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ABSTRACT

Four series of cyclic direct-shear experiments were conducted on several replicas
of three natural fractures and a tensile fracture of welded tuff from Yucca
Mountain. The objective of these tests was to examine the effect of cyclic loading
on joint shear behavior under different boundary conditions. The shear tests were
performed under either different levels of constant normal load ranging between 0.6
and 25.6 kips (2.7 and 113.9 kN) or constant normal stiffness ranging between 14.8
and 187.5 kips/in (25.9 and 328.1 kN/cm). Each test in the two categories
consisted of five cycles of forward and reverse shear. Normal compression tests
were also performed both before and after each shear experiment to measure changes
in joint normal deformability. In order to gquantify fracture surface damage during
shear, fracture-surface fractal dimensions were obtained from measurements before
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and after shear.
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1. INTRODUCTION

The response of a rough joint to shear loading depends on its
surface properties as well as the boundary conditions that are
applied across its surfaces by the surrounding rock mass. These
boundary conditions can exist in multiple forms and vary between
constant normal load (stress), as in the case of slope stability
problems, to variable or constant normal stiffness, as in the
vicinity of underground excavations. The normal stiffness applied
across joint surfaces is defined as the ratio between increments in
normal load and increments in normal displacement. It varies
between zero for constant normal load conditions and infinity for
constant normal displacement conditions. In general, joint shear
strength under constant or variable normal stiffness is higher than
joint shear sti~=ngth under constant normal load (stress). The main
reasons for the 'ncrease in shear strength are that under constant
or variable normal stiffness boundary conditions, joint dilatancy
created by joint surface roughness is inhibited and joint normal
load (stress) increases as shear takes place. The effect of normal
stiffness boundary conditions on the shear behavior of rock joints
has been investigated eitler theoretically or experimentally by
Goodman (1976), Obert et al. (1976), Leichnitz (1985), Goodman and
Boyle (1985), Hutson (1987) and more recently, by Archambault et
al. (1990), Bandis (1990), Benmokrane et al. (1991), Ohnishi and
Dharmaratne (1990) and Skinas et al. (1990),

In two recent publications, Saeb (1989) and Amadei and Saeb (1990)
proposed mathematical and graphical methods to predict the behavior
of a rock joint under any normal stiffness boundary condition from
the results of conventional constant normal load (or stressg) direct
shear experiments. An experimental research program was initiated
to verify those methods using data collected on several fractures
of welded tuff from Yucca Mountain in Nevada. This report presents
the results of cyclic direct shear and normal compression tests
conducted on replicas of three natural fractures and a tensile
fracture in welded tuff. The direct shear experiments were



performed under constant normal loads ranging between 0.6 and 25.6
kips (2.7 and 113.9 kN) and constant normal stiffnesses ranging
between 14.8 and 187.5 kips/in (25.9 and 328.1 kN/cm) with
different initial normal loads. Each test consisted of five cycles
of forward and reverse shear motion. The effect of cyclic loading
on the fracture behavior was investigated. In particular, special
attention was placed on relating the degradation of fracture
surface asperities to the number of cycles. Surface damage was
assessed by comparing the values of fractal dimensions determined
from profiles on the fracture surfaces before shear (one set of
profiles per fracture) and after shear (on all fracture replicas).
For each fracture, only one normal compression test was conducted
befcre shear. Normal compression tests were also conducted after
shear on all fracture replicas to assess changes in joint normal
deformability. '

2. EXPERIMENTAL WORK
2.1 Specimen Preparation

Four rectangular joint samples of welded tuff from Yucca Mountain
and Rainier Mesa were investigated in this study:

a. A natural joint sample from the G Tunnel (from Rainier
Mesa). The size of the sample was approximately 4.0 in x
8.0 in (10.2 cm x 20.3 cm). In this report, this sample is
referred to as G2.

b. An artificially created joint sample of Topopah Spring
Member from the Fran Ridge East Lower Test Pit (FRELTP),
east of Yucca Mountain, identified as FRELTP - Om - 3 m -
41 - SNL/CSM - A %, The joint was created by tensile
gplitting of a welded tuff block. The size of the sample
was approximately 3.0 in x 6.0 in (7.6 c¢cm x 15.2 cm ). This
sample is referred to as F2.

' In this report the terms "joint" and "fracture" are used interchangeably.

2

‘ Identification number provided by Sandia National Laboratories.
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c. A natural joint sample from FRELTP with identification
number FRELTP - Om - 3 m - 35 - SNL/CSM - A %, The size
of the sample was approximately 3.0 in x 6.0 in (7.6 cm x
15.2 cm). This sample is referred to as F3.

d. A natural joint sample from FRELTP with identification
number FRELTP - O m - 3 m - 35 - SNL/CSM - B ’. The size
of the sample was approximately 3.0 in x 6.0 in (7.6 cm x
15.2 cm). This sample is referred to as F4.

All four joints originated from several blocks of welded tuff
provided by Sandia National Laboratories. The blocks were large
and irregular in shape. To obtain the natural joint sample and
create a regular external configuration with the size mentioned
above, the big blocks were cut using a diamond bit masonry saw.
The mean plane of the joint coincided with the center plane of the
block.

In order to perform several shear tests on fracture surfaces with
duplicated initial roughness, replicas of the four joint surfaces
were made using gypsum cement (Ultracal 30, produced by United
States Gypsum, Chicago, Illinois). Two steps were followed in
making the replicas. First, the negative images of the joint
surfaces (top and bottom) were created by pouring silicon rubber
(Silastic E RTV, produced by Dow Corning Corporation, Midland,
Michigan) on the surfaces of the original joints. After 48 hours
of hardening, the half-inch-thick negative images were strong
enough to be used as negative molds for the joint replicas. Then,
twelve to fifteen joint replicas were reproduced using a water-to-
gypsum cement ratio of 20%. With this mixture, the unconfined
compressive strength of the gypsum cement was measured as
approximately 4,000 psi (27.6 MPa).

The bottom portion of each joint replica was placed at the center
of the lower shear box specimen holder. Spacers were placed at the
bottom of the sample in order to keep the mean joint surfaces
horizontal. The mean joint surfaces were adjusted to a horizontal
plane by using the air bubble of a 2.0 in x 8.0 in (5.1 cm x 20.3
cm) level placed longitudinally across the joint surfaces.




A gypsum cement mixture was then poured into the lower specimen
holder to maintain the replica in place. Following hardening of
the gypsum cement, the top part of each joint replica was placed
and kept in a mated position above the corresponding bottom part.
Then, the assembly consisting of the top and bottom parts of the
joint replica and the bottom specimen holder were turned over and
placed at the center of the top specimen holde.. The upper and
lower specimen holders were positioned in a manner that ensured
initially parallel alignment. The top part of the joint replica
was held in place using gypsum cement.

Bevelled miniature berms or embankments made of gypsum cement were
placed along the periphery and up to the surfaces of samples F3 and
F4 in order to prevent their edges from breaking off during shear,
especially under high normal loads. This helped in keeping most of
the test specimen edges intact during shear. For the G2 and F2
samples no slope embankments were constructed. Orange enamel paint
was lightly sprayed on the joint surfaces in order to observe
surface damage occurring during shear. This paint created a very
thin, brittle and easily removed film, which was abraded very
eagily during shear. The effect of this paint on friction, if any,
was considered insignificant. The joint surfaces were then ready
for the following test sequence: profilometer recording before
shear (one set of profiles for each joint), normal compression
before shear (one test for each joint), cyclic shear, normal
compression after shear, and profilometer recording after shear.

2.2 Direct Shear Tests

Direct shear tests were conducted according to Experimental Plan
(EP) # 44 wusing the direct shear machine available in the
Department of Civil, Environmental, and Architectural Engineering
at the University of Colorado at Boulder. For each direct shear
test, seven steps were followed:



identification of each joint specimen,
- placement of joint specimen with the specimen holders on the

platens of the direct shear machine,

- application of initial normal load across the joint
surfaces,

- cyclic normal compression,

- shearing with five cycles,

- cyclic normal compression, and

- measurement of joint surface area sheared and weight of

gouge generated during cyclic shear.
2.2.1 Direct Shear Apparatus

The direct shear experiments were conducted using a servo-
controlled direct shear apparatus. Figures 1 and 2 show the
different components of the apparatus including two independent
Minnesota Testing System (MTS) actuators (used to transmit normal
and shear loads), reaction frames, loading fixtures, and shear box
specimen holders. The MTS actuators used to apply normal and shear
loads have a capacity of 165 kips (734 kN) and 35 kips (156 KkN),
respectively, and can be operated independently in 1load or
displacement control modes. The actuators are equipped with load
cells to measure applied forces and have internal LVDTs for
monitoring displacement (stroke). Both actuators are powered by
independent, closed-loop continuous flow systems powered by a 20
gpm (76 lpm) generator pump. For cyclic shearing, a function
generator provides a sinusoidal reference voltage to the shear load
actuator 1in the displacement control mode. The sinusoidal
reference voltage was chosen to avoid a sudden change of shear rate
at the maximum shear displacement. Although this sinusoidal
reference voltage caused the shear rate to be variable, the shear
load response does not show significant difference as explained by
Gould (1982). A detailed description of the apparatus and its
performance characteristics is given by Gould (1982).
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Figure 1. Direct shear apparatus (Schematic side view).
(Gould, 1982)
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2.2.2 Instrumentation

The applied loads were measured using the MTS actuator load cells;
a 220 kips cell (978 kN, MTS 661.31A-02) mounted on the normal
actuator and a 35 kips cell (157 kN, MTS 661.23A-09) mounted on the
shear actuator. The range or amplification for the normal load
cell was changed between times-one (100% of capacity) and times-ten
(10% of capacity) depending on the test condition. The shear load
cell was always operated in a times-one (100% of capacity) mode.
Since the actuators’ internal LVDTs were not sensitive enough and
were located too far away from the test specimens to monitor
displacements accurately, two external horizontal LVDTs (Schaevitz
1000 HRDC) shown in Figure 3 were used to monitor the relative
shear displacements. They had a 1.0 in (2.54 cm) maximum stroke
and were of the DC type. Aluminum rods (0.1 in, 2.4 mm dia.) were
cemented into the top and bottom parts of each specimen using heavy
duty epoxy. Collars were used to connect the rods to the tips of
the LVDTs in order to provide a solid mechanical connection during
shear direction reversal. The two LVDTs were supported by an
unstregsed external stand placed on the structural test floor.

In addition, three external vertical LVDTs were used to monitor the
normal joint displacement (Figure 4). Two of those LVDTsS were
Schaevitz 1000 HRDC with a 1.0 in (2.5 cm) maximum stroke. The
third LVDT was a Schaevitz 500 HRDC with 0.5 in (1.3 cm) maximum
stroke, The normal displacement LVDTs were mounted on holder
agssemblies made of heavy steel bars, which were attached to
supports that were firmly bolted to the thick steel base plate of
the direct shear apparatus.

For the real time control tests (i.e., constant stiffness tests),
a more precise Schaevitz 200 HR LVDT (AC type), with a 0.2 in (5
mm) maximum stroke, was also used to monitor the normal
displacement of the joints. A special holder was constructed that
allowed that particular LVDT to be placed between the hydraulic
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cylinder and the load cell of the vertical actuator as shown in
Figure 5. An initial load had to be applied across the joint
surfaces before that LVDT was adjusted into zero position in order
to prevent it from going out of range.

2.2.3 Test Control for Normal Stiffness Test

For the joints sheared under constant normal stiffness, their
dilatancy caused an additional normal load proportional to the
applied stiffness. Direct shear tests under constant normal
stiffness were performed following a procedure similar to the
constant normal load shear tests with an additional computer system
appended to the existing system. The dilatancy monitored by the
Schaevitz 200 HR LVDT (AC type) was converted to digital data and
manipulated by a computer program to maintain the value of applied
stiffness to a predetermined value. As dilatancy occurred, the
additional normal load due to stiffness was reconverted to an
analog signal, and these additional voltages were added to the
existing load applied by the MTS system. Details of the real time
control tests have been described by Hutson (1987).

2.2.4 Data Acquisition System

An IBM-XT personal computer with a Tecmar board A/D (analog to
digital) converter was used for data collection. Various voltage
ranges are software selectable. The MTS system works on a +/- 10
v circuit. Since the load cell readings were being supplied by
this system, all channels were set for a +/- 10 v range. A data
acquisition computer program written in Turbo Pascal provided
adequate speed, along with good organization and readability.

2.2.5 Testing
The upper half of each joint sample with the specimen holder was

attached to the gshear machine first. The upper platen was raised
to its full height under displacement control and low hydraulic

10




Figure

5. Normal displacement control LVDT for normal
constant stiffness test.

(1) Normal load cell.

