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Abstract

Finite element in angle formulations of the charged particle transport equation require the

discretization of the unit sphere. In Sceptre, a three-dimensional surface mesh of a sphere

is transformed into a two-dimensional mesh. Projection of a sphere onto a two-dimensional

surface is well studied with map makers spending the last few centuries attempting to create

maps that preserve proportion and area. Using these techniques, various meshing schemes for

the unit sphere were investigated.

Keywords: Charge Particle Transport, Finite Element in Angle, Sphere Projection onto Sur-

face
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Fig. 1. Selection of Points on Unit Sphere

I. INTRODUCTION

This report details a study on the generation of finite element meshes for the unit sphere.

Traditionally, transport methods have used the discrete ordinates approach to discretize the angular

phase space. With the inclusion of electromagnetic fields, it is necessary to use a finite element

approach in angle. The projection of a three-dimensional sphere surface onto a two-dimensional

space is a well studied problem. Mapmakers throughout the centuries have attempted to use

different projections to conserve distances and areas on the surface of sphere (in their case, the

Earth). In this report, we study various of these projection schemes and apply them to a test

problem found in the SCEPTRE code.

II. UNIT SPHERE MESHING SCHEMES

In this section we detail the meshing schemes used. We describe the nature of the projection,

the projection equations, and show an example of the mesh created by the scheme. Points on the

unit sphere we generated by using Octave’s sphere command. The top hemisphere of the sphere

was then selected and the points used to create the two-dimensional meshes that was later used in

the test problem. The unit sphere created using this process is seen in Figure 1.
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Fig. 2. Coarse Mesh of the Unit Sphere using Azimuthal Equidistant Projection of Unit Sphere

II.A. Azimuthal Equidistant Projection

A point on the sphere is selected such that mapped distances and azimuths from that point

to any other point will be correct. The point on the sphere given by (θ, φ) is mapped to two-

dimensional Cartesian space using the following relationships

x = ρ sin θ, y = −ρ cos θ, (1)

where ρ is the radius of the sphere (for the unit sphere ρ = 1). Figure 2 shows a coarse mesh

projection of the unit sphere onto two-dimensional Cartesian space. As the projection is refined,

the area of the projection becomes equal to 4π.
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Fig. 3. Coarse Mesh using Bonne Projection of Unit Sphere

II.B. Bonne Projection

A Bonne projection is an equal-area projection. The projection transforms a point on the

unit sphere surface, (θ, φ), onto a point, (x, y), on a two-dimensional Cartesian surface using the

following equations

x = ρ sinE, y = cotφ1 − ρ cosE, (2)

where

ρ = cotφ1 + φ1 − ρ, E =
(θ − θ0) cosφ

ρ
. (3)

The constants θ0 and φ1 are the angle of the central meridian and the standard parallel of the

projection respectively. A coarse mesh projection of the unit sphere using the Bonne projection

can be seen in Figure 3.
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Fig. 4. Coarse Mesh of the Unit Sphere using Bottomley Projection of Unit Sphere

II.C. Bottomley Projection

The Bottomley projection is an equal area projection. The projection transforms a point

on the unit sphere surface, (θ, φ), to a point on a two-dimensional Cartesian surface using the

following equations

x =
ρ sinE
sinφ1

, y =
π

2
− ρ cosE, (4)

where ρ and E are given by

ρ =
π

2
− φ, E =

θ sinφ1 sin ρ
ρ

, (5)

where φ1 is the given parallel of the projection in radians. A coarse mesh projection of the

unit sphere using the Bottomley projection can be seen in Figure 4.
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Fig. 5. Coarse Mesh of the Unit Sphere using Eckert II Projection of Unit Sphere

II.D. Eckert II Projection

The Eckert II projection is an equal area projection. The projection is symmetrical about

the equator and central meridian of the unit sphere. The projection transforms a point on the

unit sphere surface, (θ, φ), to a point on a two-dimensional Cartesian surface using the following

equations

x = 2R(θ − θ0)

√
4− 3 sin |φ|

6π
, y = sign(φ)R

√
2π
3

(
2−

√
4− sin |φ|

)
, (6)

where θ0 is the central meridian and R is the radius of the unit sphere. A coarse mesh

projection of the unit sphere using the Eckert II projection can be see in Figure 5.
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Fig. 6. Coarse Mesh of the Unit Sphere using Eckert IV Projection of Unit Sphere

II.E. Eckert IV Projection

The Eckert IV projection is an equal area projection. The projection takes the unit sphere

and project it onto an ellipse. For points on the sphere with coordinates, (θ, φ), the projection

onto the ellipse is given by

x =
2√

4π + π2
R(θ − θ0)(1 + cosα), y = 2

√
π

4 + π
R sinα (7)

where

α+ sinα cosα+ 2 sinα =
(

2 +
π

2

)
sinφ. (8)

α must be solved for numerically using a root finding method such as Newton’s Method.

