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I. Introduction
We study resource management for high performance computing (HPC) environments. The workload of 

such a system can be dynamic, i.e., the arrival pattern of tasks in the system is not known in advance. In 

addition, HPC systems are often oversubscribed, i.e., there are not enough resources in the system to begin 

executing each task as soon as it arrives. These systems also often have many different kinds of resources 

resulting in heterogeneity in the system, where different tasks have different execution characteristics on 

different resources. 

To create strategies for effective resource management, it is necessary to define performance measures for 

the system. In some systems, these measures include utilization, fairness, or makespan (e.g., the systems 

studied in [17, 19, 25, 26]). In an oversubscribed HPC system, utilization is not an effective metric because 

the system should always be close to 100% utilization. In addition, many environments have tasks that have 

differing relative importance, making fairness an ineffective performance measure. Finally, makespan is 

not a good performance measure in oversubscribed environments where some tasks may not be executed. 

For example, if no tasks are executed then the makespan will be zero. 

To quantify the performance of an oversubscribed heterogeneous system, we make use of utility functions 

that are monotonically decreasing in value based on task completion time [15]. We consider tasks with the 

highest possible starting utility to be critical tasks and all other tasks to be non-critical tasks. For example, 

users could pay to have higher utility for their tasks or in military environments, certain tasks are considered 

more “mission critical.” The performance of the system is then measured by considering the total utility 

earned by each task over a period of time. Because the utility earned over this period can be significantly 

affected by the percentage of critical tasks that are executed, the design of heuristics that are able to more 

effectively prioritize execution of these tasks is essential. Because the system is dynamic and 

oversubscribed, critical tasks may have their execution delayed or prevented by less important non-critical 

tasks that were already in the workload before the critical tasks arrived. These non-critical tasks would not 

have been scheduled if the resource manager had been aware that critical tasks would be arriving to the 

system before completion of the non-critical tasks. In addition, choosing to not execute the non-critical 



tasks is not an ideal solution because they may not result in the delay of critical tasks (i.e., they may finish 

executing before any critical tasks arrive in the system). An effective way to address this issue is to allow 

the preemption of tasks that are already executing in the system. In an environment with preemption, critical 

tasks can start executing quickly even if the system is already completely allocated to non-critical tasks. 

In this work, we study an environment where the workload is comprised of serial tasks with short execution 

times (average of 50 minutes for most tasks). Such environments exist in some DoD (Department of 

Defense) and DOE (Department Of Energy) systems. Preemption is commonly used in these and similar 

environments, such as those used for MapReduce where an application is split into many similar small 

serial tasks [6]. In addition, the preemption overhead of serial tasks with short execution times is 

insignificant compared to the overhead that would occur when preempting resource intensive parallel tasks 

with much larger memory requirements [3]. 

Another environment where a large number of serial jobs could occur is an enterprise datacenter. In HPC 

environments designed for parallel tasks, it is often the case that multiple tasks are not assigned to the same 

node (even in cases where many cores on the node will be idle). This assumption was used in [21], where 

resource management heuristics were designed for a similar environment with parallel tasks and no 

preemption. Because utilizing fewer than the total number of cores in a node is inefficient, it is logical to 

have a separate system where scheduling is done at a core-level to execute only serial tasks when a large 

number of serial tasks is expected in the workload. 

The specific systems that we consider in this study are designed to model production environments that 

exist in military, government, and industrial situations. These systems were constructed based on 

discussions with researchers from Oak Ridge National Laboratory (ORNL) and the United States DoD. 

ORNL and DoD are examining an implementation of the resource management heuristics proposed in this 

paper and have environments with serial tasks like the ones simulated in this study. There are many 

environments that can be considered when studying resource allocation for HPC systems. In any given HPC 

environment, (a) tasks may be parallel or serial and may have dependencies on one another; (b) tasks may 

have varying importance; (c) preempting and resuming tasks may require significant overhead; (d) there 



may be homogeneity or heterogeneity among clusters of the system and each cluster may contain 

homogeneous or heterogeneous nodes; (e) the workload may cause the system to be oversubscribed; (f) 

tasks may arrive dynamically or may be given to the scheduler in a single batch; and (g) the execution time 

of tasks may not be known in advance. The parameters described above only cover a subset of the total 

problem space of resource management HPC environments. To make this study tractable, we focused on a 

specific environment of ORNL and DoD interest. The techniques proposed in this study were designed 

specifically for this environment and may not apply to other environments.

A specific set of important assumptions made in this paper includes that: (a) tasks are independent and 

serial; (b) some tasks are significantly more important than others; (c) the overhead of preempting and 

resuming a task is insignificant compared to the execution time of tasks; (d) the compute system is made 

up of heterogeneous clusters where each cluster is comprised of homogeneous nodes; (e) the system is 

oversubscribed; (f) tasks arrive dynamically throughout the day and the scheduler does not have future 

knowledge of the set of tasks that will arrive; and (g) an estimate of the execution time of each task type on 

a node of each of the clusters is known to the scheduler. 

