PIPER: Performance Insight for
Programmers and Exascale Runtimes

Guiding the Development of the Ezxascale Software Stack
Final Report
Rice University Subproject
Cooperative Agreement No. DE-SC0010473

September 2013-August 2016

John Mellor-Crummey
Principal Investigator at Rice University

Department of Computer Science, MS 132
Rice University
P.O. Box 1892
Houston, TX 77251-1892
Voice: 713-348-5179
FAX: 713-348-5930

Email: johnmc@rice.edu

Contents

1 Introduction 1
2 Summary Description of the Project’s Research and Development 1
2.1 New Measurement Capabilities, 1
2.1.1 Data-centric Profiling of Parallel Programs 1

2.1.2 Sampling-based Performance Analysis of GPU-accelerated Supercomputers . 1

2.1.3 Pinpointing Data Locality Bottlenecks with Low Overhead 2

2.1.4 Performance Measurement and Analysis of OpenMP Programs 2

2.1.5 Measurement and Analysis of Threaded Programs on NUMA Architectures . 2

2.1.6 Lightweight Profiling to Guide Array Regrouping 3

2.1.7 Blame Shifting for Root Cause Analysis 3

2.2 Runtime Interfaces for Tools 3
2.2.1 OMPT: A Performance Tools Interface for OpenMP 3

2.2.2 OMPD: A Debugging Interface for OpenMP 4

2.3 New Attribution Capabilities 5
2.3.1 Binary Analysis to Improve Performance Attribution to Optimized C++ Codes 5

2.3.2 Efficient Attribution using Fine-grained Binary Instrumentation 5)

2.4 New Presentation Capabilities 6
2.4.1 Scaling Visualization of Performance Data 6

2.5 Application Engagement Outcomes 6
2.5.1 Analysis and Optimization of Applications 6

2.5.2 Analysis and Optimization of a Communication Library 7

2.5.3 Efficient Synchronization for Parallel Systems 7

2.5.4 Contention-conscious, Locality-preserving Locks 7

2.6 Interactions with other X-Stack Projects 8

3 Research Objectives Remaining 8
4 Findings 9
4.1 Hardware Technology. 9
4.2 Software Technology e 10

5 Products of the Research 11
5.1 Contributions to Community Standards 11
5.1.1 OMPT Tools API for OpenMP 11

5.1.2 OMPD Debugging API for OpenMP 11

5.2 Open Source Software e 11
52.1 HPCToolkit e 11

5.2.2 OMPT Tools API in LLVM OpenMP 12

5.2.3 OMPT Test Suite for OpenMP 12

5.3 Technical Communications 12
5.3.1 Presentations 12

5.3.2 Publications 13

5.3.3 Reports L 15

5.3.4 Videos e 15

1 Introduction

The aim of the PIPER project was to develop methodologies and software for measurement, anal-
ysis, attribution, and presentation of performance data for extreme-scale systems. Goals of the
project were to support analysis of massive multi-scale parallelism, heterogeneous architectures,
multi-faceted performance concerns, and to support both post-mortem performance analysis to
identify program features that contribute to problematic performance and on-line performance
analysis to drive adaptation.

Producing a complete suite of performance tools for exascale platforms during the course of
this project was impossible since both hardware and software for exascale systems is still a mov-
ing target. For that reason, the project focused broadly on the development of new techniques
for measurement and analysis of performance on modern parallel architectures, enhancements to
HPCToolkit’s software infrastructure to support our research goals or use on sophisticated appli-
cations, engaging developers of multithreaded runtimes to explore how support for tools should
be integrated into their designs, engaging operating system developers with feature requests for
enhanced monitoring support, engaging vendors with requests that they add hardware measure-
ment capabilities and software interfaces needed by tools as they design new components of HPC
platforms including processors, accelerators and networks, and finally collaborations with partners
interested in using HPCToolkit to analyze and tune scalable parallel applications.

Following the investments in HPCToolkit as part of the PIPER project, HPCToolkit was se-
lected as a key performance tools technology for the DOE’s Exascale Computing Project.

2 Summary Description of the Project’s Research and Development
2.1 New Measurement Capabilities
2.1.1 Data-centric Profiling of Parallel Programs

It is difficult to manually identify opportunities for enhancing data locality. To address this problem,
we extended the HPCToolkit performance tools to support data-centric profiling of scalable paral-
lel programs. HPCToolkit uses hardware counters to directly measure memory access latency and
attributes latency metrics to both variables and instructions. Different hardware counters provide
insight into different aspects of data locality (or lack thereof). Unlike prior tools for data-centric
analysis, HPCToolkit employs scalable measurement, analysis, and presentation methods that en-
able it to analyze the memory access behavior of scalable parallel programs with low runtime and
space overhead. We demonstrated the utility of HPCToolkit’s new data-centric analysis capabili-
ties with case studies of five well-known benchmarks. In each benchmark, we identify performance
bottlenecks caused by poor data locality and demonstrate non-trivial performance optimizations
enabled by this guidance.

2.1.2 Sampling-based Performance Analysis of GPU-accelerated Supercomputers

Performance analysis of GPU-accelerated systems requires a system-wide view that considers both
CPU and GPU components. We extended HPCToolkit to support system-wide, sampling-based
performance analysis methods of GPU-accelerated systems. Since current GPUs do not support
sampling, our implementation required careful coordination of instrumentation-based performance
data collection on GPUs with sampling-based methods employed on CPUs. In addition, we devel-
oped a novel technique for analyzing systemic idleness in CPU/GPU systems. We demonstrated
the effectiveness of our techniques with application case studies on Titan and Keeneland. Some
highlights of our case studies include improving performance for LULESH 1.0 by 30%, identify-
ing a hardware performance problem on Keeneland, identifying a scaling problem in LAMMPS
derived from CUDA initialization, and identifying a performance problem that is caused by GPU
synchronization operations that suffer delays due to blocking system calls.

2.1.3 Pinpointing Data Locality Bottlenecks with Low Overhead

A wide gap exists between the speed of modern processors and memory subsystems. As a result,
long latencies associated with fetching data from memory often significantly degrade execution per-
formance. To aid with program tuning, application developers need tools to analyze memory access
patterns and guide them how to reuse data in the fastest levels of a system’s memory hierarchy. To
address this problem, we developed a novel, efficient, and effective tool for data locality measure-
ment and analysis. Unlike other tools, our tool uses both statistical PMU sampling to quantify the
cost of data locality bottlenecks and cache simulation to compute reuse distance to diagnose the
causes of locality problems. This approach enables us to collect rich information to provide insight
into a program’s data locality problems. Our tool attributes quantitative measurements of observed
memory latency to program variables and dynamically allocated data, as well as code. Our tool
identifies data touched by reuse pairs and the accesses involved, identified with their full calling
context. Finally, our tool employs both sampling and parallelization to accelerate the computation
of representative reuse distance information. Experiments show that with an overhead of only
about 13%, our tool provides detailed insights that enabled us to make non-trivial improvements
to memory-bound HPC benchmarks.

