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ABSTRACT

In this paper, we describe the GUIDE framework used to collect,
federate, and analyze log data from the Oak Ridge Leadership Com-
puting Facility (OLCF), and how we use that data to derive insights
into facility operations. We collect system logs and extract mon-
itoring data at every level of the various OLCF subsystems, and
have developed a suite of pre-processing tools to make the raw
data consumable. The cleansed logs are then ingested and federated
into a central, scalable data warehouse, Splunk, that offers storage,
indexing, querying, and visualization capabilities. We have further
developed and deployed a set of tools to analyze these multiple
disparate log streams in concert and derive operational insights. We
describe our experience from developing and deploying the GUIDE
infrastructure, and deriving valuable insights on the various sub-
systems, based on two years of operations in the production OLCF
environment.
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1 INTRODUCTION

The Oak Ridge Leadership Computing Facility (OLCF) hosts several
leadership-class systems such as the Titan machine (No. 4 machine
in the Top500 list) [3], the Lustre-based [27] Spider II parallel file
system [22] (PFS) (fastest in the world), the disk/tape-based HPSS
archival storage system [28] and several data analysis clusters. Each
one of these host complex subsystems that offer unique resources
to a national scientific, supercomputing user base. For example,
the compute subsystem of the Titan machine consists of 18,688
heterogeneous CPU/GPU compute nodes for a total of 560,000 CPU
and GPU cores and a peak performance of 17.59 petaflops. The
interconnect on Titan offers a high-speed, low-latency Gemini net-
work [14] configured in a 3D Torus topology. The Spider II PFS
offers 32 PB of usable capacity and more than 1 TB/s I/O through-
put, and stores around 1 billion files. Users from disparate science
domains routinely run massively parallel simulation jobs on these
systems to model complex physical phenomena and glean insights.
OLCF serves around 4 billion core hours every year to such jobs.
A key requirement for obtaining a nationally peer-reviewed sci-
entific project allocation on OLCF is that the jobs demonstrate a
“capability” metric that makes effective, concerted use of the afore-
mentioned leadership resources. For instance, a capability job can
be one that uses a majority of the 560,000 cores in a tightly-coupled,
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low-latency parallel simulation; or, a job that has stringent I/O needs
and stresses the storage subsystem in unique ways. In summary, the
OLCF caters to users’ unique, extreme-scale computational needs
that cannot be readily satisfied elsewhere.

To deploy and efficiently operate such a large scale center, we
need to answer numerous questions for both initial deployment
and continuous provisioning, optimize day-to-day operations by
identifying hotspots and performance bottlenecks, and tune both
the underlying system and the applications’ use of the same. How-
ever, to realize this goal, we need a robust and scalable log data
collection and monitoring infrastructure, the ability to not just ana-
lyze the log stream of any one subsystem in isolation, but to fuse
and correlate the disparate streams from multiple subsystems in
concert, and a suite of higher-level services and tools based on such
analytics. Note that this is much more than typical monitoring, e.g.,
with Nagios [2], that is maintained to inform system administrators
of system health, or project accounting information gathered for
reporting, e.g., usage by projects. Deeper insights into system usage
and user application/job behavior can only be unraveled through
the rich analytics of log data, which may involve higher-order tech-
niques such as statistical analysis, visual analytics, data mining,
and cross correlation.

In this paper, we present the design, implementation, deployment
and operational impact of GUIDE, the “Grand Unified Information
Directory Environment” for OLCF. GUIDE has been operational at
OLCF for more than two years. The GUIDE framework is based on
the following principles. (i) Data Extraction and Logs Collection: We
advocate the collection of logs, as well as the extraction of data at
each and every level of the various OLCF subsystems. For example,
at the storage subsystem, we extract data from the disk layer (the
2,016 OSTs, encompassing the 20,160 disks), the redundant RAID
controllers (72), the OSSes (288), and the Lustre PFS level. Often
times, this requires the development of custom tools to extract the
data, and not just aggregating logs that may have already been col-
lected, e.g., scheduler or RAS logs. We describe the development of
several such tools within the GUIDE framework. (ii) Pre-processing:
Whether it is extracted data or collected logs, there is the need
to pre-process them by way of procedures such as data cleansing,
statistical analysis or categorization, before they can be federated
and analyzed further. We have developed several techniques to
accomplish this for the various data/log streams. (iii) Federation:
The data/logs need to be federated in a scalable repository that
supports efficient indexing, querying, and visualization. To this end,
we describe our use of the commercial data warehouse, Splunk [25].
(iv) Post-processing: We have developed a suite of analytics and
post-processing techniques that we apply not just on single data
streams, but on a combination of data sources. These techniques
include cross-correlation, auto-correlation, visual analytics, alerts,
sliding-window analysis, and mining. For example, analyzing a sin-
gle data source such as I/O bandwidth from the storage controllers
might enable the understanding of read/write ratios of the storage
system, I/O hotspots, and the like, which is very valuable for both
current operations and future provisioning. However, using it in
concert with the Titan reliability data, obtained by processing the
RAS logs, can provide more proactive guidance to applications on
their checkpoint frequency. We have developed tools in this fashion,
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layering them atop the federated logs/data in the GUIDE frame-
work, and highlighting a key strength of GUIDE, the concerted
use of multiple data sources. (v) Operational Impact: Finally, by
applying the pre-processing and post-processing analytics on the
data/logs, we derive numerous insights into the operations of the
OLCF HPC facility, in a variety of areas such as storage, scheduling,
RAS, archive and interconnects. We describe our experience with
GUIDE, based on two years of operations within the OLCF.