We designed and implemented three preemption techniques that can be applied to previously studied utility-

aware heuristics. These heuristics are Max Utility and Max Utilityper- Time, which have been studied in a 

serial environment without preemption [15]. These heuristics are evaluated with preemption and without 

preemption in this study. They are also compared with the Random and FCFS heuristics. The primary 

contributions of this work are: 

 The design and implementation of multiple techniques for applying preemption to utility-aware 

heuristics that have been effective in similar environments without preemption. 

 An extensive analysis of the effectiveness of the proposed preemption techniques in many different 

simulated environments.

The rest of this paper is organized as follows. In Section II, we define the studied environment and problem 

in detail. The proposed heuristics with preemption and other resource management techniques used in this 



study are detailed in Section III. Section IV describes the procedure that was used to generate the specific 

systems and workloads that were simulated and Section V presents the results of those simulations. Related 

work is discussed in Section VI. Finally, we conclude and discuss ideas for future work in Section VII.

II. Environment Description
A. System Model 
The environment is one where the compute system is composed of heterogeneous clusters of compute 

resources. The architecture of cores varies across clusters, but each cluster has a fixed number of 

homogeneous cores. The execution characteristics of a task are identical on any cores of the same cluster. 

In this study, each serial task is assigned to a single core in one of the clusters.

B. System Workload Characteristics

The system workload is made of up of serial tasks that arrive dynamically. The environment is 

oversubscribed, meaning that it is not possible for every task to earn its maximum utility because some 

tasks will be delayed due to the number of tasks competing for resources. We assume that the tasks are 

independent (i.e., there is no communication between different tasks). For this study, we assume that 

memory interference between two tasks executing on the same multicore node is negligible. In this 

workload, tasks arrive in bursts. Each burst consists of a number of tasks with the same task type. This is 

meant to model an environment where users often submit many similar jobs to the system at once, such as 

found in some ORNL and DoD environments. 

Each task has a task type that is known when it arrives. A task type is used to group tasks with similar 

characteristics together. Each task specifies its task type, its utility function, a flag that states whether it can 

be preempted, and a flag that states whether it can preempt other tasks. The execution time of each task 

type is defined using an Estimated Time to Compute (ETC) matrix [5, 23]. This matrix specifies the 

estimated execution time of each task type on a core of each cluster type. The ETC values can be based on 

user supplied information, experimental data, or task profiling and analytical benchmarking (e.g., [1, 9, 10, 

16, 24, 30]). Determination of ETC values is a separate research problem; the assumption of such ETC 

information is a common practice in resource allocation research (e.g., [4, 10, 16, 18, 27, 29]). For 



environments such as those found in many ORNL and DoD systems, this matrix can be populated using 

historical data or experiments for each task type. This assumption is true, in general, for many production 

environments such as military, government, and industrial. These execution times are assumed to be 

deterministic for this study. An example of an ETC matrix that shows the execution time of task types in 

minutes for three clusters and four task types can be seen in Table 1. Task type 2 has its fastest execution 

on cluster A, task types 3 and 4 have their fastest execution times on cluster B, and task type 1 has its fastest 

execution time on cluster C. This type of heterogeneity where one of the clusters is not the best for all task 

types is called inconsistent heterogeneity [5, 16]. In this study, the heterogeneity of our simulated systems 

is inconsistent.

C. Utility Functions

Utility functions are a flexible measure of the importance of tasks. Utility functions are monotonically 

decreasing functions of a task’s completion time that are used to define the utility that a task earns upon 

completing its execution. This is because in this problem domain the later that information is delivered the 

less useful it is. An example of a possible utility function is shown for some task 1 in Figure 1. In this case, 

the utility function has a starting utility of 8, and decays to zero over approximately 60 minutes after the 

arrival of task 1. This utility function is generated using the model for utility functions presented in [15]. In 

many cases, it is suitable to simplify these potentially complex utility functions by using simple functions 

such as step functions or ones with linear decay [22].

D. Preemption

Each task that arrives in the system has two flags specifying its behavior involving preemption to the 

resource manager. One of the flags determines whether or not the task can be preempted by other tasks. 

The other flag determines whether a task can preempt other tasks. These flags act as a constraint on the 

resource manager. In addition, we do not limit the number of times a task can be preempted. Tasks are not 

preempted unless higher utility can be earned for another task. Any “starvation” of tasks is done 

intentionally to increase the utility earned by the system. This includes cases where the scheduler drops a 



task with high starting utility due to missing its deadline. Because the system is oversubscribed, there may 

be situations where it is not possible for the optimal schedule to complete all critical tasks before their 

deadlines. 

