
Domain Specific Language Support for Exascale

Final Report

Rice University Subproject

Cooperative Agreement No. DE-SC0008882

September 2012–August 2016

John Mellor-Crummey

Principal Investigator at Rice University

Department of Computer Science, MS 132
Rice University
P.O. Box 1892

Houston, TX 77251-1892
Voice: 713-348-5179
FAX: 713-348-5930

Email: johnmc@rice.edu

Contents

1 Introduction 1

2 Summary Description of the Research Performed 1
2.1 Abstract Machine Model for Code Generation . 1

2.1.1 Autotuning for Complex Memory Hierarchies 2
2.1.2 Static Cost Estimation for Data Layout Selection on GPUs 2

2.2 Rosebud DSL Framework . 3
2.2.1 Design . 4
2.2.2 Implementation . 5

2.3 Compiler Technologies . 5
2.3.1 Data Layout Transformations for Multicore CPU platforms. 5
2.3.2 Data Layout Transformations for CPU+GPU platforms 6
2.3.3 Polyhedral Optimizations of Explicitly Parallel Programs 7
2.3.4 Polyhedral Optimizations for a Data-flow Graph Language 7
2.3.5 Integrating Polyhedral and AST-based Transformations in ROSE 7
2.3.6 Test-driven Repair of Data Races in Structured Parallel Programs 8
2.3.7 Inter-iteration Scalar Replacement Using Array SSA Form 8
2.3.8 Automatic Parallelization of Pure Method Calls 9

2.4 Runtime Technologies . 9
2.4.1 Heterogeneous work-stealing across CPU and DSP cores 9
2.4.2 Dynamic Determinacy Race Detection for Task Parallelism with Futures . . . 9

3 Research Objectives Remaining 10

4 Findings 10
4.1 Successes . 10
4.2 Lessons . 11

5 Products of the Research 13
5.1 Rosebud . 13
5.2 Contributions to Community Open-source Infrastructure 13
5.3 Contributions to Community Standards . 13

5.3.1 Contribution of doacross construct to OpenMP 4.5 13
5.4 Publications . 13

5.4.1 Papers . 13
5.4.2 Theses . 15
5.4.3 Reports . 15

1 Introduction

Today, parallel computers are typically programmed using message passing and coarse-grained
threads, e.g., MPI and OpenMP. These models are widely used because they can be made to
deliver high performance on current platforms. While working with such low-level programming
abstractions has been tolerable to date, the expectation is that they will be increasingly problematic
as the move to exascale causes software applications to become orders of magnitude more complex.
In fact, the 2010 ASCAC report on exascale computing [3] predicts that exascale application devel-
opers will face numerous difficult challenges including vastly increased fine-grained parallelism and
stringent requirements for exploiting heterogeneous processors, communication avoidance, latency
tolerance, adaptive load balancing, fault tolerance, energy efficiency, and performance portability
across diverse and changing architectures. It concludes that going to exascale will require radical
changes to compilers.

Human programmers cannot hope to manage all of the details necessary to meet the challenges
of exascale. Traditionally optimizing compilers have been responsible for managing performance
details, but as parallel architectures became more complex, conventional compiler technology for
general-purpose programming languages has been unable to keep up. Harnessing the full power of
exascale systems with a feasible level of effort by application developers will require a new approach.
The ASCAC report concludes that extreme-scale computing will require performance optimization
to be based on a knowledge-oriented process.

To address this challenge, a multi-institutional project known as D-TEC (short for “Domain-
specific Technology for Exascale Computing”) set out to explore technologies to support the con-
struction of Domain Specific Languages (DSLs). DSLs employ automated code transformation to
shift the burden of delivering portable performance from application programmers to compilers.
Two chief properties contribute: DSLs permit expression at a high level of abstraction so that a
programmer’s intent is clear to a compiler and DSL implementations encapsulate human domain-
specific optimization knowledge so that a compiler can be smart enough to achieve good results on
specific hardware. Domain specificity is what makes these properties possible in a programming
language. If leveraging domain specificity is the key to keep exascale software tractable, a corollary
is that many different DSLs will be needed to encompass the full range of exascale computing appli-
cations; moreover, a single application may well need to use several different DSLs in conjunction.
As a result, developing a general toolkit for building domain-specific languages was a key goal for
the D-TEC project.

2 Summary Description of the Research Performed

Different aspects of the D-TEC research portfolio were the focus of work at each of the partner
institutions in the multi-institutional project. D-TEC research and development work at Rice
University focused on on three principal topics: understanding how to automate the tuning of code
for complex architectures, research and development of the Rosebud DSL engine, and compiler
technology to support complex execution platforms.

2.1 Abstract Machine Model for Code Generation

An key goal of the D-TEC project is to develop compilers for domain-specific languages that map
high-level programs onto future exascale systems systems. To address this issue, the vision for
D-TEC called for development of a system that employs rule-based transformations and search
guided by machine models. To realize this approach, we must develop a deep understanding of how
to tailor programs for key architectural features that we expect to be present in exascale systems.
Here, we describe two research efforts that explored aspects of this problem: mapping code onto

1

complex memory hierarchies and choosing an appropriate data layout to ensure that a code will
perform well on GPU architectures.

2.1.1 Autotuning for Complex Memory Hierarchies

In today’s parallel systems, tailoring codes for complex memory hierarchies is one of the most
difficult code optimization tasks for data-intensive codes. To develop some insights into how
to tackle this problem in general, we chose to study the problem of automatically generating
high-performance code for tensor transposition. Tensor transposition is a generalization of matrix
transposition and is a key library primitive used by the Tensor Contraction Engine. (The Tensor
Contraction Engine was developed to provide DSL support for quantum chemistry codes, includ-
ing NWCHEM.) Tensor transposition is of interest for developing machine models since (1) it is a
memory intensive, bandwidth-limited operation that requires careful tailoring to make best use of
a machine’s memory hierarchy, and (2) next-generation systems are expected to have deeper and
more complex memory hierarchies. Efficient implementation of tensor transposition for modern
node architectures depends on various architecture capabilities such as cache and memory hierar-
chy, threads, and SIMD parallelism.