Job Scheduler -
SMW Mgmt. Server |mmsp
1/0 Routers

Clusters for development and analytics TITAN

- Everest Visualization Cluster

- Rhea Data Analysis Cluster 1éoggg ;(Kg)

- EOS Cray XC30 , odes

SION (Scalable 1/0 Network) - FDR InfiniBand

Disk Cache
Subsystem

Tape
Subsystem

HPSS

Archival
Storage Atlas 1 Atlas 2
System Spider File System

== Syslog streams

B Data/metrics collected using custom tools

Figure 1: OLCF System Architecture

2 OLCF SUBSYSTEMS

Figure 1 presents an overview of the OLCF’s HPC resource fabric.

Compute subsystem: The Titan supercomputer, a 17.59 petaflops
Cray XK7 system, is OLCF’s primary compute platform, and con-
sists of 18,688 compute nodes. Each compute node consists of a
16-core AMD Opteron CPU with 32 GB of memory and an NVIDIA
K20X GPU (Kepler G110 processor) with 6 GB of memory.

Interconnection and Scheduling subsystem: Titan’s compute nodes
are connected via a high-performance Gemini interconnection net-
work, which is a 3D torus with XYZ dimensions of 25x16x24. The
high-dimensionality in 3D torus networks means that they are
composed of many small routing devices, making several routing
decisions feasible, but also introducing several hops. The OLCF
runs around 500 jobs every day on Titan (~182,000 jobs/yr), atop
this infrastructure. The jobs are scheduled using the Application
Level Placement Scheduler (ALPS) and the MOAB scheduler. ALPS
is responsible for enumerating all of the nodes within the system
and creating a network-aware ordered list. MOAB handles both job
scheduling and resource allocation. Scheduled jobs are provided
resources in order from the list created by ALPS.

Storage subsystem: To support the I/O and storage needs of the
jobs running on Titan and other analysis clusters (26,000 compute
nodes in aggregate), the OLCF supports the Spider I scratch storage
system, a Lustre-based PFS with 32 PB of usable storage and a peak
aggregate bandwidth of over 1 TB/s. Spider II is connected to all
OLCF resources via an InfiniBand FDR network (the Scalable I/O
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Network (SION)). Spider II is available as two namespaces, AtlasI
and Atlas2, built on identical and non-overlapping hardware. Access
to each namespace is via 144 Object Storage Servers (OSS) (288 in
all), each with 7 Object Storage Targets (OST) for a total of 1,008
OSTs (2,016 in all). Each OST is a tier of 10 2TB NL-SAS HDDs, and
all of the disk tiers are managed by 36 DDN SFA12KX redundant
(RAID) I/O controller pairs. Spider caters to the short-term I/O
needs of user jobs, and files therein are purged based on a two-
week access policy. OLCF currently has over 1 billion file system
objects stored on Spider IL

For users’ long-term storage needs, OLCF provides the HPSS
disk/tape-based archival storage. The HPSS installation has 60 PB
of data storage across 65 million files archived over the past two
decades.

3 OVERVIEW

The overarching goal of the GUIDE framework is to provide an
infrastructure for the scalable collection, federation and analytics
of logs and monitoring data, to optimize OLCF operations. We are
interested in optimizing the runtime performance, I/O throughput,
and reliability of applications as they run on the OLCF subsys-
tems, tuning the operations of the subsystems themselves for better
utilization, and guiding the future provisioning of the various re-
sources. Figure 2 presents an overview of the GUIDE framework.

Fabric: At the lowest level is the OLCF’s fabric, comprising of
the various subsystems described earlier, e.g., compute node, inter-
connection network, scheduling and storage.

Logs and Data Collection: To optimize both user applications
and the subsystems, there is the need for a wealth of monitoring
information on the subsystems’ operations and how applications
are using them. We advocate the collection of logs and the extraction
of monitoring data at every level of the OLCF subsystem of interest.
Note that there is a distinction between accessing logs that are
already being collected by the system (e.g., RAS logs from the
compute nodes via syslog streams, Lustre jobstats, internal HPSS
operations logs, MOAB logs) and monitoring data that needs to
be explicitly extracted using specialized tools (e.g., interconnect
congestion data, I/O data from several storage layers). In GUIDE,
we address both logs collection and data extraction by developing
scalable, lightweight and non-invasive tools where appropriate
for the OLCEF fabric. Further, our collection tools need to consider
the potentially large data sizes, and further determine an optimal
frequency. For an extreme-scale environment like OLCF, there is
often a dearth of such metadata about subsystem operations at this
level of detail, and a lack of scalable monitoring tools, which we
have developed.

Pre-processing: Both system logs and extracted monitoring data
from our tools, need to be pre-processed before use. Raw data may
often be incorrectly formatted, missing certain details, too much in
volume and therefore require statistical summarization, or require
qualitative analysis, before they can be federated or used in any
fashion. We have developed and deployed a suite of tools in GUIDE,
in areas like data cleansing to cleanup the collected logs and data,
a set of statistical analysis for better data representation of the
voluminous log data, and several qualitative categorization and
heuristics-based approximation. It is worth noting that since the
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OLCF logs represent disparate subsystems, not all of the above
techniques will be applicable for each data stream, and relevant
techniques need to be applied carefully after studying the logs.
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Figure 2: GUIDE architecture.

Federation: A key piece that was missing in over a decade of
OLCEF operations is the federation of the logs into a central, scal-
able data warehouse that offered storage, indexing, querying and
visualization services. To begin with, as we stated earlier, not all
data was collected, and those collected were stored and analyzed us-
ing custom approaches—often because different operational teams
controlled the various subsystems—without any common federa-
tion services that an operational intelligence tool could provide.
In GUIDE, we have attempted to address this key drawback, and
offer the ability to federate and index all of the collected logs within
a central Splunk [25] data warehouse for the entire facility. This
provides several desired features like uniform ways and formats to
ingest data, the ability to index log data for fast and efficient lookup,
the ability to query time-series data, and to process multiple data
streams in concert.

