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How to Make Good on Neural Computing’s
Promises

* Neural-inspired computing and neuromorphic
hardware are poised to provide a Beyond
Moore's Law pathway

Algorithms Hardware

* Human brain provides an existence proof for
high-capability, low-energy neural computing

* Biology has provided strong inspiration

* Machine learning has provided an appealing
application

* Algorithms must match hardware to take full
advantage




Sandia
ﬂ" National
Laboratories

Neuromorphic Hardware Runs SNNs

* Inspiration from Neuroscience and Machine
Learning
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* Idea: Create abstract SNN algorithms using
neurons as fundamental computing units

e Unlike biology, in silicon neurons, we can
control precision

* Connections are "hand-crafted’, not learned

* Expand neural network applications beyond
neuroscience and machine learning

- axons

Spiking Network

Machine Learning Biology Algorithms

Deep Net HW Neuromorphic HW

Inference || Scientific = - -
Tasks :
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Spiking Basics

e Leaky Integrate and Fire neurons roughly
approximate biological neurons

* Neurons are connected via synapses and
communication is sent in single-state signals called

spikes Pre-synaptic
* Spikes require time to propagate Neurons

* Time Dimension/Spikes are the main differentiator
between Spiking Neural Networks and more basic

Artificial Neural Networks .
Input spikes

* Incoming spikes adjust an internal potential by some | I]
weight; if potential reaches a threshold, the neuron
sends out spikes

Post-synaptic
Neuron

* If potential is sub-threshold, it decays according to a
leakage constant
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Technical Model

At each time step, each neuron integrates incoming spikes and determines whether or not to spike independently/

For pre-synaptic neurons x, post-synaptic neuron y, the neuron y spikes if and only if

V _my yit-1T Wx,yXt—d(x,y)

exceeds the threshold. //

Decay
Constant :
Previous Synaptic Spslkiek/é\lo
Potential Weight P
from x

More advanced neuron models exist but have vague computational benefits.




Neural/Synaptic Properties Have
Computational Benefits

* Weight and Threshold - Set Behavior and Gate Activity
* Delay - Adjust Time Sensitivity
* Parallelism - Simultaneous Multiple Conditions

* Decay - Temporal Error Correction
* Time dimension - Time/Neuron Tradeoff and Control Dynamics
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Very Basic Examples

Input o . ]
Neurons A
‘ a .‘ ' Counter (23)
| -~ | < N\_ | + Threshold is matched to
" preset sum; fires if reached
\ | / * Slow potential decay;
Multi-OR ’-‘_“ spikes persist over time
e Threshold is low r
enough for any spike | Multi-AND
to trigger * Thréshold is matched
* Fast potential decay; | Ao the sum of the
no memory AN /~ weights
b * Fast potential decay;
no memory



Sandia
m National
Laboratories

But Better Building Blocks Needed

e Using neurons to create logic gates is circular and almost always
inefficient

* Instead, we need modules that are inherently neural and appropriate
for spiking neurons

* Some are easy to construct, like basic filters and sampling structures

* The best will leverage unique neuron and network properties,
especially control of dynamics and connectivity




Another Building Block: Counting

 Time dimension also provides useful
dynamics

* Spikes are single-state

* Here, store integer values in the
dynamics of the system

e 4 position clock, 3 registers - 64 values

* Value of a register is read by the relative

spike time compared to the clock
* Provides a fully spiking counter
e Can easily be modified to more
sophisticated functions

Inhibitory synapses delay

Ir?pUt € downstream spikes
Signal ) ()
C (L( )
arry ~—
Over —~L1 ¢
L V.
. J 1~
Clock 0
LY
)
e
Clock 1
o ) v
Clock 3 @
Clock 2
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Registers

Thresholds
at clock size
No decay
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A Simple Filter |

* Neurons’ decay can be used as a filter Input
for activity levels
* Conversely, decay can be used to
correct timing errors
e By tuning decay rate and thresholds, the
post-synaptic neuron fires on, for
example:
* Two spikes that are consecutive
 Two separated by one time step only
All other spike patterns are filtered out
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A Velocimetry Application

* A motivating application is the
determination of the local velocity
in a flow field

* The maximal cross-correlation
between two sample images
provides a velocity estimate

* SNN algorithms are straightforward;
exemplify core concepts
* Highly parallel
 Different neural representations
* Modular, precise connectivity
* Time/Neuron tradeoff




One-Dimensional Cross Correlation

Essentially, finding the maximum cross-correlation is process in which we shift the
images (functions) and find where the overlap is greatest. Then, the amount by which
the functions were shifted provides the best estimate of the motion.