To efficiently map tensor calculations onto node architectures with complex memory systems,
we developed a framework that uses static analysis and empirical autotuning to produce opti-
mized parallel tensor transposition code for node architectures using a rule-based code generation
and transformation system. Efficiently using a platform’s memory hierarchy involves using a collec-
tion of techniques (and associated rule-based transformations), including multi-level tiling, in-cache
buffers, SIMD operations, non-temporal stores, loop unrolling, and software prefetching. By explor-
ing combinations of these optimizations with various parameter settings, our framework achieves
85–94% of the bandwidth of a multithreaded implementation of the STREAM benchmark on a
platform based on Intel Westmere processors. On a Power7-based platform, performance of our
generated code is somewhat uneven. While our framework generates code that roughly matches
the performance of the STREAM benchmark for several problem sizes; for very large problems,
performance drops to 80% of STREAM because of thrashing in the Power7’s ERAT. A lesson from
this work is that radically-different approaches are sometimes needed to generate efficient code for
problems at different scales.

2.1.2 Static Cost Estimation for Data Layout Selection on GPUs

Performance modeling provides mathematical models and quantitative analysis for designing and
optimizing computer systems. In high performance architectures, high-latency memory accesses
often dominate execution time in many classes of applications. Thus, performance modeling for
memory accesses of high performance architectures has been an important research topic. In
high performance computation, data layout can significantly affect the efficiency of memory access
operations. In recent years, the problem of data layout selection has been well studied on various
parallel CPU and some GPU architectures. GPUs have memory hierarchies different from multi-
core CPUs. While data layout selection on GPUs has been inspected by several existing projects,
there is still a lack of a mathematical cost model for data layout selection on GPUs. This motivated
us to investigate static cost analysis methods that could better guide future data layout selection
work, and perhaps even designing new SIMT architectures. To address this problem, we developed
a comprehensive cost analysis for data layout selection for GPUs. We built a cost function based
on knowledge of a GPU’s memory hierarchy and developed an algorithm that enables developers
to perform compile-time cost estimation for a given data layout. Our approach employs a new
vector-based representation to represent the estimated cost, which can better estimate the cost
of applications with loops that have unknown trip counts. In an evaluation of our cost analysis

2

approch with benchmarks from past publications on data layout selection, we found that our cost
analysis accurately predicts the relative costs of different data layouts, which makes it useful for
layout selection.

2.2 Rosebud DSL Framework

Rosebud attacks the two main obstacles to HPC’s adoption of DSLs by making them easier to
build and to easier to use. Building a DSL compiler, like any compiler, is a lot of work and requires
special skills. A few parts are automated (e.g. parser construction) and there is some reusable
infrastructure (e.g. ROSE). But the hardest parts of a compiler are still coded by hand, existing
infrastructure often isn’t applicable to new languages, and gluing all the pieces together is tedious
and error prone. Using a DSL can be a lot of work too, because the implementations are often
very poor compared to the production compilers we generally use. DSL source code may have
peculiar syntax or present arbitrary restrictions, coupling between DSL and standard code may
be cumbersome, compilation may be slow, error messages may be useless or missing, the compiler
may be unreliable or hard to maintain, and using a debugger or profiler with DSL code may be
frustrating. These deficiencies are usually caused by inadequate resources and skills for the large
effort of building a compiler. We need a better way to build better DSLs.

Our approach was to build a comprehensive integrated DSL construction system. Rosebud ad-
dresses all aspects of DSL compilation (parsing, semantics, optimization, code generation, runtime
support, and tool interfacing), automating what’s practical and generating glue code for the rest.
Rosebud can be used to build DSLs in any style, with or without custom syntax. In addition, Rose-
bud was to provide a rich collection of compiler building blocks by wrapping ROSE components
into uniform packaging and making it easy to compose them in a DSL compiler, although this was
not accomplished. Our hope was that Rosebud’s cheaper and better DSLs would result in wider
adoption of the DSL programming model and a proliferation of community-developed scientific
DSLs, just as today’s community develops and shares libraries like Chombo and Zoltan.

During the reporting period at Rice University, we made good progress toward building Rose-
bud. Our accomplishments include:

• a plugin-based architecture for developing, distributing, combining, and using domain-specific
language extensions to standard programming languages (Rosebud)

• a high level declarative notation for defining all aspects of a DSLs implementation including
parsing, AST building, optimization, and code generation (Rosebud Definition Language)

• a novel method for extensible language parsing using existing non-extensible language front
ends (two phase parsing)

• a novel method for type checking domain-specific languages by leveraging the type system of
a surrounding host language (proxy type checking)

• design and partial implementation of a reusable object-oriented framework for generating
Rosebud plugins and translating mixed-language source files with them

• preliminary RDL definitions for two host-language plugins (C++ and Fortran 2008)

• integration of the Open Fortran Parser and ROSE software tools to support design and
implementation of the Rosebud framework for Fortran related DSLs.

3

Domain Specific Languages. Many DOE applications use C++ so DSLs on top of the C++ host
language are particularly relevant to DOE. We have developed a complete SDF C++11 grammar
for Rosebud. The C++ grammar consists of 634 productions and also covers GNU extensions.
The grammar will be used as basis for DSL extensions of C++. The rest of this section provides
additional detail about our accomplishments.

2.2.1 Design

Two-phase parsing. We devised a two-phase mechanism to use ROSE’s existing language front
ends for parsing and static analysis of source files containing passages written in multiple DSLs,
despite the front ends lack of extensibility. Phase 1 first parses the source file with a merged
grammar for the host language and DSLs. A technique similar to island parsing discards the
structure of host language passages while building full ASTs for the DSL passages. Then, guided
by source position information from the parser, the input file is copied in order to replace DSL
passages by markers, yielding a pure host-language source file acceptable to the rose front end.
Markers are distinctive host language constructs of the same syntactic classes as the DSL fragment
they replace; for instance, a DSL expression passage might be replaced by a host function call to a
specially named function. Rosebud adds declarations for these markers so the rose front end sees
semantically correct source code. Phase 2 invokes the rose front end to re-parse the marked-up
source file, perform static semantic analysis, and build a rose AST. Lastly, it replaces marker AST
subtrees by corresponding DSL ASTs from Phase 1 to produce the final mixed-language rose AST.

