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How to Make Good on Neural Computing’s 
Promises
• Neural-inspired computing and neuromorphic 

hardware are poised to provide a Beyond 
Moore's Law pathway

• Human brain provides an existence proof for 
high-capability, low-energy neural computing

• Biology has provided strong inspiration

• Machine learning has provided an appealing 
application

• Algorithms must match hardware to take full 
advantage



Neuromorphic Hardware Runs SNNs
• Inspiration from Neuroscience and Machine 

Learning
• Sophisticated circuitry required for collocated 

memory in spiking neural networks
• Hardware is (mostly) agnostic to the networks 

on it
• Low energy consumption; high performance 

communication
• Idea: Create abstract SNN algorithms using 

neurons as fundamental computing units
• Unlike biology, in silicon neurons, we can 

control precision
• Connections are `hand-crafted’, not learned
• Expand neural network applications beyond 

neuroscience and machine learning



Spiking Basics

• Leaky Integrate and Fire neurons roughly 
approximate biological neurons

• Neurons are connected via synapses and 
communication is sent in single-state signals called 
spikes

• Spikes require time to propagate

• Time Dimension/Spikes are the main differentiator 
between Spiking Neural Networks and more basic 
Artificial Neural Networks

• Incoming spikes adjust an internal potential by some 
weight; if potential reaches a threshold, the neuron 
sends out spikes

• If potential is sub-threshold, it decays according to a 
leakage constant



Technical Model

At each time step, each neuron integrates incoming spikes and determines whether or not to spike independently/

For pre-synaptic neurons �, post-synaptic neuron �, the neuron � spikes if and only if
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exceeds the threshold.
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More advanced neuron models exist but have vague computational benefits.



Neural/Synaptic Properties Have 
Computational Benefits
• Weight and Threshold → Set Behavior and Gate Ac�vity

• Delay → Adjust Time Sensi�vity

• Parallelism → Simultaneous Mul�ple Condi�ons

• Decay → Temporal Error Correc�on

• Time dimension → Time/Neuron Tradeoff and Control Dynamics



Very Basic Examples

Input 
Neurons

Multi-OR
• Threshold is low 

enough for any spike 
to trigger

• Fast potential decay; 
no memory

Multi-AND
• Threshold is matched 

to the sum of the 
weights

• Fast potential decay; 
no memory

Counter (≥3)
• Threshold is matched to 

preset sum; fires if reached
• Slow potential decay; 

spikes persist over time



But Better Building Blocks Needed

• Using neurons to create logic gates is circular and almost always 
inefficient

• Instead, we need modules that are inherently neural and appropriate 
for spiking neurons

• Some are easy to construct, like basic filters and sampling structures

• The best will leverage unique neuron and network properties, 
especially control of dynamics and connectivity



Another Building Block:  Counting
Input 
Signal

Clock 0

Clock 1

Clock 2

Clock 3

Registers
• Thresholds 

at clock size
• No decay

Carry 
Over

• Time dimension also provides useful 
dynamics

• Spikes are single-state
• Here, store integer values in the 

dynamics of the system
• 4 posi�on clock, 3 registers → 64 values
• Value of a register is read by the relative 

spike time compared to the clock
• Provides a fully spiking counter
• Can easily be modified to more 

sophisticated functions

Inhibitory synapses delay 
downstream spikes 



A Simple Filter
Streaming 
Input• Neurons’ decay can be used as a filter 

for activity levels
• Conversely, decay can be used to 

correct timing errors
• By tuning decay rate and thresholds, the 

post-synaptic neuron fires on, for 
example:
• Two spikes that are consecutive
• Two separated by one time step only

• All other spike patterns are filtered out



A Velocimetry Application

• A motivating application is the 
determination of the local velocity 
in a flow field

• The maximal cross-correlation 
between two sample images 
provides a velocity estimate

• SNN algorithms are straightforward; 
exemplify core concepts

• Highly parallel
• Different neural representations
• Modular, precise connectivity
• Time/Neuron tradeoff



One-Dimensional Cross Correlation
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n gives 
shifted 

function

For binary 
functions, 

AND

Neurons 
integrate 

these terms

Max is best 
estimate

Essentially, finding the maximum cross-correlation is process in which we shift the 
images (functions) and find where the overlap is greatest.  Then, the amount by which 
the functions were shifted provides the best estimate of the motion.