(2) Schaevitz 200 HR LVDT.
(3) LVDT holder.
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pressure. The upper half of the sampie was then inserted,
supported by a padded block, and the upper platen was lowered and
secured with 13 cap screws. The lower haltf of the joint specimen
was then inserted and bolted into the lower platen with the game -
number of cap screws., The two specimen holders were brought into
contact and the normal actuator was shifted into load control. A
small normal load of 0.2 kips was applied to keep the two specimen
halves in contact and to remove any mechanical slack. The data

acquisgition program, which displayed the channel voltage output,
was started. Each LVDT was positioned and adjusted so that itw
voltage output was in the appropriate range to prevent going off
scale. Hydraulic pressure was turned to high pressure and the
appropriate normal load was applied. The function generator and

the test control computer were started.

Two series of direct shear tests were carried out on the joint
replicas. The experiment schedule is sgummarized in Tables 1
through 4. Each experiment in the ftirst series was conducted at
diftferent constant normal load levels ranging between 0.6 an® 25.6
kips (2.7 and 113.9 KkN),. These levels corresponded to initial
stress levels of 40, 200, 400, and 800 psi (0.2, 0.9, 1.8, and 3.6
MpPa) for the G2, F2, F3, and F4 samples. For the F4 sample, a teat
with a 10.8 kips (48.0 kN) initial normal load corresponding to a
600 psi (2.7 Mpa) initial normal stress was also conducted. 'The
second series of direct shear tests was conducted at difterent
levels of initial normal load ranging between 1.3 and 7.5 kips (5.7
and 33.4 kN); constant normal stiffness ranged between 14.8 and
187.5 kips/in (25.9 and 328.1 kN/cm). Each direct shear test
congigted of five continuous loading cycles with a sginusoidal
pattern, a frequency of 2.8x10* Hz and an amplitude of 1.6 in (4.1
cm) for test series G2, and a frequency of 3.7x10* Hz and an
amplitude of 1.2 in (3.1 cm) for test series F2, F3, and F4. The
nominal shear displacement rate was 0.0% in/min (0.13 cm/min) .,

12




Table 1

Experiment schedule for G2 specimens.

— e o
Sample Normal Init. Normal Const.
Load Stress Stiffness
(kips) (psi) * (kips/in)
R1G2 1.3 40 0
R4G2 6.4 200 0
R2G2 12.8 400 0
R3G2 25.6 800 0.
KR5G2 40 32
KR6G2 200 64
m T ——— yvm— -
* Area = 32.00 in?
Table 2
Experiment schedule for F2 specimens.
M e
Sample Normal Init., Normal Const.,
Load Stress Stiffness
(kips) (psi) * (kips/in)
R5F2 0.6 40 0
R2F2 3.0 200 0
R3F2 5.9 400 0
R4F2 11.8 800 0
KR6F2 200 14.8
KR7F2 200 44 .3
KR8F2 200 147.8
i—“ e
* Area = 14.77 in’
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Table 3
Experiment schedule for F3 specimens.

o g
Sample Normal Load Init. Normal Const. Stiffness
(kips) Stress (pei)* (kips/in)
Il R1F3 0.8 40 0
REF3 3.8 200 0
R4F3 7.5 400 0
R5F3 15.0 800 0
KR7F3 3.8 200 18.8
KR8F3 3.8 200 56.3
KRI9F3 3.8 200 187.5
KR10F3 7.5 400 56.3
KR11F3 7.5 400 187.5
* Area = 18.75 in’
Table 4

Experiment schedule for F4 specimens.

T T T S T
Sample Normal Load Init, Normal Const. Stiffness
(kips) Stress (psi)~ (kips/in)
R1F4 7 40 0
R2F4 .6 200 0
R3F4 .2 400 0
R4F4 10.8 600 0
R5F4 14.4 800 0
R6F4 10.8 600 0
RBF4 10.8 600 0
R13F4 3.6 200 0
KR7F4 3.6 200 18.0
KR9F4 3.6 200 54.0
KR10F4 3.6 200 179.9
KR11F4 7.2 400 54.0
KR12F4 7.2 400 179.9

* Area = 18.0 in®

14




Note that in Table 4:

- R6F4 and RBF4 are repetitions of R4F4; a shear test under
constant normal load of 10.8 kips (48.0 kN). This was done
to observe the reproducibility of the testing procedure
and the sensitivity of the shear apparatus.

- R13F4 is a repetition of R2F4; a shear test under constant
normal load of 3.6 kips (16.0 kN). However, shearing was
started in the opposite direct.on.

2.3 Normal Compression Tests

As mentioned earlier, before and after shear, joint surfaces were
subjected to five cycles of normal 1loading and unloading to
characterize their normal stress versus normal displacement
response. The tests were conducted using the normal load actuator
of the direct shear machine. The maximum normal stress applied
during the first cycle was 100 psl (0.7 MPa). This was followed by
four cycles with maximum normal stresses of 200, 400, 800, and 1000
psi (1.4, 2.8, 5.5, and 6.9 MPa). The loading rate was 100 psi/min
(0.7 MPa/min). Normal load and normal displacement were measured
using the normal load actuator's load cell and the three external
vertical HRDC LVDTs, respectively. For each normal compression
test, three steps were followed:

- identification of each joint specimen,
- application of a small initial normal load,
- normal loading and unloading with five cycles.

Before the shear experiments were conducted, a normal compression
test was performed on one replica of each joint in order to
determine its initial normal deformability. After shear, normal
compression tests were conducted on all replicas.

15




2.4 Profilometer Tests

Surface roughness affects all aspects of mechanical properties of
rock joints. Depending on the boundary conditions across the joint
surfaces, shear through the joint surface asperities or overriding
of the asperities can take place. Joint surface roughness also
affects joint dilatancy. If the dilatancy is completely or
partially suppressed due to the controlled boundary conditions,
then normal stresses further increase during shear and the joint
has a higher shear strength than if the joint is free to dilate.
Measurement of joint surface roughness prior to and after shearing
can be useful in assessing joint surface damage and its relation to
joint shear strength.

Joint surface roughness profiling was carried out using a
mechanical profilometer (Figures 6 and 7). All profilometer tests
were conducted according to Experimental Plan (EP) # 45. Detailed
description of the equipment can be found in Farrington (1983) and
Gamal-Eldin (1989). Basically, the apparatus consists of a table
on which two systems of steel rods are installed. An LVDT attached
to one set of rods can travel in a horizontal X-Y plane covering
the joint surface. The cone apex angle of the profilometer tip is
18 degrees, and the tip radius is about 0.002 in (0.05 mm). The
joint sample is placed on a levelling plate below the table. At
each selected X,Y point, the height of a point on the sample is
measured relative to a reference height with the LVDT,

Before and after the shear tests described in Section 2.2, the
bottom and top joint surfaces were profiled along four lines 1.0 in
(2.5 cm) apart for the G2 specimens and along four lines 0.8 in
(2.0 cm) apart for the F2, F3, and F4 specimens. The horizontal
distance between two consecutive sampling points was 0.01 inches
(0.3 mm). All X,Y,Z data were recorded by the same data acquisition
system used for the direct shear tests. Four steps were followed
in each profilometer test:
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Figure 7. Mechanical profilometer (Schematic side view) ,
(Farrington, 1983)
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- identification of each joint specimen,

- placement of joint specimen on levelling plate under
profilometer table,

- alignment of X and Y axes on joint surface,

- measurement of surface roughness.

The profiles are called X1, X2, X3, and X4, with X1 and X4 being
the closest to the side edges of the test specimens. Before the
shear tests, one profilometer test was carried out on both surfaces
of one replica of each joint. After shear, profilometer tests were
performed on all replica surfaces.

2.5 Sheared Area and Gouge Amount Measurement

After five cycles of shear, some of the orange enamel paint on the
joint replica surfaces vanished due (- the asperity shear and
associated abrasion. The affected area on the joint suvrfaces was
traced on transparent paper and the area was measured with a

planimeter.

The loose gouge created during shear was collected in a lightweight
paper container at the end of the normal compression test after
shear and weighed. The amount of gouge that was compacted on and
adhered to the joint surfaces was not measured.

3. TEST RESULTS

3.1 Direct Shear Test Results

All direct shear test results are presented in the form of shear
load wvs. shear displacement response curves, and normal

displacement (dilatancy) versus shear displacement curves. From
these curves, the following data were collected:
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- peak and residual shear 1loads for forward and reverse
shear in each cycle,

- initial shear stiffness for the forward part of the first
cycle calculated with data between 25% and 75% of the peak
shear load,

- slope of the dilatancy curve for forward and reverse shear
in each cycle measured between 0.1 and 0.4 in (0.3 and
1.0 cm) of shear displacement.

Figures 8 through 11 and Tables 5 through 9 show typical response
curves and test data for some of the F4 test specimens. Figures 8a
and 8b show the shear load versus shear displacement and dilatancy
versus shear displacement curves, respectively, for specimen R2F4
tested under a constant normal load of 3.6 kips (16.0 kN). The
peak and residual shear loads in both forward and reverse shear
directions decrease as the number of shear cycles increases, but
approach a steady state level (Figure 8a). Joint dilatancy
decreases gradually in both shear directions as the number of
cycles increases (Figure 8b), also approaching steady state
behavior. Figures 9a and 9b show an example of response curves for
specimen KR10F4 tested under a constant normal stiffness of 179.9
kips/in (314.8 kN/cm) with an initial normal load of 3.6 kips (16.0
kN) . Figure 9a shows that under constant normal stiffness, there is
no specific peak and residual shear loads as displayed in Figure
8a. Instead, a hardening form of behavior can be observed.

The first cycle, forward shear load - shear displacement response
curves for all F4 test specimens are summarized in Figure 10a. The
corresponding dilatancy curves are shown in Figure 10b. Specimen
R2F4 was tested under a constant normal load of 3.6 kips (16.0 kN)
(or zero normal stiffness). Specimens KR7F4, KR9F4, and KR10F4,
were tested under constant normal stiffnesses of 18.0, 54.0, and
179.9 kips/in (31.5, 94.5, and 314.8 kN/cm) respectively, with the
same initial normal load as R2F4, carry larger shear loads than
R2F4 and experience less dilatancy.
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Figure 8. (a) Shear load vs. shear displacement, (b) Dilatancy vs.
shear displacement. Specimen R2F4, constant normal load N, = 3.6

kips (16.0 kN).
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Figure 11 shows the paths followed by the F4 specimens tested under
constant normal stiffness in a shear load/normal load space for the
forward and reverse parts of the first shear load cycle only. In
this figure, the peak and residual shear failure envelopes
determined from the constant normal load shear tests are also shown

for comparison.

Table 5 gives the values of the peak and residual shear loads and
the shear stiffness for the F4 samples tested under constant normal
load, for forward shear only. Table 6 shows the data for the
samples tested under constant normal stiffness. For those samples
tested under constant normal stiffness and showing hardening, the
peak and residual shear loads are replaced by the shear loads at
0.4 in (1.0 cm) of shear displacement. Tables 7 and 8 give the
slopes (tan 1) of the corresponding dilatancy curves for forward

and reverse shear.

The shear load versus shear displacement curves and normal
displs.ement (dilatancy) versus shear displacement response curves
for all test specimens can be found in Appendix Al. In Appendix
A2, these response curves have been combined for the forward and
reverse parts of each cycle. The values of peak and residual shear
loads for the forward and reverse part of each cycle and the values
of shear stiffness for the forward part of the first cycle are
tabulated in Appendix A3. Note that for the samples tested under
constant normal stiffness that showed hardening during shear, the
peak and residual shear loads in Appendix A3 are replaced by the
shear loads at 0.4 in (1.0 cm) of shear displacement. Values for
the slopes of the dilatancy curves are reported in Appendix A4 for
the forward and reverse part of each shear cycle. Finally, the
paths followed by the test specimens tested under constant normal
stiffness in the shear load/normal load space can be found in
Appendix A5 for the forward and reverse part of each cycle,

Surface damage occurring during shear was quantified at the end of
each shear test by measuring joint surface sheared areas and by
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Figure 11. (a) Shear load vs. normal load, first cycle forward
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reverse shear load path. Load paths for constant normal stiffness
tests in shear load vs. normal load (T,N) space of F4 samples. The
peak and residual envelopes determined from the constant normal
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weighing the amount of gouge created in shear. As an example, the
sheared areas and the amounts of gouge for all F4 samples are
tabulated in Table 9. Similar data for samples G2, F2, and F3 can

be found in Appendix A6.

Table 5
Peak and residual shear loads for F4 samples,
constant normal load, forward direction.

A — W——
Constant Peak Regidual Sheax
Cycle Normal Load Shear Load Shear Load Stiffness
(kips) (kips) {kipa) (kips/in)
lst 0.7 1.1 0.5 100
Forward 3.6 3.8 2.0 783
7.2 7.1 4.4 1194
10.8 10.8 7.3 830
14 .4 13.7 9.2 925
2nd 0.7 0.7 0.5
Forward 3.6 2.3 1.7
7.2 4.5 4.0
10.8 7.4 6.6
14.4 9.1 8.3
3rd 0.7 0.6 0.4
Forward 3.6 2.3 1.7
7.2 4.1 3.9
10.8 6.9 6.6
14 .4 8.7 8.0
4th 0.7 0.5 0.4
Forward 3.6 1.9 1.6
7.2 3.9 3.8
10.8 6.7 6.5
14 .4 8.7 8.0
5th 0.7 0.5 0.6
Forward 3.6 1.8 1.7
7.2 3.8 3.8
10.8 6.6 6.5
14 .4 8.6 8.0
== T
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Table 6

Peak and residual shear loads or shear loads at 0.4 in shear
displacement for F4 samples,
constant normal stiffness, forward direction.