Proxy type checking. We devised a new DSL type checking mechanism which provides a simple
declarative definition style for DSL authors, automatic consistency of a DSL’s type system with
that of the host it extends, and a simple, robust, and efficient implementation exploiting roses
existing language front ends. Our approach is to restrict DSL type semantics so that domain-
specific type checking can be mapped to generic overload resolution in the host language. This
limits the expressiveness of Rosebud DSLs somewhat, but we believe it is a reasonable tradeoff for
simplicity and inter-language consistency. The same marker mechanism used in two-phase parsing
is the basis for proxy type checking. We map a DSL’s domain-specific types to host language proxy
types and construct generic marker declarations corresponding to the DSLs declarative type rules.
When the rose front end performs host language type checking on marker passages, it effectively
performs domain-specific type checking on corresponding DSL passages. To obtain the DSL type
checking results we simply map inferred proxy types of markers back to domain-specific types.
Rosebud Definition Language (RDL). We designed the integrated DSL specification language RDL
to serve as source code from which Rosebud plugins are generated. RDL is syntactically patterned
after the SDF and Stratego languages, with module structure for encapsulation and module syntax
based on sections introduced by keywords. Currently RDL has nine kinds of sections:

1. DSL metadata 6. Compile-time code
2. Concrete syntax 7. Rewriting system
3. Embedded syntax 8. Run-time code
4. Abstract syntax 9. Prettyprint rules
5. Static semantics

Concrete syntax is specified in SDF, embedded abstract syntax in regular tree grammars, static
semantics in a C++-like template notation, rewriting system in Stratego, pretty printing in the
gpp language, and code in C++.

4

2.2.2 Implementation

We made substantial progress toward an initial version of Rosebud. Below we outline the status of
our implementation:

• Infrastructure. Rosebud exploits existing open source code for much of its functionality. We
have incorporated the following: Boost Library for data structures and utilities; SDF2 for
parsing and tree building; ROSE for host language processing, analysis, and transformation;
Stratego/XT for rewriting systems; POCO Zip for structured storage; and POCO Class
Loader for executable components of plugins.

• Autotools build system. We completed construction of a GHU Autotools build system for:
Rosebud’s Generator, Translator, and Plugin Utility tools; Host and Building Block plugins;
LATEX documentation; example DSL definitions; test cases; and the Rosebud infrastructure.
All code is housed in an svn repository at Rice University.

• Executable tools. We completed implementation of the RDL grammar and IR and the Rose-
bud plugin architecture. We completed detailed top-down skeletons of all Rosebud tools
which compile and run; each tool implements command line processing, error handling, plu-
gin io, and a high level sketch of its algorithm. In addition, the tools completely implement
RDL definition parsing, generation of DSL parsers from RDL grammar sections, plugin-based
two-level parsing of mixed-language source files, and selective listing and dumping of plugin
contents for debugging.

• Host language plugins. We completed preliminary implementation of host language plugins
for C++ and Fortran 2008 based on SDF grammars for these languages built by the LLNL
and Oregon teams.

Example DSLs. We completed the RDL definition of a pedagogic DSL named Stacks which
extends a host language with custom syntax for working with pushdown stacks. We can generate
a plugin from its RDL and use the plugin to parse C++ and Fortran source files containing Stacks
passages; however, its type checking and rewriting systems cannot yet be tested. We began RDL
definition of a plugin for the SDSL stencil language contributed by OSU; so far we have converted
its original ANTLR grammar to RDL but have not yet used it for parsing.

2.3 Compiler Technologies

In this research thrust, we explored a range of compiler technologies that employ sophisticated
program analysis and transformations to map programs efficiently to parallel systems. The goal of
this work was to develop building block technologies to support efficient mapping of programs to
exascale architectures.

2.3.1 Data Layout Transformations for Multicore CPU platforms.

As part of the D-TEC project, Rice continued a collaboration with Ian Karlin, Jeff Keasler, and
James McGraw at LLNL to develop a new approach to managing array data layouts to optimize
performance for scientific codes executing on multicore CPU nodes. This project led to a redesign
and reimplementation of TALC—a data layout tool previously developed by Jeff Keasler. It is well
known that changing data layouts can lead to significant performance improvements. However,
there have been two major reasons why such optimizations are not currently used in production
applications: (1) the need to select different layouts for different computing platforms, and (2) the
cost of re-writing codes to use new layouts. This work addresses both obstacles, and enables data
layout optimization to also be applied to code generated from a DSL. Our new data layout tool

5

is built upon LLNL’s ROSE compiler infrastructure, which provides a source-to-source translation
process that allows us to generate codes with different array interleavings from the same source
code, based on different data layout specifications. The ability to specify different data layout
specifications can be viewed as an embedded mini-DSL in the context of the D-TEC project.
We used our implementation to generate 19 different data layouts for an ASC benchmark code
(IRSmk) and 32 different data layouts for the LULESH mini-application. Performance results for
multicore versions of the benchmarks with different layouts showed significant benefits on four
computing platforms (IBM POWER7, AMD APU, Intel SandyBridge, IBM BG/Q). For IRSmk,
our results showed performance improvements ranging from 22.23% on IBM POWER7 to 1.10%
on Intel SandyBridge. For LULESH, we saw improvements ranging from 1.82% on IBM POWER7
to 1.02% on Intel SandyBridge. We also developed a new automatic optimization algorithm to
recommend a layout for an input source program and specific target machine characteristics.

Our results show that the performance of this automated layout algorithm outperforms the
manual layouts in one case and performs within 10% of the best architecture-specific layout in all
other cases but one. Our implementation in ROSE has been checked into the trunk of the ROSE
project, and a technical paper is available on this work [7]. This work also formed a central part
of Ph.D. student Kamal Sharma’s dissertation at Rice [6].

2.3.2 Data Layout Transformations for CPU+GPU platforms

In addition to optimizing data layouts for CPUs, we also explored the impact of data layoust on
heterogeneous CPU+GPU platforms. This work extends our previously mentioned collaboration
with LLNL by taking into account the fact that the optimal layout for a computational kernel
depends on whether the kernel executes on a CPU core, a discrete GPU, or on an integrated
GPU. For instance, the GPU memory performance is impacted by upon the number of coalesced
memory accesses, whereas CPU memory performance is impacted by factors such as false sharing
and data reuse. Since changes in data layout can impact CPU vs. GPU performance, in general, the
programmer has to write different versions of CPU and GPU kernels for different architectures and
has to select optimal memory layouts for each. This places a severe constraint on code portability.