Analytics: We envision applying a suite of analytics to derive
key operational insights. We have developed and deployed tech-
niques ranging from auto and cross-correlation, visual analytics,
data mining and sliding-window based analysis, operating on sev-
eral data streams together. Further, we have developed higher-level
tools based on these techniques. Our analytics optimizes applica-
tion performance and subsystem operations, identifies and resolves
performance bottlenecks, improves I/O and reliability through the
concerted analysis of multiple logs, improves utilization, and guides
the provisioning of future systems.

4 LOGS AND PRE-PROCESSING

Logs collection and cleansing are the first step towards a federated
information directory service. It is also particularly challenging due
to the scale and diversity of the distributed data sources. In this
section, we will first present an overview of the pre-processing and
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statistical techniques, and the log data categorization. Then, we
present the log extraction process from the OLCF subsystems.

4.1 Pre-processing Techniques for the Logs

The pre-processing techniques we have developed for the logs can
be broadly classified into (i) Data Cleansing, (ii) Statistical Analysis,
and (iii) Categorization such as Heuristics extraction and binning.

4.1.1 Data Cleansing. In most cases, log data from different
sources cannot be directly used to perform meaningful data analysis,
either due to missing pieces, and/or incorrectly formatted data.
Therefore, a prerequisite to every data analysis and fusion task is
to perform data cleansing. This involves identifying missing pieces,
data with incorrect formatting, and ensuring the integrity of data.
These steps are performed by domain experts for each stream of data
(i.e., storage, archival data, scheduling, job resource consumption,
RAS).

Identifying incorrectly formatted data is relatively easier. We
have developed a data stream specific schema that the events in the
data stream should adhere too. The schema is passed to a processing
engine that detects incorrectly formatted data events in the data
stream, which are discarded from analysis. The next step is identi-
fying missing data pieces. For this step, we have used the rate of
change in the event-rate as an anomaly detector. If the rate of events
becomes zero, it indicates missing data. However, determining the
period over which this rate should be calculated is dependent on
the type of stream. For example, storage logs can have bandwidth
values every few minutes. But, RAS events can be relatively more
sparse and hence, half an hour is a more appropriate window. Fi-
nally, we check the integrity of the data using domain knowledge
to ensure that there are no events with bogus values or unknown
event types.

There is no "single-style-fits-all" approach for these steps across
different data streams, but there are shared commonalities that
were used to make the process more efficient. For example, RAS log
analysis can indicate which jobs were impacted by system failures
at what time, and this can be used to identify jobs in the job resource
consumption log, which should be checked more carefully since
failures may have impacted the reporting daemon.

4.1.2  Statistical Analysis. Tt is rarely the case that the entire
raw form of data representation will be of interest. Sometimes, it is
almost impossible to expose them all due to the sheer volume. It
is therefore a common practice to aggregate logs using a host of
statistical techniques. In addition to the usual descriptive statistical
measures such as min, max, average, sum, percentile, standard devi-
ation, PDF, and CDF, GUIDE also employs the following techniques
in various cases: (i) Histogram: This is one of the most effective
methods for aggregating a large amount of data. It essentially ap-
proximates a probabilistic density function with either streaming
data or batch data. The choice of binning width is an important
consideration, but it is also rather context specific and subject to
tuning for optimal results. (ii) top N: An often requested measure-
ment that is applicable to both streaming and batch data, e.g., top
100 files that are taking up the disk space; top 10 applications that
are issuing most I/O requests, etc.

Sudharshan Vazhkudai et al.

4.1.3  Categorization. Often times, log data can be too verbose or
require computationally expensive techniques to extract meaning.
In these cases, techniques such as heuristic extraction and binning
can be applied to reduce the log information that is stored in order
to enable quick understanding and recall for further analytics.

Heuristics: Heuristic functions may be used to create represen-
tative metrics that trade-off completeness or accuracy to improve
the performance or storage cost of meaningful system state. For
example, for scheduling data we use a heuristic known as Average
Hop Count as a representative measure of job-node allocation. This
metric is calculated during pre-processing and stored with the log
data due to the high cost of calculation.

Binning: While value based binning is used in the generation of
histograms, another type of binning can be used to classify a level
of event and track frequencies of such occurrences. An example
of this is binning incoming job entries based on the quality of
their allocation over the network. A highly fragmented job will be
exposed to more network impacts than a highly compact job.

Events classification: There is also the need to understand various
events from the logs as they are often cryptic; correlated events
are often logged differently. We have performed a categorization
by developing an understanding of the “well-known events,” per-
formed root-cause analysis and correlated them. For example, RAS
logs have numerous failure events that need to be understood and
classified properly, before they can be analyzed.

4.2 Logs Extraction

Despite the diverse source and format of the logs, there is a common
thread of questions and design issues we address in every case:
What are the different levels of the subsystems at which logs can
be collected? Are the logs already in place or do they need to
be extracted? What is the format and size of the log data? How
frequently do we need to collect to make meaningful inferences? Is
there any pre-processing needed before federating the logs? Where
should the logs be persisted? Are there any interferences that can
cause negative operational impact? In the following section, we
explain how we extracted logs from the PFS, compute node RAS,
interconnection network, the scheduling system and the archive,
and address the common concerns and differences.

4.2.1 PFS and Backend Storage. As described in Section 2, the
Spider storage system consists of two subsystems: a distributed
backend storage system composed of 36 DataDirect Networks
(DDN) 12KX redundant RAID controller pairs with 20,160 disks,
and a Lustre PFS deployed on 288 I/O servers, abstracting and pro-
jecting the RAID 6 redundancy groups organized by the DDN RAID
controllers. We extract logs and data at both levels.

At the storage controller level, we have developed a python-
based tool [20] to interface with the DDN controller API, which
polls the controllers at regular intervals. Since the controllers are all
independent, the synchronization of this polling effort is important.
At every interval, we extract from each controller a number of
performance metrics, such as I/O request sizes, write and read
bandwidth and IOPs. We also extract the status of each LUN, such
as whether a disk has failed or whether the LUN is rebuilding its
RAID parity data. The extraction tool stores this data in an in-
memory mySQL database. At each poll interval, the old data is
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overwritten with the new data in the in-memory database. This
database is queried at regular intervals to federate the data.