R R R R TR R ————.—.
Cycle Initial Congtant Peak Residual Shear Load at
Normal Normal Shear Shear 0.4 in
Load Stiffness Load Load Shear Displ.
(kips) (kips/in) (kips) (kips) (kips)
lst 3.6 18.0 4.5 3.4
Forward 3.6 54.0 4.
3.6 179.9 6.
7.2 54.0 9.4 7.3
“ 7.2 179.9 9.1
2nd 3.6 18.0 3.1
Forward 3.6 54.0 3.9
3.6 179.9 4.9
7.2 54.0 6.6
7.2 179.9 7.2
ard 3.6 18.0 2.9
Forward 3.6 54.0 3.6
3.6 179.9 4.7
7.2 54.0 6.4
7.2 179.9 6.7
4th 3.6 18.0 2.9
Forward 3.6 54.0 3.5
3.6 179.9 4.5
7.2 54.0 6.4
7.2 179.9 6.5
5th 3.8 18.0 2.8
Forward 3.8 54.0 3.4
3.8 179.9 4.3
7.5 54.0 6.3
7.5 179.9
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Table 7
Slope of dilatancy curves (tan i) for F4 samples,
constant normal load tests.

— N—
Inicial
Normal tan 1 tan i tan i tan i tan i
Load 1ist 2nd 3rd 4th 5th
(kips) cycle cycle cycle cycle cycle
Forward 0.7 0.14 0.12 0.12 0.11 0.11
Shear 3.6 0.14 0.13 0.13 0.13 0.13
7.2 0.11 0.11 0.10 0.09 0.09
10.8 0.10 0.10 0.09 0.09 0.08
14.4 0.08 0.07 0.07 0.07 0.06
Reverse 0.7 0.14 0.14 0.14 0.14 0.14
Shear 3.6 0.11 0.11 0.11 0.11 0.11
7.2 0.08 0.08 0.08 0.07 0.07
10.8 0.09 0.08 0.08 0.08 0.07
14 .4 0.07 0.06 0.06 0.05 0.05
Table 8

Slope of dilatancy curves (tan i) for F4 samples,
constant normal stiffness tests.

Ini- Constant
tial Normal tan i tan i tan i tan i tan i
Normal Stiff- let 2nd 3rd 4th 5th
Load ness cycle cycle cycle cycle cycle
(kips) (kips/in)
For - 3.6 18.0 0.13 0.12 0.11 0.13 0.11
ward 3.6 54.0 0.13 0.12 0.11 0.1} 0.11
Shear 3.6 179.9 0.10 0.09 0.08 0.08 0.08
7.2 54.0 0.12 0.11 0.10 0.10 0.10
7.2 179.9 0.08 0.08 0.08 0.07
Re- 3.6 18.0 0.11 0.11 0.11 0.10 0.10
verse 3.6 54.0 0.10 0.10 0.09 0.09 0.09
Shear 3.6 179.9 0.08 0.09 0.08 0.08 0.08
7.2 54.0 0.08 0.09 0.08 0.08 0.08
7.2 179.9 0.06 0.06 0.06 0.06
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Table 9
Sheared area for F4 samples (bottom half) and
amount of gouge generated in shear.

e
Sample Sheared Sheared Gouge
Area Area (grams)
(sqg.in) (%)
R1iF4 4.5 25 2.4
R2F4 12,2 68 5.1
R3F4 14.5 81 10.4
R4F4 16.4 91 10.5
R5F4 17.2 96 12.8 I
R6F4 16.4 91 8.7
KR7F4 13.2 73 5.1
RBF4 16.1 89 12.2
KR9F4 13.2 74 5.0
KR10F4 13.5 75 6.9
KR11F4 16.1 90 11.2
KR12F4 15.3 85 10.0
KR13F4 12.6 70 7.4
v s e |

3.2 Normal Compression Test Results

The normal compression test results are presented in the form of
normal load versus normal displacement response curves. Typical
response curves for joint normal compression before and after shear
testing of sample R1F3 are shown in Figure 12. The test results
for all specimens can be found in Appendix Bl. The actual joint
closure is determined from these response curves after subtracting
the deformation of the intact gypsum cement and the system from the
total measured normal displacement (as shown in Figure 13). The
intact gypsum cement behavior was obtained from a gypsum cement
block sample with the same size as the joint replica and also the
same height of potting cement,
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Figure 12. (a) Normal load vs. normal displacement before shear,
(b) Normal load vs. normal displacement after shear testing under
constant normal load N, = 0.8 kips (3.3 kN). Five cycles normal
compression of sample R1F3,.
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Figure 13. Joint closure of specimen RSF3 after shear testing under
constant normal load N, = 15.0 kips (66.7 kN).

The initial joint normal stiffness k, and maximum closure Va were
determined from the envelope to the five loading/unloading cycles
of the joint closure curves using the model of Bandis et al.
(1983) . 1In this model, the normal stress ¢ and joint closure v are
related as follows

_V kni Vm

Vy = V (1)

Both k, and V, can be determined by regression analysis of 1/¢
versus 1/v. As an example, Table 10 gives the values of initial
stiffness and maximum joint closure for all F3 samples. Values of
those two parameters for all samples can be found in Appendix B2,
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Table 10
Maximum closure and initial stiffness for samples F3,

e m— e —————————
Maximum Initial
Closure Normal
Vi Stiffness
It ( in) Ko
(ksi/in)
Before 0.2x10" 1.9x10?
Shear
After R1F3 0.9x%107 1.3x10?
Shear R6F3 1.3x107? 1.2x10?
f R4F3 0.2x10%? 2.0x10?
R5F3 1.2x10° 1.2x10?
KR7F3 3.2x107 0.9x10?
KR8F3 0.5x107 1.9%x10?
KROF3 2.4x107 0.6x10?
KR10F3 2.4x107 0.8x10?
KR11F3 2.5X10? 0.8x10?
| I R —

3.3 Profilometer Test Results

As an example, two sets of two profiles are presented in Figures
l4a and 14b. The first set corresponds to profile X2 which was
taken on the lower half of sample R1F4 before shear and on the
lower half of sample R3F4 after shear under a constant normal load
of 7.2 kips (32.0 kN) (Figure 14a). The second set of profiles
corresponds to profile X3 which was taken on the bottom half sample
R1F4 before shear and on the bottom half sample R3F4 after shear
under a constant normal load of 7.2 kips (32.0 kN) (Figure 14b).
The profiles before and after shear show minor differences in
micro-roughness. The macro-roughness (large undulation) remains
eggentially the same. Randomly selected profiles are presented in
Appendix C1 for specimens G2, F2, F3, and F4.
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Figure 14. (a) Comparison of profiles X2 of bottom half specimen
R1F4 before shear and R3F4 after shear testing (offset - 0.2 in
(5.1 mm)), (b) Comparison of profiles X3 of bottom half specimen
R1F4 before and R3F4 after testing (offset -0.2 in (5.1 mm)).
Sample R3F4 was tested under constant normal load N, = 7.2 kips
(32.0 kN).
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From the profilometer test results, the roughness of the irregular
fracture surfaces was quantified mathematically using the theory of

fractal geometry developed by Mendelorot (1983). An inherent
property of fractals is their ability to replicate patterns of an
object at different scales. A magnified portion of a fractal

object is statistically identical to the whole. The dimension of
an object in fractal geometry is defined by the quantity D such
that:

2)
N=gP (
where

N = the number of sub-parts of each fractal unit,

S = sgcaling factor defined as 1/r,

r = length of each sub-part relative to the initiator length,

and

D = fractal dimension.

Solving equation (2) for D gives:
p= 109 N (2)

1
log .

The fractal dimension of an irregular profile can be calculated by
using the divider method (Brown, 1987). After measuring the
roughness along several profiles on a fracture surface, the fractal
dimengion D can be obtained by first choosing different values for
the length r appearing in equation (3). Knowing the number of sub-
parts N for each wvalue of r, the fractal dimension can be
determined by regression analysis of log N versus log 1/r. Log N is
then multiplied by different multipliers while log 1/r remains
constant. As the value of the multiplier increases, the value of
D converges toward the self-affine fractal dimensicn (Brown, 1987).
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Table 11 gives typical results of fractal dimension analysis for

one profile (F4X2) on the bottom half of the F4 samples.

fractal dimension tables are given in Appendix C2.

Table 11
Fractal dimension for F4X2 bottom.

[ =
Sample | Normal Load Const. Fractal
(kips) Stiffness | Dimension
(kips/in)

Before

Shear 1.13
After

Shear

R1F4 0.7 0 1.12
R2F4 3.6 0 1.11
R3F4 7.2 0 1.11
R4F4 10.8 0 1.11
R5F4 14.4 0 1.10
R6F4 10.8 0 1.11
R8F4 10.8 0 1.11
R13F4 3.6 0 1.11
KR7F4 3.6 18.0 1.11
KR9F4 3.6 54.0 1.11
KR10F4 3.6 179.9 1.11
KR11F4 7.2 54.0 1.10
KR12F4 7.2 179.9 1.15

The other



4. DISCUSSION AND RECOMMENDATIONS
4.1 Observations During Testing

During testing, some situations were encountered either with the
testing procedure or with the testing apparatus. These issues,
which may i1indirectly affect the testing results, are discussed
below.

- Sample placement.

The procedure for sample preparation was discussed in detail in
section 2.1. Difficulties were encountered in trying to adjust the
mean joint surfaces to a horizontal plane. The adjustment was done
by hand and by visual inspection of the air bubble in a level
placed across the joint surfaces. Thus, positioning of the joint
surfaces at the beginning of each direct shear test may not have
been consistent for all samples. This could have influenced the
joint dilatancy responses. This problem can be improved by casting
the gypsum samples directly into the machine mounting fixture.

- Embankment around the specimens.

Sloped embankments made out of gypsum cement were placed along the
periphery of the F3 and F4 test specimens in order to alleviate
stress concentrations along the edges and to prevent the sample
edges from breaking off during shear. Such phenomena had been
observed for the G2 and F2 sample for which no embankments were
constructed. As the number of cycles of shear increased, surface
damage occurred gradually, as would be expected. Placing a gypsum
embankment around the test specimens had a positive influence on
the experimental results, especially under high initial normal
loads, the test result was more reliable from first through fifth

cycles.
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- Installation of the specimen on the upper and lower platens.

During the attachment of the specimens in the shear box holders to
the upper and lower platens of the direct shear machine, the upper
and lower shear box specimen holders sometimes moved in such a way
that joint surfaces were slightly unmated at the beginning of some
of the shear tests. Offsets of 0.02 - 0.06 in (0.5 - 1.5 mm) were
gometimes measured. This was reflected in some of the dilatancy
curves. This problem can be improved by having larger bolt holes
at the bottom steel mould, so that the position of the bottom
sample can be adjusted during installation when placing their
initially joints in the mated position.

- Direct shear apparatus.

During testing there was no external restriction in the direction
parallel to the joint surface and perpendicular to the shear
direction. Visual monitoring of two reference tape markings
indicated that the joint moved laterally by as much as 0.05 in (1
mm) . This may indicate a slight anisotropy in the mechanical
response of the fracture to the applied loading condition.

- Disturbance in profilometer test results.

Four profiles were measured for every half part of each test
specimen; X1, X2, X3, and X4. The two profiles (X1 and X4) located
the closest to the edges of the test specimens (0.3 - 0.5 in, 7.6 -

12.7 mm, from the edges) were sometimes partly sheared off. To
avoid discrepancies, especially in calculating the fractal
dimensions, it 18 recommended to consider only the two inner
profiles (X2 and X3).

4.2 Accuracy of Test Results

The observations discussed in section 4.1 may have led to some
errors in the test results. In order to assess the reproducibility
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of the testing procedure and the sensitivity of the shear
apparatus, three replicas of the F4 sample were tested under the
same conditions, e.g., cyclic shear test under a constant normal
load of 10.8 kips (48.0 kN). The results of the three tests are
tabulated in Table 12.