In this work, we first implemented a compiler-driven data layout transformation framework for
heterogeneous platforms. We introduce a meta-data framework which enables the same source code
to be compiled with different data layouts without involving the programmer in the data layout
transformations. Our compiler and runtime infrastructure generates efficient code for different
architectures based on the meta information. Our experimental results show significant benefits
from this approach, and demonstrate that the best data layout for a program is different for
CPU vs. GPU execution. On an average, the data layout transformation alone impacted the
performance by 7.33% (up to 27.11%) on AMD 4-core A10-5880K CPU, 2.84% (up to 5.57%)
on AMD Radeon integrated GPU, 8.32% (up to 29.5%) on NVIDIA Tesla M2050 GPU, 2.19%
(up to 5.32%) on Intel 12-core X5660 CPU and 1.9% (up to 3.89%) on Intel integrated i7-3770
GPU for a set of 5 distinct benchmarks. We then introduced a two-level hierarchal formulation
of the data layout problem for modern heterogeneous architectures. The lower level formulation
deals with optimal data layout problem for a parallel code region (section). Our analysis of this
problem showed it to be NP-Hard. For that reason, we developed a greedy algorithm that uses an
affinity graph to obtain approximate solutions. The higher level formulation targets data layouts
for the entire program, for which we provide an optimal solution using a graph-based shortest path
algorithm that uses the data layouts for the code regions computed in the lower level. We have
implemented solutions to this two-level hierarchal formulation of the data layout problem in the
Habanero-C parallel programming system, implemented in the ROSE compiler infrastructure, and
demonstrated significant performance benefits of up to 6.92% (on average 3.11%) compared to the

6

manually specified layouts for a set of parallel programs running on a CPU+GPU heterogeneous
platform. A key contribution of this work was extending ROSE to automatically generate OpenCL
code from the Habanero-C forasync parallel loop construct.

2.3.3 Polyhedral Optimizations of Explicitly Parallel Programs

The polyhedral model is a powerful algebraic framework that has enabled significant advances to
analysis and transformation of sequential affine (sub)programs, relative to traditional AST-based
approaches. However, given the rapid growth of parallel software, there is a need for increased
attention to using polyhedral frameworks to optimize explicitly parallel programs. An interesting
side effect of supporting explicitly parallel programs is that doing so can also enable optimization
of programs with unanalyzable data accesses within a polyhedral framework. In this work, we
explored how to extend polyhedral frameworks to enable analysis and transformation of programs
that contain both explicit parallelism and unanalyzable data accesses. As a first step, we focused
on OpenMP loop parallelism and task parallelism, including task dependences from OpenMP 4.0.
Our approach first enables conservative dependence analysis of a given region of code. Next, we
identified happens-before relations from the explicitly parallel constructs, such as tasks and parallel
loops, and intersected them with the conservative dependences. Finally, we pass resulting set of
dependences to a polyhedral optimizer, such as PLuTo and PolyAST, to enable transformation
of explicitly-parallel programs with unanalyzable data accesses. We evaluate our approach using
eleven OpenMP benchmark programs from the KASTORS and Rodinia benchmark suites. We show
that 1) these benchmarks contain unanalyzable data accesses that prevent polyhedral frameworks
from performing exact dependence analysis, 2) explicit parallelism can help mitigate the impreci-
sion, and 3) polyhedral transformations with the resulting dependences can further improve the
performance of the manually-parallelized OpenMP benchmarks. Our experimental results show
geometric mean performance improvements of 1.62x and 2.75x on the Intel Westmere and IBM
Power8 platforms respectively (relative to the original OpenMP versions).

2.3.4 Polyhedral Optimizations for a Data-flow Graph Language

This paper proposes a novel optimization framework for the Data-Flow Graph Language (DFGL),
a dependence-based notation for macro-dataflow model which can be used as an embedded domain-
specific language. Our optimization framework follows a dependence-first approach in capturing
the semantics of DFGL programs in polyhedral representations, as opposed to the standard poly-
hedral approach of deriving dependences from access functions and schedules. As a first step, our
proposed framework performs two important legality checks on an input DFGL program checking
for potential violations of the single-assignment rule, and checking for potential deadlocks. After
these legality checks are performed, the DFGL dependence information is used in lieu of standard
polyhedral dependences to enable polyhedral transformations and code generation, which include
automatic loop transformations, tiling, and code generation of parallel loops with coarse-grain
(fork-join) and fine-grain (doacross) synchronizations. Our performance experiments with nine
benchmarks on Intel Xeon and IBM Power7 multicore processors show that the DFGL versions
optimized by our proposed framework can deliver up to 6.9x performance improvement relative to
standard OpenMP versions of these benchmarks. To the best of our knowledge, this is the first
system to encode explicit macro-dataflow parallelism in polyhedral representations so as to provide
programmers with an easy-to-use DSL notation with legality checks, while taking full advantage of
the optimization functionality in state-of-the-art polyhedral frameworks.

2.3.5 Integrating Polyhedral and AST-based Transformations in ROSE

The polyhedral model is an algebraic framework for affine program representations and transforma-
tions for enhancing locality and parallelism. Compared with traditional AST-based transformation

7

frameworks, the polyhedral model can easily handle imperfectly nested loops and complex data
dependences within and across loop nests in a unified framework. On the other hand, AST-based
transformation frameworks for locality and parallelism have a long history that dates back to early
vectorizing and parallelizing compilers. They can be used to efficiently perform a wide range of
transformations including hierarchical parametric tiling, parallel reduction, scalar replacement and
unroll- and-jam, and the implemented loop transformations are more compact (with smaller code
size) than polyhedral frameworks. While many members of the polyhedral and AST-based trans-
formation camps see the two frameworks as a mutually exclusive either-or choice, we demonstrate
that both frameworks can be integrated in a synergistic manner. In this work, we obtained early
results with integrating polyhedral and AST-based transformations in ROSE. Our preliminary ex-
periments demonstrate the benefits of the proposed combined approach relative to Pluto, a pure
polyhedral framework for locality and parallelism optimizations.

2.3.6 Test-driven Repair of Data Races in Structured Parallel Programs

A common workflow for developing parallel software is as follows: 1) start with a sequential program,
2) identify subcomputations that should be converted to parallel tasks, 3) insert synchronization
to achieve the same semantics as the sequential program, and repeat steps 2) and 3) as needed to
improve performance. Though this is not the only approach to developing parallel software, it is
sufficiently common to warrant special attention as parallel programming becomes ubiquitous. In
this work, we focus on automating step 3), which is usually the hardest step for developers who
lack expertise in parallel programming.

