The slack variables z° in this constraint are multiplied by
an identity! matrix, I. However, by observing the structure
of the problem, it is straightforward for a malicious entity
to differentiate exactly the variables which are tied to the A
coefficients, which must remain secure, and those that are for
transformation purposes with the identity I coefficients. To

'An identity matrix is a square matrix in which all the elements of the
main diagonal are ones and all other elements are zeros.



amend this, as discussed in [20], a privately held and diagonal
monomial matrix? U is generated with M by M elements (i.e.,
RM*M) The elements of U are randomly chosen positive real
numbers. This matrix is multiplied by the slack coefficients
and variable, z°.

The transformed yet not confidential LP can be rewritten as

min ¢z

st. Az +Ulz’ =0
z,2° >0

To mask the data, the entity locally generates a privately
held and random diagonal monomial®> matrix H € RM*M
Similar to U, the elements of H are randomly chosen positive
real numbers. All coefficients (¢T, A, UL b) of the transformed
LP are now multiplied by the random matrix H.

Such multiplication transforms the problem into the CPLP
structure and is formulated as follows:

min cTHz (3a)
s.t. HAxz + HUIz®’ = Hb (3b)
z,2° >0 3¢)

In this formulation, the entity (SO) only makes public the
secured matrices HA, Hb, ¢cTH, HU. Therefore, the original
data in ¢T, A, and b is kept confidential when transmitting
and performing the CPLP on the cloud. Without knowledge
of the underlying monomial matrices H and U, the data is
secured from potential cyberattacks.

Implementation of the CPLP has three distinct benefits:

1) The CPLP structure includes M randomly generated
constraints with random coefficients in each constraint.
Therefore, from the perspective of malicious entities, it
is not possible to distinguish what type of problem is
being solved.

2) Although the output solutions (values of x and x*) are not
masked, it is not possible for a malicious entity to depict
the context of each variable without the underlying data
in A and b, which in turn is confidential because of H, U.

3) The optimal solution obtained under CPLP is the same as
under standard LP. This is because the feasible region of
the original LP (2a)—(2c) is equivalent to that of the CPLP
(3a)—(3c). The objective function, while scaled, produces
the same optimal solution.

III. OFFLINE SECURITY FRAMEWORK DESIGN

To safeguard sensitive grid data when transmitting data or
performing the CPLP on the cloud, offline pre-processing of
ED data must take place in a local in-house computing envi-
ronment. The basis of the offline security framework design
is shown in Fig. 3. The local computing environment of the
SO is assumed to be secured from potential cyberattacks. The
interested reader is encouraged to refer to [18] for discussion
regarding local computing security.

Within this offline framework, the SO performs the (1)
ED LP transformation, (2) unsecured matrix generation

2A monomial matrix is a matrix where in each row and column there is
only one nonzero element. U and H are diagonal monomial matrices, where
only the main diagonal elements include a nonzero element.
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Fig. 3. Offline security framework is performed at the in-house computing
infrastructure prior to ED being solved. A three-step process is established
to perform an LP transformation, generate the unsecured matrices, and then
calculate the secured matrices. It is assumed the in-house infrastructure has
preexisting security measures to safeguard against cyberattacks.

of A, b, cT, and (3) matrix calculations to secure such
matrices against cyberattacks. As a benefit of implementing
the holistic framework, the in-house computing infrastructure
is not expected to be as powerful as the cloud or currently
deployed HPC infrastructure. This is because the ED will
be solved in the cloud, and only matrix calculations are
performed locally and offline before the actual real-time
period when ED must be solved, according to the SO’s
market rules. Sections III-A through III-C will discuss each
of the steps in Fig. 3 in further detail. The notation used for
the ED formulation is stated below for reference:

Sets
S Set of buses with index b and m
R Set of all generators with index 7
Ry Set of generators connected to bus b
L Set of lines connecting bus b to m

ED Parameters

Admittance of line connecting bus b to m
Cy Marginal price of generator r

Dy Demand at bus b

Fﬁ)‘_"‘r’?ﬁb} Power limit of line connecting bus b to m

T Voltage angle limit

Iig), s Square identity matrix (1,0) of size |R| and
|S|, respectively

N Arc-node network incidence matrix of size
S| by |S]

