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Extending molecular theory to steady-state diffusing systems
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Predicting the properties of nonequilibrium systems from molecular simulations is a growing

area of interest. One important class of problems involves steady state diffusion. To study these
cases, a grand canonical molecular dynamics approach has been developed by Heffelfinger and van
Swol [J. Chem. Phys., 101, 5274 (1994)]. With this method, the flux of particles, the chemical
potential gradients, and density gradients can all be measured in the simulation. In this paper,
we present a complementary approach that couples a nonlocal density functional theory (DFT)
with a transport equation describing steady-state flux of the particles. We compare transport-DFT
predictions to GCMD results for a variety of ideal (color diffusion), and nonideal (uphill diffusion
and convective transport) systems. In all cases excellent agreement between transport-DFT and
GCMD calculations is obtained with diffusion coefficients that are invariant with respect to density
and external fields.
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I. INTRODUCTION

Molecular scale diffusion plays an important role in

a wide variety of systems including polymer degreda-
tion, catalysis, membrane separations, and ion transport
through biological membranes. In all of these cases, un-
derstanding diffusive processes on a molecular scale will
provide the ability to engineer these systems as desired.

The primary computational approaches that have been

applied to molecular diffusion are molecular dynamics

(MD) simulation [1,3-5,2] and transition state theory
(TST) [6,7). TST has been most often applied to rare
event diffusion where the diffusing species is dilute, and
the potential energy barriers between different states are
high. A few recent efforts are focusing on the calculation
of diffusive free energy barriers in the presence of a solu-
tion or multiple diffusing particles {8]. MD approaches in-
clude both linear response theory as coupled with equilib-
rium MD calculations [1,2], and non-equilibrium molec-
ular dynamics (NEMD) methods [9]. MD has been ap-
plied to a wide range of diffusion problems including dif-
fusion in zeolites [10,11], amorphous membranes [4,12],
nanoporous carbon materials [13], and polymers [14,15].

The particular NEMD method we have applied is
grand canonical molecular dynamics (GCMD) [3-5,16].
In GCMD, an overall chemical potential driving force
is maintined and particle flux is measured. A trans-
port law with some assumed functional form is then used
to estimate diffusion coefficients. Typically Fick’s law
(3,5,11,16,17],

Ja = _Davpa, (1)

is applied where J is the flux of species o, D is the dif-
fusion coefficient, and p is a number density.

While GCMD provides an exact computer experiment
for studying diffusion, the calculations (as with most
molecular simulations) are quite expensive to perform.
It is therefore desireable to develop complementary ap-
proaches for steady state non-equilibrium systems that
are based on molecular theories. In this paper we present
the results of coupling a nonlocal density functional the-
ory (DFT) to a transport equation, and solving the sys-
tem of equations under steady state conditions.

In section IT, the transport-DFT approach is presented,
in section III, DFT and GCMD calculations are com-
pared for a variety of model systems, and in section
IV a summary of our conclusions is presented. In gen-
eral, good agreement is found between transport-DFT
and GCMD approaches; however, transport-DFT calcu-
lations are O(10°) times faster than the GCMD calcu-
lations. Therefore, this new transport-DFT approach
provides a powerful addition to the tools available for
studying molecular steady state transport.

II. MODEL AND THEORY

"~ For the GCMD calculations presented here, the under-
lying molecular model describing fluid-fluid interactions
is the Weeks-Chandler-Anderson (WCA) fluid which is
based on a cut and shifted 12-6 Lennard-Jones (LJ) po-
tential [18], u(r) = urs(r) — urs(re), where

wir=e[@*-@)]. @

o is the diameter of the solvent molecule, € is the energy
parameter controlling the strength of fluid-fluid interac-
tions, and r. is the cutoff distance for the potential. For
a WCA fluid, the LJ potential is reduced to only the re-
pulsive part of the LJ potential since the cut-off is taken
at the potential minimum, r./o = 1.122.