When a task is preempted, we assume that its progress is saved and that it can be resumed at a later point 

on any core in the same cluster. The task cannot be resumed in another cluster because it can only be 

resumed on a core of the same architecture and where any task-specific data is available. We assume that 

the overhead for preempting and resuming a task is negligible. We make this assumption because all tasks 

in this system are serial and are assumed to have small memory requirements. The amount of memory 

allocated to a task is a significant factor in determining the amount of overhead that is needed to suspend 

and resume it [8]. This is because the majority of the overhead of preemption comes from the time needed 

to send a task’s state to storage. We confirmed this with tests performed at ORNL. In some HPC systems, 

a task can only access the memory that is a part of the compute nodes that are assigned to the task. In these 

environments, such as the one we consider here, serial tasks may not have access to the amount of memory 

that would be required to generate a significant preemption overhead [3]. The techniques we designed can 

be built upon to add consideration of any nonnegligible overhead. One way to add support for this would 

be for the preemption-capable heuristics to consider any expected overhead due to preempting a task as a 

part of the execution time of the preempting task. In addition, any overhead due to resuming a preempted 

task would be considered a part of the execution time of the resuming task.

E. Problem Statement
The resource manager has complete information about the tasks that are currently executing on the clusters 

as well as a list of the tasks that are waiting to be assigned. For each executing task, the resource manager 

can use the ETC matrix and the start time of each task to determine the estimated finish time of that task, 

which allows the heuristic to determine the estimated utility earned by that task. This information allows 

our resource manager to make intelligent allocation decisions using one of the heuristics described in 

Section III. 



We define the system utility earned during an interval of time as the sum of the utility earned by tasks that 

execute during that interval. In our simulations, a task will earn utility for an interval if any portion of the 

task executes during the interval. If only part of a task’s execution occurs during this interval, then only a 

portion of the task’s utility will be earned for that interval. For example, if a task were to complete 70% of 

its execution during an interval A and 30% of its execution during interval B, then 70% of the task’s utility 

will be added to the system utility earned for interval A. The goal of our resource manager is to maximize 

the system utility earned by completing serial tasks over some interval of time.

III. Resource Management
A. Mapping Events

The set of mappable tasks contains all tasks that have arrived in the system excluding the tasks that have 

completed execution and that are currently executing. Any task in this set can be mapped to the available 

cores of the system. Mapping a task refers to the process of assigning, scheduling, or preempting the task 

to or from cores in the system. During a mapping event, the resource manager makes decisions for mappable 

tasks in the system. In this study, we consider the case where mapping events occur in one minute intervals, 

which is based on discussions with ORNL and DoD. At each mapping event, tasks are dropped (described 

in Subsection III.B) and then one of the heuristics (described in Subsections III.C, III.D, and III.E) is used 

to create a mapping of the tasks to the cores. Finally, this mapping is used to preempt and assign tasks.

B. Task Dropping 
Our resource manager will not assign tasks to cores if they will earn zero utility. If at any point a task can 

never earn nonzero utility with any assignment, it is removed from the system. The resource manager will 

not assign a task to a core if that assignment will earn zero utility for that task.

C. Comparison Heuristics

1) Overview:  For comparison, we consider two simple  heuristics (Random and FCFS). These 

heuristics do not consider utility functions or the heterogeneity of the system.

2) Random:  The Random heuristic begins with the set of  mappable tasks and places them in a random 

ordering. It then  iterates through the mappable tasks assigning each of them to  a random idle core 



with the constraint that the task must earn  non-zero utility on the randomly chosen core, or else a  

different random core is selected. If this is not possible, the  task is left in the mappable set. After 

this assignment, the task is removed from the set of mappable tasks. This process is  repeated until 

the set of mappable tasks is empty or no more  assignments are possible.

3) FCFS: The FCFS (first come first served) heuristic places the mappable tasks in an order based on 

arrival time  (i.e., the task with the earliest arrival time is considered first  and the task with the 

most recent arrival time is considered  last). It then takes each task in order and assigns it to an 

arbitrary idle core with the constraint that the task must earn non-zero utility. If this is not possible, 

the task is left in the mappable set. After this assignment, the task is removed from the set of 

mappable tasks. This process is repeated until the set of mappable tasks is empty or no more 

assignments are possible.

D. Utility-Aware Heuristics

1) Overview: All of our utility-aware heuristics are based on the two-phase concept of the Min-Min 

heuristic [11], a concept that has been used successfully in many heterogeneous environments 

(e.g., [5, 23]). The heuristics described in this section operate without preemption. The 

preemption techniques that we apply to them are described in Subsection III.E.

2) Objective Functions: The task execution characteristics used by the objective functions in this 

study are the completion time (CT) and remaining execution time (RET) of a given assignment 

for a task. For a task that has not been previously executing in the system, RET is equal to the 

ETC entry for that task. If the task is currently executing or was previously preempted, its RET is 

equal to the ETC entry for the task minus the amount of time it has spent executing. Our 

heuristics attempt to greedily maximize either Utility (Util):

(1) Util = utility of the task at its CT,

Or Utility-per-Time (UPT):

(2) UPT = Util/RET.



We use these objective functions to define two utility-aware heuristics called Max Utility 

(Max Util) and Max Utility-per-Time (Max UPT). These heuristics were applied successfully in 

our previous work without preemption [15, 21].