Variables
Dr Power output of generator r
Oy Voltage angle of bus b

A. ED LP transformation

For the SO to understand the structure of the CPLP matrices,
the ED formulation must be transformed into the LP form
shown in (2a)—(2c). The transformed model is formulated as
follows:

(4a)

min Z Cy - pr

reR



where C, is the marginal price and p, is the power dispatch
of generator r. The objective function (4a) minimizes the cost
of dispatching the generators and is subject to the following
constraints:

S -

Bb,m : (917 - Hm)

>

rERy {b,m}eL|m>b
+ Y. Bom-(Om—0) | <Dy
{bm}eLm<b
VbeS  (4b)
pr < P VreR (4o
—p, < —pmin VreR  (4d)
Bym - (6 — 0m) < Fymy v{b,m} € B  (de)
=By - (06 — 0m) < Fi00y v{b,m} € B (4f)
Op <m Vb e B (4g)
-0y < Vbe B (4h)

In (4c), the system attempts to dispatch generators to meet
demand D, at each bus b, while also considering the power
flow through the network. Note that in traditional formulations
the power balance constraint is formulated as an equality;
however, without altering the solution, it can be formulated as
an inequality to conform to the CPLP structure. The next set
of constraints in (4¢) and (4d) are the maximum and minimum
power limits of the generators. The transmission lines within
the network have maximum power limits that are modelled as
in (4e) and (4f). Similarly, each bus has limits to its voltage
angles, which are modelled as shown in (4g) and (4h).

Note that the SO does not solve this transformed ED LP in-
house as would be done in the current paradigm. This step in
the security framework (Fig. 3) is used to assist in the matrix
generation discussed in the following subsection.

B. Unsecured matrix generation for ED

The constraint structure shown in (4b)—(4h) identifies the
coefficients of the variables (p, and ;) and the RHS (e.g.,
Dy, P#*, among others). With this, the coefficient matrix A
and RHS vector b are generated for the CPLP problem in the
context of ED. The size of these matrices is determined as
follows,

M =2-|R[+|Ry| +2-|L[+2|B], )
V =|R| +|B| 6)

where equation (5) calculates the total number of constraints,
M, and equation (6) does the same for the total number
of variables, V. Note in (5)—(6), the cardinality operator is
used to determine the number of elements in each set. To
illustrate with an example, for a three-bus system with three
lines and two generators, M = 19 and V' = b5, and thus
matrix A € R'%%% and b € R'*!. The general matrices can
be represented as follows:

proPRr Ob 0B RHS
@ T Rp B 7] r —D 7
g @ | I 0 pmax
£ —Ip 0 — pmin
A = § (4e) 0 —B . N B b - Fmax (7)
S @ 0 B-N max
(4g) 0 Iis) @
(4h) L 0 I\S\ . L T

where for the purpose of clarity, each row is labelled with
the ED problem constraints (4b)—(4h) that are represented
by the coefficients. The matrix A includes two columns that
correspond to the decision variables’ coefficients. The first
column represents the coefficients of the generator power
outputs, p,, whereas the second column is tied to the voltage
bus angles, 8. The price row vector is also created as shown
in (8), where each element represents the marginal price of
generator 7.

ct'=[C.-Clp|] (8

An advantage of this approach is that the data involved in
the matrices (A, b, and cT) are preexisting in the current
operating paradigm of the SO. The matrices, however, hold
sensitive data regarding the power grid and generator operating
conditions. To conform to the security framework, the matrices
must be secured.

C. Secured matrix calculation for ED

Under the CPLP structure, the privately held random ma-
trices H and U are constructed by the SO as shown in (9).
hiq - 0 upy v 0

: LU=l s o

0 - huwm 0

H p—
UM, M

To mask the sensitive matrices, the SO calculates the follow-
ing: HA, Hb, c¢TH, and HU. The communication between
the SO and the cloud consists of only these secured matrices,
which to malicious entities appear as random sets of data with
no distinguishable characteristics to the power system. Without
knowledge of H and U, attackers cannot obtain the grid data,
and therefore the SO must privately safeguard these original
random matrices.