Table 12
Comparison of three test results under constant
normal load of 10.8 kips (48.0 kN).

e e T — T Tttt =
1st 1st lst 1st
cycle cycle cycle cycle
Peak Res- Max. Dila- Gouge Sheared | Fractal
Sample Shear idual Dila- tancy Dimen-
Load Shear tancy Slope Area sion
(kips) Load (in) tan i (gram) X2 it
(kips) (%)
R4F4 9.8 7.2 0.04 0.09 10.5 91 1.11
R6F4 11.7 7.5 0.05 0.10 8.7 91 1.11
R8F4 11.3 7.2 0.05 0.12 12.2 89 1.11
Aver-
age 10.9 7.3 0.05 0.10 10.5 91 1.11
Error 0.8 0.14 0.005 0.01 1.4 0.9 0.00 ||
— T

According to Table 12, the error (standard deviation) on the peak
shear load is 0.8 kips (3.6 kN). The error on the residual shear
load (shear load at 0.5 in shear displacement) is 0.14 kips (0.6

kN) . The dilatancy shows some variation, but the differences are
very small, less than 0.005 in (0.13 mm). The error on the slope
(tan i) of the dilatancy curves is about 0.01, which is equivalent
to about one degree of dilatancy. The errors on the gouge and

sheared area measurements are 1.4 grams and 0.9%, respectively. The
measurements of fractal dimension are very consistent.
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4.3 Effect of Shear Load Direction

The effect of shear direction was evaluated by conducting a shear
test on sample R13F4 under the same conditions as R2F4, except that
the shear load started in the opposite (or reverse) direction. R2F4
was sheared in the forward direction first, while R13F4 was sheared
in the reverse direction first. Comparison between the results of
the two tests is shown in Table 13. According to Table 13, the
peak shear loads in the forward direction differ by 0.3 kips (1.3

kN). 1In the reverse direction, the difference is 0.8 kips (3.6
kN) . Residual shear load values in the forward direction are
similar while in the reverse direction they differ by 0.3 kips (1.5
kN). The maximum dilatancy values in the forward direction have a

0.02 in (0.4 mm) difference, while in the reverse direction they
have a 0.002 in (0.05 mm) difference. The dilatancy slopes (tan 1)
in the forward direction have a 0.01 difference, which is less than
one degree of dilatancy. In the reverse direction they have a
0.02, or about a 1.3 degrees difference. The gouges produced
during shear differed by approximately 2.3 grams. Sheared area
during shear and fractal dimension are similar for both samples.

4.4 Future Application of the Data

This report is part one of a series of reports under the title of
Effect of Boundary Conditions on the Strength and Deformability of
Replicas of Natural Fractures in Welded Tuff. This report is a
data report. In the second report, the observed and predicted
shear behaviors using the graphical method of Amadei and Saeb are
compared. The third report discusses additional analysis relative
to several commonly used empirical rock joint models.
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Table 13
Comparison of the results of tests R2F4 and R13F4 under a
constant normal load of 3.6 kips (16.0 kN).

M
Conditions R2F4 R13F4

18t Cycle Forward
Peak Shear Load (kips) 3.8 4.1

1st Cycle Forward
Residual Shear Load (kips) 2.0 1.9

18t Cycle Reverse
Peak Shear Load (kips) 5.1 4.3 "

1st Cycle Reverse
Residual Shear Load (kips) 3.0 2.7

18t Cycle Forward

Maximum Dilatancy (in) 0.08 0.06
18t Cycle Reverse
Maximum Dilatancy (in) 0.05 0.06 "

18t Cycle Forward
Dilatancy Slope (tan i) 0.14 0.13

1st Cycle Reverse

Dilatancy Slope (tan 1) 0.11 0.08

Gouge (grams) 5.1 7.4
Sheared Area (%) 68 70 ~ﬂ

Fractal Dimension, X2 1.11 1l.11

( after shear)
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APPENDIX A0
EXPERIMENTAL SCHEDULE

SAMPLE DESCRIPTION

RG2
RF2
RF3
RF4

Experiment Schedule
Experiment Schedule
Experiment Schedule
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Table 1
Experiment schedule for RG2 specimens.

O A N AN R SR I R NI e S N MR TRt |
Sample Normal Initial Constant
Load Normal Stress Stiffness
(kips) (psi) * (kips/in)
I
R1G2 1.3 40 0
R4G2 6.4 200 0
R2G2 12.8 400 0
R3G2 25.6 800 0
KR5G2 1.3 40 32
KR6G2 6.4 200 64

* Area = 32.00 in®

AO-1



[ e |

Table 2

Experiment schedule for RF2 specimens.

* Area = 14.77 in?

AO0-2

Sample Normal Initial Constant
Load Normal Stress Stiffness
(kips) (psi) » (kips/in)
R5F2 0.6 40 0
R2F2 3.0 200 0
R3F2 5.9 400 0
R4F2 11.8 800 0
KR6F2 3. 200 14.8
KR7F2 3, 200 44.3
KR8F2 3. 200 147.8
0 R S e el




Table 3

Experiment schedule for RF3 specimens.

Sample Normal Initial Constant
Load Normal Stress Stiffness
(kips) (psi) * (kips/in)
R1F3 0.8 40 0
R6F3 3.8 200 0
R4F3 7.5 400 0
R5F3 15.0 800 0
KR7F3 3.8 200 18.8
KR8F3 3.8 200 56.3
KROF3 3.8 200 187.5
KR11F3 7.5 400 56.3
KR10F3 7.5 400 187.5
* Area = 18.75 in?

AQ0-3



Table 4
Experiment schedule for RF4 specimens.

Sample Normal Initial Constant
Load Normal Stress Stiffness
(kips) (psi) * (kips/in)
R1F4 .7 40 0
R2F4 .6 200 0
R3F4 .2 400 0
R4F4 10.8 600 0
R5F4 14.4 800 0
R6F4 10.8 600 0
R8F4 10.8 600 0
R13F4 3.6 200 0
KR7F4 3.6 200 18.0
KROF4 3.6 200 54.0
KR10F4 3.6 200 179.9
KR11F4 7.2 400 54.0
KR12F4 7.2 400 179.9

* Area = 18.0 in?

A0-4



APPENDIX Al
CYCLIC SHEAR & DILATANCY

SAMPLE DESCRIPTION

R1G2
R1G2
R4G2
R4G2
R2G2
R2G2
R3G2
R3G2
KR5G2

KR5G2

KR6G2

KR6G2

R5F2
R5F2
R2F2
R2F2
R3F2
R3F2
R4F2
R4F2
KR6F2

KR6F2

KR7F2

Cyclic Shear; Normal Load = 1.3 kips
Dilatancy; Normal Load = 1.3 kips
Cyclic Shear; Normal Load = 6.4 kips
Dilatancy; Normal Load = 6.4 kips
Cyclic Shear; Normal Load = 12.8 kips
Dilatancy; Normal Load = 12.8 kips
Cyclic Shear; Normal Load = 25.6 kips
Dilatancy; Normal Load = 25.6 kips
Cyclic Shear; Normal Load = 1.3 kips,
K = 32 kips/in

Dilatancy; Normal Load = 1.3 kips,

K = 32 kips/in

Cyclic Shear; Ncormal Load = 6.4 kips,
K = 64 kips/in

Dilatancy; Normal Load = 6.4 kips,

K = 64 kips/in

Cyclic Shear; Normal Load = 0.6 kips
Dilatancy; Normal Load = 0.6 kips
Cyclic Shear; Normal Load = 3.0 kips
Dilatancy; Normal Load = 3.0 kips
Cyclic Shear; Normal Load = 5.9 kips
Dilatancy; Normal Load = 5.9 kips
Cyclic Shear; Normal Load = 11.8 kips
Dilatancy; Normal Load = 11.8 kips
Cyclic Shear; Normal Load = 3.0 kips,
K = 14.8 kips/in

Dilatancy; Normal Load = 3.0 kips,

K = 14.8 kips/in

Cyclic Shear; Normal Load = 3.0 kips,
K = 44.3 kips/in

Al-i
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Al-1
Al-1
Al-2
Al-2
Al-3
Al-3
Al-4
Al-4

Al-5

Al-5

Al-6

Al-6

Al-7

Al-7

Al-8

Al-8

Al-9

Al-9

Al-10

Al-10

Al-11

Al-11

Al-12




SAMPLE DESCRIPTION

KR7F2

KR8F2

KR8F2

R1F3

R1F3

R6F3

R6F3

R4F3

RAF3

R5F3

R5F3

KR7F3

KR7F3

KR8F3

KR8F3

KROF3

KROF3

KR11F3

KR11F3

KR10F3

KR10F3

Dilatancy; Normal Load = 3.0 kips,

K = 44.3 kips/in

Cyclic Shear; Normal Load = 3.0 kips,
K = 147.7 kips/in

Dilatancy; Normal Load = 3.0 kips,

K = 147.7 kips/in

Cyclic Shear; Normal Load = 0.8 kips
Dilatancy; Normal Load = 0.8 kips
Cyclic Shear; Normal Load = 3.8 kips
Dilatancy; Normal Load = 3.8 kips
Cyclic Shear; Normal Load = 7.5 kips
Dilatancy; Normal Load = 7.5 kips
Cyclic Shear; Normal Load = 15.0 kips
Dilatancy; Normal Load = 15.0 kips
Cyclic Shear; Normal Load = 3.8 kips,
K = 18.8 kips/in

Dilatancy; Normal Load = 3.8 kips,

K = 18.8 kips/in

Cyclic Shear; Normal Load = 3.8 kips,
K = 56.3 kips/in

Dilatancy; Normal Load = 3.8 kips,

K = 56.3 kips/in

Cyclic Shear; Normal Load = 3.8 kips,
K = 187.5 kips/in

Dilatancy; Normal Load = 3.8 kips,

K = 187.5 kips/in

Cyclic Shear; Normal Load = 7.5 kips,
K = 56.3 kips/in

Dilatancy; Normal Load = 7.5 kips,

K = 56.3 kipsg/in

Cyclic Shear; Normal Load = 7.5 kips,
K = 187.5 kips/in

Dilatancy; Normal Load = 7.5 kips,

K = 187.5 kips/in

Al-1ii

PAGE

Al-12

Al-13

Al-13

Al-14

Al-14

Al-15

Al-15

Al-16

Al-16

Al-17

Al-17

Al-18

Al-18

Al-19

Al-19

Al-20

Al-20

Al-21

Al-21

Al-22

Al-22



SAMPLE DESCRIPTION

R1F4
R1F4
R2F4
R2F4
R3F4
R3F4
R4F4
R4F4
R6F4
R6F4
R8F4
R8F4
R5F4
R5F4
KR7F4

KR7F4

KR9F4

KROF4

KR10F4

KR10F4

KR11F4

KR11F4

KR12F4

KR12F4

Cyclic Shear; Normal Load = 0.7 kips
Dilatancy; Normal Load = 0.7 kips
Cyclic Shear; Normal Load = 3.6 kips
Dilatancy; Normal Load = 3.6 kips
Cyclic Shear; Normal Load = 7.2 kips
Dilatancy; Normal Load = 7.2 kips
Cyclic Shear; Normal Load = 10.8 kips
Dilatancy; Normal Load = 10.8 kips
Cyclic Shear; Normal Load = 10.8 kips
Dilatancy; Normal Load = 10.8 kips
Cyclic Shear; Normal Load = 10.8 kips
Dilatancy; Normal Load = 10.8 kips
Cyclic Shear; Normal Load = 14.4 kips
Dilatancy; Normal Load = 14.4 kips
Cyclic Shear; Normal Load = 3.6 kips,
K = 18.0 kips/in

Dilatancy; Normal Load = 3.6 kips,

K = 18.0 kips/in

Cyclic Shear; Normal Load = 3.6 kips,
K = 54.0 kips/in

Dilatancy; Normal Load = 3.6 kips,

K = 54.0 kips/in

Cyclic Shear; Normal Load = 3.6 kips,
K = 179.9 kips/in

Dilatancy; Normal Load = 3.6 kips,

K = 179.9 kips/in

Cyclic Shear; Normal Load = 7.2 kips,
K = 54.0 kips/in

Dilatancy; Normal Load = 7.2 kips,

K = 54.0 kips/in

Cyclic Shear; Normal Load = 7.2 kips,
K = 179.9 kips/in

Dilatancy; Normal Load = 7.2 kips,

K = 179.9 kips/in

Al-iii

PAGE

Al-23
Al-23
Al-24
Al-24
Al-25
Al-25
Al-26
Al-26
Al-27
Al-27
Al-28
Al-28
Al-29
Al-29

Al-30

Al1-30

Al-31

Al-31

Al-32

Al-32

Al-33

Al-33

Al-34

Al-34



SAMPLE DESCRIPTION PAGE

R13F4 Cyclic Shear; Normal Load = 3.6 kips Al-35
R13F4 Dilatancy; Normal Load = 3.6 kips Al-35

Al-iv
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APPENDIX A2
SUMMARY OF CYCLIC SHEAR & DILATANCY