Past solutions to the problem of repairing parallel programs have used static-only or dynamic-
only approaches, both of which incur significant limitations in practice. Static approaches can
guarantee soundness in many cases but are limited in precision when analyzing medium or large-
scale software with accesses to pointer-based data structures in multiple procedures. Dynamic
approaches are more precise, but their proposed repairs are limited to a single input and are not
reflected back in the original source program. To address this problem, we developed a hybrid
static+dynamic test-driven approach to repairing data races in structured parallel programs. Our
approach includes a novel coupling between static and dynamic analyses. First, we execute the
program on a concrete test input and determine the set of data races for this input dynamically.
Next, we compute a set of “finish” placements that prevent these races and also respects the
static scoping rules of the program while maximizing parallelism. Empirical results on standard
benchmarks and student homework submissions from a parallel computing course establish the
effectiveness of our approach with respect to compile-time overhead, precision, and performance of
the repaired code.

2.3.7 Inter-iteration Scalar Replacement Using Array SSA Form

Scalar replacement is an strategy for mappin array elements into scalar variables to facilitate analy-
sis and optimization of loops with complex array indexing. In this work, we developed novel simple
and efficient analysis algorithms that scalar replacement and dead store elimination across loop it-
erations. Our approach leverages Array SSA form, which is a uniform representation for capturing
control and data flow properties at the level of array or pointer accesses. We use extensions to the
original Array SSA form representation to capture loop-carried data flow information for arrays
and pointers. A core contribution of our algorithm is a subscript analysis that propagates array
indices across loop iterations. Compared to past work, our new algorithm can handle control flow
within and across loop iterations and degrade gracefully in the presence of unanalyzable subscripts.
We also introduce code transformations that can use the output of our analysis algorithms to per-
form the necessary scalar replacement transformations (including the insertion of loop prologues

8

and epilogues for loop-carried reuse). Our experimental results show performance improvements of
up to 2.29x relative to code generated by LLVM at -O3 level. These results promise to make our
algorithms a desirable starting point for scalar replacement implementations in modern SSA-based
compiler infrastructures such as LLVM.

2.3.8 Automatic Parallelization of Pure Method Calls

We developed a novel approach for using futures to automatically parallelize the execution of pure
method calls. Our approach is built on three new techniques to address the challenge of automatic
parallelization via future synthesis: candidate future synthesis, parallelism benefit analysis, and
threshold expression synthesis. During candidate future synthesis, our system annotates pure
method calls as async expressions and synthesizes a parallel program with future objects and their
type declarations. Next, the system performs a parallel benefit analysis to determine which async
expressions may need to be executed sequentially due to overhead reasons, based on execution
profile information collected from multiple test inputs. Finally, threshold expression synthesis uses
the output from parallelism benefit analysis to synthesize predicate expressions that can be used to
determine at runtime if a specific pure method call should be executed sequentially or in parallel.

We implemented our approach and the results from an experimental evaluation of the complete
system on a range of sequential Java benchmarks are very encouraging. Our evaluation shows that
our approach can provide significant parallel speedups of up to 7.4x (geometric mean of 3.69x)
relative to the sequential programs when using 8 processor cores, with zero programmer effort
beyond providing the sequential program and test cases for parallelism benefit analysis.

2.4 Runtime Technologies

In addition to our work on compiler technologies for parallel programs, we also investigated a
collection of complementary runtime technologies that include scheduling and error detection.

2.4.1 Heterogeneous work-stealing across CPU and DSP cores

Due to the increasing power constraints and higher and higher performance demands, many vendors
have shifted their focus from designing high-performance computer nodes using powerful multicore
general-purpose CPUs, to nodes containing a smaller number of general-purpose CPUs aided by
a larger number of more power-efficient special purpose processing units, such as GPUs, FPGAs
or DSPs. While offering a lower power-to-performance ratio, unfortunately, such heterogeneous
systems are notoriously hard to program, forcing the users to resort to lower-level direct program-
ming of the special purpose processors and manually managing data transfer and synchronization
between the parts of the program running on general-purpose CPUs and on special-purpose proces-
sors. In this paper, we present HC-K2H, a programming model and runtime system for the Texas
Instruments Keystone II Hawking platform, consisting of 4 ARM CPUs and 8 TI DSP processors.
This System-on-a-Chip (SoC) offers high floating-point performance with lower power requirements
than other processors with comparable performance. We present the design and implementation
of a hybrid programming model and work-stealing runtime that allows tasks to be created and
executed on both the ARM and DSP, and enables the seamless execution and synchronization of
tasks regardless of whether they are running on the ARM or DSP. The design of our programming
model and runtime is based on an extension of the Habanero-C programming system. We evaluate
our implementation using task-parallel benchmarks on a Hawking board, and demonstrate excellent
scaling compared to sequential implementations on a single ARM processor.

2.4.2 Dynamic Determinacy Race Detection for Task Parallelism with Futures

Existing dynamic determinacy race detectors for task-parallel programs are limited to programs
with strict computation graphs, where a task can only wait for its descendant tasks to complete. In

9

this paper, we present the first known determinacy race detector for non-strict computation graphs,
constructed using futures. The space and time complexity of our algorithm are similar to those of
the classical SP-bags algorithm, when using only structured parallel constructs such as spawn-sync
and async-finish. In the presence of point-to-point synchronization using futures, the complexity
of the algorithm increases by a factor determined by the number of future task creation and get
operations as well as the number of non-tree edges in the computation graph. The experimental
results show that the slowdown factor observed for our algorithm relative to the sequential version
is in the range of 1.00x 9.92x, which is in line with slowdowns experienced for strict computation
graphs in past work.

3 Research Objectives Remaining

The end goal of the D-TEC project was to develop a sophisticated framework for accelerating the
construction of new implementations of domain-specific languages. Unfortunately, it was infeasible
to realize this grand vision with the limited time and resources allocated to this project. Imple-
menting a compiler and runtime system for any domain-specific language, even a small one, is a
significant undertaking. Developing a general framework for automating the synthesis of parallel
implementations of arbitrary domain-specific languages was a step too far given the current state
of technology. While research and development efforts in the D-TEC project at Rice University
yielded valuable component technologies necessary to realize our grand vision, our grasp was shorter
than our reach. At present, all of the component technologies require significant further research
for them to be useful for tailoring domain-specific languages to exascale platforms. Our result in
each of the three dimensions of the project fell short of what was needed.

