
Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Spiking Network Algorithms for Scientific
Computing

William Severa, Ojas Parekh, Kristofor D. Carlson,
Conrad D. James, James B. Aimone

Center for Computing Research

Sandia National Laboratories

Albuquerque, NM

SAND2016-10419C

How to Make Good on Neural Computing’s
Promises
• Neural-inspired computing and neuromorphic

hardware are poised to provide a Beyond
Moore's Law pathway

• Human brain provides an existence proof for
high-capability, low-energy neural computing

• Biology has provided strong inspiration

• Machine learning has provided an appealing
application

• Algorithms must match hardware to take full
advantage

Neuromorphic Hardware Runs SNNs
• Inspiration from Neuroscience and Machine

Learning
• Sophisticated circuitry required for collocated

memory in spiking neural networks
• Hardware is (mostly) agnostic to the networks

on it
• Low energy consumption; high performance

communication
• Idea: Create abstract SNN algorithms using

neurons as fundamental computing units
• Unlike biology, in silicon neurons, we can

control precision
• Connections are `hand-crafted’, not learned
• Expand neural network applications beyond

neuroscience and machine learning

Spiking Basics

• Leaky Integrate and Fire neurons roughly
approximate biological neurons

• Neurons are connected via synapses and
communication is sent in single-state signals called
spikes

• Spikes require time to propagate

• Time Dimension/Spikes are the main differentiator
between Spiking Neural Networks and more basic
Artificial Neural Networks

• Incoming spikes adjust an internal potential by some
weight; if potential reaches a threshold, the neuron
sends out spikes

• If potential is sub-threshold, it decays according to a
leakage constant

Technical Model

At each time step, each neuron integrates incoming spikes and determines whether or not to spike independently/

For pre-synaptic neurons �, post-synaptic neuron �, the neuron � spikes if and only if

��� = ����,��� +���,�����(�,�)

exceeds the threshold.

Decay
Constant

Previous
Potential

Synaptic
Weight

Spike/No
Spike

from �

More advanced neuron models exist but have vague computational benefits.

Neural/Synaptic Properties Have
Computational Benefits
• Weight and Threshold → Set Behavior and Gate Ac�vity

• Delay → Adjust Time Sensi�vity

• Parallelism → Simultaneous Mul�ple Condi�ons

• Decay → Temporal Error Correc�on

• Time dimension → Time/Neuron Tradeoff and Control Dynamics

Very Basic Examples

Input
Neurons

Multi-OR
• Threshold is low

enough for any spike
to trigger

• Fast potential decay;
no memory

Multi-AND
• Threshold is matched

to the sum of the
weights

• Fast potential decay;
no memory

Counter (≥3)
• Threshold is matched to

preset sum; fires if reached
• Slow potential decay;

spikes persist over time

But Better Building Blocks Needed

• Using neurons to create logic gates is circular and almost always
inefficient

• Instead, we need modules that are inherently neural and appropriate
for spiking neurons

• Some are easy to construct, like basic filters and sampling structures

• The best will leverage unique neuron and network properties,
especially control of dynamics and connectivity

Another Building Block: Counting
Input
Signal

Clock 0

Clock 1

Clock 2

Clock 3

Registers
• Thresholds

at clock size
• No decay

Carry
Over

• Time dimension also provides useful
dynamics

• Spikes are single-state
• Here, store integer values in the

dynamics of the system
• 4 posi�on clock, 3 registers → 64 values
• Value of a register is read by the relative

spike time compared to the clock
• Provides a fully spiking counter
• Can easily be modified to more

sophisticated functions

Inhibitory synapses delay
downstream spikes

A Simple Filter
Streaming
Input• Neurons’ decay can be used as a filter

for activity levels
• Conversely, decay can be used to

correct timing errors
• By tuning decay rate and thresholds, the

post-synaptic neuron fires on, for
example:
• Two spikes that are consecutive
• Two separated by one time step only

• All other spike patterns are filtered out

A Velocimetry Application

• A motivating application is the
determination of the local velocity
in a flow field

• The maximal cross-correlation
between two sample images
provides a velocity estimate

• SNN algorithms are straightforward;
exemplify core concepts

• Highly parallel
• Different neural representations
• Modular, precise connectivity
• Time/Neuron tradeoff

One-Dimensional Cross Correlation

argmax 	 � ⋆ � � = 	 � � � �(� + �)

�

����

n gives
shifted

function

For binary
functions,

AND

Neurons
integrate

these terms

Max is best
estimate

Essentially, finding the maximum cross-correlation is process in which we shift the
images (functions) and find where the overlap is greatest. Then, the amount by which
the functions were shifted provides the best estimate of the motion.