SAMPLE DESCRIPTION

RG2 Cyclic Shear - 1st Cycle Forward
RG2 Dilatancy - 1st Cycle Forward
RG2 Cyclic Shear - 1st Cycle Reverse
RG2 Dilatancy - 1lst Cycle Reverse
RG2 Cyclic Shear - 2nd Cycle Forward
RG2 Dilatancy - 2nd Cycle Forward
RG2 Cyclic Shear - 2nd Cycle Reverse
RG2 Dilatancy - 2nd Cycle Reverse
RG2 Cyclic Shear - 3rd Cycle Forward
RG2 Dilatancy - 3rd Cycle Forward
RG2 Cyclic Shear - 3rd Cycle Reverse
RG2 Dilatancy - 3rd Cycle Reverse
RG2 Cyclic Shear - 4th Cycle Forward
RG2 Dilatancy - 4th Cycle Forward
RG2 Cyclic Shear - 4th Cycle Reverse
RG2 Dilatancy - 4th Cycle Reverse
RG2 Cyclic Shear - 5th Cycle Forward
RG2 Dilatancy - 5th Cycle Forward
RG2 Cyclic Shear - 5th Cycle Reverse
RG2 Dilatancy - S5th Cycle Reverse
RF2 Cyclic Shear - 1lst Cycle Forward
RF2 Dilatancy - 1st Cycle Forward
RF2 Cyclic Shear - 1st Cycle Reverse
RF2 Dilatancy - 1st Cycle Reverse
RF2 Cyclic Shear - 2nd Cycle Forward
RF2 Dilatancy - 2nd Cycle Forward
RF2 Cyclic Shear - 2nd Cycle Reverse
RF2 Dilatancy - 2nd Cycle Reverse
RF2 Cyclic Shear - 3rd Cycle Forward
RF2 Dilatancy - 3rd Cycle Forward
RF2 Cyclic Shear - 3rd Cycle Reverse

A2-1i
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A2-2
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A2-5
A2-5
A2-6
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SAMPLE

RF2
RF2
RF2
RF2
RF2
RF2
RF2
RF2
RF2

RF3
RF3
RF3
RF3
RF3
RF3
RF3
RF3
RF3
RF3
RF3
RF3
RF3
RF3
RF3
RFZ
RF3
RF3
RF3
RF3

RF4
RF4
RF4

DESCRIPTION

Dilatancy - 3rd Cycle Reverse
Cyclic Shear - 4th Cycle Forward
Dilatancy - 4th Cycle Forward
Cyclic Shear - 4th Cycle Reverse
Dilatancy - 4th Cycle Reverse
Cyclic Shear - 5th Cycle Forward
Dilatancy - 5th Cycle Forward
Cyclic Shear - 5th Cycle Reverse
Dilatancy - 5th Cycle Reverse

Cyclic Shear - 1st Cycle Forward
Dilatancy - 1st Cycle Forward
Cyclic Shear - 1st Cycle Reverse
Dilatancy - 1st Cycle Reverse
Cyclic Shear - 2nd Cycle Forward
Dilatancy - 2nd Cycle Forward
Cyclic Shear - 2nd Cycle Reverse
Dilatancy - 2nd Cycle Reverse
Cyclic Shear - 3rd Cycle Forward
Dilatancy - 3rd Cycle Forward
Cyclic Shear - 3rd Cycle Reverse
Dilatancy - 3rd Cycle Reverse
Cyclic Shear - 4th Cycle Forward
Dilatancy - 4th Cycle Forward
Cyclic Shear - 4th Cycle Reverse
Dilatancy - 4th Cycle Reverse
Cyclic Shear - 5th Cycle Forward
Dilatancy - 5th Cycle Forward
Cyclic Shear - 5th Cycle Reverse
Dilatancy - 5th Cycla: Reverse

Cyclic Shear - 1st Cycle Forward

Dilatancy - 1st Cycle Forward
Cyclic Shear - 1st Cycle Reverse
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SAMPLE DESCRIPTION
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RF4
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RF4
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RF4
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RF4
RF4
RF4
RF4

Dilatancy - 1lst Cycle Reverse
Cyclic Shear - 2nd Cycle Forward
Dilatancy - 2nd Cycle Forward
Cyclic Shear - 2nd Cycle Reverse
Dilatancy - 2nd Cycle Reverse
Cyclic Shear - 3rd Cycle Forward
Dilatancy - 3rd Cycle Forward
Cyclic Shear - 3rd Cycle Reverse
Dilatancy - 3rd Cycle Reverse
Cyclic Shear - 4th Cycle Forward
Dilatancy - 4th Cycle Forward
Cyclic Shear - 4th Cycle Reverse
Dilatancy - 4th Cycle Reverse
Cyclic Shear - 5th Cycle Forward
Dilatancy - 5th Cycle Forward
Cyclic Shear - 5th Cycle Reverse
Dilatancy - 5th Cycle Reverse
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Peak and residual shear loads for RG2 samples,

constant normal load,

forward direction.

A3-1

I S
Cycle Constant Peak Residual Shear
Normal Load | Shear Load Shear Load Stiffness
(kips) (kips) (kips) (kips/in)
1st 1.3 .7 1.0 24.6
Forward 6.4 .5 4.9 323.6
12.8 13.4 10.9 4688.0
25.6 24 .2 18.0 512.7
2nd .3 .5 1.2
Forward 6.4 .6 4.7
12.8 11.5 9.6
25.6 18.2 15.8
3rd .3
Forward .4
12.8 - - |
25.6 14.7 12.1
4th .3 1.
Forward .4
12.8 - -
25.6 - -
5th .3
Forward .4 .5
12.8 - -
25.6 - -
Note: 1 kip = 4.45 kN, 1 kip/in = 1.75 kN/cm



Peak and residual shear loads for RG2 samples,

constant normal load, reverse direction.

e o
Cycle Constant Peak Residual Shear
Normal Load | Shear Load Shear Load Stiffness
(kips) (kips) (kips) (kips/in)
1st 1.3 .3 0.9
Reverse 6.4 .9 5.2
12.8 .9 9.1
25.6 20.6 19.9
2nd 1.3 .0 0.9
Reverse 6.4 .4 5.0
12.8 .6 9.3
25.6 19.8 18.2
3rd 1.3
Reverse 6.4 5.
12.8 - -
25.6 -
4th 1.3
Reversge 6.4
12.8 - -
25.6 - -
5th 1.3
Reverse 6.4
12.8 - -
25.6 - -
| SR

Note: 1 kip = 4.45 kN, 1 kip/in = 1.75 kN/cm

A3-2



Peak and residual shear loads for RG2 samples,

constant normal stiffness,

forward direction.

Note: 1 kip = 4.45 kN, 1 kip/in = 1.75 kN/cm

A3-3

Cycle Initial Constant Peak Residual Shear Load
Normal Normal Shear Shear at 0.4 in
Load Stiffness Load Load Shear
(kips) (kips/in) (kips) (kips) Displ.
(kips)
1st .3 32.0 2.5
Forward 4 64.0 8.70
2nd 32.0 2.0
Forward 64.0 6.7
3rd .3 32.0 1.7
Forward 4 64.0 5.8
4th .3 32.0 1.4
Forward 4 64.0 4.1 3.5
5th 32.0
Forward .4 64.0




Peak and residual shear loads for RG2 samples,

constant normal stiffness,

reverse direction.

Note: 1 kip = 4.45 kN, 1 kip/in = 1.75 kN/cm

A3-4

Cycle Initial | Constant Peak Residual Shear Load
Normal Normal Shear Shear at 0.4 in
Load Stiffness Load Load Shear
(kips) (kips/in) (kips) (kips) Displ.
(kips)
1st . 32.0
Reverse . 64.0
2nd 1.3 32.0 .8
Reverse 6. 64.0 1
3rd 32.0 0.
Reverse 64.0 3.3
4th .3 32.0 0.8
Reverse 4 64.0 2.3 1.3
5th 1.3 32.0
Reverse 6.4 64.0 .




Peak and residual shear loads for RF2 samples,

constant normal load, forward direction.

Cycle Constant Peak Residual Shear
Normal Load | Shear Load Shear Load Stiffness
(kips) (kips) (kips) (kips/in)
lst 0.6 . 186
Forward 3.0 . 138
5.9 183
" 1108 ] * 561 “
2nd 0.6 . 2
Forward 3.0 . 5
5.9 . .7
11.8 .3
3rd 0.6 0.3
i Forward 3.0 1.9 .
5.9 2.9
11.8 5.5
4th 0.6
Forward 3.0 .
509 . (]
11.8
5th 0.6 .2
Forward 3.0 .3
5

Note: 1 kip = 4.45 kN, 1 kip/in = 1.75 kN/cm
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Peak and residual shear loads for RF2 samples,
constant normal load, reverse direction.

Note: 1 kip = 4.45 kN, 1 kip/in = 1.75 kN/cm

A3-6

W
Cycle Congtant Peak Residual Shear
Normal Load | Shear Load Shear Load Stiftneas
(kips) (kips) (kips) (kips/in)
1st 0.6 ' L
Reverse 3.0 |
5.9
11.8
I
2nd 0.6 0.5 . I
Reverse 3.0 1.6
5.9 2.6
11.8 .0
3rd 0.6 0.5 0
Reverse 3.0 i.4 1
5.9 2.5 2.
11.8 4.5 3.
4th 0.6 0.5 0.3
Reverse 3.0 1.3 1.1
5.9 2.3 2.2
11.8 3.7 2.7
5th 0.6 0. 0.
Reverse 3.0 1, 1.
5.9 2,
11.8 - -
T L S R A R T s e R ER S e S T R




Peak and residual shear loads for RF2 samples,
constant normal stiffness, forward direction.

Note: 1 kip = 4.45 kN, 1 kip/in = 1.75 kN/cm

A3-7

e O L R A SR |
Cycle Initial | Constant Peak Residual Shear Load
Normal Normal Shear Shear at 0.4 in
Load Stiffness Load Load Shear
(kips) (kips/in) (kips) (kips) Displ.
(kips)
1st 3, 14.8 2.4 1.8
Forward 3. 44 .3
147.7
2nd 3. 14.8 1.9 1.7
Forward 3. 44 .3
3 147.7 .
3rd 3. 14.8
Forward 3 44.3 .0
. 147.7 .6
4th 3 14.8 1.7 1.6
Forward 3. 44.3 .
3. 147.7
5th 3. 14.8 1.7 1.5
Forward 3 44.3
3.0 147.7 3.6
mm




Peak and residual shear loads for RF2 samples,
constant normal stiffness, reverse direction.

" Cycle Initial | Constant Peak Residual Shear Load
Normal Normal Shear Shear at 0.4 in
Load Stiffness Load Load Shear
(kips) (kips/in) (kips) (kips) Displ.
I
(kips)
lst 3.0 14.8 2.2 1.1
Reverse 3.0 44.3 2.0 1.4
3.0 147.7 2.4 1.4
2nd 3.0 14.8 1.8
Reverse 3.0 44.3 1.8
3.0 147 .7 1.7 1.2
3rd 3.0 14.8 1.6
Reverse 3.0 44.3 1.6 1.3
3.0 147.7 1.6 1.2
4th 3.0 14.8 1.6 1.2
Reverse 3.0 44.3
147.7 1.6 1.3
5th 3.0 14.8 1.6 1.2
Reverse 3.0 44.3
3.0 147.17 1.6 1.2

Note: 1 kip = 4.45 kN, 1 kip/in = 1.75 kN/cm
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Peak and residual shear loads for RF3 samples,
constant normal load,

forward direction.

Peak Residual Initial
Cycle Normal Load | Shear Load | Shear Load Shear
(Kips) (Kips) (Kips) Stiffness
(Kips/in) |
last 0.8 1.0 .3 167
Forward 3.8 3.3 2.2 1620
7.5 6.5 4.4 849
15.0 10.9 8.5 866
2nd 0.8 0.6
Forward 3.8 2.6 2.0
7.5 4.9 3.9
" 15.0 8.0 .
ird 0.8 0.6 0.3
Forward 3.8 2.5 2,
7.5 4.8 ‘ |
15.0 7.7 ,
4th 0.8 0.8 .
Forward 3.8 .
7.5
15.0 . .
5th 0.8 .3
Forward 3.8 W9

Note: 1 kip = 4.45 kN, 1 kip/in = 1.75 kN/cm
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Peak and residual shear loads for RF3 samples,
constant normal load, reverse direction.

Note: 1 kip = 4.45 kN, 1 kip/in = 1.75 kN/cm

A3-10

W
Peak Regidual Initial
Cycle Normal Load Shear Load | Shear Load Shear
(Kips) (Kips) (Kips) Stiffness
(Kips/in)
1st 0.8 1.3 .4
Reverse 3.8 4.4 .3
7.5 7.4 .7
15.0 12.5 9.2
2nd 0.8 0. 4
Reverse 3.8 3, 3
7.5 5. .1
15.0 9. .8
ird 0.8 0. 0.4
Reverse 3.8 3. 2.2
7.5 4, 3.9
15.0 . 7.7
4th 0.8 0.4
Reversge 3.8 . 2.3
7.5 . 3.8
15.0 8.9 8.0
5th 0.8 .
Reverse 3.8 .
7.5
15.0 . 8.1
O A S R M e e R e T T ot




Peak and residual shear loads for RF3 samples,
conastant normal stiffness, forward direction.