At the Lustre PFS level, the I/O servers are polled and various
data streams are collected at regular intervals. The file system
data is primarily obtained from Lustre job_stats and brw_stats.
The Lustre job_stats statistics is collected from each OST (e.g.,
obdfilter”.job_stats) and MDT (mdt*.job_stats), individually. The
Lustre job_stats allows each Lustre client to tag its RPCs with a
scheduler defined PBS job id. Since Titan only allows a single job
to be run on the compute node at any given time, this in turn
allows us to identify each Lustre RPC per compute job at each OST
independently. In the end, by using the Lustre job_stats, we are able
to collect per job and per OST statistics, including write and read
bandwidth, I/O size, and number of metadata operations for each
polling interval. The brw_stats is lower in terms of the Lustre I/O
stack, compared to the job_stats, and reports statistics reflecting the
I/O operations issued by Lustre to the DDN storage subsystem. This
data is, again, collected on a per OST basis, and includes detailed
information on write and read I/O operations.

We have also developed a tool, fprof, to perform a parallel tree
walk of the entire file system (~ 1 billion file entries). The light-
weight, yet scalable, profiling tool can provide us information such
as the number of files and file size distribution (histograms), mean
file size, maximum number of files within a single shared direc-
tory, the top N largest files in the system and more. The tool is
executed manually on a bi-weekly basis, and the profiling results
are federated.

Lastly, we also run ‘Is’ commands from a number of servers every
five minutes and store in Splunk the time required for the command
to complete. This sounds (and is) rather simple, but it turns out to
be a rather effective measure of the interactive responsiveness of
the PES at various end points of the overall OLCF infrastructure.

4.2.2 Compute Node RAS. RAS data and console logs are pushed
from Titan’s compute nodes by the vendor, Cray, to a server where
they are processed to extract events of interest. Specifically, this
processing uses simple event correlators (SEC) on software manage-
ment workstations (SMW) to log critical system events. The SEC
identifies all RAS events of interest. The rules are regularly updated
to accommodate the addition of new components and events. This
is a comprehensive log of critical system events that also alerts the
system operators of abnormal behavior.

In this work, we focus on CPU, GPU and memory related failure
events, which may be caused by hardware or radiation-induced bit
corruptions, single and double bit errors, off-the-bus, and ECC page
retirement. We also need to know where in the memory the errors
occur (e.g., L1/L2 cache, register file or device memory). First, we
have to develop an understanding of all event types. Log events are
often cryptic and need domain expertise to understand the meaning
of such events. Second, there are multiple event types which are
correlated, but the description does not indicate the same. We have
performed correlation analysis to extract similar events and perform
analysis on them. Finally, we perform root-cause analysis on these
events. We use this framework to catch trends and display the
results of the root-cause analysis.

4.2.3 Scheduler. Titan resource management is handled by Adap-
tive Computing’s MOAB software. MOAB logs several metrics that
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are used to measure the efficacy of scheduling policies in producing
desirable outcomes. For instance, on Titan, we track a measure
of job fragmentation calculated by the average Gemini distance
between every node in the job.

Log collection of scheduling data is a two-phase approach. The
first phase acquires the daily log generated by MOAB and applies
data filters. These data filters are important in reducing the amount
of redundant data. For example, a full-system-scale job on Titan
will create a single record in MOAB’s logs that contains ~4MB
of information. A single job will have four records related to the
job, indicating submission, dispatch, start, and completion times.
However, the job completion record contains all of the relevant
information of the previous records. By filtering solely for job com-
pletion records and reducing the cost of node encoding, we can
reduce the data cost of the entry from 4MB to 64K.

The second phase of data collection is augmenting the entry
with relevant statistics. The goal of pre-calculating statistics for
the entry reduces the cost of data analysis later. For scheduling
data, we calculate several expensive graph heuristics based on the
compute nodes a job receives. As mentioned previously, average
Gemini interconnect distance is a measure of the XYZ dimension
ordered routing, the number of hops between all nodes within the
job allocation. This value is averaged, and provides a good measure
of a job’s density on the 3D torus network. Another important
measure to pre-calculate is the dimensional boundary of the job.
Since Titan’s network is anisotropic, it is important to understand
the impacts to a job due to asymmetric bandwidth.

4.2.4  Interconnection Network. We use the Gemini interconnect
data to get insights into network performance for the PFS. However,
since there are no vendor supplied mechanisms that log network
traffic on Titan, we created the I/O Router Congestion Daemon
(IORCD) [30] that uses network performance counters to track I/O
bandwidth moving through routers within the Gemini network.

High fidelity measurement of the Cray XK7 Gemini network
is a complex task. The network, a 3D torus, contains 9,600 Gem-
ini routers connected to couplets of compute nodes. Each router
contains performance counters that can be used to determine the
magnitude and directionality of traffic. However, accessing these
counters is expensive.

In order to make the IORCD collect data, we integrated the
sampling with the Gemini-Performance Counter Daemon (GPCD).
GPCD effectively employs a kernel module that enables the sam-
pling of both Gemini Router and Gemini network interface card
(NIC) performance counters through an IOCTL to the kernel. This
mechanism allows us to get back a per-tile set of counters related to
network performance. Each Gemini router is composed of 48 tiles,
and each tile provides 6 performance counters for the link associ-
ated with the tile. For our effort, we were mostly interested in the
tile which corresponded to host-side transfers. On Gemini routers
there are eight links associated with two hosts; with messaging
overhead, we see roughly 5.8 GB/s of bandwidth to each host. These
links are used by IORCD to establish a measure of congestion of
traffic flowing into and out of the I/O Router. Through analysis we
found that the congestion counters strongly correlated to read and
write bandwidth to the PFS from Titan.
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Deployment of IORCD required careful evaluation to make col-
lection and logging transparent. IORCD uses a sampling interval
of five seconds for data collection, and this data is collated in mem-
ory and pushed for federation at configurable intervals to avoid
generating too much network noise.