3) Maximum Util: Max Util, shown in Algorithm 1, operates in two phases. In the first phase (lines 

2-4 of Algorithm 1), the heuristic considers each task individually and finds the idle core that 

maximizes its Util with the constraint that the task earns utility above the dropping threshold. 

This can be achieved by considering a single idle core in each cluster because all of the cores in 

each cluster are homogeneous. The second phase of the heuristic (lines 5-6 of Algorithm 1) 

chooses the task/core pair from the first phase with the highest overall Util. The chosen task is 

then assigned to the chosen idle core to begin executing and is removed from the set of unmapped 

tasks. The heuristic then repeats, executing phase one and phase two until the unmapped tasks set 

is empty or there are no more possible assignments to make.

E. Preemption Techniques
1) Overview:  As a part of this study, we designed and implemented three preemption techniques. 

All of these preemption techniques work by modifying how the heuristics described in Subsection 

III.D interact with tasks that can preempt and tasks that are preemptible. We found no heuristics 

in the literature that used preemption in a heterogeneous environment. 

2) Maximum Util Greedy Preemption:  The Maximum  Objective Function Greedy Preemption (Max 

Util Preempt  Greedy) technique is similar to the Max Util technique (with  no preemption) 

described above, except that it also considers  all possible preemptions for each task in addition to 

idle cores.  This technique is shown in Algorithm 2. Specifically, during  the first phase of the 

heuristic (lines 2-12 of Algorithm 2) each  task is considered individually. The core that maximizes 

its  Util is found. If the core being considered is idle, then the  same method used in the Max Util 

heuristic is used. If the core  is executing a preemptible task, the task that is being  considered can 

preempt other tasks, and the Util of the task  being considered is greater than the Util of the currently  



executing task, then that pair represents a valid preemption.  The Util of this pair is defined as the 

Util of the preempting  task. The currently executing task’s Util is only considered if  during the 

first phase multiple pairs of task/core mappings are  found that have the same Util for the 

preempting task. If  multiple pairs are found during this first phase with the same  Util, then the 

following strategy is used to select one. If any  pair has an idle core, that pair is chosen. If there are 

multiple  pairs with idle cores, one is chosen arbitrarily. If any pair does  not use an idle core, 

choose the pair with the core that has the  smallest Util for its preemptible task. After the best pair 

is  found for each task, this technique has a phase two (lines 13- 18 of Algorithm 2) where the pair 

with the highest overall Util is chosen and an assignment is made for the task/core pair (any 

necessary preemptions for this assignment will occur). This process repeats until there are no more 

unmapped tasks or there are no more valid pairs selected in the first phase.

3) Maximum Util Difference Preemption:  The Util Difference is equal to the difference in Util of a 

preempting  task and the task that is being preempted (when considering an  idle core the Util and 

Util Difference are the same for the task  being considered). The Maximum Util Difference 

preemption  technique (Max Util Preempt Diff) attempts to greedily  maximize the Util Difference 

for a task. It is identical to the  Max Util Preempt Greedy technique except that all instances  of 

Util are replaced with Util Difference throughout the  execution of the heuristic. This heuristic is 

identical to the first  technique in a homogeneous system, but may make different  decisions in 

terms of which cluster to assign a task to in a  heterogeneous system. For example consider a 

heterogeneous  system with two cores: c1 and c2. A task t1 is currently  executing on core c1 and 

will earn 2.0 Util if it finishes its  execution. The resource manager is choosing an assignment  for 

a task t2, which can either (a) preempt task t1 and start  executing on core c1 where it will earn 2.5 

Util or (b) start  executing on an idle core c2 where it will earn 1.0 Util (It will  take longer for t2 

to complete on c2 than c1). The Max Util  Preempt Diff heuristic will choose to start executing the 

task  on c2 because the Utility Difference is larger for that core (1.0  instead of 0.5 for c1). The 



Max Util Preempt Greedy heuristic would have chosen to assign task t2 to core c1 (preempting  

task t1) because it will get more utility for t2.

4)  Maximum Util Pair Preemption:  The Maximum Util Pair preemption technique (Max Util 

Preempt Pair) tries to greedily maximize the net Util earned by two tasks at once to choose which 

task should be assigned next. This technique is shown in Algorithm 3. The motivation for this 

heuristic is to consider the amount of utility that would be lost in the currently executing task if a 

preemption were to occur.  

In the first phase of this heuristic there are two cases. The first is used for all tasks that can preempt 

other tasks. In this case (lines 3-13 of Algorithm 3), two possible orderings of the tasks are 

considered for each core executing a preemptible task. The first ordering is where the preempting 

task preempts the executing task, finishes its execution, and then the preempted task resumes and 

finishes its execution on the same core. (The preempted may not actually resume on this core; this 

rule is just to guide the heuristic.) The second ordering is where no preemption occurs and the 

executing task finishes its execution before the task that is being considered is assigned to the core 

and finishes its own execution. If the second ordering results in higher Util, preemption is not 

considered for that core. For each core, the ordering with the highest combined Util is chosen. 