T e T T I A Ty TR o

Cycle Initial Constant pPeak Residual Sheay Load at
Normal Normal Shear Shear 0.4 in
Load Stiffness Load Load Shear Displ.
(kips) (kips/in) (kips) (kips) (kips)
lst 3.8 18.8 3.1
Forward 3.8 56.3 3.9
3.8 187.5 5.3
7.5 56.3 7.6 6.4
7.5 187.5 10.2
2nd 3.8 18.8 2.4
Forward 3.8 56.3 3.4
3.8 187.5 4.1
7.5 56.3 5.3
7.5 187.5 7.8
3rd 3.8 18.8 2.1
Forward 3.8 56.3 3.1
3.8 187.5 3.7
7.5 56.3 5.0
1.5 187.5 7.1
4th 3.8 18.8 .0
Forward 3.8 56.3 .0
3.8 187.5% 3.7
7.5 56.3 .7
7.5 187.5 6.8
Sth 3.8 18.8 2.0
Forward 3.8 56.3 2.9
3.8 187.5% 3.5
7.5 56.3 4.7
7.5 187.5 6.8

Note: 1 kip = 4.45 kN, 1 kip/in = 1.75 kN/cm
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constant normal stiffness,

Peak and residual shear loads for RF3 samples,
reverse direction.

" Cycle Initial Constant Peak Residual Shear Load at
Normal Normal Shear Shear 0.4 in
‘Load Stiffness Load Load Shear Displ.
{(kips) (kips/in) (kips) (kips) (kips)
1st 3.8 18.8 3.9 3.4
I Reverse 3.8 56.3 .1
3.8 187.5
7.5 56.3 10.0 8.5
7.5 187.5 10.6
2nd 3.8 18.8 3.1 2.7
Reverse 3.8 56.3 3.5
3.8 187.5 4.2
7.5 56.3 7.3
7.5 187.5 7.8
3rd 3.8 18.8 3.0 2.7
Reverse 3.8 56.3 3.3
3.8 187.5 3.9
7.5 56.3 6.9
7.5 187.5 7.4
4th 3.8 18.8 2.9 2.7
Reverse 3.8 56.3 3.1
3.8 187.5 3.9
7.5 56.3 6.9
7.5 187.5 7.1
5th 3.8 18.8 2.8 2.7
Reverse 3.8 56.3 2.9
3.8 187.5 3.8
7.5 56.3 6.6
7.5 187.5 6.6

Note: 1 kip

= 4.45 kN, 1 kip/in = 1.75 kN/cm
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Peak and residual shear loads for RF4 samples,
constant normal load, forward direction.

Consgtant Peak Residual Shear
Cycle Normal Load Shear Load Shear Load Stiffness
(kips) (kips) (kips) (kips/in)
1st 0.7 1.1 0.5 100
Forward .6 .8 2.0 783
.2 .1 4.4 1194
10.8 10.8 7.3 830
14 .4 13.7 9.2 925
2nd 7 0.7 0.5
Forward .6 2.3 1.7
.2 4.5 4.0
10.8 7.4 6.6
14.4 9.1 8.3
3rd .7 0.6 0.4
Forward 3.6 2.0 1.7
.2 4.1 3.9
10.8 6.9 6.6
14.4 8.7 8.0
4th 0.7 0.5 0.4
Forward .6 1.9 1.6
.2 3.9 3.8
10.8 6.7 6.5
14.4 8.7 8.0
5th 7 0.5 0.6
Forward .6 1.8 1.7
.2 3.8 3.8
10.8 6.6 6.5
14 .4 8.6 8.0

Note: 1 kip = 4,45 kN, 1 kip/in = 1.75 kN/cm
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constant normal load,

Peak and residual shear loads for RF4 samples,
reverse direction.

e — .T.“-=-‘
Constant Peak Residual Shear
Cycle Normal Load Shear Load Shear Load Stiffness
(kips) (kips) (kips) (kips/in)
lst .7 1.2 0.7
Reverse .6 5.1 3.0
.2 7.8 5.5
10.8 10.9 7.5
14 .4 12.9 9.7
2nd 0.7 0.8 0.6
Reverse 3.6 3.8 3.0
7.2 5.8 5.3
10.8 8.0 7.3
14.4 10.3 9.2
3rd 0.7 0.7 0.6
Reverse 3.6 3.6 3.1
7.2 5.4 5.0
10.8 7.6 7.2
14 .4 9.8 8.9
4th 0.7 0.7 0.5
Reverse 3.6 3.5 3.1
.2 5.3 5.0
10.8 7.4 7.1
14 .4 9.5 8.9
5th 0.7 0.7 0.6
Reverse 3.6 3.4 3.1
.2 5.3 5.0
10.8 7.3 7.1
14 .4 9.2 8.8

Note: 1 kip

4.45 kN, 1 kip/in = 1.75 kN/cm
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Peak and residual shear loads for RF4 samples,

constant normal stiffness,

forward direction.

—
Cycle Initial Constant Peak Residual Shear Load at
Normal Normal Shear Shear 0.4 in
Load Stiffness Load Load Shear Digpl.
(kips) (kips/in) (kips) (kips) (kips)
lst 3.6 18.0 4.5 3.4
Forward 3.6 54.0 4.6
3.6 179.9 6.6
7.2 54.0 9.4 7.3
7.2 179.9 9.1
2nd 3.6 18.0 3.1
Forward 3.6 54.0 3.9
3.6 179.9 4.9
7.2 54.0 6.6
7.2 179.9 7.2
3rd 3.6 18.0 2.9
Forward 3.6 54.0 3.6
3.6 179.9 4.7
7.2 54.0 6.4
7.2 179.9 6.7
4th 3.6 18.0 2.9
Forward 3.6 54.0 3.5
3.6 179.9 4.5
7.2 54,0 6.4
7.2 179.9 6.5
5th 3.6 18.0 2.8
Forward 3.6 54.0 3.4
3.6 179.9 4.3
7.2 54.0 6.3
7.2 179.9
Note: 1 kip = 4.45 kN, 1 kip/in = 1.75 kN/cm
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Peak and residual shear loads for RF4 samples,
constant normal stiffness, reverse direction.

M - . e e e,
Cycle ra':nit:ial Constant Peak Residual Shear Load at
Normal Normal Shear Shear 0.4 in
" Load Stiffness Load Load Shear Displ.
(kips) (kips/in) (kips) (kips) (kips)
1st 3.6 18.0 4.4 3.0
Reverse 3.6 54.0 4.7 3.9
3.6 179.9 5.6
7.2 54.0 8.3 6.0
7.2 179.9 7.2
2nd 3.6 18.0 3.3 3.0
Reverse 3.6 54.0 3.7
3.6 179.9 4.9
7.2 54.0 6.2
7.2 179.9 6.8
3xrd 3.6 18.0 3.1 2.9
Reverse 3.6 54.0 3.5
3.6 179.9 4.6
7.2 54.0 6.1
7.2 179.9 6.4
4th 3.6 18.0 3.0
Reverse 3.6 54.0 3.4
3.6 179.9 4.4
7.2 54.0 6.0
7.2 179.9 6.2
5th 3.6 18.0 2.9
Reverse 3.6 54.0 3.4
3.6 179.9 4.3
7.2 54.0 5.8
7.2 179.9
— I

Note: 1 kip = 4.45 kN, 1 kip/in = 1.75 kN/cm
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SAMPLE DESCRIPTION
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Slope of dilatancy curves (tan i)
constant normal load tests.

Initial

for RG2 samples,

Note: 1 kip = 4.45 kN

A4-1

Normal tan 1 tan i tan i tan i tan i

Load ist 2nd 3rd 4th 5th

(kips) cycle cycle cycle cycle cycle

Forward .3 0.21 0.17 0.15 0.13 0.11

Shear .4 0.10 0.01 -0.03 -0.01 -0.01
12.8 0.12 0.07 - - -
25.6 -0.05 -0.05 -0.19 - -

Reverse 1.3 0.06 0.05 0.04 0.03 0.04

Shear 6.4 0.04 -0.02 -0.01 -0.01 -0.01
12.8 0.00 -0.01 - - -




Slope of dilatancy curves (tan i) for RG2 samples,
constant normal stiffness tests.

[ —— T

Ini- Constant

tial Normal tan 1 tan i tan 1 tan i tan i
Normal Stiff- 1st 2nd 3rd 4th 5th

Load ness cycle cycle cycle cycle cycle

(kips) | (kips/in) |

For- 1.3 32,0 0.14 0.12 0.11 0.11 0.11
ward 6.4 64.0 0.12 0.09 0.07 0.07 0.04
Shear
Re- 1.3 32.0 0.06 0.03 0.02 0.01 0.01
verse 6.4 64.0 -0.00 -0.04 0.00 -0.01 -0.02
Shear
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Slope of dilatancy curves (tan i) for RF2 samples,
constant normal load tests.

Initial

Normal tan 1 tan 1
Load lst 2nd 3rd 4th 5th
(kips) cycle cycle cycle cycle cycle

Forward 0.6 0.17 0.14 0.13 0.08 -
Shear 3.0 0.14 0.13 0.12 0.12 0.12
i 5.9 0.11 0.10 0.10 0.09 0.07

11.8 0.07 0.08 0.05 0.07 -

Reverse 0.6 0.16 0.16 0.14 0.08 -
Shear 3.0 0.04 0.03 0.02 0.02 0.02
5.9 0.01 0.01 0.01 0.01 0.00

11.8 -0.01 -0.02 -0.03 -0.12 -
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(tan 1) for RF2 samples,

Slope of dilatancy curves

congtant normal stiffnesgs tests.

A4-4

Constant
tial Normal tan i tan i tan i tan 1 tan {
Normal Stiff- 1st 2nd ird 4th 5th
Load ness cycle cycle cycle cycle cycle
(kips) (kips/in)
For- 14.8 0.14 0.13 0.13 0.12 0.12
ward 44,3 0.11 0.10 0.08 0.05 -
Shear 147.8 0.11 0.11 0.10 0.10 0.10
Re- 3. 14.8 0.04 0.03 0.02 0.02 0.02
versge 3, 44,3 0.03 0.02 0.01 -0.03 -
3 147.8




Slope of dilatancy curves (tan 1) for RF3 samples,

o ]

constant normal load tests.

A4-5

Initial
Normal tan i tan i tan 1 tan i tan 1
Load ist 2nd 3rd 4th 5th
(kips) cycle cycle cycle cycle cycle

I

Forward 0.8 0.18 0.18 0.17 0.17 0.17
Shear 3.8 0.18 0.18 0.18 0.17 0.17
7.5 0.16 0.15 0.13 0.12 0.12
15.0 0.10 0.09 0.08 0.08 0.08
Reverse 0.8 0.26 0.27 0.27 0.26 0.27
Shear 3.8 0.19 0.19 0.19 0.19 0.18
7.5 0.14 0.13 0.12 0.11 0.11

15.0 0.09 0.07 0.07 0.06 0.06




Slope of dilatancy curves (tan i) for RF3 samples,
congtant normal stiffness tests.

Ini- Constant
tial Normal tan i tan i tan i tan i tan i
Normal Stiff- 1st 2nd ird 4th 5th
Load ness cycle cycle cycle cycle cycle

(kips) | (kipse/in)
For- 3.8 18.8 0.16 0.13 0.13 0.13 0.12
ward 3.8 56.3 0.15 0.15 0.15 0.15 0.15
Shear 3.8 187.5 0.10 0.10 0.10 0.10 0.10
7.5 56.3 0.09 0.08 0.08 0.08 0.07
7.5 187.5 0.09 0.08 0.08 0.07 0.07
Re- 3.8 18.8 0.16 0.15 0.1¢ 0.13 0.13
verse 3.8 56.3 0.16 0.16 0.15 0.15 0.15
Shear 3.8 187.5 0.11 0.11 0.10 0.10 0.10
7.5 56.3 0.09 0.07 0.07 0.06 0.06
7.5 187.5 0.10 0.09 0.08 0.08 0.07
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Slope of dilatancy curves (tan i) for RF4 samples,

constant normal load tests.

|
|
g
|
|

|
|
f
|

Initial
Normal |[tan 1 | tan i | tan i | tan i | tan i
Load ist 2nd 3rd 4th 5th
(kips) cycle | cycle | cycle | cycle | cycle
Forward 0.7 0.14 0.12 0.12 0.11 0.11
Shear 3.6 0.14 0.13 0.13 0.13 0.13
7.2 0.11 0.11 0.10 0.09 0.09
10.8 0.10 0.10 0.09 0.09 0.08
14.4 0.08 0.07 0.07 0.07 0.06
Reverse 0.7 0.14 0.14 0.14 0.14 0.14
Shear 3.6 0.11 0.11 0,11 0.11 0.11
7.2 0.08 0.08 0.08 0.07 0.07
10.8 0.09 0.08 0.08 0.08 0.07
14.4 0.07 0.06 0.06 0.05 0.05
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Slope of dilatancy curves (tan i) for RF4 samples,

constant normal stiffness tests.