DFT approaches are generally based on the assump-
tion of chemical equilibrium, and a free energy functional,
) is minimized with respect to the density distrbution,
p(r) at constant chemical potential, p. We relax this
condition, and assume instead that steady state is equiv-
alent to a condition of local equilibrium where the chem-
ical potential varies spatially. In this case, the energy
minimization we perform is

(3/%) (), T =0 ®

Fluid density distributions in the cases considered here
are inhomogeneous spatially due to nonuniform bound-
ary conditions. In the cases discussed in section IIID,
external fields lead to more pronounced inhomogeneities
in the fluid. Thus, the grand canonial free energy is

Q= Fiu+ Fou= Y, [ dr pal®) [1a®) - V)] (@

where the sum is taken over all the species in the system,
Veet is the external field (zero in all cases except sec-
tion IIID), the ideal and excess hard sphere free energy
contributions are

Fu=H'Y [ pa@ {ln (02a) -1}, )
and
Fi = [ dr 2(p,(x)} (®)

respectively, A is the de Broglie wavelength, ® is the
free energy density of the hard sphere fluid, and g, are
nonlocal densities. In calculating the hard sphere con-
tribution, we have applied the nonlocal formulation of
Rosenfeld that is detailed in the appendix [19].

The functional minimization of Eq.3 produces the.
Euler-Lagrange equations
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which can be solved at each point in the domain for
the steady state density distrubutions, pa(r) for a given
o

# \(Nc)a are interested in steady state diffusion where p(r)
is not known a priori, but rather satisfies a known diffu-
sion equation. Steady state is defined by a time indepen-
dent mass balance consisting only of the divergence-free
condition on the total flux,

v.J=0. (8)

The total flux may be attributed to a variety of physical
effects as is discussed in detail by Mason and Lonsdale
[20] in the context of membrane transport. For diffusion
in binary solutions in the absence of both a membrane
and pressure gradients, the two transport equations are

(up —ug) = —==Vu 9

pD RT

and

(uz - u1)=- Ve (10)

pD RT

where u is the particle velocity, and p = p; + p2. In this
paper, we further simplify our discussion by considering
primarily color diffusion (with the exception of section
IIIB). In color diffusion, all the particles are identical
in size and interactions, they differ only by the species
number (or color) they are assigned. In this case, D2; =
Dy = Dy; = Dyy = D, and we assume that the diffusion
coefficient is spatially invariant in solving the transport-
DFT problem.

Any center of mass motion in the system, Joas is de-
fined by

Jom =1+ Ja = prus + paua (11)

and combining Eqs.11 with 9 or 10 it is straightforward
to show that the flux may be defined as

Jo = —DpaVipa + Upa : (12)

where 7 is the mean particle velocity in the fluid. Note
that the diffusive contribution to the flux is not Fick’s
law (Eq.1).

The chemical potential of a given species can be writ-
ten as a sum of ideal, excess hard sphere, and external
field contributions,

B = pid + pas + Vo, (13)
as shown in Eq.7. If V¢ = 0, and there are no nonideal
contributions to the flux, (e.g. prs = 0 or Vups = 0),

o)

0 -

- [ s e Ces.

’ !

evecem ot

' : H

+ Control ' Diffusion ¢ ;Control !
d/olume ; “Zone™ " : "~ i Volume -~}
A ' . B :

FIG.1. A sketch of the computational doma.m for GCMD
simulations. Periodic boundary conditions are applied in all
dimensions, and chemical potential control is maintained in
the two control volumes in the shaded regions.

then only the ideal contribution (Vuia = kT'Vp/p) is
present, and Fick’s law

Jo = =DV pa, (14)

is recovered.

The two contributions to the flux in Eq.12 are diffu-
sive and convective fluxes respectively. The convective
term is written in terms of a mean velocity implying that
we are considering cases of plug flow where the velocity
field is homogeneous. For more complex flows, veloc-
ity distributions must be solved simultaneously with the
transport-DFT described here. Such calculations have
been previously performed (without diffusive transport)
for cases of Couette flow and Poiseuille flow [21].