Among all cores, the ordering with the highest   overall combined Util is selected to be compared 

with running the task on idle cores.  

Next, the heuristic considers the idle cores by finding the idle core that has the highest Util for the 

task. The heuristic considers pairing the task executing on this idle core with its best pair that was 

found when considering preemption. The net Util of this pair would be the Util of the task being 

considered on the idle core plus the Util of the currently executing task on some core in the system 

(the best pair found above). This process of considering an idle core is shown on lines 7-10 of 

Algorithm 3. This is done to ensure that idle cores are treated fairly alongside cores with 

preemptible tasks. 



Tasks that cannot preempt other others use the same method for choosing an idle core as the Max 

Util heuristic (without preemption). This is shown on lines 14-15 of Algorithm 3. During the second 

phase of this heuristic (shown on lines 16-22 of Algorithm 3), the task with the overall maximum 

Util for its allocation is selected. Only the Util of the task being assigned is considered. Otherwise, 

tasks that cannot preempt other tasks would be at a disadvantage to those that can preempt other 

tasks. This is because tasks that cannot preempt other tasks would not be paired with any task in 

the first phase. If the task that is selected in the second phase chose  a pair during the first phase 

where it is the second task to be  executed on some core, then do nothing with it during this  mapping 

event (it will be considered in the next mapping  event). Otherwise, the task is assigned to the core 

and is removed from the set of mappable tasks, and the preempted task is added to the set of 

mappable tasks. This heuristic repeats until the set of mappable tasks is empty or there are no more 

valid assignments for tasks in the set of mappable tasks.

F. Heuristics with Utility-per-Time

All of the heuristics described in this Section used Util as an objective function. These heuristics can be 

modified to utilize UPT by replacing all instances of Util in the heuristic descriptions with UPT. A common 

concern with preemption is that it becomes difficult to execute long running jobs because they execute 

during a greater number of mapping events creating more chances for the task to be preempted. When used 

with Max UPT, our preemption techniques alleviate this issue because the calculated UPT values are larger 

for tasks that have already started executing. This is because as a task executes, its remaining execution 

time will decrease, while the utility that it will earn remains constant. This results in a situation where 

preemption of tasks that have already completed most of their execution is less likely than when the task 

first started executing in the system. Preemption of long running jobs is thus unlikely unless a task of high 

importance arrives in the system. In addition, using UPT increases that chance that a preempted task will 

be quickly resumed once there are opportunities to continue its execution.

IV. Simulation Setup

A. Overview



The environment parameters detailed in this section were selected based on discussions with researchers 

from ORNL and DoD. Some of the parameters described in this section are varied in Section V. Our 

simulations of this environment take place over 28 simulated hours. The first four hours populate the idle 

system with tasks. This allows data for the subsequent 24 hours of execution to be collected with the system 

in a steady state of execution. For each environment, we generate 64 simulation trials using the procedure 

described in the rest of Section IV.

B. System Generation

The cluster environment is constructed from five heterogeneous clusters with an average of 160 cores each. 

Although this is a small system relative to many HPC systems today, it allows us to easily experiment with 

a large variety of workloads.

C. Workload Generation

In this environment, tasks include two main types: critical tasks and non-critical tasks. Critical tasks have 

a starting utility of eight and non-critical tasks have a starting utility of one. For the experimental results 

shown in this paper, 20% of tasks are critical tasks and 80% of the tasks are non-critical tasks. In one of the 

experiments shown in Section V, the starting utility values of critical tasks were also varied. 

Each task type has an associated execution time. If the task type is used for critical tasks, each task has an 

average execution time of ten minutes. Otherwise, the task type represents a non-critical task and has an 

average execution time of 50 minutes. The execution time of each individual task type on one of the clusters 

is determined by sampling a gamma distribution with a coefficient of variation (COV) of 0.1. In our 

experiments, the execution time of all task types was varied. 

The heterogeneity over the three clusters is defined using the method from [2] with a COV parameter of 

0.3. Specifically, this means that the execution time generated above for one of the clusters is used as the 

mean for another gamma distribution. This gamma distribution has a COV of 0.3 and is sampled to get the 

execution time of the task on the other two clusters. These execution times are then used to populate the 

ETC matrix that is used by the resource manager. The size of the workload for this system is determined 

experimentally to ensure that the system remains oversubscribed during the 24 hours of its steady state 



execution. To achieve this, an average of 75 tasks need to arrive for each core in the system. For this system, 

this requires an average of 60,000 tasks arriving over a 24 hour period. 

For each task, a utility function is generated. In this study, we consider a variety of utility function classes. 