[MW
Ini- Constant
tial Normal tan i tan i tan 1 | tan i tan 1
Normal Stiff- 1ist 2nd ird 4th 5th
Load ness cycle cycle cycle | cycle cycle
(kips) | (kips/in)
For- 3.6 18.0 0.13 0.12 0.11 0.11 0.11
ward 3.6 54.0 0.13 0.12 0.11 0.11 0.11
Shear 3.6 179.9 0.10 0.09 0.08 0.08 0.08
7.2 54.0 0.12 0.11 0.10 0.10 0.10
7.2 179.9 0.08 0.08 0.08 0.07 .
Re- 6 18.0 0.11 0.11 0.11 0.10 0.10
verge 6 54.0 0.10 0.10 0.09 0.09 0.09
Shear 6 179.9 0.08 0.09 0.08 0.08 0.08
2 54.0 0.08 0.09 0.08 0.08 0.08
7.2 179.9 0.06 0.06 0.06 0.06 -
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PEAK & RESIDUAL SHEAR LOAD REF2
5TH CYCLE REVERSE, K=147.7 KIPS/IN
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SHEAR LOAD (KIPS)

SHEAR LOAD (KIPS)

1ST CYCLE FORWARD

PEAK & RESIDUAL SHEAR LOAD REF3

12 PEAK FAILURE
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T~ 7 \
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44 N.L.=3.8 KIPS
K=56.3 KIPS/IN
2- Ke183 KIPSAN
0 T T T T T T
0 4 6 8 10 12 14 16
NORMAL LOAD (KIPS)
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SHEAR LOAD (KIPS)

SHEAR LOAD (KIPS)

PEAK & RESIDUAL SHEAR LOAD RF3

2ND CYCLE FORWARD
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PEAK FAILURE
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RESIDUAL FAILURE
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SHEAR LOAD (KIPS)

SHEAR LOAD (KIPS)

PEAK & RESIDUAL SHEAR LOAD RF3
3RD CYCLE FORWARD
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104
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21 Kei3 3 KIPSAN
0 PR 1 T T T T
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PEAK & RESIDUAL SHEAR LOAD RF3
4TH CYCLE FORWARD
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4- N.L.=38 KIPS

K=18.8 KIPS/IN N.L.=38 KIPS
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SHEAR LOAD (KIPS)

SHEAR LOAD (KIPS)
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SHEAR LOAD (KIPS)

SHEAR LOAD (KIPS)
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SHEAR LOAD (KIPS)

SHEAR LOAD (KIPS)

PEAK & RESIDUAL SHEAR LOAD RF4

2ND CYCLE FORWARD
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PEAK & RESIDUAL SHEAR LOAD RF4
3RD CYCLE FORWARD
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SHEAR LOAD (XIPS)
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SHEAR LOAD (KIPS)
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APPENDIX A6
SHEARED AREA & GOUGE TABLES

SAMPLE DESCRIPTION PAGE
RG2 Sheared Area & Gouge A6-1
RF2 Sheared Area & Gouge A6-2
RF3 Sheared Area & Gouge A6-3
RF4 Sheared Area & Gouge A6-4

A6-1



Sheared area for RG2 samples and
amount of gouge generated in shear,

Note: 1 sq in = 6.45 cm?

A6-1

Sample Bottom Bottom Top Top
Sheared Sheared Sheared Sheared Gouge
Area Area Area Area (grams)

(8q in) (%) (sq in) (%)
R1G2 - - - - 36.6
R4G2 - - - - 237.0
R2G2 - - - - 317.3
R3G2 - - - - 1173.7
KR5G2 - - - - 46.3
KR6G2 21.1 66 20.8 65 246.5

w




Sheared area for RF2 samples and
amount of gouge generated in shear.

Note: 1 8q in = 6.45 cm?

A6-2

W
Sample Bottom Bottom Top Top

Sheared Sheared Sheared Sheared Gouge
Area Area Area Area (grams)

(8q in) (%) (8q in) (%) |
R5F2 3.5 23 3.7 25 22.1
R2F2 6.2 32 5.2 35 77.4
R3F2 6.8 46 5.5 37 182.0
R4F2 13.5 91 8.7 59 437.3
KR6F2 9.1 61 8.8 60 81.6
KR7F2 7.4 50 6.8 46 86.8
KR8F2 10.8 73 10.8 73 62.2
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Sheared area for RF3 samples and

amount of gouge generated in shear.

Sample Bottom Bottom Top Top
Sheared Sheared Sheared Sheared Gouge
Area Area Area Area (grams)
(sq in) (%) (sq in) (%)
R1F3 7.8 42 6.9 37 .1
R6F3 14.4 77 13.6 73 1
R4F3 13.3 71 12.9 69 .6
R5F3 17.4 93 17.7 %4 16.0
KR7F3 12.3 66 10.7 57 .0
KR8F3 11.8 63 12.1 64 .8
KROF3 11.7 62 11.0 58 .7
KR10F3 17.2 92 15.5 83 18.1
KR11F3 16.8 90 17.1 91 22.3

Note: 1 sq in = 6.45 cm’
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Sheared area for RF4 samples and

amount of gouge generated in shear.

Sample Bottom Bottom Top Top
Sheared Sheared Sheared Sheared Gouge
Area Area Area Area (grams)
(sq in) (%) (sq in) (%)
R1F4 4.5 25 5.1 29 .4
R2F4 12.2 68 11.9 66 .1
R3F4 14.5 81 14.8 82 10.4
R4F4 16.4 91 16.0 89 10.5
R5F4 17.2 95 17.0 94 12.8
R6F4 16.4 91 16.2 90 .7
KR7F4 13.2 73 11.5 64 .1
R8F4 16.0 89 15.6 87 12.2
KROF4 13.2 73 13.3 74 .0
KR10F4 13.5 75 12.5 69 .9
KR11F4 16.1 90 16.2 90 11.2
KR12F4 15.3 85 15.1 85 10.0
KR13F4 12.6 70 12.9 72 7.4

Note: 1 sq in = 6.45 cm’
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APPENDIX Bl
CYCLIC COMPRESSION

SAMPLE DESCRIPTION PAGE
RG2 Solid Block B1-1
R4G2 Before Shear Bl-1
R1G2 After Shear; Normal Load = 1.3 kips B1-2
R4G2 After Shear; Normal Load = 6.4 kips B1-2
R2G2 After Shear; Normal Load = 12.8 kips B1-3
R3G2 After Shear; Normal Load = 25.6 kips B1-3
KRS5G2 After Shear; Normal Load = 1.3 kips,

K = 32 kips/in Bl-4
KR6G2 After Shear; Normal Load = 6.4 kips,

K = 64 kips/in Bl-4
RF2 Solid Block B1-5
R5F2 Before Shear B1-5
R5F2 After Shear; Normal Load = 0.6 kips B1-6
R2F2 After Shear; Normal Load = 3.0 kips Bl1-6
R3G2 After Shear; Normal Load = 5.9 kips B1-7
R4F2 After Shear; Normal Load = 11.8 kips B1-7
KR6F2 After Shear; Normal Load = 3.0 kips,

K = 14.8 kips/in B1-8
KR7F2 After Shear; Normal Load = 3.0 kips,

K = 44.3 kips/in B1-8
KR8F2 After Shear; Normal Load = 3.0 kips,

K = 147.7 kips/in B1-9
RF3 Solid Block B1-10
R1F3 Before Shear B1-10
R1F3 After Shear; Normal Load = 0.8 kips B1-11
R6F3 After Shear; Normal Load = 3.8 kips Bl1-11
R4F3 After Shear; Normal Load = 7.5 kips Bl1-12
R5F3 After Shear; Normal Load = 15.0 kips B1-12
KR7F3 After Shear; Normal Load = 3.8 kips,

K = 18.8 kips/in B1-13

Bl-i



SAMPLE

KR8F3

KROF3

KR11F3

KR10F3

RF4

R5F4

R1F4

R2F4

R3F4

R4F4

R6F4

RB8F4

R5F4

KR7F4

KR9F4

KR10F4

KR11F4

KR12F4

R13F4

DESCRIPTION

After Shear; Normal
K = 56.3 kips/in
After Shear; Normal
K = 187.5 kips/in
After Shear; Normal
K = 56.3 kips/in
After Shear; Normal
K = 187.5 kips/in

Solid Block

Before Shear

After Shear; Normal
After Shear; Normal
After Shear; Normal
After Shear; Normal
After Shear; Normal
After Shear; Normal
After Shear; Normal
After Shear; Normal
K = 18.0 kips/in
After Shear; Normal
K = 54.0 kips/in
After Shear; Normal
K = 179.9 kips/in
After Shear; Normal
K = 54.0 kips/in
After Shear; Normal
K = 179.9 kips/in

After Shear (Reverse);

Load

Load =

Load

Load

]

Load =
Load =
Load =
Load =
Load =
Load =
Load =
Load =

Load =

Load =

Load =

Load =

Bl-ii

3.8 kips,

3.8 kips,

7.5 kips,

7.5 kips,

0.7 kips
3.6 kips
7.2 kips
10.8 kips
10.8 kips
10.8 kips
14.4 kips
3.6 kips,

3.6 kips,

3.6 kips,

7.2 kips,

7.2 kips,

Normal Load =

3.6 kips

PAGE

B1-13

Bl-14

Bi1-14

B1-15

Bl-16

Bl-16

B1-17

B1-17

Bl1-18

B1-18

B1-19

B1-19

B1-20

B1-20

B1-21

Bl1-21

B1-22

B1-22
B1-23



CYCLIC COMPRESSION RG2
SOLID BLOCK
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NORMAL LOAD (KIPS)
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CYCLIC COMPRESSION R1G2
AFTER SHEAR; NORMAL LOAD = 1.3 KIPS
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CYCLIC COMPRESSION R2G2
AFTER SHEAR; NORMAL LOAD = 12.8 KIPS
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CYCLIC COMPRESSION KR5G2
AFTER SHEAR
NORMAL LOAD = 1.3 KIPS, K = 32 KIPS/IN
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NORMAL LOAD (KIPS)
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NORMAL LOAD (KIPS)

NORMAL LOAD (KIPS)
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CYCLIC COMPRESSION KR6F2
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CYCLIC COMPRESSION KR8F2
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NORMAL LOAD = 3.0 KIPS, K = 147.7 KIPS/IN

- -
£ P

-
n

...............................

—

NORMAL LOAD (KIPS)
®

........................................

0.01 0.02 0.03 0.04 0.05 0.06
NORMAL DISPLACEMENT (IN)

B1-9




CYCLIC COMPRESSION RF3
SOLID BLOCK
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CYCLIC COMPRESSION KR7F3
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NORMAL LOAD = 3.8 KIPS, K =18.8 KIPS/IN
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CYCLIC COMPRESSION KR9F3
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NORMAL LOAD = 3.8 KIPS, K = 187.5 KIPS/IN
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CYCLIC COMPRESSION KR10F3
AFTER SHEAR
NORMAL LOAD = 7.5 KIPS, K = 187.5 KIPS/IN
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CYCLIC COMPRESSION R3F4
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MAXIMUM CLOSURE & INITIAL STIFFNESS TABLES

SAMPLE DESCRIPTION

RG2
RF2
RF3

RF4

Maximum Closure
Maximum Closure
Maximum Closure
Maximum Closure

APPENDIX B2

& Initial Stiffness
& Initial Stiffness
& Initial Stiffnesgs
& Initial Stiffness

B2-1

PAGE

B2-1
B2-2
B2-3
B2-4



Maximum closure

and initial stiffness for samples RG2.

Note:

Sample Maximum Initial
Closure Normal
Vi Stiffness
( in ) Ky
(ksi/in)
Before 3.9x107? 0.9x10?
Shear
After R1G2 5.0x107 0.2x10?
Shear R4G2 11.9x107 0.2x10?
R2G2 8.2x107 0.3x10?
R3G2 - N
KR5G2 1.8x 107 0.6x102
KR6G2 10.7x1072 0.2x10?
1 in = 2.54 cm, 1 ksi/in = 2.72 MPa/cm

B2-1




Maximum closure and initial stiffness for samples RF2.

Sample Maximum Initial
Closure Normal
Vi Stiffness
( in ) Ky
(ksi/in)
Before 0.7x10? 2.0x10?
Shear
After R5F2 - -
Shear R2F2 0.6x10? 1.0x10?
R3F2 0.7x10% 3.3x10?
R4F2 - -
KR6F2 - -
KR7F2 1.9x10? 2.1x10?
KRBF2 - -

Note: 1 in = 2.54 cm, 1 ksi/in = 2.72 MPa/cm

B2-2



Maximum closure and initial stiffness for samples RF3.

Sample Maximum Initial
Closure Normal
Vi Stiffness
( in ) Ky
(kei/in)
Before 0.2x107 1.9x10°?
Shear
After R1F3 0.9x10* 1.3x10°
Shear R6F3 1.3x10°7 1.2x10°
R4F3 0.2x10%? 2.0x10?
R5F3 1.2x107 1.2x10?
KR7F3 3.2x107 0.9x10°
KRBF3 0.5x10%? 1.9x10°?
KROF3 2.4x107? 0.6x10?
KR11F3 2.5x107 0.8x10?
KR10F3 2.4x107 0.8x10°

Note: 1 in = 2.54 cm, 1 ksi/in = 2.72 MPa/cm
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Maximum closure and initial stiffness for samples RF4.