Figure 6 shows a coarse mesh projection of the unit sphere using the Eckert II projection.
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Fig. 7. Coarse Mesh of the Unit Sphere using Elliptical Projection of Unit Sphere

II.F. Elliptical Projection

The Elliptical projection (also knows as the Mollweide projection) projects the surface of the

unit sphere onto an ellipse. The sphere is represented as a proportional 2:1 ellipse. The points

located on the unit sphere, (θ, φ), are projected onto the ellipse using the following equations

x = R
2
√

2
π

(θ − θ0) cosα, y = R
√

2 sinα, (9)

where

2α+ sin 2α = π sinφ. (10)

α must be solved for iteratively. If φ = ±π2 , then α = ±π2 to avoid the possibility of division

by zero. Figure 7 shows a coarse grid projection of the unit sphere.
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Fig. 8. Coarse Mesh of the Unit Sphere using Gall Stereographic Projection of Unit Sphere

II.G. Gall Stereographic Projection

The Gall stereographic projection is a projection that does preserve area or is conformal. The

points on the unit sphere with coordinates (θ, φ) are transformed using the following equations

x =
Rθ√

2
, y = R

(
1 +
√

2
2

)
tan

φ

2
, (11)

where R is the radius of the sphere. Figure 8 shows a coarse grid projection of the unit

sphere using Gall stereographic projection.
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Fig. 9. Coarse Mesh of the Unit Sphere using Hammer Projection of Unit Sphere

II.H. Hammer Projection

The Hammer projection is an equal area projection. Points on the unit sphere (θ, φ) are

transformed onto two-dimensional Cartersian space using the following equations

x = laeax

(
θ

2
, φ

)
, y =

1
2

laeay

(
θ

2
, φ

)
, (12)

where we define the functions laeax and laeay as

laeax

(
θ

2
, φ

)
=

2
√

2 cosφ sin θ
2√

1 + cosφ cos θ2
, laeay

(
θ

2
, φ

)
=

2
√

2 sinφ√
1 + cosφ cos θ2

. (13)

Figure 9 shows a coarse grid projection of the unit sphere using Hammer projection.
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Fig. 10. Coarse Mesh of the Unit Sphere using Polyconic Projection of Unit Sphere

II.I. Polyconic Projection

Polyconic projection projects the unit sphere onto a circle. For points on the unit sphere

given by (θ, φ), the projection is described by

x = cotφ
(
(θ − θ0) sinφ

)
, y = φ− φ0 + cotφ

(
1− cos

(
(θ − θ0) sinφ

))
, (14)

where θ0 and φ0 are the central meridian and the latitude chosen to be the origin at θ0. If

φ = 0, then x = θ − θ0 and y = −φ0 to avoid division by zero. Figure 10 shows a coarse unit

sphere approximation using polyconic projection.
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Fig. 11. Coarse Mesh of the Unit Sphere using Sinusoidal Projection of Unit Sphere

II.J. Sinusoidal Projection

Sinusoidal projection is an equal area projection. The projection is defined as

x = (θ − θ0) cosφ, y = φ (15)

where θ0 is the central meridian. A coarse mesh of the unit sphere created using sinusoidal

projection is seen in Figure 11.
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TABLE I
Unit Sphere Projection Mesh Refinement Error Norms

N Azimuthal Equidistant Bonne EckertII EckertIV
5 3.37886 NaN 3.23727 NaN
10 1.74858 NaN 5.42324 4.19936
15 NaN NaN 1.73128 NaN
20 NaN NaN 1.40333 NaN
25 NaN 0.669671 0.904281 NaN
30 1.37466 2.45754 0.344995 0.818431

TABLE II
Unit Sphere Projection Mesh Refinement Error Norms

N Elliptical Gall Stereo Hammer Polyconic Sinusoidal
5 NaN 4.72614 4.14842 NaN 10.024
10 6.6788 NaN 3.52743 7.02542 2.82338
15 2.16693 1.75353 4.36781 4.53914 4.93965
20 3.8455 NaN NaN NaN 1.66892
25 3.19011 NaN 1.48468 NaN NaN
30 2.66479 NaN 0.943321 NaN 0.954384

III. RESULTS

A mesh refinement study was done using the various projection schemes to create two-

dimensional meshes. N number of points on the unit sphere were selected and then transformed

using the projection. The L2 norm of the numerical solution as compared to the analytical solution

was used to compare the different refinement schemes. For various schemes, bad elements were

created leading to disagreement with the analytical solutions. Further research might include the

possibility of fixing bad elements. Sinusoidal and Eckert II projection schemes worked the best

for this particular test problem. Tables I and II show the error norms for the various projection

schemes. A larger number of points on the unit sphere can be selected at the cost of increasing

computational time. We expect better agreement with the analytical solution as we increase the

number of points on the unit sphere. The performance of the Eckert II projection was surprising.

In Figure 13 we show the refinement of the Eckert II projection mesh with increasing points on the

unit sphere. One possible explanation for the success of the Eckert II projection is the conservation

of the surface area of the sphere. As we increase the number of points on the unit sphere, the

projection area approach 4π as seen in Figure 12. In Figure 14 we show the refinement of the

Sinusoidal projection mesh with increasing points on the unit sphere.
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Fig. 12. Area of Eckert II Projection as Mesh is Refined
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(a) (b)

(c) (d)

(e) (f)

Fig. 13. Refinement of Unit Sphere Mesh using Eckert II Projection
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(a) (b)

(c) (d)

(e) (f)

Fig. 14. Refinement of Unit Sphere Mesh using Sinusoidal Projection
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IV. FUTURE WORK

A suite of problems should be created to test the Eckert II and Sinusoidal projection schemes. 

As the number of points on the sphere increase, the computational time increases substantially. 

It is necessary to develop schemes that allow for mesh refinement studies that do not take large 

amounts of time. In this study, the distribution of points on the unit sphere was uniform. It is 

of interest to see whether selecting points on the sphere using something like Lebedev quadrature 

improves the convergence properties of the mesh. It is also important to note that not all projection 

schemes conserve the 4π surface area of the unit sphere. It appears that preserving the area is 

important and all projection schemes used to transform the three-dimensional mesh should have 

this property.
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