First, while D-TEC research to understand how to map programs efficiently to complex archi-
tectures using empirical autotuning was successful in within restricted domains, significantly more
work is needed to develop a more general autotuning framework necessary to tailor applications for
all of the complex features expected in exascale platforms.

Second, although Rosebud provides a rich framework for specifying many aspects of domain-
specific extensions to conventional programming languages, the lack of time and resources along
with inadequate preparation of the compiler framework intended as its host left us unable to fully
integrate Rosebud with a compiler framework to support analysis and optimization of its domain-
specific abstractions.

Finally, while compiler and runtime technologies developed in the course of this project provide
useful building blocks for efficiently mapping parallel programs onto complex parallel architectures,
an incomplete palatte of compiler technologies and the lack of a general framework for cost estima-
tion left us well short of the project goal of supporting a rule-based DSL compiler framework that
employed cost models and domain knowledge to tailor applications to complex parallel platforms.

4 Findings

4.1 Successes

Rosebud’s front end architecture. Rosebud implements a custom-syntax multi-DSL mixin
programming model inspired by the Stratego/XT group’s Metaborg project [?]. Our plugin based
design for extensible parsing and static semantic analysis of such programs is technically feasible
and a major advance over Metaborg’s implementation strategy. It is straightforward to implement
and sufficiently fast and robust for practical use. Organizing the front end in phases and using an
object-oriented style for plugins does permit easy run-time extension with new lexical, syntactic,
and semantic analyses for a DSL. SGLR parsing is fast enough for interactive use even on the very
large source files found in legacy HPC codes and is capable of detecting and parsing DSL syntax

10

extensions even when nested. Building a unified AST for a source file with multiple DSL mixins is
both natural and useful.

Reuse of compiler front ends. Our proxy type checking strategy for employing an existing
compiler front end for host language analysis and to type-check interactions between host and
DSL code is effective in practice. This important improvement over Metaborg permits us to use
complex modern host languages like C++ without reimplementing the language’s entire front end,
which would be prohibitive. Our research demonstrated Rosebud reuse of both C++ and Fortran
compiler front ends, essential for HPC. We expect reusing other languages’ compilers to be equally
straightforward.

Rosebud Definition Language. Using a single meta-DSL to define all aspects of a mixin DSL,
another improvement over Metaborg, is technically feasible. It is expressive and easy to use, to
implement, and to extend as research uncovers new requirements.A unified notation simplifies mod-
ular development by enabling aspect-oriented factoring of lexical, syntactic, semantic, optimization,
code generation, and tool interface details. Basing the notation on well-delimited sections, each
with a custom micro-syntax, provides clarity and flexibility. Including notation to specify inter-
faces to externally developed components makes it easy for a DSL to incorporate existing code for
complex or costly computations such as polyhedral analysis or multiprecision arithmetic.

Abstract DSLs. Rosebud introduces the notion of an “abstract” DSL, one whose programs are
expressed in abstract syntax (as AST fragments) rather than concrete syntax. Such programs are
not written by humans but generated by rewriting an existing AST during Rosebud’s translation
process. Abstract DSLs are useful to encapsulate back end optimization and code generation
mechanisms. For instance, rewriting a Fortran program might convert MPI subroutine calls into
custom AST fragments in an abstract MPI DSL. Isolated in this way, MPI operations could be
examined, optimized, and converted to code by the MPI DSL using its language-independent
encapsulated expertise. Other mechanisms which might benefit from abstract-DSL encapsulation
are OpenMP, polyhedral optimization, coprocessor acceleration, resilience, symbolic algebra, and
so on. Although we were unable to build any abstract DSLs, we are convinced by our design and
implementation experience and discussions with other D-TEC and X-Stack researchers that this
idea is powerful and practical.

4.2 Lessons

Compiler integration requirements. We knew at the outset that reuse of an existing host lan-
guage compiler would require some Rosebud mechanisms to be integrated tightly with the compiler’s
front end and AST; examples are converting AST fragments to and from the rewriting engine’s
format and reanalyzing the static semantics of AST fragments after rewriting. We addressed this by
targeting the ROSE Compiler Infrastructure, written and maintained by our D-TEC collaborators
at LLNL, rather than an open source production compiler like Clang. Our work plan was predi-
cated on LLNL’s making the necessary changes to ROSE, but that was never done. Consequently
we were unable to build the promised Rosebud back end, and so unable to evaluate experimentally
the productivity and portable performance gains Rosebud is designed to provide. The lesson is
that compiler integration can be a show stopper if adequate resources are not available.

Collaboration and effort. We also knew at the outset that building and evaluating Rosebud
would require much help from the other institutions involved in D-TEC. For instance, LLNL and
IBM would help with front end work for C++/Fortran and for X10 respectively; Berkeley would
help build and evaluate a stencil DSL in Rosebud; UCSD would help build an MPI DSL; and
OSU would help build a stencil optimizer for Rosebud. None of these tasks were accomplished
despite repeated attempts to enlist cooperation. These omissions were aggravated by a pervasive

11

shortage of software development staff; our already very lean proposed budget was decimated in
the DOE funding process without corresponding reduction in work scope, resulting in a severely
undermanned effort at Rice.

Reuse of program analysis infrastructure. We did not appreciate at the outset just how
difficult it would be to reuse an existing compiler’s program analysis and optimization mechanisms.
The chief difficulty is that existing optimizers hard-code assumptions about what constitutes a
constant, variable, or expression. In Rosebud’s mixin-DSL model, these constructs also include
domain-specific variants (e.g. a DSL’s sparse array references used as variables). Even if a DSL’s
author specifies the data and control flow semantics of its constructs, the inflexibility of existing
optimizer implementations make it challenging to modify one for use by Rosebud. We didn’t get
far enough into Rosebud’s back end to need this, but we now recognize it as an issue. Part way
through D-TEC a collaborator began looking at this issue with promising early results, so we do
not see it as an obstacle to eventually achieving Rosebud’s goals.