Example:
f: 0,0,1,0,1,0,1,0

g:                                                 1,0,1,1,1,0,0,1

n: -7
Cross-Correlation: 0

Example:
f: 0,0,1,0,1,0,1,0

g:                                               1,0,1,1,1,0,0,1

n: -6
Cross-Correlation: 1

Example:
f: 0,0,1,0,1,0,1,0

g:                                             1,0,1,1,1,0,0,1

n: -5
Cross-Correlation: 0

Example:
f: 0,0,1,0,1,0,1,0

g:                                           1,0,1,1,1,0,0,1

n: -4
Cross-Correlation: 2

Example:
f: 0,0,1,0,1,0,1,0

g:                                         1,0,1,1,1,0,0,1

n: -3
Cross-Correlation: 1

Example:
f: 0,0,1,0,1,0,1,0

g:                                       1,0,1,1,1,0,0,1

n: -2
Cross-Correlation: 3

Example:
f: 0,0,1,0,1,0,1,0

g:                                     1,0,1,1,1,0,0,1

n: -1
Cross-Correlation: 1

Example:
f: 0,0,1,0,1,0,1,0

g:                                   1,0,1,1,1,0,0,1

n: 0
Cross-Correlation: 2

Example:
f: 0,0,1,0,1,0,1,0

g:                                 1,0,1,1,1,0,0,1

n: 1
Cross-Correlation: 2

Example:
f: 0,0,1,0,1,0,1,0

g:                               1,0,1,1,1,0,0,1

n: 2
Cross-Correlation: 1

Example:
f: 0,0,1,0,1,0,1,0

g:                             1,0,1,1,1,0,0,1

n: 3
Cross-Correlation: 1

Example:
f: 0,0,1,0,1,0,1,0

g:                           1,0,1,1,1,0,0,1

n: 4
Cross-Correlation: 0

Example:
f: 0,0,1,0,1,0,1,0

g:                         1,0,1,1,1,0,0,1

n: 5
Cross-Correlation: 1

Example:
f: 0,0,1,0,1,0,1,0

g:                       1,0,1,1,1,0,0,1

n: 6
Cross-Correlation: 0

Example:
f: 0,0,1,0,1,0,1,0

g:                     1,0,1,1,1,0,0,1

n: 7
Cross-Correlation: 0

Sliding Inner Product Finds Overlap After Shift
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Time Multiplexed Cross Correlation

Time-coded Inputs
• Neuron fires at time � if 

function is 1 at time �
• Two input functions, two 

neurons
• Temporal Coding

Feature Detectors
• For direct cross-correlation: ANDs
• Graduated input delays → Each neuron 

sensitive to different relative spike times
• Rate Coding

Integrators
• Counts spikes from previous layer
• No decay, high threshold
• First to fire is maximum with sufficient 

threshold
• Latency Coding

Fires regularly; forces 
integrator to fire

Temporal Coding: �(�) neurons; 
�(�) runtime

Parallelize inputs and corresponding 
timesteps to achieve � ��

neurons; �(1) runtime



Basic Building Blocks Expand Capabilities

K-Nearest Neighbor

Cross Correlation

Functions AND Maximum

Delay for temporal 
sensitivity

Spikes approximate 
function over time

Inputs Feature Detectors Selector

Test, Training |�� − ��|
K-Minimum Norm

Maximum Class

Functional Layout



Cross-Correlation Exhibits Time/Neuron 
Tradeoff
• Neuromorphic hardware is 

massively parallel
• Exchange Time Cost ↔ Neuron 

Cost
• At times, can construct constant-

time algorithms
• No free lunch; Complexity is 

unchanged
• Some representations are better 

suited than others
• For constant-time cross-

correlation:  new max method 
must be used � ��

• Neurons: � �� ↔ � �
• Time: � 1 ↔ � �

Inputs
• One neuron per function 

per dimension

Inner products all 
computed in parallel

Output signal routed to 
Argmax



Looking to Hardware Implementation 
(TrueNorth)

• Full recurrence only within neurosynaptic
cores

• Output of neuron may only go to one input 
axon

• Weight is shared along input axon
• Neurons with multiple outgoing weights is 

expensive
• Need to maximize use of cores (Corelets

are built of whole cores)
• When scaling �(��), a million neurons isn’t 

that many



Axon Restrictions Complicate Connectivity
• Neuron outputs have only one ‘axon’
• Shared synaptic properties (same signal to 

all downstream neurons)
• Need auxiliary neurons to split signal
• For delay, no added time cost
• For weight, added time cost proportional to 

minimum delay
• Similar techniques can address limited fan-in 

(in some cases)



• Still an open problem

• Software simulators are reasonably well established
• Nest

• Neuron

• Brian

• CARLsim

• Sophisticated neuron models/dozens of parameters not needed

• Rarely does software graph translate directly to hardware

• No framework to ‘debug’ neural algorithms

How should we program these?



Summary

• Spiking neural networks can perform exact computation

• Connectivity need not be driven by biology or training

• Communication and memory scheme of neuromorphic hardware 
leads to computational benefits

• Certain utility afforded by different Neuronal/Synaptic properties has 
been explored, but can be explored further

• Putting algorithms to hardware shows limitations of architectures

• Theory → So�ware → Hardware workflow must be improved