One of these classes models utility functions using step functions. For tasks with the highest urgency, this 

step function has a width equal to the average execution time of the task where the task will earn its starting 

utility. After this period, the utility function drops to zero. Non-critical tasks have a constant interval width 

equal to ten times their mean execution time and then drop to zero immediately after this interval. We also 

experimented with the set of 20 utility classes similar to those in Figure 1 from our past work in [15]. In 

addition, we defined a “decaying utility class” where all tasks have a constant interval equal to their average 

execution time at the beginning of the utility function and the rest of the utility function is a single period 

of decay defined using the model in [15] with an urgency parameter of 0.3 and a length of 200 minutes. 

The utility functions obtained from this utility class are shown for critical tasks in blue and non-critical 

tasks in red in Figure 2. 

Tasks in the workloads of this study are assumed to arrive in bursts. Each burst consists of a number of 

tasks of the same task type with identical utility functions that arrive at the same time. We define the burst 

size of the system as the average number of tasks that arrive in each burst. For most of our experiments, the 

burst size parameter is 64, but this is varied in some experiments. The exact number of tasks arriving in 

each burst can vary by up 50% of the mean, i.e., for our average burst size of 64 tasks the number of tasks 

arriving in any burst is between 32 and 96, inclusive. This value is determined by sampling an integer from 

a uniform distribution. Bursts of the same task type are spread out throughout the day using a sinusoidal 

arrival rate (the number of bursts arriving for a task type will be more frequent during some periods of the 

day than others). The actual distribution of a task type’s burst arrival times are randomly generated using a 

Poisson process from the task’s arrival rate. 

The majority of the results shown in Section V assume that all tasks are preemptible and all tasks can be 

preempted. We will also show one set of results in Section V where we experimented with these preemption 

flags.



V. Results 

All results shown are averaged over 64 simulation trials and are shown with 95% mean confidence intervals. 

In each trial, the environment is generated as described in Section IV. Because of the presence of 

randomness in some parts of the system, the exact values of many characteristics of the environment vary 

between simulation trials (e.g., the number of tasks arriving and the execution time of each task type). We 

define the maximum system utility as the utility earned if all tasks started executing immediately upon 

arrival in their fastest cluster and earned utility equal to their starting utility. In most cases, this maximum 

utility is unobtainable because the system is oversubscribed. In all of the results, the execution time of the 

best performing heuristics is insignificant in comparison to the simulated execution times of the tasks and 

the mapping event interval of one minute. In our simulations, all of the heuristics except for Max Util 

Preempt Pair and Max UPT Preempt Pair took approximately seven seconds to execute each mapping event 

in the worst case. The Max Util Preempt Pair and Max UPT Preempt Pair heuristics took over a minute to 

execute in the worst case, meaning that these preemption heuristics would not be feasible to use in a system 

with this size. However, the best performing heuristics could be implemented in a real system with a 

mapping event interval of one minute without delaying the assignment of tasks during each mapping event. 

In Figure 3, the percentage of maximum system utility is shown for workloads where the type of utility 

function is varied between step functions, a single decaying utility class, and 20 different utility classes. 

These types of utility functions were described in Subsection IV.C. These results show that utility-based 

heuristics outperform Random and FCFS. The preemption-capable heuristics always improve upon the 

utility earned by Max Util and Max UPT. This is because the preemption-capable heuristics are able to earn 

utility from the critical tasks even when the utility function of the critical task require that they start 

executing almost immediately upon arrival. This is especially important in the step function case. 

In Figure 4, the percentage of maximum system utility is shown for workloads that have burst sizes of 1, 

16, 32, 64, and 128. When the burst size is 1, there are no bursts of tasks arriving in the system. In the 

Figure 4 results, the 20 utility classes described in Subsection VI.C are used. These results show that as the 

burst size of the workload increases, Max Util and Max UPT see a significant decrease in performance. 



This is because it becomes more difficult to assign the critical tasks as they arrive because a large group of 

critical tasks will arrive while only some cores in the system are idle or will become idle soon. The Max 

Util Preempt Greedy, Max UPT Preempt Greedy, and Max Util Preempt Diff, and Max UPT Preempt Diff 

heuristics see a much smaller decrease in performance as the burst size increases because they can preempt 

non-critical tasks to immediately start executing the newly arrived burst of critical tasks. In the case where 

the burst size is 128, the best performing preemption techniques are able to improve the utility earned by 

Max UPT by up to 20%. 

In Figure 5, the percentage of tasks that can preempt and can be preempted is varied over 0%, 20%, 40%, 

60%, 80%, and 100%. When each task is generated, both of the preemption flags are set to true with a 

probability equal to that percentage. This probability is considered separately for the two preemption flags 

(e.g., a task may be able to preempt other tasks but it may not be preemptible by other tasks). When these 

percentages are 0%, the preemption-capable heuristics are identical to their counterparts that are not 

preemption-capable. In the Figure 5 results, the 20 utility classes described in Subsection VI.C are used. 