N—
Sample Maximum Initial
Closure Normal
Vi Stiffness
( in ) Ko
(ksi/in)
Before 2.9x107? 0.5x10?
Shear
After R1F4 3.7x107 0.6x10?
Shear R2F4 2.5x10% 1.3x10?
R3F4 2.5x107 0.7x10?
R4F4 2.8x10% 0.7x10?
R5F4 2.5x10% 0.9x10?
R6F4 2.2x107? 1.2x10?
R8F4 2.3x10" 1.5x102
KR7F4 3.5x1072 1.6x10?
KROF4 3.0x107 0.8x10?
KR10F4 2.6x107? 0.9x10?
KR11F4 2.0X10°? 1.0x10°
KR12F4 1.8%10°72 0.9%10?
KR13F4 3.6X1072 0.9x10?

Note: 1 in = 2.54 cm, 1 ksi/in = 2.72 MPa/cm
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SAMPLE DESCRIPTION

RG2
RG2
RG2
RG2

RF2
RF2
RF2
RF2

RF3
RF3
RF3
RF3

RF4
RF4
RF4
RF4

G2X2

G2X3
G2X2
G2X3

F2X2
F2X3
F2X2
F2X3

F3X2
F3X3
F3X2
F3X3

F4X2
F4X3
F4Xx2
F4X3

Bottom
Bottom
Bottom
Bottom

Bottom
Bottom
Bottom
Bottom

Bottom
Bottom
Bottom
Bottom

Bottom
Bottom
Bottom
Bottom

APPENDIX Cl
PROFILES

Before Shear
Before Shear
After Shear,
After Shear,

Before Shear
Before Shear
After Shear,
After Shear,

Before Shear
Before Shear
After Shear,
After Shear,

Before Shear
Before Shear
After Shear,
After Shear,

Normal
Normal

Normal
Normal

Normal
Normal

Normal
Normal

C1-1i

Load
Load

Load
Load

Load
Load

Load
Load

12.8 kips
12.8 kips

9 kips
9 kips

8 kips
8 kips

7.2 kips
7.2 kips

PAGE

Ci-1
Ci-1
Cl-2
Ci-2

Cl-3
Cil-3
Cl-4
Cl-4

Cl-5
C1l-5
Cl-6
Cl-6

C1-7
C1-7
Cl-8
Cl-8




Profile G2X2 Bottom
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Profile G2X2 Bottom
After Shear, Normal Load = 12.8 Kips
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Asperity (in)
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Profile F2X2 Bottom
After Shear, Normal Load = 5.90 Kips
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Profile F3X2 Bottom
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Profile F3X2 Bottom

After Shear, Normal Load=0.8 Kips
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Profile F4X2 Bottom
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Profile F4X2 Bottom
After Shear, Normal Load = 7.2 Kips
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APPENDIX C2
FRACTAL DIMENSION TABLES

SAMPLE DESCRIPTION PAGE
RG2 G2X2 Bottom Cc2-1
RG2 G2X3 Bottom C2-1
RG2 G2X3 Top c2-2
RG2 G2X3 Top c2-2
RF2 F2X2 Bottom c2-3
RF2 F2X3 Bottom c2-3
RF2 F2X2 Top c2-4
RF2 F2X3 Top C2-4
RF3 F3X2 Bottom C2-5
RF3 F3X3 Bottom c2-5
RF3 F3X2 Top c2-6
RF3 F3X3 Top C2-6
RF4 F4X2 Bottom c2-7
RF4 F4X3 Bottom c2-8
RF4 F4X2 Top c2-9
RF4 F4X3 Top C2-10

c2-1




Fractal Dimension for G2X2 Bottom.

Sample Normal Load | Constant Fractal
(kips) Stiffness | Dimension
(kips/in)
Before Shear 1.21

After Shear

R1G2 .3 0 1.11
R4G2 .4 0 1.11
R2G2 12.8 0 1.09
R3G2 25.6 0 1.08
KR5G2 1.3 32.0 1.09
KR6G2 6.4 64.0 1.09
— ——
Fractal Dimension for G2X3 Bottom.
Sample Normal Load Congtant Fractal
(kips) Stiffness | Dimension
(kips/in)
Before Shear 1.19
After Shear
R1G2 3 0 1.65
R4G2 '_ .4 0 1.13
R2G2 12.8 0 1.11
R3G2 25.6 0 1.13
KR5G2 .3 32.0 1.19
KR6G2 6.4 64.0 1.10

Note: 1 kip = 4.45 kN, 1 kip/in = 1.75 kN/cm

Cc2-1




Fractal Dimension for 32X2 Top.

Note:

c2-2

Sample Normal Load | Constant Fractal
(kips) Stiffness | Dimension
(kips/in)
Before Shear 1.15
After Shear
R1G2 1.3 0 1.10
I R4G2 6.4 0 1.16
R2G2 12.8 0 1.14
R3G2 25.6 0 1.13
KR5G2 32.0 1.20
KR6G2 64.0 1.19
]
Fractal Dimension for G2X3 Top.
= e e
Sample Normal Load | Constant Fractal
(kips) Stiffness | Dimension
(kips/in)
Before Shear 1.23
After Shear
R1G2 1.3 0 1.21
R4G2 6.4 0 1.32
R2G2 12.8 0 1.16
R3G2 25.6 0 1.13
KR5G2 32.0 1.13
KR6G2 6.4 64.0 1.15
1 kip = 4.45 kN, 1 kip/in = 1.75 kN/cm



Fractal Dimension for F2X2 Bottom.

C2-3

M“
Sample Normal Load Constant Fractal
(kips) Stiffness | Dimension
(kips/in)

Before Shear 1.15

After Shear
R5F2 0.6 0 1.13
R2F2 3.0 0 1.07
R3F2 5.9 0 1.06
R4F2 11.8 0 1.05
KR6F2 14.8 1.09
KR7F2 44 .3 1.08
KR8F2 3.0 147.8 1.08

Fractal Dimension for F2X3 Bottom.
- == 1
Sample Normal Load | Constant Fractal
(kips) Stiffness | Dimension
(kips/in)

Before Shear 1.16

After Shear
R5F2 0.6 0 1.16
R2F2 3.0 0 1.13
R3F2 5.9 0 1.15
R4F2 11.8 0 1.14
KR6F2 3. 14.8 1.15
KR7F2 44 .3 1.14
KR8F2 147.8 1.12

Note: 1 kip = 4.45 kN, 1 kip/in = 1.75 kN/cm




Fractal Dimension for F2X2 Top.

T =S S
Normal Load Constant Fractal
(kips) Stiffness | Dimension
(kips/in)
Before Shear 1.15
After Shear
R5F2 .6 0
R2F2 .0 0
R3F2 .9 0
R4F2 11.8 0
KR6F2 3.0 14.8
KR7F2 3.0 44,3
KR8F2 3.0 147.8
e e e e e e e

Fractal Dimension for F2X3 Top.

=== — T _Fl

Sample Normal Load Congtant Fractal
(kips) Stiffness | Dimension
(kips/in)
Before Shear 1.13

After Shear

R5F2 6 0 1.16
R2F2 0 0 1.16
R3F2 5.9 0 1.14
R4F2 11.8 0 1.11
KR6F2 3.0 14.8 1.17
KR7F2 3.0 44.3 1.11
KR8F2 3.0 147.8 1.07

e
—

Note: 1 kip = 4.45 kN, 1 kip/in = 1.75 kN/cm

C2-4




Fractal

Dimension for F3X2 Bottom.

Normal Load

Fractal

Sample Constant Fractal
(kips) Stiffness Dimension
(kipa/in)
Before Shear 1.14
After Shear
R1F3 0.8 0 1.09
R6F3 3.8 0 1.11
R4F3 7.5 0 1.12
R5F3 15.0 0 1.09
KR7F3 3.8 18.8 1.10
KR8F3 3.8 56.3 1.10
KRI9F3 3.8 187.5 1.10
KR10F3 7.5 56.3 1.09
KR11F3 7.5 187.5 1.11

Dimension for F3X3 Bottom.

P

Sample Normal Load Constant Fractal
(kips) Stiffness Dimension
(kips/in)
Before Shear 1.09
After Shear
R1F3 .8 0 1.08
R6F3 .8 0 1.05
R4F3 .5 0 1.12
RSF3 15.0 0 1.11
KR7F3 3.8 18.8 1.07
KR8F3 3.8 56.3 1.07
KR9F3 3.8 187.5 1.10
KR10F3 3.8 56.3 1.10
KR11F3 3.8 187.5 1.10

Note: 1 kip = 4.45 kN, 1 kip/in = 1.75 kN/em



Fractal Dimension for F3X2 Top.

Sample Normal Load Constant Fractal

(kips) Stiffness Dimension
(kips/in)
Before Shear 1.11
After Shear
" R1F3 .8 0 1.10
R6F3 .8 0 1.10
R4F3 .5 0 1.12
R5F3 15.0 0 1.09
KR7F3 3.8 18.8 1.12
KR8F3 3.8 56.3 1.08
KRI9F3 3.8 187.5 1.06
KR10F3 7.8 56.3 1.11
KR11F3 7.5 1

Sample Normal Load Constant Fractal

(kips) Stiffness Dimension
(kips/in)
Before Shear 1.09

After Shear

R1F3 8 0 1.08
R6F3 8 0 1.06
R4F3 5 0 1.06
R5F3 15.0 0 1.11
KR7F3 3.8 18.8 1.08
KR8F3 3.8 56.3 1.05
KR9F3 3.8 187.5 1.06
KR10F3 3.8 56.3 1.09
KR11F3 3.8 187.5 1.05

Note: 1 kip = 4.45 kN, 1 kip/in = 1.75 kN/cm

C2-6




Fractal Dimension for F4X2 Bottom.

Sample Normal Load | Constant Fractal
(kips) Stiffness | Dimension
(kips/in)
Before Shear 1.13
After Shear
R1F4 0.7 0 1.12
R2F4 3.6 0 1.11
R3F4 7.2 0 1.11
|| R4F4 10.8 0 1.11
R5F4 14.4 0 1.10
R6F4 10.8 0 1.11
R8F4 10.8 0 1.11
KR7F4 18.0 1.11
KROF4 54.0 1.11
KR10F4 180.0 1.11
KR11F4 54.0 1.10
KR12F4 180.0 1.15
R13F3 3.6 0 1.11

Note: 1 kip = 4.45 kN, 1 kip/in = 1,75 kN/cm
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Fractal Dimension for F4X3 Bottom.

Normal Load | Constant Fractal
(kips) Stiffness | Dimension
(kips/in)
Before Shear 1.12
After Shear
R1F4 0.7 0 1.11
R2F4 3.6 0 1.10
R3F4 7.2 0 1.07
R4F4 10.8 0 1.08
R5F4 14.4 0 1.09
R6F4 10.8 0 1.1C
R8F4 10.8 0 1.07
KR7F4 3.6 18.0 1.11
KR9F4 3.6 54.0 1.10
KR10F4 3.6 180.0 1.06
KR11F4 7.2 54.0 1.08
KR12F4 7.2 180.0 1.10
R13F3 3.6 0 1.08
T S S R SR et

Note: 1 kip = 4.448 kN, 1 kip/in = 1.75 kN/cm
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Fractal Dimension for F4X2 Top.

Sample Normal Load | Constant Fractal
(kips) Stiffness | Dimension
(kips/in)
Before Shear 1.18
After Shear

R1F4 0.7 0 1.10
R2F4 3.6 0 1.08
R3F4 7.2 0 1.08
R4F4 10.8 0 1.11
R5F4 14.4 0 1.12
R6F4 10.8 0 1.08
R8F4 10.8 0 1.08
I[ﬁ KR7F4 3 18.0 1.11
KR9F4 3, 54.0 1.07
KR10F4 3. 180.0 1.14
KR11F4 7. 54.0 1.07
KR12F4 . 180.0 1.15
R13F3 3.6 0 1.07

Note: 1 kip = 4.45 kN, 1 kip/in = 1,75 kN/cm
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Fractal Dimension for F4X3 Top.

Sample Normal Load | Constant Fractal
(kips) Stiffness | Dimension
(kips/in)

Before Shear 1.15

After Shear
R1F4 0.7 0 1.14
R2F4 3.6 0 1.10
R3F4 7.2 0 1.06
R4F4 10.8 0 1.07
R5F4 14.4 0 1,07
R6F4 10.8 0 1.08
R8F4 10.8 0 1.06
KR7F4 3.6 18.0 1,09
KRI9F4 3.6 54.0 1.089
KR10F4 3.6 180.0 1.11
KR11F4 7.2 54.0 1.14
KR12F4 7.2 180.0 1.10
R13F3 3.6 0 1.11

el e

Note: 1 kip = 4.45kN, 1 kip/in = 1.75 kN/cm
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APPENDIX

Information from the Reference Information Base
Used in this Report

This report contains no information from the Reference Information Base,

Candidate Information
for the
Reference Information Base

This report contains no candidate information for the Reference Information Base.

Candidate Information
for the
Geographic Nodal Information Study
and Evaluation System

This report contains no candidate information for the Geographic Nodal Information
Study and Evaluation System.
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