2.1.4 Performance Measurement and Analysis of OpenMP Programs

The number of hardware threads is growing with each new generation of multicore chips; thus, one
must effectively use threads to fully exploit emerging processors. OpenMP is a popular directive-
based programming model that helps programmers exploit thread-level parallelism. To support
measurement and analysis of OpenMP, we extended HPCToolkit in two principal ways. First, we
developed a measurement methodology that attributes blame for work and inefficiency back to
program contexts. We showed how to integrate prior work on measurement methodologies that
employ directed and undirected blame shifting and extend the approach to support dynamic thread-
level parallelism in both time-shared and dedicated environments. Second, we developed a novel
deferred context resolution method that supports online attribution of performance metrics to full
calling contexts within an OpenMP program execution. This approach enables us to collect compact
call path profiles for OpenMP program executions without the need for traces. Support for our
approach motivated much of the design for a new performance tools interface for OpenMP known
as OMPT. We demonstrated the effectiveness of our approach by applying our tool to analyze four
well-known application benchmarks that cover the spectrum of OpenMP features. In case studies
with these benchmarks, insights from our tool helped us significantly improve the performance of
these codes.

2.1.5 Measurement and Analysis of Threaded Programs on NUMA Architectures

Almost all of today’s microprocessors contain memory controllers and directly attach to memory.
Modern multiprocessor systems support non-uniform memory access (NUMA): it is faster for a
microprocessor to access memory that is directly attached than it is to access memory attached to
another processor. Without careful distribution of computation and data, a multithreaded program
running on such a system may have high average memory access latency. To use multiprocessor
systems efficiently, programmers need performance tools to guide the design of NUMA-aware codes.
To address this need, we enhanced the HPCToolkit performance tools to support measurement and
analysis of performance problems on multiprocessor systems with multiple NUMA domains. With
these extensions, HPCToolkit helps pinpoint, quantify, and analyze NUMA bottlenecks in execu-
tions of multithreaded programs. It computes derived metrics to assess the severity of bottlenecks,
analyzes memory accesses, and provides a wealth of information to guide NUMA optimization, in-
cluding information about how to distribute data to reduce access latency and minimize contention.

We demonstrate the utility of our approach through case studies in which we use these capabilities
to diagnose NUMA bottlenecks in four multithreaded applications.

2.1.6 Lightweight Profiling to Guide Array Regrouping

Memory hierarchies in modern computer systems are complex; often, they include multi-level caches
and multiple memory controllers on the same chip. Without careful design, programs suffer from
unnecessary data movement between caches and memory, degrading performance and increasing
energy consumption. Array regrouping can significantly improve data locality by improving spatial
reuse of data and reducing cache contention. However, existing techniques for identifying oppor-
tunities for array regrouping are lacking in three ways. First, they provide inadequate information
to guide regrouping. Second, the cost of monitoring employed by prior tools to identify regrouping
opportunities limits the use of these methods in practice. Third, existing metrics for quantifying
the benefits of array regrouping can lead to inappropriate transformations that hurt performance.
To address these issues, we developed ArrayTool - a lightweight profiler that guides array regroup-
ing. ArrayTool has three unique capabilities. First, it focuses attention on arrays with significant
access latency. Second, it identifies the feasibility and quantifies the benefits of regrouping arrays
with lightweight array-centric profiling. Third, it works on both shared-memory and distributed-
memory parallel programs. To illustrate the utility of ArrayTool, we employ it to analyze three
benchmarks. Using the guidance it provides, we regroup program arrays, improving performance
from 25% to a factor of two.

2.1.7 Blame Shifting for Root Cause Analysis

Blame shifting [10, 11] is a performance measurement and analysis strategy that identifies root
causes for idleness by shifting blame for thread idleness to threads causing it by holding a lock or
executing code that lacks sufficient parallelism to keep all threads busy. As part of PIPER, we
worked to extend and generalize the blame-shifting approach for arbitrary multithreaded models.
In our prior work, we explored directed blame shifting to attribute lock waiting to lock holders
in the Pthreads programming model, and undirected blame shifting to attribute waiting for work
to insufficiently parallel code in the context of Cilk programs. In this project, we extended and
integrated these ideas to analyze both kinds of waiting in executions of node programs that use
OpenMP. Our insights from this work were incorporated into the design of features to support
blame shifting in the OMPT performance tools API for OpenMP. In addition to our work with
OpenMP, we developed a generalization of blame shifting for pinpointing bottlenecks associated
with the use of spin waiting for locks or blocking for locks or condition variables in programs
using the library-based Pthreads threading abstractions. Furthermore, we explored generalizing
blame shifting to parallel programming models at multiple levels of abstraction. To support this,
we developed a prototype of a modular blame-shifting framework. Using this framework, blame-
shifting at each level of abstraction is implemented independently of all others. Results with this
framework were promising and we believe it could be employed to monitor complex programming
abstractions such NWChem’s use of Global Arrays in conjunction with Intel’s Threaded Building
Blocks atop Pthreads.

2.2 Runtime Interfaces for Tools
2.2.1 OMPT: A Performance Tools Interface for OpenMP

A goal of the PIPER project was to analyze the requirements for tool APIs at various levels
in the exascale software stack. As a first step toward understanding the needs for tool APIs for
multithreaded runtime systems in general, Martin Schulz (LLNL) and John Mellor-Crummey (Rice
University) of the PIPER project and Alexandre Eichenberger (IBM) led the design of OMPT—an
interface for monitoring and analysis tools to be supported by the OpenMP runtime. OpenMP was

chosen as the target for this work as it is the most widely used multithreaded programming model
for scientific computing. Development of the OMPT interface was a community effort with broad
participation by members of the OpenMP Tools Subcommittee.