4.2.5 Archival Storage. The daily statistics for the HPSS archival
storage system are retrieved from the HPSS core server process
once per day. A python script is used to execute a command to
query the core server via the HPSS hpssadm client utility. The
hpssadm command used to query the HPSS core server is: server
info -specific -name "Core Server'. The output from the
above command is then formatted into a single syslog record con-
taining key-value pairs for (among other things) the number of
files, directories, bytes on disk/tape, and free disk/tape bytes. The
syslog record is less than 500 bytes in length.

The HPSS DB2 database maintains file metadata, which has a
wealth of other information. In addition to the above daily statistics,
our script queries the HPSS NS_OBJECT and BITFILE DB2 tables
once a month to generate the File and Byte Count histograms
displayed in GUIDE. The DB2 query is quite complex, but the results
are written to a single syslog record containing a snapshot of the
file and byte counts by File Size, File Age, Most Recent Access Time,
and Time Between Most Recent Access and File Creation.

5 DATA FEDERATION

Having identified and preprocessed the log/data streams across the
OLCF infrastructure, the next step is to federate the data to gain
operational insights across systems. GUIDE’s federated data store
needed to serve two purposes. First, it must be able to ingest, store,
index and process data in real-time from a wide variety of data
sources. Second, we needed a well defined interface for querying,
analyzing time-series data, creating graphs, generating reports and
showing custom dashboards for visualization. We chose a com-
mercial software package called Splunk [25] for federating all our
system log and data streams. Splunk is a well-known package for
business intelligence and data mining. We did consider and evalu-
ate other platforms and tools such as the ELK stack (ElasticSearch,
LogStash & Kibana) [8] as well as a combination of InfluxDB [18]
and Grafana [19]. At the time of our evaluation, these tools were
not deemed mature enough for operational purposes, and some of
the required features were still in development. While Splunk was
not specifically designed for HPC purposes, it is a commercially
marketed enterprise software package that has several advantages,
including being a single integrated package. Further, Splunk was
already being used at OLCF for security monitoring, which also
influenced our choice, as it was already deployed and available.

On the downside, to some extent the choice of Splunk dictated
what sort of pre-processing was needed. Splunk is primarily built
to process system data and expects data to be broken up into dis-
crete, time-stamped events such as syslog messages or web server
access logs. Additionally, if Splunk views anything in the text that
looks like a key/value pair, it automatically creates a queryable
variable from the key and assigns the value to it. The various pre-
processing utilities therefore had to format their output into text
events containing key/value pairs. In some cases, this required us
to significantly reformat the raw data.
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Splunk can ingest data in a number of ways. The first and sim-
plest method is to just point Splunk at a text file. This works per-
fectly for syslog or web server logs, and Splunk can recognize when
the file is appended and only ingest the new data. Splunk is also
capable of recognizing when a log file has been rotated (i.e., the log
file was closed and renamed and then a new file with the original
name created) and automatically pick up the new data. A second
method that Splunk supports well is database integration. We can
configure Splunk to periodically execute user-supplied queries as
well as scan entire tables. Finally, Splunk has a well-defined REST
API, which means data can be sent directly to the Splunk server. For
GUIDE, the vast majority of the data was ingested from log streams
as text files. We also used the database integration to gather the
output from the I/O controllers. (See section 4.2.1.)

6 OPERATIONAL IMPACT VIA ANALYTICS

We highlight the operational impact that we have realized for the
OLCF subsystems by applying a suite of analytics on the federated
log data in Splunk. The analysis allowed us to gain much needed
insights into the OLCF subsystem operations, and resulted in im-
proved performance, capacity utilization, efficiency and planning.

6.1 Overview of Analytics Techniques

We have applied the following techniques to derive insights. Specific
details on how we used these approaches for operational value are
covered in the subsequent sections.

Cross-correlation between streams: Cross-correlation refers to the
process of combining multiple streams of data in such a way that
we can correlate events and perform meaningful analysis across
different data formats and data streams. For example, we use storage
bandwidth, RAS and job scheduling information to identify optimal
checkpointing frequency.

Auto-correlation: Auto-correlation is a technique used to extract
the periodicity of delay between signals. This technique is partic-
ularly useful for filtering noise from network and I/O time-series
data and identifying repeatable patterns. Regular periodic signals
can be used for identifying application signatures or things such as
identifying the periodicity of I/O in application checkpointing.

Visual Analytics: A visual representation of the log streams can
provide a very valuable perspective by quickly identifying hotspots.
As noted in section 5, one of the reasons we have built the GUIDE
framework atop Splunk was its built-in visualization system. Us-
ing Splunk, we have created several different “dashboards,” com-
prising of visualizations viewable via any web browser. In these
dashboards, we have presented line and bar charts of time-series
data, histograms for distribution data, and pie and scatter plots
for various other data. Further, using external packages, we have
created custom visualizations that Splunk cannot handle.

Sliding-Window Analysis: The log and data streams being pro-
cessed via the GUIDE framework are discrete events with a times-
tamp. Interpreting these time-series events requires segmenting the
data into periods or windows of significance. For example, analyz-
ing job specific information requires viewing the log or aggregating
performance statistics for the runtime of the job. Also, monitoring
real-time usage of the file system requires aggregating statistics
over intervals varying from a few minutes to several hours. Finally,
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root cause analysis of RAS log errors requires the interpretations of
log data in appropriate time windows. Thus, most of the tools and
analysis done using GUIDE employed a sliding window approach
to segment time series data for meaningful insights.

Mining: Finally, we have also used well-known supervised learn-
ing models, e.g., Random Forest [5] and Support Vector Machines [26]
to evaluate different facets of data streams, e.g., topological impact
of node-allocation data on job performance.