D. Enhancements to ED-based CPLP

The unique structure of ED enables enhancements to be
made on the CPLP to improve computations and security. Four
enhancements are discussed below.

1) Reduced matrix generation and calculations

Depending on the size of the ED problem (i.e., M and V),
frequent instantiation of the coefficient, RHS and cost matri-
ces, and random matrice calculations may be computationally
intensive. Data in A consists of the power grid network
(generator, line, and bus connectivity, and line admittance),
which do not change for ED. Similarly in the RHS matrix b,
the bottom portion (line flow and voltage angle limits) does
not change, but the upper portion (D and P™#*/P™i%) varies
in every instance of ED. On the other hand, the price row



vector cT is based on the generator bids that change in every
instance of ED as well. Given these facts, the instantiation
of the non-variable A and bottom portions of b should be
performed once by the SO, unless changes are made to the
overall grid network, and updates can be made as needed to
the variable portion of b and the price vector cT. Therefore,
secured matrix calculations for HA and HU do not need to
occur in every instance of ED. However, frequent generation
of the random H and U matrices will lead to a more secure
outsourcing framework because each instance will be different
from the previous one.

2) Improving security with randomly ordered A, b

The overall security can be increased by randomly or
systematically sorting the rows of the A and b matrices prior
to multiplying them with H. According to (7), the structure
shown presents all power balance coefficients followed by
generator limits coefficients, and so on, which may lead to
possible pattern detection by attackers. Sorting the rows (e.g.,
a single bus power balance coefficients can be followed by
a single generator limit coefficients, and so on) adds another
layer of obscurity to the data without a distinguishable pattern.

3) Improving security with randomly ordered HA, HU, z*

Since the output solutions (z and z5) are not masked, mali-
cious entities can still obtain the solutions to the optimization
problem. To remedy this, a column-based randomization of
the masked matrices can occur locally by the SO prior to
outsourcing the problem to the cloud. After creation of HA
and HU, these both can be augmented and instead of two
variables (x and z5), a single representative variable x* can
be used. This transforms equation (3b) as follows

(HA|HU) - z* = Hb

where as-is with no randomization, the order of =* = ( = ),
which remains similar to equation (3b) where the terms are
separate instead of augmented. To ensure security of the
optimal solutions, however, column-based randomization is
performed on the augmented matrix HA|HU and its corre-
sponding variable £* column vector.

For example, assume an LP with two constraints M = 2
and two decision variables V' = 2. With the CPLP transfor-
mation, an additional two auxiliary variables are required for
masking. Therefore, the augmented matrix has a size of 2-
by-4 and z* is a column vector with 4 variables (i.e., two
decision and auxiliary variables, resqpectively). Without ran-
domization z* = [x1 1z 2§ 5] and thus the malicious
entity knows the first two columns correspond to decision
variables. With randomization, * can be randomized, e.g.,
¥ =[z] m2 a:l]T, with a similar corresponding col-
umn order in the augmented matrix. Given this, the malicious
entities now have no knowledge of which variables are related
to the optimal decisions.

4) Enhanced ED problems

The standard ED problem can be further enhanced to
consider contingencies (i.e., security-constrained ED) by ex-
panding the data matrix A and b with each contingency
data. The benefit is that the SO can use the CPLP structure
developed in Section III-A to perform the standard or enhanced
versions of ED.

The following section discusses the cloud outsourcing
framework based on the secured matrices and the CPLP
problem residing on the cloud.

IV. CLOUD OUTSOURCING FRAMEWORK DESIGN

The SO outsources the simulation process of the CPLP
problem to the cloud to exploit its powerful computational
capacity, scalability, and cost-effectiveness. The outsourcing
process can be separated into secure data transmission to and
from the cloud, and solving the optimization in the cloud.