Example:
f: 0,0,1,0,1,0,1,0

g: 1,0,1,1,1,0,0,1

n: -7
Cross-Correlation: 0

Example:
f: 0,0,1,0,1,0,1,0

g: 1,0,1,1,1,0,0,1

n: -6
Cross-Correlation: 1

Example:
f: 0,0,1,0,1,0,1,0

g: 1,0,1,1,1,0,0,1

n: -5
Cross-Correlation: 0

Example:
f: 0,0,1,0,1,0,1,0

g: 1,0,1,1,1,0,0,1

n: -4
Cross-Correlation: 2

Example:
f: 0,0,1,0,1,0,1,0

g: 1,0,1,1,1,0,0,1

n: -3
Cross-Correlation: 1

Example:
f: 0,0,1,0,1,0,1,0

g: 1,0,1,1,1,0,0,1

n: -2
Cross-Correlation: 3

Example:
f: 0,0,1,0,1,0,1,0

g: 1,0,1,1,1,0,0,1

n: -1
Cross-Correlation: 1

Example:
f: 0,0,1,0,1,0,1,0

g: 1,0,1,1,1,0,0,1

n: 0
Cross-Correlation: 2

Example:
f: 0,0,1,0,1,0,1,0

g: 1,0,1,1,1,0,0,1

n: 1
Cross-Correlation: 2

Example:
f: 0,0,1,0,1,0,1,0

g: 1,0,1,1,1,0,0,1

n: 2
Cross-Correlation: 1

Example:
f: 0,0,1,0,1,0,1,0

g: 1,0,1,1,1,0,0,1

n: 3
Cross-Correlation: 1

Example:
f: 0,0,1,0,1,0,1,0

g: 1,0,1,1,1,0,0,1

n: 4
Cross-Correlation: 0

Example:
f: 0,0,1,0,1,0,1,0

g: 1,0,1,1,1,0,0,1

n: 5
Cross-Correlation: 1

Example:
f: 0,0,1,0,1,0,1,0

g: 1,0,1,1,1,0,0,1

n: 6
Cross-Correlation: 0

Example:
f: 0,0,1,0,1,0,1,0

g: 1,0,1,1,1,0,0,1

n: 7
Cross-Correlation: 0

Sliding Inner Product Finds Overlap After Shift

� � � �(� + �)

�

����

Time Multiplexed Cross Correlation

Time-coded Inputs
• Neuron fires at time � if

function is 1 at time �
• Two input functions, two

neurons
• Temporal Coding

Feature Detectors
• For direct cross-correlation: ANDs
• Graduated input delays → Each neuron

sensitive to different relative spike times
• Rate Coding

Integrators
• Counts spikes from previous layer
• No decay, high threshold
• First to fire is maximum with sufficient

threshold
• Latency Coding

Fires regularly; forces
integrator to fire

Temporal Coding: �(�) neurons;
�(�) runtime

Parallelize inputs and corresponding
timesteps to achieve � ��

neurons; �(1) runtime

Basic Building Blocks Expand Capabilities

K-Nearest Neighbor

Cross Correlation

Functions AND Maximum

Delay for temporal
sensitivity

Spikes approximate
function over time

Inputs Feature Detectors Selector

Test, Training |�� − ��|
K-Minimum Norm

Maximum Class

Functional Layout

Cross-Correlation Exhibits Time/Neuron
Tradeoff
• Neuromorphic hardware is

massively parallel
• Exchange Time Cost ↔ Neuron

Cost
• At times, can construct constant-

time algorithms
• No free lunch; Complexity is

unchanged
• Some representations are better

suited than others
• For constant-time cross-

correlation: new max method
must be used � ��

• Neurons: � �� ↔ � �
• Time: � 1 ↔ � �

Inputs
• One neuron per function

per dimension

Inner products all
computed in parallel

Output signal routed to
Argmax

Looking to Hardware Implementation
(TrueNorth)

• Full recurrence only within neurosynaptic
cores

• Output of neuron may only go to one input
axon

• Weight is shared along input axon
• Neurons with multiple outgoing weights is

expensive
• Need to maximize use of cores (Corelets

are built of whole cores)
• When scaling �(��), a million neurons isn’t

that many

Axon Restrictions Complicate Connectivity
• Neuron outputs have only one ‘axon’
• Shared synaptic properties (same signal to

all downstream neurons)
• Need auxiliary neurons to split signal
• For delay, no added time cost
• For weight, added time cost proportional to

minimum delay
• Similar techniques can address limited fan-in

(in some cases)

• Still an open problem

• Software simulators are reasonably well established
• Nest

• Neuron

• Brian

• CARLsim

• Sophisticated neuron models/dozens of parameters not needed

• Rarely does software graph translate directly to hardware

• No framework to ‘debug’ neural algorithms

How should we program these?

Summary

• Spiking neural networks can perform exact computation

• Connectivity need not be driven by biology or training

• Communication and memory scheme of neuromorphic hardware
leads to computational benefits

• Certain utility afforded by different Neuronal/Synaptic properties has
been explored, but can be explored further

• Putting algorithms to hardware shows limitations of architectures

• Theory → So�ware → Hardware workflow must be improved