In the following sections we test the transport-DFT
approach outlined above by explicit comparison with
GCMD simulations in a variety of situations. We discuss
the magnitude and type of errors that can develop when
Fick’s law (Eq.14) is used to analyze data from GCMD
simulations. We also show that the transport-DFT ap-
proach can be applied in cases where pressure gradients
and external fields are present.

III. RESULTS

In this section, we will compare GCMD calculations to
the predictions of the steady-state DFT described above.
We begin with a brief description of the GCMD method.

In GCMD calculations, the simulation volume is split
into two control volumes and two diffusion zones as
sketched in Fig.1 One of the diffusion zones is split be-
tween the ends of the box (in the x-direction) where there
are periodic boundary conditions. The total system size
for calculations presented here is 600 x 100 X 100.

The GCMD calculations were done on the massively
parallel ASCI-Red Tflops computer (composed of 200
MHz Pentium Processors) at Sandia National Labora-
tories using the parallel code LADERA. The LADERA
code is parallelized using a spatial decomposition, and
has been discussed elsewhere [14,22]. All the calcula-
tions presented here were performed on 48 processors
with each processor owning a cube that is 5o on edge (ie.
the processors have a spatial decomposition of 12x 2 x 2).
Every processor that owns pieces of the control volumes
split their volumes into eight sub-domains. One inser-
tion/deletion cycle involves an attempted insertion or




deletion in each of the eight subdomains on all of the
processors. Hence for the chosen geometry and processor

array;one grand-canonical (GC) cycle is composed of 128

insertions/deletions total [23].

The geometry in Fig.1 allows for variations in the equi-
librium properties (e.g. < p >) only in the z-direction.
Therefore the DF'T calculations are reduced to solving for
density and chemical potential profiles in only one dimen-
sion (1D), Our numerical solution (discussed elsewhere in
the context of equilibrium 2D and 3D problems [24,25])
combines a collocation approach to the Euler-Lagrange
equations with a Garlerkin finite element approach for
the transport equation. Linear basis functions were used
for the discretization, and a fully coupled Newton method
was used to solve for the steady-state solution. The DFT
calculations were run in serial on a 433 MHz DEC Alpha
workstation.

A. Color Counter-Diffusion

We begin with color counter-diffusion where there are
two species with identical properties. Each particle is
labeled (or colored) by its assigned species number (1,2).
To set up equal counter-diffusion, we set pf = pff and
pE = pf where the superscripts R and L refer to the
right and left control volumes respectively.

The case of color diffusion is unique in that Eq.14 and
Eq.12 are identical regardless of the fluid density. This
result stems from the fact that 7 = 0 and the total density
is constant everywhere in the simulation volume. As a
result, Vups =0, and only the ideal term contributes to
the flux.

We considered two cases of color diffusion. Both are
WCA fluids with a temperature of kT'/e = 1, but the
two cases have different total densities. The chemical
potential set points in the control volumes for the first
case were uf /kT = 1.54 and pf /kT = 2.34, while they
were pf /kT = 3.0 and pa/kT = 6.0 for the second case.

The GCMD simulations were composed of 100,000 MD
time-steps for equilibriation and 400,000 MD time-steps
for accumulating averages. The time increment for the
integration of Newton’s equations of motion was At =
0.01, and 10 GC cycles were attempted at every 10th MD
time-step. The total run time on the parallel computer
was approximately 3 hours. For comparison, the DFT
results converged in less than 10 Newton iterations in
about 5 seconds on a workstation.