6.2 Storage System Use cases

GUIDE has been useful in both optimizing current Spider II opera-
tions (6.2.1, 6.2.2, and 6.2.3), as well as in provisioning the future
250 PB Spider III file system that will be deployed in 2017. (6.2.4
and 6.2.5).

6.2.1 PFS Responsiveness. The perceived responsiveness of a
PFS is mostly a direct function of the metadata server performance.
If the MDS has hung processes or is overloaded, the users will
first notice that routine interactions, e.g., “Is,” will take longer to
complete. We use the “Is” monitoring data (Section 4.2.1) in Splunk
to provide system administrators alerts so they can quickly identify
problems and take corrective measures. In addition, the Is data and
the data from the RAID groups (e.g., degraded, rebuilding, offline)
are combined to make available to users a set of “status lights” that
show the health of the PFS (green if normal, yellow if reduced
performance, and red if PFS is offline) on the OLCF web site.

6.2.2  On-the-fly PFS Namespace Selection Tool. GUIDE dash-
boards provide insights into PFS trends and bottlenecks. One such
bottleneck was load imbalance between the PFS namespaces (i.e., At-
las1, Atlas2) due to the static assignment of projects to namespaces.
This led us to the development of a file system partition selection
tool (FS-Select) for users to query, at runtime, the namespace to
use based on the average workload in the last one, two and four
hour windows. FS-Select identifies the lightly loaded namespace
by querying Splunk periodically for the I/O controller data, and
calculating a sliding window average of the PFS workload in the
last few hours. When a user job is scheduled to run, it queries the
service for the namespace, and uses it for its I/O. The tool was par-
ticularly aimed at checkpoint workloads that were less concerned
about data being distributed across the namespaces.

6.2.3  Visual Analytics of Storage Backend and PFS. As stated
in section 6.1, we make use of a variety of Splunk’s built-in visu-
alization capabilities. The most useful has been a simple plot of
Lustre OST usage over time: when a user complains of poor I/O
performance, we can check this graph and see how many OSTs
were actually in use at the time. If it is significantly less than 100%
(1,008 per namespace) of them, then the solution is usually to ask
the user to change the application code to use more. Figure 3 shows
an example from March 30, 2017. The top chart shows the band-
width and IOPs over time while the bottom chart shows the number
of OSTs in use at any given time. These charts led to one of the
key successes of GUIDE after it went into production in 2015. The
XGC plasma simulation on Titan was using the entire machine.
Since the job was the only one running on Titan at the time, its
I/O patterns were easy to spot in the data from the disk controllers
(Section 4.2.1). This block I/O data showed that the application was
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getting a write throughput of 150 GB/s. It also showed that the
application was only writing to about 75% of the Lustre OSTs. We
were able to debug the user’s I/O configuration to use all the OSTs,
which resulted in a 15% improvement in I/O performance. Without
the OST usage data, improving the application’s I/O performance
would have likely involved several iterations of what would have
amounted to educated guesses about the root cause of the problem.
This, of course, would have consumed an enormous amount of
core-hours on Titan.

Another useful and rather enlightening set of plots has been
histograms showing file size distributions on both the Atlas 1 &
2 namespaces of Spider II (Figure 4). This visualization was par-
ticularly useful recently when it was noticed that the Atlas 1 file
system was running low on inodes, but had plenty of free space.
A quick glance at the plots showed that there were ~ 260 million
files less than 4KB in size. In total, these files were not occupying a
significant amount of space, but they did each use up an inode.

6.2.4  1I/0 Block Sizes and Space Efficiency. For the upcoming
200 petaflop Summit system in 2018 at the OLCF, the Spider III
PFS will be based on IBM’s Spectrum Scale technology. Currently,
Spider II's Lustre PFS delegates the block management on disk
redundancy groups to a native Linux local file system, such as
ext4 or ldiskfs, which uses 4KB as the file system block size. Block
sizes in Spectrum Scale are a tuneable parameter, and Spider III
will be configured with a much larger file system block size (i.e.
16MB or 32MB). These larger block sizes could potentially result in
significantly under-utilizing the disk space.

To better evaluate the wasted disk capacity vs. disk block sizes,
we used the GUIDE framework. The input data stream was provided
by our in-house developed, lightweight PFS profiling tool, fprof.
We collected and aggregated each file and its size on the Spider II
PFS. Assuming the file size and distribution pattern will not change
drastically between systems, we were then able to predict disk space
utilization efficiency under different file system block sizes even
without the actual system in place. GUIDE allowed us to make these
estimations easily and provided invaluable information into the
design of Spider III.

6.2.5 Understanding I/O Size and Access Patterns. Analyzing the
RAID I/O controller statistics data (i.e., bandwidth, IOPS, and re-
quest size distribution) can provide a deep understanding of current
system behavior, which can not only help tune current operations,
but help with future PFS provisioning. For example, Figure 5 shows
the I/O read vs. write percentage observed on Spider II [16]. The
percentage is based on the volume of data read or written. In sum-
mary, almost 70% of the workload on Spider II is from writes in
comparison to 60% write in Spider I. This suggests that moving for-
ward as the compute platform scales, users will tend to checkpoint
more often, increasing the write workload on the storage system.

Figure 6 shows the I/O request size distribution on Spider II,
wherein we employed statistical analysis techniques such as CDF
and PDF on the I/O controller data. We can see that only 25% of the
writes are 1MB requests, while over 60% of the writes are 4KB or
less, which was not expected. On the other hand over 50% of the
reads are 1MB, and only 20% of reads are 4KB or less. This analysis
provided a valuable perspective on the size of the workloads and
also in designing the next-generation Spider III PFS.
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tions often blindly checkpoint at regular intervals, e.g., 1 hr, without
any consideration to the machine MTBF or the I/O rate, and conse-
quently incur excessive I/O overhead and time away from useful
computation. We have developed a checkpoint advisory tool that
can suggest to applications an optimal checkpoint frequency by
fusing both the RAS and storage bandwidth data in GUIDE. Key
factors in determining an optimal checkpointing interval include
the failure inter arrival times (computed using the RAS logs) and
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the time-to-write one checkpoint (derived from the storage logs
using I/O periodicity analysis). The tool also takes the “job size” into
account to accurately estimate the probability of a failure occurring
for the given job [11].