Initially, we designed the OMPT API to support monitoring of OpenMP 3.1 features, focusing
on parallel regions, worksharing constructs, and tasking. Subsequently, we extended OMPT to
include support for monitoring of data movement between CPUs and accelerators as well as an
interface for collecting and inspecting detailed traces of activity on accelerators. The final design
for the OMPT API provides a mechanism to initialize a first-party tool, routines that enable a
tool to determine the capabilities of an OpenMP implementation, routines that enable a tool to
examine OpenMP state information associated with a thread, mechanisms that enable a tool to
map implementation-level calling contexts back to their source-level representations, a callback
interface that enables a tool to receive notification of OpenMP events, a tracing interface that
enables a tool to trace activity on OpenMP target devices, and a runtime library routine that an
application can use to control a tool.

To promote acceptance of the OMPT performance tools API, the PIPER team at Rice led
the development and validation of an implementation of an early design of the OMPT API in the
context of Intel’s open source OpenMP runtime. In May 2015, after our implementation of OMPT
became sufficiently mature, it was merged into the trunk of the LLVM OpenMP runtime system.
The LLVM OpenMP runtime and ecosystem is a key part of the software environment for the
forthcoming DOE CORAL platforms.

To validate implementations of OMPT, the PIPER team at Rice developed a test suite that
exercises an OpenMP runtime by driving it through certain known states, and uses OMPT to
monitor the test programs to validate that OMPT callbacks functions and inquiry functions return
the proper information to describe these known states. Our prototype test suite was subsequently
refined by researchers at RWTH Aachen University and contributed to the LLVM OpenMP test
suite to validate its OMPT implementation.

Shortly after the end of the PIPER project, OMPT was approved for inclusion into OpenMP
5.0. Ongoing work is focused on polishing the OMPT design in preparation for the offical release of
the OpenMP 5.0 standard in 2018. Work to bring the implementation of OMPT in LLVM OpenMP
into compliance with the emerging OpenMP 5.0 specification is ongoing.

2.2.2 OMPD: A Debugging Interface for OpenMP

Martin Schulz (LLNL) and John Mellor-Crummey (Rice University) of the PIPER project partici-
pated in the development of OMPD—a debugging API for OpenMP. The goals for the OMPD API
were that it should enable a debugger to inspect the state of a live process or a core file, facilitate
interactive control of a live process (including the ability to place breakpoints at the beginning and
end of parallel regions and tasks), and shouldn’t place an unreasonable burden on either runtime
or tool developers.

The design for OMPD employs an approach previously employed to support debugging of
threads and MPI programming abstractions: the programming abstraction provides a plugin library
that the debugger loads into its own address space. The debugger then uses an API provided by
the plugin library to inspect and manipulate state associated with the programming abstraction in
a target. The target may be a live process or a core file.

Based on the initial design of OMPD, groups at LLNL and Rogue Wave constructed prototype
implementations. Following successful prototyping, work to integrate OMPD into the OpenMP 5.0
standard has begun.

2.3 New Attribution Capabilities
2.3.1 Binary Analysis to Improve Performance Attribution to Optimized C++ Codes

A key component of HPCToolkit is hpcstruct—a utility that analyzes a program binary to recover
and integrate information about functions, loops, inlined call chains, and source lines. Program
structure information is used by HPCToolkit to map performance measurements back to applica-
tion source code and provide the framework for what is ultimately displayed in the HPCToolkit’s
hpcviewer graphical user interface, which displays a source-code oriented view.

In the course of the PIPER project, we overhauled hpcstruct to use the SymtabAPI and
ParseAPI components from Dyninst—a binary analysis toolkit developed by the PIPER team
at Wisconsin. Following our renovations, hpcstruct now uses ParseAPI to reconstruct function
control-flow graphs (CFG) from a program’s machine code and SymtabAP]I to read line maps and
information about inlining from application binaries. Dyninst ParseAPI provides sophisticated
analysis, deftly handling jump tables, tail calls and non-returning functions. The precision of
Dyninst’s analysis improved HPCToolkit’s attribution and display of performance measurements.

A key technical challenge addressed by our overhaul of hpcstruct was combining information
about loop nests with information about inlined call chains. Given a sequence of instructions
along with information about the inlined call chain associated with each instruction and the loops
present, the key challenge is determining whether the information indicates an inlined call chain
that contains a loop, a loop whose body contains inlined functions, or some combination of the two.
To address this challenge, we constructed a new data structure called the inline tree to represent
the placement of statements and loops in the context of inline sequences. The inline tree enables
a topological placement of loops in the proper context of inlined instructions. This approach also
enables more accurate location of loop headers.

A major benefit of the overhaul of hpcstruct is better attribution of templated C++ code.
Modern programming models such as the DEGAS HC++, Livermore’s RAJA and Sandia’s Kokkos
rely on heavily templated code. Using such programming models, generated code is often far
removed from an application’s original source. Expanding C++ template abstractions often involves
code from multiple files along with deep call chains of inlined code that contain loops at one or more
levels. Using information hpcstruct recovers about inlined call chains using Dyninst’s SymtabAPI,
hpcviewer can display all the steps in the sequence from the original application code, through
multiple files and templates down to the final line that generated the instruction.

2.3.2 Efficient Attribution using Fine-grained Binary Instrumentation

Fine-grained binary instrumentation is a popular technique to monitor program execution. Intel’s
Pin is a leading dynamic binary instrumentation framework for building program measurement and
analysis tools. A key feature missing in Pin is the ability to associate call paths with instructions
as they execute. The availability of calling context information enables Pin tools to provide more
detailed diagnostic feedback. To address this challenge and support the needs of PIPER collab-
orators at PNNL, the Rice PIPER team developed CCTLib—a call path collection library that
any Pin tool can use to obtain the full calling context at any and every machine instruction that
executes. CCTLib not only associates any instruction with source code along the call path, but
also points to the data object accessed by the instruction if it is a memory access.

With CCTLib, collecting call paths on each executed instruction is possible, even for reasonably
long running programs. Prior art in call path collection for Pin has several limitations. Compared
to other open-source Pin tools for call path collection, CCTLib provides richer information that is
accurate even for programs with complex control flow and does so with about 30% less overhead—a
difference of 14.

2.4 New Presentation Capabilities
2.4.1 Scaling Visualization of Performance Data

To support large-scale visualization of huge execution traces on a tiled display wall, we employ a
client-server approach for examining execution traces: the server gathers and filters execution-trace
data on the supercomputer, while the client presents it. This approach enables visualization of huge
traces without the need to move them from the file system where they were recorded. The server is
itself a parallel program written using MPI. The server quickly extracts a subset of a huge execution
trace in response to requests from hpctraceviewer’s visualization client.