Figures 2 and 3 compare GCMD and transport-DFT
density and chemical potential profiles for the two cases
described above. The boundary conditions on the DFT
calculations were chosen to match the densities observed
in control volumes of the GCMD calculations (—15 <
z/o < =10 and 10 < z/o < 15). The chemical po-
tentials from DFT calculations do not match GCMD set
points, but rather are shifted down in both cases. This
shift arises because the DFT assumes the WCA fluid can
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FIG. 2. Density (po®) profiles (A) and chemical potential
(1/kT) profiles (B) in a diffusion zone. The total density is
proto” == 0.45 Solid lines are transport-DFT results; dotted
lines are GCMD results

be treated as a hard sphere fluid, and because the equa-
tion of state (Percus-Yevik) is not exact. Considering
the diffusion zone in each case, it is apparant that DFT
predictions of the density profiles and chemical potential
gradient profiles reproduce GCMD simulations very well.

The success of the transport-DFT in reproducing p(z)
and Vp(z) is significant because it demonstrates that the
DFT and GCMD approaches will yield consistent flux
predictions. Thus if one wants to predict the variation of
the flux through a range of parameters, it is possible to
perform only a few GCMD calculations to establish the
bounds for the diffusion coefficient. DFT calculations
may then be performed to determine the flux through a
wider range of system parameters.

To illustrate the equivalence of Eq.12 and Eq.14 for
color counter diffusion, Fig.4 compares GCMD pdu/dz
and dp/dz profiles to the DFT prediction of pdu/dz.
The GCMD estimates of dp/dz were found both from
an overall fit to the density profile, and by applying cen-
tral finite differences (CFD) performed on 1o increments
of the p(z) data. The GCMD estimates of pdp/dz are
based on CFDs perfomed on lo increments of smoothed
chemical potential profiles.

All the estimates of J/D in Fig.4 are consistent with
one another, but the GCMD/CFD estimations of pdu/dz
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FIG. 3. Same as Fig.2 except that the total density is
pgogds ~ 0.64

and dp/dz have the largest uncertainties due to statisti-
cal noise in the data. Therefore, the highest presicion
GCMD estimates of diffusion coefficient come from tak-
ing the overall slope of the density profile, and applying
Fick’s law. However, as we will show in the following
sections there are many cases where either the nonideal
contributions to the chemical potential will contribute to
the flux (section IIIB) or where external fields will cause
the density profile to have a complex structure (section
IIID). These cases will make application of Fick’s law
difficult.

B. Uphill Diffusion

One case where Fickian diffusion is clearly incorrect
may be found in studies of uphill diffusion. It has
been observed in GCMD studies of ternary systems, that
chemical potential and density gradients can have slopes
with opposite sign [17]. In these cases, the measured
particle flux always goes in the direction of decreasing
chemical potential. So from a Fickian point of reference,
the diffusion appears to be uphill. Several experimental
observations of uphill diffusion have been reported as well
[26,27].

In this section we consider application of the transport-
DFT approach to non-ideal ternary systems. We assume
that there is no center of mass motion in this system.

-10 -5 0 5 10
x/c

FIG. 4. The flux divided by the diffusion coefficient in the
central diffusion zone of Fig.3. The various curves are: DFT
prediction of pdp/dz (solid line), GCMD calculation of dp/dz
based overall slope of density profiles (dashed line), GCMD
CFD calculation of pdu/dz (+), GCMD CFD calculation of
dp/dz (o).

We further assume that the transport law given in Eq.12
is valid for this ternary system. This formulation of the
flux may not be optimal for the non-ideal ternary systems
discussed here. However, for the purposes of this discus-
sion we only seek to demonstrate that nonideal behaviors
such as uphill diffusion can be found using the transport-
DFT approach, and estimate how such nonidealities may
affect estimates of the driving force.