As discussed, the SO only transmits the secured random
matrices (HA, Hb, ¢TH, HU) developed in Section III-C.
The SO transmits the secured matrices by leveraging existing
Internet-based communication channels (e.g., File Transfer
Protocol (FTP)). An illustration of the communication con-
nectivity between the SO and the cloud is shown in Fig. 1.
The cloud holds the ready-to-solve standard CPLP in equations
(3a)—(3¢) and waits for the SO to transmit the matrices and
invoke the simulation. The cloud solves the CPLP with the
given matrices and the solutions are then transmitted back to
the SO.

V. SIMULATION RESULTS

The proposed framework is applied to the 2383-bus Polish
system, which is a portion of the greater European system.
The system includes 327 generators connected to 2383 buses,
with 2896 lines supplying 24,558 MWh of total demand.
The data for this system was obtained from the MatPower
library [29]. The test case was studied in a local in-house
environment under Argonne National Laboratory’s Blues HPC
(ANLBIlues) [30]. On the other hand, four types of Amazon
EC2 instances were employed to showcase the proposed cloud-
based framework similar to [1]. Amazon EC2 is an elastic
cloud computing infrastructure that provides rapid scalability
with various cost-effective pricing structures [26]. Note the ED
framework was performed on one computing cloud instance;
however, different families of instances were tested to deter-
mine the one that provides the best performance. The local
and cloud infrastructures are summarized in Table I. The data
for Amazon EC2 instances (c4.2xlarge, c4.4xlarge, c4.8xlarge,
and m4.16xlarge) and the ANLBIlues was obtained from [31]-
[32] and [30], respectively. The hourly usage price for a local
in-house infrastructure (e.g., ANLBlues) was obtained from
a total cost analysis performed in [5], while assuming the
16 central processing units (CPUs) were being used to full
capacity at all times, thus providing the least-cost estimate.

The Amazon C4 instances are equipped with high-
performance processors ideal for computationally intensive
applications, whereas the M4 instances provide an overall
balance of computing, memory, and network resources. Note
that it is not in the scope of this work to compare and contrast
the architectures of the infrastructures; instead, the purpose of
this work is to present the benefits of cloud computing for
power grid applications in terms of computational times and
costs. In general for ED, the data transmission times 1, 74 in



TABLE I TABLE II
COMPUTING INFRASTRUCTURE CHARACTERISTICS SECURITY FRAMEWORK MATRIX CALCULATIONS FOR CPLP ED
| CPU RAM SSD Intel Processor $/h Dimensions ] Time (s),
Complexity

1) ANLBIlues 16 64 v Xeon Nehalem 2.880 M \% psecure

2) c4.2xlarge - .

3; c4.4xlar§e 186 ;g j §222 Eg.igggg 8.§§2 . HA 113595 2710 O (Mztv) 9-390

4) c4.8xlarge 36 60 v  Xeon E5-2666v3  1.675 One-time | HU | 13595 13595 O (M?) 42.08

5) m4.16xlarge | 64 256 v Xeon E5-2686v4  3.830 Total 51.47

Hb | 13595  — O (M?) 1.230
. . o3 . . Variable | ¢TH | — 13595 o (V) 0.096
equation (1) are negligible® compared to the matrix generation Total 1326
and/or solve times. For simplicity, the data transmission times -
are ignored in consequent computational analysis.

In ANLBIlues, the model was fully developed in GAMS [33] %8 [ 127, 13.6% 1
and solved using IBM’s CPLEX [34]. For the cloud-based g3 5} i ’ ]
framework, Matlab R2016b [35] was first used to develop E z 0
the secured matrices (see Fig. 3) on local in-house computing 3 % 1(5) i 3.0% |
infrastructure. It was then outsourced to Amazon EC2, where E B -15F 1
the CPLP model was developed under GAMS and solved using 5(5) | ; 22.7% ‘ ‘ ‘ |
IBM’s CPLEX. Regardless of the computing paradigm, the c4.2xlarge c4.4xlarge c4.8xlarge m4.16xlarge

optimal solution to ED is equivalent in all cases.

A. Computational analysis of the security framework

In the typical operating paradigm, the ED application is
fully processed and solved using commercial solvers (e.g.
CPLEX) on locally based HPC infrastructure. However, with
the proposed holistic framework, additional matrix calcula-
tions within the security framework (see Fig. 3) are mandatory
before being outsourced to the cloud and solved using CPLEX.
Thus, it is crucial to ensure the additional computational
burden of the security framework is minimal for the SO.