To accelerate rendering of large-scale visualizations, we also overhauled hpctraceviewer’s
client-side rendering engine. The visualization client is built using the Eclipse Standard Windowing
Toolkit (SWT). On Linux, SWT is built atop GTK—a multi-platform toolkit for creating graphical
user interfaces. Although GTK is thread-aware, it is not thread-safe: each GTK operation holds a
global lock as it executes. This is an obstacle if one wants to accelerate rendering by using multiple
threads. To minimize serialization due to the global lock, we refactored hpctraceviewer’s visual-
ization client to employ multiple threads to turn execution trace data into sequences of primitive
rendering operations that they pass to a single rendering thread using a concurrent queue. Using
this client-server approach, we were able to visualize large traces on a Rice University visualization
wall with 7680 x 4320 resolution in under 10 seconds. Before the refactoring, such visualizations
took several minutes to render, which hindered interactive exploration of execution traces.

2.5 Application Engagement Outcomes

As part of our work on PIPER, we collaborated with application and library developers in industry,
academia, national laboratories, and ASCR co-design centers to understand the nature of challenges
faced by developers of different kinds of applications and to motivate development of features in
PIPER tools. In the course of this work, we worked with them to use HPCToolkit to gain insight
into a range of scientific and commercial applications as well as communication libaries. Below, we
describe a few results of our application engagement efforts.

2.5.1 Analysis and Optimization of Applications

Here, we highlight the results of application engagements with researchers at LBNL regarding
the NWChem quantum chemistry code and with Shell Research regarding a parallel reverse time
migration code. Insights to HPCToolkit provided insights that drove the application optimization
work described below, which was supported by supplemental funding from LBNL and Shell.

Barrier Elision for Production Parallel Programs. NWChem is a large scientific code that
employs multiple layers of programming abstractions. Within each programming abstraction, pro-
grammers typically employ conservative synchronization patterns, which leads to suboptimal per-
formance when abstractions are layered. To address this problem in general beyond NWChem, we
developed context-sensitive dynamic optimizations that elide barriers that are redundant during
the program execution. Our approach uses on-the-fly data race detection to identify redundant
barriers in their calling contexts; after an initial learning phase, our framework starts eliding all
future barrier instances that occur in the same calling context. We applied our techniques to
NWChem—a 6 million line computational chemistry code written in C/C++ /Fortran that uses
multiple layers of runtime libraries including the Global Array toolkit, ComEx, DMAPP, and MPI.
Our technique elided a surprisingly high fraction of barriers (as many as 63%) in production runs.
This redundancy elimination translates to application speedups as high as 14% on 2048 cores. Our
techniques also provided valuable insight about the application behavior, later used by NWChem
developers. Overall, we demonstrate the value of holistic context-sensitive analyses that consider
the domain science in conjunction with the associated runtime software stack.

Analysis and Optimization of Distributed Reverse Time Migration Code. Applications
to process seismic data employ scalable parallel systems to produce timely results. To fully exploit
emerging processor architectures, applications need to employ threaded parallelism within nodes
and message passing across nodes. Today, MPI4+OpenMP is the preferred programming model
for this task. However, tuning hybrid programs for clusters is difficult. Performance tools can
help users identify bottlenecks and uncover opportunities for improvement. We used HP CToolkit
to gain insight into the performance of a Shell MPI+OpenMP code that performs Reverse Time
Migration (RTM) on a cluster of multicore processors. HPCToolkit provided us with insight into
the effectiveness of the application’s domain decomposition strategy, its use of threaded parallelism,
and its utilization of functional units in the cores. By applying insights obtained from HPCToolkit,
we were able to improve the performance of the Shell RTM code by roughly 30%.

2.5.2 Analysis and Optimization of a Communication Library

Data movement in high-performance computing systems accelerated by graphics processing units
(GPUs) remains a challenging problem. Data communication in popular parallel programming
models, such as the Message Passing Interface (MPI), is currently limited to the data stored in the
CPU memory space. Auxiliary memory systems, such as GPU memory, are not integrated into
such data movement standards, thus providing applications with no direct mechanism to perform
end-to-end data movement. MPI-ACC, an integrated and extensible framework that allows end-
to-end data movement in accelerator-based systems, was developed to address this problem. In
a partnership with the MPI-ACC team, we employed HPCToolkit’s capabilities for measuring
performance on GPU-accelerated platforms to evaluate and tune the performance of MPI-ACC.

2.5.3 Efficient Synchronization for Parallel Systems

In the course of our work with applications, we found that efficient synchronization was a pervasive
problem. As a result, as part of our application engagement efforts, we explored new algorithms
for mutual exclusion to accelerate applications sharing mutable data structures.

High performance locks for multi-level NUMA systems Efficient locking mechanisms are
critically important for high performance computers. On highly-threaded systems with a deep
memory hierarchy, the throughput of traditional queueing locks, e.g., MCS locks, falls off due to
NUMA effects. Two-level cohort locks perform better on NUMA systems, but fail to deliver top
performance for deep NUMA hierarchies. To address this problem, we developed a hierarchical
variant of the MCS lock that adapts the principles of cohort locking for architectures with deep
NUMA hierarchies. Analytical models for throughput and fairness of Cohort-MCS (C-MCS) and
Hierarchical MCS (HMCS) locks enable us to tailor these locks for high performance on any target
platform without empirical tuning. Using these models, one can select parameters such that an
HMCS lock will deliver better fairness than a C-MCS lock for a given throughput, or deliver better
throughput for a given fairness. Our experiments show that, under high contention, a three-level
HMCS lock delivers up to 7.6x higher lock throughput than a C-MCS lock on a 128-thread IBM
Power 755 and a five-level HMCS lock delivers up to 72x higher lock throughput on a 4096-thread
SGI UV 1000. On a K-means clustering code from MineBench, a three-level HMCS lock reduces
its running time by up to 55% compared to the C-MCS lock on an IBM Power 755.

2.5.4 Contention-conscious, Locality-preserving Locks

NUMA-aware locks, such as the HMCS lock described above, exploit locality of reference among
nearby threads to deliver high lock throughput under high contention. However, the hierarchical
nature of such locality-aware locks increases latency, which reduces the throughput of uncontended
or lightly-contended critical sections. Before this work, no lock design for NUMA systems has
delivered both low latency under low contention and high throughput under high contention.