Both the mixing rules for interaction diameters, o;;
and our control volume densities were chosen based on
previous GCMD studies of uphill diffusion [17]. More
specifically the interaction diameters were, oiy; = oy
where k = Min(i,7). In the particular case we present
here, the matrix of interaction diameters was

gy 02 O3
o {10 10 10
o2 | 1.0 13 13 ]. (15)
o3 \1.0 13 1.5

Transport-DFT results in Fig.5 show similar behavior
as was observed in GCMD simulations {17] where the
slope of the density and chemical potential profiles of
component 2 have opposite sign. This uphill diffusion
result shows that the transport-DFT approach may be
useful in analyzing transport in complex multicomponent
mixtures as well as the simple binary systems of the pre-
vious section. :

The nonidealities in these mixtures lead to nonzero
contributions to the flux from Vpups. The result is that
the density profiles are not linear. Thus, a local applica-
tion of Fick’s law would predict a spatially varying dif-
fusion coefficient while a more global analysis based on
the overall slope between the control volumes would not
have the precision of the color counter diffusion case in
Fig4.

Table I details the difference between pVp and the
global approach to Vp based on the results in Fig.5. The
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FIG. 5. Density (A) and chemical potential(B) profiles for
a case of uphill diffusion. The curves are labeled by the com-
ponent number, and the the x-axis is scaled for ease of com-
parison with Figs. 2 and 3 of Thompson et.al[21]. The grey
regions indicate where the control volumes were located in
GCMD calculations. In locating this particular case, o2 and
o3 were varied in the range 02,3/01 = 1.0 —1.6. For all values
of o2, a transition in component 2 from downhill diffusion to
uphill diffusion occured at o3/ = 1.45.

nonidealities in the system now contribute to a 20-40%
difference between these two estimations of diffusive driv-
ing forces even for components 1 and 3 where downhill
diffusion is observed.

C. Pressure Driven Diffusion

We now turn to cases where convective transport oc-
curs simultaneously with diffusive transport, and we be-
gin with pressure driven diffusion. Once again binary
color mixtures are used for the calculations.

GCMD calculations were performed by setting the
chemical potent1al of both species in the left control vol-
ume to pf /kT p% /kT = 3.0 and the chemical poten—
tial of species 1 in the right control volume to uft = 2.0.
The chemical potentlal of species 2 in the right control
volume varied from pf/kT = 4 (case A) to p2/kT = 3.5
(case B), to uf/kT = 3 (case C). In case A, the pres-
sure in the right contrdl volume is higher than the left;
in case C, the pressure imbalance is reversed; and in case
B, there is almost no pressure drop.

Species dp/dz pdu/dz % difference
1 -0.0015 -0.0012 25%
2 -0.00044 0.00067 166%
3 0.0013 0.0021 38%

TABLE I. A comparison of J/D using Fick’s law (Eq.8)
and Eq.9 to describe diffusion for each of the three species in
the transport-DFT calculations of the ternary system detailed
in Fig.5.

100,000 MD time-steps were performed for equilibria-
tion, and 600,000 MD time-steps were used for accumu-
lating averages. The time increment for the integration
of Newton’s equations of motion was At = 0.01, and 20
GC cycles were attempted at every 5th MD time-step.
The total run time per solution was approximately 14
hours.

Equilibration of GCMD profiles is more difficult in
these cases than the previous color diffusion example due
to the particle acceleration that accompanies the pressure
gradient. Steady-state is achieved as a result of the effec-
tive friction in the control volumes that arises from the
insertions and deletions of particles. These particle in-
sertions are accompanied by velocity randomization that
provides the needed friction.

Figures 6 and 7 show the den51ty and chemical poten-
tial profiles from GCMD and transport-DF T calculations
where both diffusive and convective terms are included
in DFT calculations For comparison, DFT calculations
without the convective flux term are also included in the
figures. Inclusion of the center of mass motion (or con-
vective terms) is crucial to reproducing GCMD results
with the transport-DFT approach.

The small discontiuities in p(z) in the GCMD calcu-
lations, seen at /o = 10 in Fig.7TA and z/o0 = —10 in
Fig.7C show that the pressure drop, and therefore the
acceleration, occur almost instantaneously and not over
the whole domain. This feature justifies the use of a con-
stant velocity convective flux, and is supported by the
excellent agreement with transport-DFT calculations.