As an example, the tool was instrumental in improving large-
scale runs of the fusion application XGC. The XGC runs used over
16,000 nodes for multiple >12 hour runs, and had conservatively
set the checkpointing interval to be one hour. Each checkpoint is
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approximately 4TB in size, amounting to 96 TB of data for a 24-
hour run. Our checkpoint advisory tool suggested that the optimal
interval may be closer to 2 hours, which immediately reduced
the checkpoint overhead by 50%. This effort resulted in multiple
benefits. First, the amount of space required to store this data was
reduced by 50% (which is close to 50TB for one single run). Second,
the overall stress on the PFS became significantly less, avoiding
performance degradation for other jobs. Third, this also enabled
precious core hours to be utilized for computation instead of waiting
on I/O operations (490,000 core hours per 24-hour run).

6.3.2 RAS Analytics. A key impact of GUIDE has been RAS
analytics, which includes observing failure trends, identifying im-
pacted jobs, users and faulty nodes, and quantifying SBEs, DBEs
and off-the-bus errors on Titan’s 18,688 CPUs/GPUs [10, 12, 13, 21].
Fig. 7 shows a partial RAS dashboard of these trends, depicting the
progression of DBEs and off-the-bus errors on the GPUs, which
cause a node failure. The graphs show how the GPU errors have
grown during the lifetime of Titan from just a few per month to
several per day. After a successful replacement of subsets (a few
thousand) of the GPUs, it can be seen that the errors are beginning
to subside. Such RAS analytics has also enabled us to identify nodes
with more errors, and proactively replace those GPU cards. Fur-
ther, we were able to identify that the node failure trends follow a
Weibull distribution, i.e., failures have a temporal locality, which
can also be used to guide checkpointing in interesting dynamic
ways (e.g., checkpoint frequently after an error, but more lazily
during stable period) [11]. With respect to SBEs, we found that 98%
of them occur on the L2 cache on the GPU, a feedback that was
provided to the vendor. Finally, we have binned the failure-affected
jobs by their node-size, which helped us to understand that large
jobs were more impacted (e.g., over 3,000 nodes).

6.4 Scheduling Use cases

Scheduling data (Section 4.2.3) from GUIDE has impacted opera-
tions measurably [29]. Using insights from data mining and visual-
ization, it became apparent that the resource manager on Titan can
be tweaked to better suit our workload.

Analysis of scheduling started with 3D visualizations, as shown
in Figure 8, that were based on mapping job allocations from MOAB
data into Titan’s 3D torus network. From this visual representation
we were able to quickly identify several gaps in layout that were
occurring as a part of a generalized resource allocation mechanism.
The importance of 3D visualization here cannot be understated.
The raw logs contained all of the data to indicate that jobs were
becoming highly fragmented or that jobs were being placed heavily
in a low bandwidth dimension. Unfortunately, these events are often
only noticed when searched for specifically. However, mapping this
data visually as a real 3D representation makes these events easier
to interpret.

The visual analytics lead to a study of the impact of fragmenta-
tion on application performance. In this study we determined that
many applications are negatively impacted from fragmented job
allocations. We used data mining techniques such as Random forest
and Support vector machines to search the various attributes of
a job-allocation on Titan and determine their correlation to per-
formance impact. A result of this was the use of a new metric for
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tracking jobs within the OLCF called Average Hop Count. Average
Hop Count is a heuristic that can be calculated with knowledge of
a job’s node locations within the 3D torus and this value highly
correlates with performance of jobs exhibiting high dependencies
upon network performance.

Ultimately, through analysis of scheduling policies and simula-
tion, we identified that the main cause of this fragmentation was
based on a scheduling policy that is used to keep utilization of
Titan at high levels. This scheduling was based on a first-come first-
serve (FCFS) node allocation mechanism that would select the first
available nodes for job allocation. Unable to directly fix this policy
without impacting important OLCF metrics, we ultimately settled
on a strategy that still utilizes this scheduling policy but applies
FCFS from two ends of the system node list based on requested job
size. This change led to reduced average hop counts for our most
common large job sizes.

6.5 Interconnection Use cases

The I/O Router interconnect congestion data (Section 4.2.4) pro-
vides accurate real-time data that correlates to the write traffic
moving from a job on Titan into the PFS. This data provides insight
into the locality of nodes and the amount of data being written
through them. Using this information, we can identify when high-
bandwidth or periodic I/O traffic occurs. Operationally, we have
used the IORCD data and visualizations to extract I/O patterns, such
as N:1 or N:N, from large applications to aid in our procurement
when more invasive techniques like Darshan [7] were unavailable.

Extraction of I/O patterns from IORCD requires the use of or-
ganizational knowledge, auto-correlation for identifying I/O fre-
quencies, and cross-correlation for matching backend PFS logs
(Section 4.2.1). The process relies on the knowledge that Titan is
comprised of twelve geographical I/O partitions, each containing
software I/O routers for moving data between the Gemini and SION
fabrics. We organize this data based on this geography. Each group-
ing is then monitored over an extended duration, applying auto-
correlation to identify periodic high bandwidth activity. Figure 9
shows this behavior from a single routing group. When periodic
behavior is detected across multiple groupings it becomes possible
to narrow down the job creating the pattern.

Identifying the specific job is done by filtering the set of active
jobs to those that could satisfy the time duration and grouping based
node sets of the identified pattern. When a job is identified, we query
the PFS statistics (Section 4.2.1) directly for job specific stats. These
stats contain the total number of OSTs used at a specific point in
time. Based on the OST usage, we make assertions regarding the
checkpoint behavior being multiple files or a single shared file.
Figure 10 shows the resulting OST usage from the job identified in
Figure 9. This OST usage shows the job using 1,008 OSTs at each of
the important checkpoint intervals. This wide use of OSTs would
indicate that the job is writing multiple files as opposed to a single
shared file.