Based on the unique ED problem structure, secured matrix
calculations for HA and HU do not need to take place in
every ED instance. The remaining matrices (Hb and c¢TH),
however, must be calculated prior to every ED solve, in
other words, after real-time market closure. Note that further
details regarding this enhancement were discussed in Section
III-D1. Table II categorizes the matrices based on one-time
and variable calculations and then presents their dimensions,
computational complexities, and calculation time for the 2383-
bus test system. The breakdown of the calculation time shows
the total variable calculations (1.326 seconds) are an order
of magnitude less than the total one-time calculations (51.47
seconds). Furthermore, performing the optional security en-
hancements discussed in Section III-D2 and Section III-D3
requires an additional 1.24 and 0.98 seconds for the row-
based and column-based randomization, respectively. Note
that the best practice is to perform the data randomization
frequently, such that the variable time shown in Table II
will require an additional 2.22 seconds thus totaling 3.546
seconds. Given this, the security framework adds minimal
computational burden to the operations of the SO prior to
cloud outsourcing.

B. Computational analysis for outsourcing framework
To be viable, the performance gain in terms of the solve time
75°Ive for the online outsourcing framework must outperform

3Maximum file size that includes the secured matrices for the 2383-bus
data is 740 kB, which can be transmitted in milliseconds, especially with C4
and M4 network limits of 4 Gbps [31].

Computing Infrastructure

Fig. 4. Performance gain or loss (%). For each instance, the percent change
was determined using the average computation time over all trials on Amazon
EC2 against the average computation time on ANLBIues.

the same framework applied to a in-house HPC (ANLBIlues).
To obtain an average solve time, Monte Carlo simulations of
the framework were performed over 1000 trials of the same ED
data. Numerous trials are needed for accurate time estimates,
because cloud infrastructures are multi-user facilities with
shared resources. Note that such a study should be performed
by the SO to compare performance gains of their specific local
computing environment and the cloud.

Fig. 4 shows the performance gain or loss for each cloud
instance. The average time was obtained over all the trials,
and then the percent change was calculated against the average
time for ANLBIlues. Compared to ANLBIlues, the C4 family
of instances from Amazon EC2 has a performance change
of -22.7%, +12.7%, and +13.6% for c4.2xlarge, c4.4xlarge,
and c4.8xlarge, respectively. The c4.2xlarge instance exhibits
a large loss in performance (-22.7%) due to the 50% decrease
in CPUs available for processing as compared to ANLBlues
(see Table I). On the other hand, even though the M4 family
(m4.16xlarge) is equipped with the largest number of CPUs
(64) and RAM (256 GB), it performs at a loss of -3.0%
compared to ANLBIlues, and consequently at a loss compared
to the other EC2 instances. This is because the M4 instances
are characterized as general purpose, whereas C4 instances
are compute-optimized, featuring high-performance proces-
sors. The typical ED problem size does not require extensive
RAM, as compared to more dynamic grid applications, and
instead benefits from high-performing CPUs. CPLEX exploits
CPUs by performing concurrent optimization, where different
algorithms (such as primal simplex, dual simplex, and barrier,
among others) are deployed on multiple CPU threads to solve
the LP, which is terminated as soon as a CPU obtains the
optimal solution [34]. With this, the C4 instances, specifically
c4.4xlarge and c4.8xlarge, outperform M4 instances because
the tradeoff between high-performance CPUs outweighs the
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larger number of CPUs and RAM.

C. Usage cost analysis

Amazon EC2 has four pricing mechanisms: on-demand
pricing, reserved instances, spot instances, and dedicated hosts.
The spot instance is a market that allows end-users to bid on
spare EC2 capacity at significant discounts, with the drawback
that applications should have flexible start/end times and can
tolerate interruptions. Such instances are not ideal because ED
is time critical for the proper operations of the grid. On the
other hand, dedicated EC2s come at a price premium over
traditional on-demand EC2s. For the proposed framework, on-
demand and reserve instances will be analyzed because they
provide the structures that fit ideally with ED.