D. External Fields

Finally we consider transport of the binary tagged by
color particles in the presence of external fields. Thisis a
particularly important case since transport through any
porous media involves an external field composed of the
interactions of the fluid particles with the porous media.
We consider an external field representative of a simple
porous membrane with the form Ve* = v(|z|) — v(|z|cut)
when |z} > |z|min and V°® = v(|z|min) — v(|Z|cue) When
|z] < |Z|min Where

oo |5 () - (2) ]

(16)

PTG > LT
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FIG. 6. Density profiles for both GCMD (dotted lines) and
steady state DFT (solid and dashed lines) calculations. DFT
results in dashed lines include only the diffusive flux while
solid lines innclude the convective term as well.  The three
cases have pf /KT = 4.0 (A), p®/kT = 3.5, and p®/kT = 3.0
(C). In all cases, the densities in the left control volume for
both species are p;o® = 0.258 & 0.001 (po® = 0.516). The
densities on the right hand side vary from p10® = 0.471,
p20® = 0.067, and po® = 0.538 (A); to pro® 0.419,
p20® = 0.096, and po® = 0.515 (B); to p1o° = 0.362,
p20° = 0.131, and po® = 0.493 (C).
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Solid lines are transport-DFT results, dotted lines are the re-
sults of GCMD simulations.

[z|cut = 2.50, and |z|min is the distance where the po-
tential is a minimum.

We consider two cases. In the first, ef¢/e = eﬁf Je=
1.0 so both species (a, B) are equally attracted to a po-
tential energy well at [#] = 0. In the second case,
eqs/e = 1.0 and eﬁf/e = —1.0. In this case species
must overcome a potential energy barrier that inhibits
its transport. In the first case, the symmetric nature of
the problem leads once again to zero net motion of the
center of mass of the system, while in the second case,
species a can be expected to dominate the tranport cre-
ating a net center of mass motion.

Figure 8 shows density and chemical potential profiles
respectively for the case where both species experience
the same external field. Only one species is shown in 8A
for clarity of presentation. As expected, adsorption is ob-
served in the center region due to the external field, and
density oscillations are due to the solvent packing con-
straints. Clearly application of Fick’s law in the vicinity
of these density oscillations cannot yield sensible results.

The chemical potential profiles in Fig.8B appear to be
very similar to those in Fig.1B. However, transport-DFT
calculations were based on Eq.12 so the density oscilla-
tions in Fig.8A must be balanced by oscillations in V.
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FIG. 9. Chemical potential gradient, Vp profiles corre-

sponding to transport-DFT profiles in Fig.8B (solid lines) and
Fig.2B (dashed lines).

In fact, when Vp(z) is plotted (see Fig.9) the oscillations
are apparant. The statistical noise on the GCMD calcu-
lations will likely prevent accurate computation of Vp in
many cases where external fields are present. Thus, in
some cases it may be useful to combine the transport-
DFT and GCMD approaches for an estimation of diffu-
sion coefficient. The DFT provides an estimate of the
driving force while the GCMD provides a measure of the
flux. Together a prediction of diffusion coefficient can be
obtained.

When the external field is attractive to one species
and repulsive to the other, both diffusive and convec-
tive transport are important. In transport-DFT calcula-
tions, the ratio, 7/D was adjusted for the best match of
GCMD and DFT calculations. Since 7 is directly mea-
sured in GCMD calculations, obtaining an estimate of
the diffusion coefficient given the matching parameter is
straightforward. Fig.10 shows density and chemical po-
tential profiles for our example of this situation. The
density of the one adsorbed species in the center region is
now significantly higher than it was even in Fig.8A. The
other species shows significant exclusion from the central
region as is evidenced by its low density. Again, there
is good agreement between GCMD and transport-DFT
calculations of both p(z) and Vp(z).