Ambiguity in the front end. We also failed to appreciate at the outset how big an issue syntactic
ambiguity would turn out to be. It was obvious that adding two DSL mixins to a source program
might cause inter-DSL ambiguities, and we had a plan to handle this. However, we assumed that
the host language – some existing production programming language – would be unambiguous in
practice. This is certainly true from a user’s viewpoint, but unfortunately it is not true for the
BNF grammars used to describe their concrete syntaxes. For instance, C++ is highly ambiguous at
the context-free level and disambiguation is done during static analysis, too late to help Rosebud’s
mixed language parser. These intra-host ambiguities interact badly with DSL syntax extensions
and interfere with identification of DSL code passages. Fortunately, we were able to understand
this issue and devise a straightforward, efficient technique for handling it. In brief, the parser
tracks all possible parses for each construct (for free in an SGLR parser) and discards insignificant
ambiguities – ones which affect only the parsing of host-language code. These may be ignored
because the host compiler disambiguates them later. Most ambiguities encountered in practice are
this kind. Significant ambiguities are those within a single DSL, between two DSLs, or between
a DSL and the host language. We treat the presence of a significant ambiguity as a syntax error.
The record of possible parses allows Rosebud to emit reasonable error messages and the user can
fix these errors with appropriate parenthesization. Pruning of insignificant ambiguities is done on
the fly during parsing, preventing a combinatorial explosion of space and time costs.

Defining DSL type semantics. To type check DSL code and its interaction with host code,
Rosebud uses a novel technique we call proxy type checking. We map a Rosebud type checking
problem to a corresponding host language proxy, let the host compiler resolve it, and map the proxy
answer back to the Rosebud problem. This works well and greatly simplifies the specification of
type semantics: instead of writing formal type semantics, an author just provides a host-language
proxy template for each DSL construct. Unfortunately, even this tuns out to be hard to express in
RDL at present. We need to look for a simpler, more expressive notation for such proxy mappings.

Interleaving cost based searches. Although we never got a chance to work on Rosebud’s back
end, one of its most interesting and challenging aspects was our proposed use of interleaved cost
based searches for joint optimization of multiple DSLs in a single source file. In our vision, each
DSL construct is translated by search over possible translations using estimated execution cost to
guide the search, and searches for distinct constructs are interleaved so that a (tentative) rewriting
decision for one construct can be taken into account in the cost metric of another construct’s search.
For instance, if in one alternative world a stencil loop has decided to load some array onto the GPU,
then the search trying to translate a subsequent stencil loop might assign low cost to having that

12

array on GPU but a higher cost to having other arrays on the GPU (because the latter but not the
former would require additional GPU io). As we looked at possible implementations we realized
that to make the technique practical we’d have to find a way of structuring the rewriting system
to use some kind of transactions. A single decision such as putting an array on GPU may be
implemented through a sequence of rewrite rules, but for interleaving to achieve the desired effect
each interleaved order must take or leave that sequence as a whole. This research issue remains to
be explored in future work.

Multiple host languages. Finally, we overlooked at the outset that many practical HPC appli-
cations involve running code written in two or more languages; for instance, Chombo programs are
mostly C++ but employ loop kernels written in Fortran, and GPU programs may consist of host
language code plus kernels written in CUDA. Thus Rosebud needs to be able to translate a single
mixed-language source program into multiple output files written in different languages. Our origi-
nal design, like Metaborg before it, assumed that one input source file is translated into one output
file. We have worked out most of the details of this extension and believe it is straightforward to
implement.

5 Products of the Research

5.1 Rosebud

Rosebud is open source with a permissive license. Its source code and documentation are available
at https://svn.rice.edu/r/rosebud.

5.2 Contributions to Community Open-source Infrastructure

Mature results of the compiler work were incorporated into the ROSE compiler infrastructure,
available from http://rosecompiler.org.

5.3 Contributions to Community Standards

5.3.1 Contribution of doacross construct to OpenMP 4.5

During the period of this project, two members of the D-TEC team at Rice, research scientist Dr.
Jun Shirako and co-PI Prof. Vivek Sarkar, worked with IBM on developing a proposal for adding
the doacross construct to OpenMP [5]. This proposal was presented and refined over the course
of multiple OpenMP committee meetings, before it appeared as “multidimensional extensions to
ordered constructs” in the OpenMP 4.5 standard in November 2015. In addition to the various
benefits of this construct known from past work [1, 8], our research has shown that the doacross
construct can be a useful target for code generated from DSLs [4] or from polyhedral optimizers [2].

5.4 Publications

5.4.1 Papers

• Kamal Sharma, Ian Karlin, Jeff Keasler, James R. McGraw, Vivek Sarkar. User-Specified
and Automatic Data Layout Selection for Portable Performance, Technical Report TR13-03,
Department of Computer Science, Rice University, 2013.

• Deepak Majeti, Rajkishore Barik, Jisheng Zhao, Max Grossman, and Vivek Sarkar. Compiler-
Driven Data Layout Transformation for Heterogeneous Platforms, International Workshop on
Algorithms, Models and Tools for Parallel Computing on Heterogeneous Platforms (HeteroPar
2013, co-located with EuroPar 2013), August 2013.

• Jun Shirako, Vivek Sarkar. Oil and Water can mix! Experiences with integrating Polyhedral
and AST-based Transformations, 17th Workshop on Compilers for Parallel Programming
(CPC), July 2013.

13

• Deepak Majeti, Kuldeep S. Meel, Rajkishore Barik, and Vivek Sarkar. 2014. ADHA: au-
tomatic data layout framework for heterogeneous architectures. In Proceedings of the 23rd
international conference on Parallel architectures and compilation (PACT ’14). ACM, New
York, NY, USA, 479-480. DOI: http://dx.doi.org/10.1145/2628071.2628122

• Lai Wei and John Mellor-Crummey. 2014. Autotuning Tensor Transposition. In Proceedings
of the 2014 IEEE International Parallel & Distributed Processing Symposium Workshops
(IPDPSW ’14). IEEE Computer Society, Washington, DC, USA, 342-351. DOI: http:

//dx.doi.org/10.1109/IPDPSW.2014.43.

• Rishi Surendran, Raghavan Raman, Swarat Chaudhuri, John Mellor-Crummey, and Vivek
Sarkar. Test-driven repair of data races in structured parallel programs. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI ’14). ACM, New York, NY, USA, 15-25. DOI: http://dx.doi.org/10.1145/
2594291.2594335.