To address this issue, we developed an adaptive mutual exclusion scheme (AHMCS lock), which
employs several orthogonal strategies—a hierarchical MCS (HMCS) lock for high throughput under
high contention, Lamport’s fast path approach for low latency under low contention, an adaptation
mechanism that employs hysteresis to balance latency and throughput under moderate contention,
and hardware transactional memory for lowest latency in the absence of contention. The result is
a top performing lock that has most properties of an ideal mutual exclusion algorithm. AHMCS
exploits the strengths of multiple contention management techniques to deliver high performance
over a broad range of contention levels. Our empirical evaluations demonstrate the effectiveness of
AHMCS over prior art.

2.6 Interactions with other X-Stack Projects

DEGAS The PIPER team at Rice University worked closely with with the DEGAS project to
assess the performance characteristics of applications that employ dynamic global address space
programming models. An effort in this area of particular note was a collaboration on performance
analysis and optimization of a global-address space implementation of NWChem.

Traileka Glacier. HPCToolkit has been used by members of the X-Stack Traileka Glacier project’s
OCR team to assess the performance of codes both within and across the nodes of parallel systems.
In collaboration with members of the OCR team, we sketched a design of the mechanisms necessary
to extend the blame shifting approach for performance monitoring to the data-driven futures in
OCR. Members of the OCR team developed interfaces to OCR to increase the benefits of sampling-
based performance analysis with HPCToolkit.

EXPRESS. The PIPER team met with HPX runtime developers of the X-Stack XPRESS project
to assess tool capabilities that needed to diagnose performance problems in codes implemented
with HPX. In discussions with the HPX team, we determined that there were no obstacles to
augmenting HPX with a few necessary callbacks needed for HPCToolkit to employ blame shifting
for performance analysis of multithreaded computations. A shortage of resources in the XPRESS
projects for collaboration in this area caused this effort to be abandoned.

3 Research Objectives Remaining

Hardware and software for exascale systems is still a moving target. The diverse architectural
paths of today’s systems posed a wide target for tools, leading us to explore not only tools and
runtime support for both manycore CPUs and accelerators. Our research developing runtime and
tool support for CPUs and GPUs led us to conclude that GPUs require fundamentally different
support from CPUs. For that reason, our efforts developing runtime and tools support for CPU
and GPU required code bases that are largely separate. As a result, coping with both CPU and
GPU platforms consumed more project time and effort than expected.

Beyond our work on performance tools themselves, a substantial fraction of project effort was
devoted to exploration of tool interfaces needed elsewhere in the software stack. A particular focus
of our effort was on tool interfaces for the OpenMP runtime, which supports both CPU and GPU
computing with a range of programming styles. The complexity of the design, implementation,
and validation of the OMPT performance tools API for OpenMP surprised us and consumed a
substantial fraction of project effort. While this effort paid off with OMPT being accepted for
inclusion into the OpenMP 5.0 standard, it consumed time and effort that we had expected to
spend on other aspects of the project.

One unmet objective for the Rice work on PIPER includes work with adaptive applications to
employ on-line performance analysis for application steering. While it is believed that adaptive
approaches will be important for reducing power consumption at exascale, we didn’t encounter any

applications of this sort in our work. Without adaptive algorithms to study, we lacked examples to
motivate the development of techniques to measure the effectiveness of adaptive algorithms.

A second unmet objective includes depositing analysis results of HPCToolkit into a scalable
data store that includes information from disparate data sources. During the course of the PIPER
project, project resources were focused more on the design and implementation of measurement
infrastructure to collect information from hardware and runtime systems and less on supporting
more general post-mortem analysis of measurement data. An emerging collaboration with LLNL
aims to address this issue.

4 Findings
4.1 Hardware Technology.

Exascale hardware will require integrated hardware support for performance measurement. Previ-
ously, monitoring support has been designed by architects without much input from tool developers
about measurement needs. This needs to change. There are several areas in which hardware mon-
itoring for exascale systems will need improvement.

e Monitoring CPU performance. Understanding application performance on modern processors
with out-of-order cores is quite difficult because of the complexity of their microarchitectures.
Furthermore, microarchitectures in today’s parallel systems vary widely, ranging from the
latency-optimized cores in IBM Power and Intel Xeon multicore processors to the throughput-
optimized cores in Intel’s Xeon Phi manycore processors. While today’s architectures have
a wealth of hardware performance counters that can provide deep insight into performance
issues, a detailed methodology about how to use them is often lacking. While vendors have
made some progress on providing hardware counters and top-down methodologies for using
them to identify performance bottlenecks, e.g., [8, 13, 6], at this writing, a top-down method-
ology is not available for Intel’s Knight’s Landing processor used as compute nodes in DOE
supercomputers at LANL, NERSC, and ANL, or for IBM’s Power9 processor to be used in the
DOE’s accelerated supercomputers to be installed at LLNL and ORNL. Processor vendors for
future exascale platforms will need to provide appropriate hardware counters and top-down
methodologies to support measurement and analysis of CPU performance.

e Monitoring GPU performance. How best to understand performance of computations of-
floaded onto GPU accelerators is an open problem. New mechanisms for monitoring GPU
performance have been emerging, but their strengths and weaknesses are not yet entirely
understood. After urging by the PIPER team at Rice [2], NVIDIA added support for PC
sampling in 2015 to their Maxwell (GM200) GPU [7]. Deficiencies in the initial support for
PC sampling were that it reported the total latency of instructions rather than exposed la-
tency and that it only supported very fast sampling rates—at the slowest, one sample per
4096 cycles. After feedback from the PIPER team at Rice, NVIDIA addressed these deficien-
cies in later versions of their GPUs. NVIDIA’s Pascal and emerging Volta GPUs support a
wealth of new features, including unified address spaces with CPUs. While we don’t yet have
enough experience with monitoring features on these chips to understand their weaknesses,
we do know that the inability to collect calling contexts on GPUs make it harder to attribute
performance to complex GPU code. Ongoing engagements with NVIDIA are focused on ob-
taining additional software support for attributing performance measurements, e.g., DWARF
information that relates machine instructions to inlined call chains.

e Monitoring data movement. Monitoring and attributing the cost of data movement is difficult
in today’s systems. We don’t yet have enough experience to understand the strengths and

weaknesses of new capabilities for monitoring CPU-GPU and GPU-GPU data movement. On
CPU platforms, data movement back and forth to memory occurs in logic outside the pro-
cessor cores known as the “uncore” on Intel processors or the “nest” on IBM processors. The
uncore/nest choreographs transfers to memory on behalf of all cores. For that reason, it can
be difficult to attribute data movement occuring in the uncore/nest back to machine instruc-
tions and program variables. Hardware technologies that would support better attribution
of data movement back to application code would help tools provide insights to application
developers.