Max is best N
N > argmax (fxg)(n) = Y fm)g(m+n)
m=—oo
Neurons /7
integrate
these terms

For binary n gives
functions, shifted

AND function
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Sliding Inner Product Finds Overlap After Shift

f: 0,0,1,0,1,0,1,0
g: 1,0,1,1,1,0,0,1

n: 7
Cross-Correlation: ©
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Time Multiplexed Cross Correlation

Feature Detectors

Time-coded Inputs

For direct cross-correlation: ANDs
Graduated input delays - Each neuron
sensitive to different relative spike times
Rate Coding

Neuron fires at time t if
functionis 1 attime ¢t
Two input functions, two
neurons

Temporal Coding

Integrators
e Counts spikes from previous layer

© | » No decay, high threshold
/7 . y g
U

First to fire is maximum with sufficient

threshold
* Latency Coding

Fires regularly; forces
integrator to fire




Basic Building Blocks Expand Capabilities

Functional Layout

| Inputs | Q Feature Detectors i | Selector ‘

Delay for temporal Spikes approximate
sensitivity function over time

Cross Correlation

- g
K-Nearest Neighbor K-Minimurm Norm
TeSt’ Training d ﬂ MaXimum Class

L ¥
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Cross-Correlation Exhibits Time/Neuron
Tradecff I.nputs Output signal routed to

One neuron per function

4 . Argmax

per dimension e,

* Neuromorphic hardware is e o
massively parallel ¢ e

e Exchange Time Cost <> Neuron & ‘
Cost )

* At times, can construct constant- e ﬁ L= A ‘} ©
time algorithms € N e e A% o

* No free lunch; Complexity is
unchanged

« Some representations are better e D ¢
suited than others € T )~ ) 5

* For constant-time cross- & " 7 -
correlation: new max method Inner products all
must be used 0(n?) ¢ computed in parallel -

« Neurons: 0(n?) < 0(n) « —

e Time:0(1) & 0(n)
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Looking to Hardware Implementation
(TrueNorth)

* Full recurrence only within neurosynaptic i Core 1
cores s

* Output of neuron may only go to one input
axon

* Weight is shared along input axon

* Neurons with multiple outgoing weights is
expensive

* Need to maximize use of cores (Corelets
are built of whole cores)

e When scaling 0(n?), a million neurons isn’t
that many

Recurrent
Connections

Neurons

Inter-core
Communication

Potential
Full Intra-core
Communication

\‘ To Exteneral

Output
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Axon Restrictions Complicate Connectivity

* Neuron outputs have only one ‘axon’
» Shared synaptic properties (same signal to

Input f ‘ ‘ ‘ o Argmax
all downstream neurons) neurons g: Component
* Need auxiliary neurons to split signal — | - —
—
|
M
|
B
| )
)
|

* For delay, no added time cost

* For weight, added time cost proportional to
minimum delay

e Similar techniques can address limited fan-in
(in some cases)

9 —

Relay
signals for

graduated
delay AAAA - AAAA
(w*, dp) (w*, do + d*) |
wl, dl

w2,d2 —do




How should we program these?

e Still an open problem

* Software simulators are reasonably well established

* Nest

* Neuron
* Brian

* CARLsim

* Sophisticated neuron models/dozens of parameters not needed
* Rarely does software graph translate directly to hardware
* No framework to ‘debug’ neural algorithms
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Summary

* Spiking neural networks can perform exact computation
* Connectivity need not be driven by biology or training

 Communication and memory scheme of neuromorphic hardware
leads to computational benefits

* Certain utility afforded by different Neuronal/Synaptic properties has
been explored, but can be explored further

* Putting algorithms to hardware shows limitations of architectures
* Theory - Software - Hardware workflow must be improved




