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 2.5D structures
 Precision coatings
 Magnetic materials 
 Insulating materials
 Conductive polymers
 >10:1 aspect ratio
 Multi-layer

 mm range
 Can be 

electrofilled 
 Micromolding or 

cast w/ PDMS 
 Accommodates 

topography
 Polymer or glass

 Ra as low as 50nm
 Wafer/die thinning
 Provide flat/parallel 

surface for processing
 Beveled edges
 Vacuum, pad, wax 

mount
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Magnetostrictive sensors background

 Used to prevent theft in retail stores

 Operates via Joule magnetostriction, S = ΔL/L

 Generates an AC magnetic response signal when 
subjected to an externally applied AC magnetic 
interrogation signal

 Single frequency devices – can only convey 
information that a tag is magnetically activated 
(limited utility to this simple function)

 Made from strips of an amorphous magnetic material 
such as METGLAS™ (Ni40-50Fe40-50Mo5-10B1-5), with low 
magnetostriction (S = 12 ppm)

(a) (b)
a) magnetic dipole antenna interrogation zone 
b) magnetoelastic tag in plastic package

“Dumb Tag” “Smart Tag”

a) Single frequency resonator

b) Multi-Frequency resonator (3)

M. Arndt and L. Kiesewetter, "Coded labels with amorphous magnetoelastic 
resonators," Magnetics, IEEE Transactions on, vol. 38, pp. 3374-3376, 2002.
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CoFe Resonator

Silicon

Cross section view

Silicon

CoFe Resonator

Magnetostrictive sensors function

3



 Sputtered Co0.7Fe0.3 ratio as identified as ‘giant magnetostriction’ of >250 ppm by Hunter et al (Nature 2011)

 Electroplate CoFe for high magnetostrictive films

 Increase magnetostriction performance for MEMS applications and sensors

Electrodeposition to Realize CoFe devices

Hunter, D., et al. (2011). "Giant magnetostriction in annealed 
Co1-xFex thin-films." Nature Communications 2.
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Scaling up to wafer-level chemistry

Volume = 450 mL

Surface Area = 57 cm2

Heat AddedWater = 47 kJ

Volume = 2.5 L

Surface Area = 236 cm2

Heat AddedWater = 262 kJ

6x

4x

6x

7 cm2

sample
100 mm 
wafer
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Experimental Setup
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2.5-liter bath magnetostriction results
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EDS Monte Carlo Simulation
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Simulation in Casino 2.4.8.1
20 keV beam in Co0.7Fe0.21O0.09



Fe2+  Fe3++e-

Electrodeposition of iron alloy metals is problematic due to 
the undesired oxidation of Fe+2 to Fe+3 

Why the decrease in current efficiency?

Fe3+ + O2 Fe2O3
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Side Reactions:



I. Tabakovic, S. Riemer, N. Jayaraju, V. Venkatasamy, J. Gong, “Relationship of 
Fe2+ concentration in solution and current efficiency in electrodeposition of 
CoFe films," Electrochimica Acta, vol. 58, pp. 25-32, 2011.

CE tends to decrease at the potentials 
more negative than -1.2 V vs. SCE, 
where reduction of H2O starts more 
intensively
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CoFe Bath aging results
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Chemical Additions
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Parafilm Cover
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Parafilm Cover
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Dry Box
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All together
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Aging results

Majority Storage Useful Life (Days) Amp-hours

Beaker 68 0.25

Hard cover 36 0.14

Hard cover 34 0.36

Paraffin 41 1.01

Paraffin 26 2.27

Dry box 28 2.89

Days CE

5 70%

15 60%

23 50%

29 40%

35 30%

42 20%

68 10%
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Magnetostriction testing

Pt Mesh 
Electrode

Cu Working 
Electrode

 CoFe plated material is silver color below
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2.5-liter bath magnetostriction results
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D|| = Parallel displacement
E = Young’s modulus
υ = Poisson’s ratio
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Modified du Tremolet de Lacheisserie and Peuzin equation from Hunter et al
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Slide 19

SJC3 Calculations on young's modulus/poisson?
St John, Christopher, 9/21/2016



Conclusions
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• Wafer-scale chemistry has an average lifespan of approximately one month, compared to 
beaker scale which lasts approximately two months

• At this point, the current efficiency drops below 30% and oxygen content of the film increases above 10%

• This has an unknown effect on magnetostriction and piezoelectric coefficient 
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Future Work

Smaller chemistry Blanket head-space with 
nitrogen during plating
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What questions do you have?

Acknowledgments:  C.L. Arrington1, J. Pillars1, E. Langlois1, P. Finnegan1, A.E. Hollowell1, A. Thorpe1

(1)Sandia National Laboratories, Albuquerque, NM 87123, USA
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Beaker with no thermal cycling
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Comparison between bath and beaker 
overpotential
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