If an Amazon EC2 instance is launched, end-user billing
occurs for all full hours regardless of whether the instance is
stopped early due to an application completing in a fraction of
an hour. Since ED is performed on a scheduled basis in real
time (e.g., every 5 minutes), the EC2 instances are expected to
be consistently running. Given this behavior, the total effective
monthly usage costs under different purchasing options were
analyzed as shown in Fig. 5 for EC2 instances c4.8xlarge and
c4.4xlarge, since they both provide the largest performance
gain compared to ANLBlues (see Fig. 4). Note that only the
usage costs are analyzed because others include fixed costs
(i.e., licensing, personnel, among others), which vary highly
and will be reduced since CSPs manage the infrastructure.

Fig. 5 shows the costs for the on-demand payment option,
in which the SO pays for each instance without long-term
commitments. On the other hand, reserve instances, where the
SO commits to a 1-year no upfront payment (1-yr NoUp), 1-
year all upfront payment (1-yr AllUp), or a 3-year all upfront
(3-yr AllUp) payment contract are also shown in Fig. 5. In
comparison, the total monthly usage cost for ANLBlues is
$2073.60. Therefore, it is evident that a switch to Amazon
EC2’s c4.4xlarge and c4.8xlarge provides maximum savings
of 88.5% and 77.0%, respectively, if the longest term contract
is used. On the other hand, the cost increase from c4.4xlarge
to c4.8xlarge is approximately 50% for each of the purchasing
options. Consequently, the performance gain compared to the
in-house ANLBIlues is 0.9% from c4.4xlarge to c4.8xlarge as
shown in Fig. 4. Theoretically, the tradeoff between the cost
and performance gain may not be worthwhile enough to justify
the more powerful yet expensive c4.8xlarge over the c4.4xlarge
instance.

The analysis presented in Fig. 5 presents an overview of
specifically the usage cost. However, when making decisions

whether to adopt cloud computing the SO must perform a
total cost analysis [5] (i.e., considering facilities, utilities,
manpower, among others) to explore the trade-off benefits
from in-house computing. The SO must also consider the
specific market timing rules, and the potential of other grid
applications exploiting the same cloud instances if they are
not being fully utilized.

VI. CONCLUSION AND PERSPECTIVES

Cloud computing introduces numerous opportunities for
power system entities, e.g., system operators (SO), to simulate
computationally intensive power grid applications at relatively
low costs. Two major challenges must be addressed to exploit
the benefits of cloud computing. The first is for these entities to
consider security measures to safeguard highly sensitive power
grid data when outsourced to the cloud. Second, for typical
applications, it is crucial to examine the availability, reliability,
and privacy policies of the server instances provided by cloud
service providers. It is important for entities to be vigilant
in their decision-making process when evaluating the cloud
computing paradigm.

In this work, a security and outsourcing framework is
developed that enables system operators to take advantage
of the powerful computational capacity, rapid scalability, and
high cost-effectiveness of cloud computing infrastructure for
Economic Dispatch (ED). However, in order to securely out-
source ED to the cloud, the confidential power grid data (e.g.,
generator- and network-related data) must be secured from ma-
licious entities attempting potential cyberattacks. To achieve
this, a confidentiality-preserving linear program (CPLP) trans-
formation is applied to ED within the security framework. This
approach provides dual benefits, where (1) the confidential
grid data is randomly masked so that no malicious entity can
discern the context, and (2) the linear program is transformed
in a manner that does not reveal the specific application being
solved. With the completion of the security framework, the
system operator then outsources the simulation process to
the cloud. The SO may implement this framework without
affecting the current operating paradigm.

The framework was applied to several Amazon EC2 in-
stances and a local in-house high-performance computing
infrastructure. Results show increased performance and de-
creased costs when employing Amazon EC2. Furthermore, it is
economic to commit to long-term upfront contracts since costs
decrease on average by 61% compared to on-demand usage.
In general, the system operator must appropriately choose the
specific cloud infrastructures that provide an ideal tradeoff
between performance gain and operating costs.
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