e Monitoring network performance. Today’s network measurement hardware and tools (e.g.,
[12, 9]) are designed for use by system’s administrators to monitor the health and traffic in a
network, not to attribute problems back to application code that causes them. Future systems
will need enhancements that enable fine-grain monitoring of communication so that the nature
of communication bottlenecks (e.g., congestion at a particular router) can be traced back to
root causes, e.g., communication patterns or a bad logical to physical mapping of processes
to nodes in an HPC platform. We believe that capabilities for “message-based sampling”,
analogous to instruction-based sampling in out-of-order CPUs (e.g., [3, 4]) would help provide
the needed insights. Exploring strategies for measurement and analysis based on sampling of
communication traffic is the subject of future ongoing research at Rice.

e Monitoring power and energy. Energy management interfaces such as Intel’s Running Av-
erage Power Limiting (RAPL) [5] and AMD’s Application Power Management (APM) [1]
support estimation and management of power consumption and are not designed for fine-
grain measurement and attribution of energy or power consumption. A preliminary study at
Rice determined that they are not well suited for use by tools to attribute power or energy
consumption to code regions. For exascale systems, where power will be a precious commod-
ity, pinpointing inefficient code regions will be important. New hardware mechanisms will be
needed to make that possible.

4.2 Software Technology

Performance tools require proper OS support to make hardware performance monitoring capabilities
usable. In addition, for proper measurement and attribution of performance, tools need interfaces
at other levels of the software stack as well..

e Operating Systems. Today, the Linux perf_events interface provides access to hardware
performance counters. The perf_events interface can be used to measure both application
and kernel activity. However, if exascale systems won’t use a Linux variant, then exascale
tools won’t benefit from efforts by the Linux community. On Linux, security concerns limit
node-wide monitoring, which is useful on HPC platforms where allocation granularity is
at the node level. Using perf_events we found that support for first-party monitoring of
thread blocking is deficient. As part of a collaboration with IBM through the DOE CORAL
project, we have been working to get kernel enhancements added to address this deficiency
(https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1424933.html).

e File Systems. Recording measurement data on exascale platforms will be difficult. File
systems for HPC platforms aren’t prepared to record one or more files for every thread in
massively-parallel applications. In the absence of such support, substantial software effort
will be needed by tools to multiplex performance data into a modest number of large files as
an application executes and then to demultiplex the data for analysis.

10

e Runtime Libraries. Tools support in runtime systems for multithreaded programming models
is needed to help tools bridge the gap between the source-level specification of a program
and its implementation. The development of the OMPT performance tools interface aims
to address this problem for OpenMP. Further work will be needed to extend this to other
programming models that become of interest for exascale platforms.

o Communication libraries. Communication libraries could benefit from additional sufficient
support for performance observability. While a tool can wrap the interface of a commu-
nication library such as MPI and observe the costs associated with messaging operations,
only by having developers of these libraries annotate their implementations with states (e.g.,
marshalling data for a message, attempting to inject a message, unpacking a message, wait-
ing for a message) can a tool begin to help application developers understand the nature
of communication costs. As communication libraries (e.g., MPI, GasNet, Global Arrays)
evolve for exascale platforms, tool developers will need to engage communication library de-
velopers to ensure that appropriate mechanisms are incorporated into these libraries to help
tools monitor communication activity. We believe that communication should expose named,
implementation-specific software counters that a tool could inspect to understand the librarys
performance. For instance, the GASNet library for one-sided communication might maintain
a software counter showing RDMA operation initiation attempts and RDMA operations ini-
tiated. An MPI library might similarly expose a counter for MPI operations in progress.

For exascale systems, we expect that performance tools will also need to leverage advances in
parallel file systems to record measurement data as applications execute as well as data analytics
and scalable visualization for analysis of performance measurements. A full investigation of how to
employ such technologies effectively was beyond the scope of this project.

5 Products of the Research

5.1 Contributions to Community Standards

5.1.1 OMPT Tools API for OpenMP

The last standalone draft of the OMPT specification is available at https://github.com/
OpenMPToolsInterface/OMPT-Technical-Report. In October 2016, shortly after the end of this
project OMPT was added to the OpenMP standard and released as part of the OpenMP 5.0 Pre-
view 1 in November 2016, which is available at http://www.openmp.org/wp-content/uploads/
openmp-tr4.pdf

5.1.2 OMPD Debugging API for OpenMP

The working draft of the specification for the OMPD debugger interface is available at https://
github.com/0OpenMPToolsInterface/0MPD-Technical-Report. This specification is being refined
based on experiences at LLNL and Rogue Wave as they develop prototype implementations of
OMPD support in the OpenMP runtime library and the OPMD shared library that is a debugger
plugin. Once the interface is suitably mature, it will be proposed for inclusion in OpenMP 5.0.

5.2 Open Source Software
5.2.1 HPCToolkit

Performance tools technologies developed as part of HPCToolkit at Rice University during the
course of the PIPER project are available from the HPCToolkit website (http://hpctoolkit.org)
and its Github repository (https://github.com/hpctoolkit).

11

5.2.2 OMPT Tools API in LLVM OpenMP

An initial draft of the OMPT performance tools interface, as described in OpenMP TR 2.} was
committed to the trunk implementation of the LLVM OpenMP runtime system, which is available
at http://openmp.llvm.org.

Refinements to the OMPT implementation not yet accepted into the upstream LLVM OpenMP
repository are maintained at https://github.com/0OpenMPToolsInterface/LLVM-openmp.

5.2.3 OMPT Test Suite for OpenMP

A prototype set of regression tests for the OMPT interface was developed and made available
at https://github.com/OpenMPToolsInterface/ompt-test-suite. Collaborators at RWTH
Aachen University improved our initial draft tests and released them as part of the OpenMP
test suite for LLVM, which available at as part of LLVM’s OpenMP implementation at http:
//openmp.1llvm.org.