• Rishi Surendran, Rajkishore Barik, Jisheng Zhao, Vivek Sarkar: Inter-iteration Scalar Re-
placement Using Array SSA Form. A. Cohen (Ed.): CC 2014, LNCS 8409, pp. 4060, 2014.
DOI: https://doi.org/10.1007/978-3-642-54807-9_3

• Rishi Surendran and Vivek Sarkar. Dynamic Determinacy Race Detection for Task Paral-
lelism with Futures. In: Falcone Y., Snchez C. (eds) Runtime Verification. RV 2016. Lecture
Notes in Computer Science, vol 10012. Springer, Cham DOI: https://doi.org/10.1007/
978-3-319-46982-9_23

• Xu Liu, Kamal Sharma, John Mellor-Crummey, ArrayTool: a lightweight profiler to guide
array regrouping, Proceedings of the 23rd International Conference on Parallel Architectures
and Compilation, August 24-27, 2014, Edmonton, AB, Canada. DOI: https://doi.org/10.
1145/2628071.2628102.

• Jun Shirako, Louis-Noël Pouchet, and Vivek Sarkar. Oil and water can mix: an integration of
polyhedral and AST-based transformations. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC ’14). IEEE Press,
Piscataway, NJ, USA, 287-298. DOI: https://doi.org/10.1109/SC.2014.29.

• Kamal Sharma, Ian Karlin, Jeff Keasler, James R McGraw, Vivek Sarkar. Data Layout Opti-
mization for Portable Performance. Proceedings of Euro-Par 2015: Parallel Processing: 21st
International Conference on Parallel and Distributed Computing, Vienna, Austria, August
24-28, 2015. Lecture Notes in Computer Science book series (LNCS, volume 9233). Springer
Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-662-48096-0_20

• Prasanth Chatarasi, Jun Shirako, and Vivek Sarkar. Polyhedral Optimizations of Explicitly
Parallel Programs. In Proceedings of the 2015 International Conference on Parallel Architec-
ture and Compilation (PACT) (PACT ’15). IEEE Computer Society, Washington, DC, USA,
213-226. DOI: https://doi.org/10.1109/PACT.2015.44

• Alina Sb̂ırlea, Jun Shirako, Louis-Noël Pouchet, and Vivek Sarkar. Polyhedral Optimizations
for a Data-Flow Graph Language, Languages and Compilers for Parallel Computing: 28th
International Workshop, LCPC 2015, Raleigh, NC, USA, September 9-11, 2015, Revised
Selected Papers 2016, pp. 57–72. Springer International Publishing, Cham. https://doi.

org/10.1007/978-3-319-29778-1_4

14

• Y. Peng, M. Grossman and V. Sarkar. Static Cost Estimation for Data Layout Selection on
GPUs. 7 th International Workshop on Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems (PMBS), Salt Lake, UT, 2016, pp. 76-86. DOI:
https://doi.org/10.1109/PMBS.2016.013.

• Prasanth Chatarasi, Jun Shirako, Martin Kong, and Vivek Sarkar. An Extended Polyhedral
Model for SPMD Programs and Its Use in Static Data Race Detection The 29th International
Workshop on Languages and Compilers for Parallel Computing (LCPC 2016), September 28–
30, 2016. Rochester, NY. ChapterinLecture Notes in Computer Science 10136:106-120. In
book: Languages and Compilers for Parallel Computing, pp.106-120 DOI: https://doi.org/
10.1007/978-3-319-52709-3_10.

• Rishi Surendran and Vivek Sarkar. Automatic parallelization of pure method calls via condi-
tional future synthesis. In Proceedings of the 2016 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 2016).
ACM, New York, NY, USA, 20-38. DOI: https://doi.org/10.1145/2983990.2984035.

5.4.2 Theses

• Kamal Gopal Sharma. Locality Transformations of Computation and Data for Portable
Performance. Ph.D. Dissertation. Department of Computer Science, Rice University, August
2014. http://hdl.handle.net/1911/88159.

• Lai Wei. Autotuning Memory-intensive Software for Node Architectures. Master’s Thesis.
Department of Computer Science, Rice University. May 2015. http://hdl.handle.net/

1911/88422.

• Sbirlea, Alina. High-level execution models for multicore architectures. Ph.D. Dissertation.
Department of Computer Science, Rice University, November 2015. http://hdl.handle.

net/1911/88142.

• Rishi Surendran. Debugging, Repair, and Synthesis of Task Parallelism. Ph.D. Dissertation.
Department of Computer Science, Rice University, March 2017 http://hdl.handle.net/

1911/96003.

5.4.3 Reports

• K. Sharma, I. Karlin, J. Keasler, J. McGraw, V. Sarkar. User-Specified and Automatic Data
Layout Selection for Portable Performance. Technical Report LLNL-TR-637873, Lawrence
Livermore National Laboratory, May 30, 2013.

References

[1] R. Cytron. Useful Parallelism in a Multiprocessing Environment. Proc. 1985 International
Conference on Parallel Processing, pages 450–457, 1985.

[2] Prasanth Chatarasi, Jun Shirako and Vivek Sarkar. Polyhedral Optimizations of Explicitly
Parallel Programs. In Proc. of The 24th International Conference on Parallel Architectures and
Compilation Techniques (PACT), San Francisco, CA, USA, 2015.

[3] R. Rosner et al. The opportunities and challenges of exascale computing. US Dept. of Energy
Office of Science, Summary Report of the Advanced Scientific Computing Advisory Commit-
tee (ASCAC) Subcommittee, November, 2010. http://science.energy.gov/~/media/ascr/

ascac/pdf/reports/Exascale_subcommittee_report.pdf.

15

[4] A. Sb̂ırlea, J. Shirako, L.-N. Pouchet, and V. Sarkar. Polyhedral optimizations for a data-flow
graph language. In The 28th International Workshop on Languages and Compilers for Parallel
Computing (LCPC), Sept 2015.

[5] D. Sb̂ırlea, A. Sb̂ırlea, K. B. Wheeler, and V. Sarkar. The Flexible Preconditions Model for
Macro-Dataflow Execution. In The 3rd Data-Flow Execution Models for Extreme Scale Com-
puting Workshop (DFM), Sep 2013.

[6] K. Sharma. Locality Transformations of Computation and Data for Portable Performance. PhD
thesis, Rice University, Aug 2014.

[7] K. Sharma, I. Karlin, J. Keasler, J. R. McGraw, and V. Sarkar. Data layout optimization for
portable performance. In Euro-Par 2015: Parallel Processing, pages 250–262. Springer, 2015.

[8] P. Unnikrishnan, J. Shirako, K. Barton, S. Chatterjee, R. Silvera, and V. Sarkar. A practical
approach to doacross parallelization. In Proceedings of the 18th International Conference on
Parallel Processing, Euro-Par’12, pages 219–231, Berlin, Heidelberg, 2012. Springer-Verlag.

16