6.6 Archival Storage Use cases

The HPSS usage data in GUIDE (Section 4.2.5) provides us not only
with views into current operations, but also allows us to extrapolate
and plan for future needs. Analysis of HPSS data involved a suite
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Figure 7: RAS dashboard showing different trends and failure distributions.

Figure 8: Mapping of a job onto a 3D representation of Titan’s 3D
Gemini network. This job was scheduled on to a busy system, re-
sulting in high Y-dimensionality and significant fragmentation that
could lead to performance degradation.

of statistical techniques that were outlined in Section 4.1.2. For
example, the Count by File Size histograms in Figure 11 show that
nearly 29 million files in the archive are 500KB or smaller and over
40 million files are less than 10MB?, which is 44% and 61% of the
files in the archive, respectively. Overall, more than 83% of the files
are less than 100MB in size yet they take up less than 2% of the
total volume of data stored. In summary, the HPSS software that is
geared for large files, should also optimize for many small files.

!Sum of the first two and first four columns, respectively, which are too
small to be visible on the Byte Count by File Size chart.

Figure 9: Time series data showing Gemini Router INQ congestion.
Due to the large scale of congestion data, periodic I/O is easily differ-
entiated from random I/0 noise. This can be used to identify large
job checkpoint frequencies.

Figure 10: Lustre Job Stats: OST Usage a generally noisy data set.
After identifying interesting I/O patterns and cross-correlating the
job-id. Using job-stats shows the number of OSTs that were used at
a given point in time. OST usage and duration can indicate N:N or
N:1 write patterns.
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Figure 11: HPSS File and Byte Count Histograms as of July 6, 2017. The top two charts show the space occupied and number of
files for each size range while the middle two show the space occupied and number of files for each age range. The bottom two
charts show the space occupied and number of files sorted by their last access time (where "0 days" means the file has never

been retrieved).

In the Count by File Age histograms in Figure 11, the blue column
represents files that are between 1 and 5 years old, with about 30
million files in this range-46% of the total-and that these files
occupy a little over 27PB. Over the past year, users have stored
roughly 6.6 million files in 10PB. ? Extrapolating this out for 5
years, we should expect about 33 million files in 50 PB, a factor of
1.1 more files and 1.8 more data over 5 years. Users are storing the
same number of files but the files appear to be larger.

Also, from the third row in Figure 11, we see that 70% of the
files and 66% of the bytes have never been recalled. Once data is
stored in the archive it is rarely read back, which begs the question
if the archive is mainly used for disaster recovery or if the users are
unable to find data due to a lack of metadata. OLCF is factoring in
these insights in deciding future investments in HPSS development.

ZFiles less than one year old are calculated from the sum of all the columns
to the left of the blue one.

7 RELATED WORK

GUIDE was designed as a unified data/log collection and monitor-
ing system for a large-scale HPC center, and can be easily expanded,
with different data streams fed from various collectors running on
different subsystems, such as compute, storage, and interconnect.
It is flexible and can be used for building higher-level data analyt-
ics tools. These set GUIDE apart from Ganglia [23] or Nagios [9].
Ganglia is a general monitoring tool with severe scaling limitations.
Nagios, on the other hand, is a failure alerting mechanism.

There are a number of popular single host data collection tools,
such as “sar” and “collect]”. However, to be used effectively at large-
scale HPC facilities for data collection from various systems, a
higher level orchestration layer must be built. There also exists a
variety of distributed data collection mechanisms, such as MRNet [6,
24], LDMS [1], and TACC Stats [17]. MRNet is a tree-based overlay
network for data reduction at pre-defined data aggregation nodes,
such that transferring large amounts of log or monitoring data is
not needed. TACC Stats and LDMS are similar in that they are both
low-overhead, distributed data collection systems. LDMS is a Cray
specific tool used for building OVIS [4], which is a scalable failure
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and abnormal state detector. XDMoD [15] is a higher-level service
built on top of TACC Stats, and provides job-specific information
such as, number of jobs, used CPUs, wait and wall times.

The GUIDE framework does not compete with such single host
or distributed data collection tools. In that sense, GUIDE is similar
to OVIS or XDMoD. However, it is different from both, since GUIDE
focuses on the entire HPC ecosystem at a large-scale HPC center,
while both OVIS and XDMoD have job-centric foci.

8 LESSONS LEARNED

GUIDE has been operational for over two years in OLCF, and has
provided us with numerous insights. First, it is not enough to just
collect the system provided logs; there is a genuine need to ex-
tract data from every subsystem, and from as many levels of the
subsystem as possible. As an example, collecting logs from the
interconnection system or from the various levels of the storage
system has been immensely useful in optimizing center operations
and application performance.

Second, the development and deployment of scalable data ex-
traction tools is a non-trivial task, as we need to be careful to not
introduce overhead on day-to-day operations. This reiterates the
need to think carefully about log data requirements at system pro-
curement, and not as an afterthought.

Third, for the diverse OLCF subsystems, no single pre-processing
technique fits all log streams. We need a combination of approaches
ranging from the quantitative (statistics) to the qualitative (catego-
rization). In addition, there is also the need for domain expertise
and interactions with system administrators and vendors to cleanse
the logs, fill in the missing pieces, and infer the events in the logs.

Fourth, visual analysis using GUIDE turned out to be surprisingly
extremely beneficial. We realized that even just looking at the plots
of the data streams in concert was very powerful, and provided
numerous insights and helped us to better provision future systems
(e.g., Spider III design). Further, in terms of analysis, fusing multiple
streams yielded very powerful tools like the checkpoint advisory
that not only saved core hours, but also reduced the I/O footprint.
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