The heuristics that are not preemption-capable do not change over these different workloads because the 

preemption flags do not affect their execution. As the percentage of tasks that can preempt and can be 

preempted increases, the performance of most of the preemption-capable heuristics improves linearly with 

the percentage. The Max UPT Preempt Pair heuristic does not improve linearly because the UPT of a task 

that has almost finished its execution becomes high relative to the other tasks. This high UPT can result in 

a preemption of that task having a large net UPT value, which results in the Max UPT Preempt Pair heuristic 

preempting these tasks more frequently than is ideal. These results show that enabling both preemption 

flags for all tasks does not result in a decrease in overall system performance. 

In Figure 6, the percentage of maximum system utility is shown for workloads that have an average 

execution time for critical tasks equal to 10, 30, and 50 minutes. In the Figure 6 results, the 20 utility classes 

described in Subsection VI.C are used. As the execution time of critical tasks becomes longer,  the system 

will become more oversubscribed because the average execution time of all tasks has increased. Because 

of this, all of the heuristics have a slight decrease in their performance because they cannot execute as many 



tasks due to the increased oversubscription. In addition, it can be seen that the best preemption-capable 

heuristics earn more utility than the other heuristics in all cases. 

In Figure 7, the percentage of tasks that are completed by each of the heuristics is shown for the same 

workloads in Figure 6 where the average execution time for critical tasks is equal to 10, 30, and 50 minutes. 

This is not our performance measure, but this shows that in addition to earning more utility, the utility-

based heuristics are also able to complete more tasks. In addition, the Max UPT heuristics are able to 

complete more tasks than the Max Util heuristics because the Max UPT heuristics are better able to consider 

the heterogeneity of the system because they consider task execution time when making scheduling 

decisions. Given a set of tasks with the same utility function, the Max UPT heuristic would be able to assign 

each of those tasks to the cluster able to execute it in the least amount of time. 

Across all of the results in Figures 3, 4, 5, and 6 the percentage of maximum system utility is shown for a 

variety of workloads. These results show that utility-based heuristics are more effective than the comparison 

heuristics at maximizing utility. In addition, it can be seen that the Max UPT heuristic (regardless of the 

preemption technique used with it) outperforms the Max Util heuristic in all of these environments for the 

reasons described above. 

When comparing the preemption techniques, it can be seen that the Max Util Preempt Greedy, Max UPT 

Preempt Greedy, and Max Util Preempt Diff, and Max UPT Preempt Diff heuristics tend to have close to 

identical performance because in most instances they make the same allocation decisions. The Max Util 

Preempt Pair and Max UPT Preempt Pair heuristics perform worse than the other preemption techniques in 

all of these environments. This is likely because this preemption technique attempts to make decisions about 

what should occur at future mapping events. Because the tasks in this system arrive dynamically, these 

decisions made by the heuristic may not be carried out when new potentially high utility tasks arrive before 

the next mapping event. It can also be seen that the Max Util Preempt Pair heuristic performs better relative 

to the other Max Util heuristics than Max UPT Preempt Pair does relative to the other Max UPT heuristics. 

This is because the UPT of a task that has almost finished its execution becomes high relative to the other 

tasks, which can result in this heuristic preempting these tasks more frequently than is ideal. 



The Max Preemption and Max Difference Preemption heuristics are the best performing heuristics overall 

and are able to significantly improve the utility earned by our utilityaware heuristics in many environments. 

Further, they never result in reduced utility earned relative to any of the other heuristics. These preemption 

techniques also have an insignificant execution time overhead that is comparable on these systems to the 

overhead of running any of the utilityaware heuristics without preemption.

VI. Related Work
Preemption in scheduling is commonly seen in the literature, but it is rarely the main focus of the research 

it appears in and there is often limited analysis of it. One area with a considerable amount of research on 

preemption is scheduling for systems that are running the tasks of MapReduce applications. For example, 

the research in [6] proposes a new strategy for using preemption to quickly execute high priority jobs. In 

that study, the proposed scheduler (Global Preemption) attempts to improve the performance of the system 

by attempting to avoid undesirable preemptions (e.g., avoid preempting jobs that have already been 

executing for a long period of time). This is similar to the effect that is provided by our Max UPT 

preemption heuristics, but this work does not consider utility, considers only a homogeneous system (unlike 

our heterogeneous environment), and considers a set of tasks that is very different from ours in terms of 

arrival pattern and execution characteristics. 

In [7], a small homogeneous parallel environment with a single 32 node cluster is studied. Tasks in this 

study have simple linearly decaying “value functions,” which fit our definition of a utility function. This 

study had a similar distribution of tasks to ours where 80% of the tasks were “low value” and 20% of the 

tasks were “high value” with the “high value” tasks having an average of 100 times the importance relative 

to a “low value” task. The simple preemption technique applied in this study would make a preemption 

whenever swapping a running job with the first task in the queue would increase the total value earned. In 

addition, there was a constraint that each task could be preempted at most once. In the best case (i.e., when 

tasks were had utility functions that decayed to zero the fastest) this resulted in an improvement of around 

20% in terms of value earned. Our work differs from [7] because that study did not consider heterogeneity 

and used only one type of utility function. 