The excellent agreement between transport-DFT and
GCMD calculations for the cases in this section are par-
ticularly remarkable as transport-DFT calculations are
based on spatially invariant diffusion coefficients. Calcu-
lations of diffusion through pores have shown that surface
effects can alter (usually decrease) the magnitude of the
diffusion coeflicient [28]. Clearly, the application of the
transport-DFT approach to porous systems will require
a more thorough investigation.
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FIG. 10. Density (po3) profiles (A) and chemical potential
(#/kT) profiles (B) in a diffusion zone where there is an exter-
nal field centered at = = 0 that is attractive to only one species
and repulsive to the other. Solid lines are transport-DFT re-
sults, dotted lines are results of GCMD simulations.

Figure| Jo Js | D. Ds

T | -0.0024 0.0025 028 029
8 -0.0026 0.0024 0.30 0.28
10 -0.0054 -0.00016 0.30 0.27

TABLE II. A comparison of diffusion coefficients for sev-
eral of the cases investigated in this paper (as indicated by
the figure number).

E. Diffusion Coefficients

Finally, we present calculations of diffusion coefficients
that combined flux measurements from GCMD simula-
tions with driving forces from transport-DFT. Results
for the cases that were presented in Figs.1, 8, and 10 are
shown in Table II. These cases all have the same overall
chemical potential driving forces, but the fluid particles
experience very different external fields in the diffusion
zone. The predicted diffusion coefficient is found to be
constant within the errors associated with flux measur-
ments among all the cases.

IV. CONCLUSIONS

To summarize, we have presented a novel approach

" to studying molecular steady-state transport. This ap-

proach couples a molecular theory, DFT, with a diffusive
(and in some cases convective) transport law in order
to predict density and chemical potential gradients in
nonequilibrium steady-state systems for several simple
mixtures.

The results of transport-DFT calculations were com-
pared explicitly with grand canonical molecular dynamics
simulations{(GCMD) for a variety of systems. We found
that the two methods were in agreement for predictions
of both chemical potential and density profiles given the
assumption of a spatially invariant diffusion coefficient
provided that the center of mass motion of the system
was known. Thus given a diffusion coefficient, both meth-
ods will yield the same flux. In order to compute the flux
as a function of system parameters efficiently, only a few
GCMD calculations are needed to determine the bounds
on diffusion coefficients. The transport-DFT approach
may then be used for exploring a complete range of the
parameters of interest.

The agreement we found was based on the application
of a local transport law, J = —Dp{z)Vu(z). Fick’s law,
J = —~DVp(z) was demonstrated to be incorrect locally
for cases where an external field is present and globally
for a case of nonideal uphill diffusion.

Given the efficiency of transport-DFT calculations,
this new transport-DFT approach may provide a power-
ful addition to the tools available for studying molecular
steady state transport and its effects on complex surface
phenomena such as capillary condensation and wetting.




V. APPENDIX

In the nonlocal DFT of Rosenfeld [19], the hard sphere
free energy density; ®, was derived from scaled particle
theory in terms of the nonlocal densities, 5. These non-
local densities are

7 =3 [apul - ()

where the summation is taken over the species, . The

weight functions, w$”, are

w‘(,a) (r) =O(r — Rq)
w® (r) = 4nRew (r) = 4rR2w{ (r) = §(r ~ Ra)
w3 (r) = Bl (r) = (t/r)(r — Ba)  (18)

where the r indicates a vector. These weight functions
are based on the geometry of the fluid particles as ©
is the step function, ¢ is the Dirac delta function, and
R is the radius of a particle. Thus the integrals over
weight functions are related to the volume, surface area,
and radius of the particle. Note that w"! and w"? are
vectors, and so the hard sphere free energy density is a
sum of scalar and vector contributions, ® = &, + &,
with
2V P
1-p3 24w (1-p3)?
pvi-bve 1 p2(Pva- bva)
BETTh T U-RP (19)

o, = —ﬁoln(l - 53) +
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