5.3 Technical Communications
5.3.1 Presentations
e Milind Chabbi, Karthik Murthy, Mike Fagan, and John Mellor-Crummey. HPCToolkit: A
Tool for Performance Analysis on Heterogeneous Supercomputers. GPU Technology Confer-
ence, March 2013.

e Milind Chabbi, Karthik Murthy, Mike Fagan, and John Mellor-Crummey. Critically Missing
Pieces on Accelerators: A Performance Tools Perspective. SC '13: Birds of a Feather Session:
Critically Missing Pieces in Heterogeneous Accelerator Computing, Pavan Balaji (Organizer).
Supercomputing, 2013

e John Mellor-Crummey. Performance Analysis of MPI+OpenMP Programs on Scalable Par-
allel Systems. SIAM Conference on Parallel Processing. Portland, OR, February 19, 2014.

e John Mellor-Crummey. OpenMP Tools API (OMPT) and HPCToolkit. SC13 OpenMP
Birds-of-a-feather session, Denver, CO, November 19, 2013.

e John Mellor-Crummey. HPCToolkit: Sampling-based Performance Tools for Leadership
Computing, Argonne Training Program on Extreme-Scale Computing (ATPESC), August
2014.

e John Mellor-Crummey. Improving Performance Attribution for Optimized Code. Petascale
Tools Workshop, Madison Wisconsin, August, 2014.

e John Mellor-Crummey. Introduction to Correctness and Performance Tools for Parallel Pro-
gramming, SC14 Workshop: Experiencing HPC For Undergraduates: Introduction to HPC
Research, November, 2014.

e John Mellor-Crummey. Application Performance Analysis on Large-scale Parallel Computer
Systems BP, December 2014.

e John Mellor-Crummey. Performance analysis of MPI+OpenMP Programs with HPCToolkit.
Tutorial at the Rice Oil and Gas HPC Workshop, March 2015.

e John Mellor-Crummey. Performance analysis of MPI+OpenMP Programs with HPCToolkit.
HPC Summer Institute, Rice University, June 2015.

! Available as http://www.openmp.org/wp-content/uploads/ompt—tr2.pdf.

12

Laksono Adhianto, HSA Interface: What tool developers want. Heterogeneous System Ar-
chitecture (HSA) meeting, June 2015.

John Mellor-Crummey. Missing pieces in the OpenMP ecosystem. International Workshop
on OpenMP. Keynote Address. Aachen, Germany, October 2015.

John Mellor-Crummey. Performance analysis of MPI+OpenMP Programs with HPCToolkit.
Tutorial at the Rice Oil and Gas HPC Workshop, March 2016.

John Mellor-Crummey and Mark Krentel. Low-overhead Monitoring of Parallel Applications.
Mini-Symposium 10: Improving Performance, Throughput, and Efficiency of HPC Centers
through Full System Data Analytics. STAM Conference on Parallel Processing for Scientific
Computing. Paris, France. April 2016.

5.3.2 Publications
Journal Articles

Ashwin M. Aji, Lokendra S. Panwar, Feng Ji, Karthik Murthy, Milind Chabbi, Pavan Balaji,
Keith R. Bisset, James Dinan, Wu-chun Feng, John Mellor-Crummey, Xiaosong Ma, Rajeev
Thakur, ”MPI-ACC: Accelerator-Aware MPI for Scientific Applications”, IEEE Transactions
on Parallel & Distributed Systems, vol. 27, no. , pp. 1401-1414, May 2016, DOI: https:
//doi.org/10.1109/TPDS.2015.2446479

Conference Papers

Xu Liu and John Mellor-Crummey. A data-centric profiler for parallel programs. Proceedings
of the International Conference on High Performance Computing, Networking, Storage and
Analysis. (SC ’13). November 2013, Denver, CO, USA. IEEE. DOI: http://dx.doi.org/
10.1145/2503210.2503297

Alexandre Eichenberger, John Mellor-Crummey, Martin Schulz, Michael Wong, Nawal Copty,
Robert Dietrich, Xu Liu, Eugene Loh, Daniel Lorenz. OMPT: An OpenMP Tools Application
Programming Interface for Performance Analysis. In: Rendell A.P., Chapman B.M., Mller
M.S. (eds). OpenMP in the Era of Low Power Devices and Accelerators. IWOMP 2013.
Lecture Notes in Computer Science, vol 8122. Springer, Berlin, Heidelberg. DOI: https:
//doi.org/10.1007/978-3-642-40698-0_13.

Milind Chabbi, Karthik Murthy, Michael Fagan, John Mellor-Crummey. Effective sampling-
driven performance tools for GPU-accelerated supercomputers. Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage and Analysis.
(SC ’13). November 2013, Denver, CO, USA. IEEE. DOI: http://dx.doi.org/10.1145/
2503210.2503299.

X. Liu and J. Mellor-Crummey. Pinpointing data locality bottlenecks with low overhead.
In 2013 IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 183-193, April 2013, Austin, TX, USA. IEEE. DOI: http://dx.doi.org/
10.1109/ISPASS.2013.6557169.

Xu Liu, John Mellor-Crummey, and Michael Fagan. 2013. A new approach for performance
analysis of openMP programs. In Proceedings of the 27th international ACM conference on
International conference on supercomputing (ICS '13). ACM, New York, NY, USA, 69-80.
DOI: https://doi.org/10.1145/2464996.2465433.

13

e Ashwin Aji, Lokendra Panwar, Feng Ji, Milind Chabbi, Karthik Murthy, Pavan Balaji,
Keith R. Bisset, James Dinan, Wu-chun Feng, John Mellor-Crummey, Xiaosong Ma, and
Rajeev Thakur. 2013. On the efficacy of GPU-integrated MPI for scientific applica-
tions. In Proceedings of the 22nd international Symposium on High-performance Paral-
lel and Distributed Computing (HPDC ’13). ACM, New York, NY, USA, 191-202. DOLI:
http://dx.doi.org/10.1145/2462902.2462915.

e Xu Liu, Kamal Sharma, and John Mellor-Crummey. ArrayTool: a lightweight profiler to guide
array regrouping, Proceedings of the 23rd International Conference on Parallel Architectures
and Compilation, August 24-27, 2014, Edmonton, AB, Canada. DOI: https://doi.org/10.
1145/2628071.2628102.

e Milind Chabbi, Xu Liu, and John Mellor-Crummey. Call Paths for Pin Tools. In Proceedings
of Annual IEEE/ACM International Symposium on Code Generation and Optimization (CGO
'14). ACM, New York, NY, USA, Pages 76 , 11 pages. DOIL: http://dx.doi.org/10.1145/
2544137 .2544164.

e Xu Liu and John Mellor-Crummey. A tool to analyze the performance of multithreaded
programs on NUMA architectures. In Proceedings of the 19th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP ’14). ACM, New York, NY,
USA, 259-272. DOI: http://dx.doi.org/10.1145/2555243. 2555271.

e Milind Chabbi, Michael Fagan, and John Mellor-Crummey. 2015. High performance locks
for multi-level NUMA systems. In Proceedings of the 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP 2015). ACM, New York, NY, USA,
215-226. DOLI: https://doi.org/10.1145/2688500.2688503.