The authors of [14] propose a preemption-aware heuristic called “Selective Preemption” for scheduling 

parallel jobs. They considered workload traces from real systems and showed that their technique 

outperformed some existing scheduling techniques because it was able to obtain good performance for all 

tasks regardless of their resource requirements. In comparison, the existing techniques either had trouble 

executing large tasks (i.e., tasks with long execution times that are parallelized across many cores) or small 

tasks (i.e., tasks with short execution times parallelized over only a few cores) effectively. This work differs 

from ours because it studies a parallel environment, and uses metrics such as turnaround time and slowdown 

to measure performance. In our environments, the metric of performance is utility and it is unimportant if 

a certain class of tasks has trouble executing as long as the overall utility earned is maximized. 

Scheduling is studied for an environment with value functions that can decay to negative values (this is a 

penalty for failing to schedule a task) in [12]. Here, a significant difference from our work is that the 

scheduler only selects (and is only penalized for) tasks that it decides to accept (the purpose of penalties is 

to encourage that the tasks get executed by the site that accepts them). The authors show that their 

scheduling technique outperforms several existing strategies for maximizing value earned in such an 

environment. 

Utility has been used as a performance measure in a variety of serial and parallel environments, (e.g., [13, 

15, 20, 21, 22, 28]). Our work differs from these because none of them consider the possibility of 

preemption to improve system performance. In addition, [13, 20, 22, 28] do not consider heterogeneity. 

In addition to simple heuristics that can be used to quickly make scheduling systems, it is common to study 

the use of more time consuming techniques such as genetic algorithms. Given enough time, a genetic 

algorithm can find very good solutions to scheduling problems. In a parallel environment, a genetic 

algorithm was applied in [20] and was able to outperform common parallel scheduling techniques such as 

EASY Backfilling. Unfortunately, this genetic algorithm had an average execution time of 8,900 seconds. 

In an environment like the one studied in our work, where mapping decisions must be made every minute, 

it is not possible to use a resource manager with that level of execution overhead.



VII. Conclusion and Future Work

We designed and evaluated six different preemptioncapable heuristics. In environments where preemption 

is possible, we have shown that these heuristics are able to significantly outperform Random and the 

common FCFS scheduling technique. In addition, the preemption-capable heuristics were able to 

outperform the utility-aware heuristics without preemption (Max Util and Max UPT). Detailed analyses of 

the differences in performance were described for a variety of environments. 

An important and significant extension of this work would be to consider the preemption of parallel tasks 

executing on oversubscribed HPC systems. Our previous work has shown that utility-aware heuristics are 

still very effective in parallel environments [21, 22]. Because parallel tasks are common in most HPC 

systems, designing a resource manager that is capable of efficiently scheduling parallel tasks is an important 

problem for the HPC community to consider. An environment with parallel tasks would add additional 

challenges to this problem because it would no longer be realistic to consider the overhead of suspending 

or resuming a task to be negligible. In addition, it would be much more computationally expensive to 

consider every possible preemption for each task against different sets of smaller tasks. Thus, different, 

more complex, and more time-consuming heuristics will need to be designed and analyzed. 

Another possible extension to this work is the consideration of energy. Because of the growing need for 

energy efficient HPC systems, it is important that any scheduler be aware of system energy use resulting 

from its scheduling decisions.
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Figure 1. An example of a utility function for task 1. If task 1 were to finish its execution at time 15, it would earn 5.18 utility. If 
its execution completes at time 40, it will earn 2.84 utility. This figure was taken from our previous work [21].







Figure 2. Two utility functions generated using the decaying utility class described in Section IV.C. The blue function is 
generated for critical tasks and the red function is generated for non-critical tasks.

Figure 3. The percentage of maximum system utility is shown for workloads where the utility class used to determine utility 
functions is varied from step functions, a single decaying utility class, and 20 utility classes as described in Subsection IV.C. The 

results are shown with 95% mean confidence intervals.



Figure 4. The percentage of maximum system utility earned by each of the heuristics for five different workloads where the burst 
sizes of tasks arriving are 1, 16, 32, 64, and 128. The results are shown with 95% mean confidence intervals.



Figure 5. The percentage of maximum system utility earned by each of the heuristics for six different workloads where the 
percentage of tasks that can preempt and the percentage of tasks that can be preempted are varied over 0%, 20%, 40%, 60%, 

80%, and 100%. The results are shown with 95% mean confidence intervals.



Figure 6. The percentage of maximum system utility earned by each of the heuristics for three different workloads where the 
average execution times of critical tasks are 10, 30, and 50 minutes. Recall that the execution time of non-critical tasks is 50 

minutes. The results are shown with 95% mean confidence intervals.



Figure 7. The percentage of tasks completed by each of the heuristics for three different workloads where the average execution 
times of critical tasks are 10, 30, and 50 minutes. Recall that the execution time of noncritical tasks is 50 minutes. The results are 

shown with 95% mean confidence intervals.