e Milind Chabbi, Wim Lavrijsen, Wibe de Jong, Koushik Sen, John Mellor-Crummey, and
Costin lancu. 2015. Barrier elision for production parallel programs. In Proceedings of
the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP 2015). ACM, New York, NY, USA, 109-119. DOI: https://doi.org/10.1145/
2688500.2688502.

e Milind Chabbi and John Mellor-Crummey. 2016. Contention-conscious, locality-preserving
locks. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’'16). ACM, New York, NY, USA, Article 22, 14 pages. DOI:
https://doi.org/10.1145/2851141.2851166.

e Sri Raj Paul, M Araya-Polo, J Mellor-Crummey, D Hohl. Performance Analysis and Op-
timization of a Hybrid Seismic Imaging Application. Procedia Computer Science 80, 8-18,
2016. DOI: https://doi.org/10.1016/j.procs.2016.05.293.

e Laksono Adhianto, Philip Taffet. Addressing Challenges in Visualizing Huge Call-Path
Traces. Proceedings of the 6th International Workshop on Parallel Software Tools and Tool
Infrastructures. (PSTI '16). ICPP Workshops. August 2016, Philadelphia, PA, USA. IEEE.
Pages 319-328. DOI: https://doi.org/10.1109/ICPPW.2016.53.

Theses

e Xu Liu. Performance Analysis of Program Executions on Modern Parallel Architectures.
Ph.D. Thesis, Department of Computer Science, Rice University, July 2014. http://hdl.
handle.net/1911/87790.

14

e Milind Chabbi. Software Support for Efficient Use of Modern Computer Architectures.
Ph.D. Thesis, Department of Computer Science, Rice University, August 2015. http:
//hdl.handle.net/1911/87730.

e Sri Raj Paul. Performance Analysis and Optimization of a Hybrid Seismic Imaging Applica-
tion. M.S. Thesis, Department of Computer Science, Rice University, February 2016.

5.3.3 Reports

e Alexandre Eichenberger, John Mellor-Crummey, Martin Schulz, Nawal Copty, Jim Cownie,
Robert Dietrich, Xu Liu, FEugene Loh, Daniel Lorenz, and other members of the OpenMP
Tools Working Group. OMPT: An OpenMP Tools Application Programming Interface for
Performance Analysis. OpenMP Technical Report 2. April 2014. Available as http://www.
openmp . org/wp-content/uploads/ompt-tr2.pdf.

e Alexandre Eichenberger, John Mellor-Crummey, Martin Schulz, Nawal Copty, John Del-
Signore, Robert Dietrich, Xu Liu, Eugene Loh, Daniel Lorenz, and other members of the
OpenMP Tools Working Group. OMPT and OMPD: OpenMP Tools Application Program-
ming Interfaces for Performance Analysis and Debugging OpenMP Technical Report. April
24, 2013. Available as http://www.openmp.org/wp-content/uploads/ompt-tr.pdf

5.3.4 Videos

e John Mellor-Crummey. Measuring and Attributing Performance of Applications
that Employ FEmerging Template-based Parallel Porgramming models. Video.
X-stack Meeting, April 2016. http://www.cs.rice.edu/~johnmc/x-stack/

piper-video-hpctoolkit-xstack-2016.mp4

e John Mellor-Crummey. Understanding the Performance Characteristics of PGAS Codes.
Video. X-stack Meeting, April 2016. http://www.cs.rice.edu/~johnmc/x-stack/
degas-hpctoolkit-xstack-2016.mp4

15

References

1]

[11]

[12]

Advanced Micro Devices. BIOS and Kernel Developers Guide (BKDG) for AMD Family 15h
Models 00h-OFh Processors, Jan. 2013. Available as http://developer.amd.com/wordpress/
media/2012/10/42301_15h_Mod_OOh-OFh_BKDG1.pdf.

M. Chabbi, K. Murthy, M. Fagan, and J. Mellor-Crummey. Critically missing pieces on acceler-
ators: A performance tools perspective. SC ’13: Birds of a Feather Session: Critically Missing
Pieces in Heterogeneous Accelerator Computing, Pavan Balaji (Organizer). Supercomputing,
2013. http://www.hpctoolkit.org/pubs/SC_2013_BOF_MilindChabbi.pdf. November 20,
2013.

J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Chrysos. ProfileMe: hardware
support for instruction-level profiling on out-of-order processors. In MICRO 30: Proceedings
of the 30th annual ACM/IEEE International Symposium on Microarchitecture, pages 292-302,
Washington, DC, USA, 1997. IEEE Computer Society.

IBM Corporation. Power ISA Version 2.07B. April 9, 2015.

Intel. Intel 64 and IA-32 Architectures Software Developers Man-
ual, 2016. Order Number: 253669-060US. Available as https:
//www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf.

D. Levinthal. Gooda PMU event analysis package. https://github.com/David-Levinthal/
gooda.

S. Matwankar. CUDA 7.5: Pinpoint performance problems with
instruction-level profiling. https://devblogs.nvidia.com/parallelforall/
cuda-7-5-pinpoint-performance-problems-instruction-level-profiling. September
8, 2015.

M. Srinivas, B. Sinharoy, R. J. Eickemeyer, R. Raghavan, S. Kunkel, T. Chen, W. Maron,
D. Flemming, A. Blanchard, P. Seshadri, J. W. Kellington, A. Mericas, A. E. Petruski, V. R.

Indukuru, and S. Reyes. IBM POWERY performance modeling, verification, and evaluation.
IBM Journal of Research and Development, 55(3):4:1-4:19, May 2011.

H. Subramoni, A. M. Augustine, M. Arnold, J. Perkins, X. Lu, K. Hamidouche, and D. K.
Panda. INAM?: InfiniBand Network Analysis and Monitoring with MPI, pages 300-320.
Springer International Publishing, Cham, 2016.

N. Tallent and J. Mellor-Crummey. Effective performance measurement and analysis of mul-
tithreaded applications. In Proceedings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPOPP), Raleigh, North Carolina, USA, February 20009.

N. Tallent, J. Mellor-Crummey, and A. Porterfield. Analyzing lock contention in multithreaded
applications. In PPoPP ’10: Proceedings of the 15th ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 269-280, New York, NY, USA, 2010. ACM.

M. Technologies. Unified Fabric Manager software product brief. http://wuw.mellanox.com/
related-docs/prod_management_software/PB_UFM_Software.pdf.

16

[13] A. Yasim. A top-down method for performance analysis and counters architecture. In IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS), pages
35—44, March 2014.

17

