0

ll\l!

ll\l\

‘zﬁ e 22
it um“ 122

R
e

L2 flis pee

CIQN : COLLOID TRANSPORT CODIE - NUCLEAR

A Tsers Memmesi]

Particle size = imicron Time = 7,500 s Vmax = 2.4e-3 cm/s

Water Only

Width = 590

microns
Width = 59
microns
Comparison of Colloid Transport
-~ in a Large and Small Fracture

& SRS
Rohit Jain R
ﬁ jgﬂ e
SR INE M
w7 i

CONTENTS

ABSTRACT o e b 1
1. MODEL DESCRIPTION ..ottt e 1
1.1 Nature and PUIPOSe..... ..o 1
1.2 Mathematical Model...........cccoiiiiiiicc 2
1.2.1 Governing EQUAtIONS ..o 2
1.2.2. SUDIMOAEIS ... 3
1.3. Numerical Model...........ccccooiiii 4
2.0 CODE DESCRIPTIONcoooiiiiiiiiiiii it e 6
2.1 Files and Operating Parameters...............cccooiiiiiiii 6
2.2 Subroutines and their description ... 7
2.3 Step-wise Operation ..ot 7
3.0. EXAMPLE PROBLEMS ...t 9
3.1. Example 1

Conduction in a Semi-infinite Medium ... 11
3.1.1. Code Listing for example 1. 15
3.2. Example 2

Three-dimensional Fracture Problem...............c. 20
3.2.1. Code listing for example 2
G TEST CASES. ... 26
+.1. Simple ODE
4.2. Euler Equations of Gas Dynamics..........ccocoooiiiiiiiiii 27
4.3. Reaction Diffusion EQUatiONSocoooviiiiiiiii 28
4.4 EHptic EQUatION ..o 28
4.5, Burger’s EQUatiON.........oocooi 29
1.6. Coupled System of PDES........cccocoiiiiiiiiii 29
4.7. Anisotrepic Diffusion ... 29
4.8. Lotka - Volterra Model in 3-D ... 30
REFERENGCES ...t 31

CTCN : COLLOID TRANSPORT CODE NUCLEAR

A User’s Manual

by

Rohit Jain

ABSTRACT

This report describes the CTCN computer code, designed to solve the equations ot
transient colloidal transport of radionuclides in porous and fractured media. This
Fortran 77 package solves systems of coupled nonlinear differential-algebraic
equations with a wide range of boundary conditions. The package uses the
Method of Lines technique with a special section which forms finite-difference
discretizations in up to four spatial dimensions to automatically convert the
system into a set of ordinary differential equations. The CTCN code then solves
these equations using a robust, efficient ODE solver. Thus CTCN can be used to
solve population balance equations along with the usual transport equations to
model colloid transport processes or as a general problem solver to treat up to
four-dimensional differential-algebraic systems.

1. MODEL DESCRIPTION
1.1 Nature and Purpose

The CTCN code is a baseline version of a comprehensive code for
quantifying hydrological colloidal migration of radionuclides for the Yucca
Mountain Project. It is designed to solve the unsteady population balance
equations along with mass, energy and momenta conservation equations in up to
four Cartesian axes. The code is designed to incorporate a wide range of boundary
conditions and submodels within the main equations and thus can be used tor
many other colloidal transport problems.

Yucca Mountain is the site for a proposed HLW repository. Earlier reports
indicate that colloidal transport plays a significant part in the overall migration ot
radionuclides through groundwater(Saltelli et al., 1984; Fried et al., 1976; Champ ¢t
al., 1982; Travis and Nuttall, 1985; Fried et al., 1975; Ho and Miller, 1986, Means el
al,, 1978; Champ et al,, 1984; Gschwend and Reynolds, 1987;). The population
balance model developed to analyze colloid transport requires numerical solution

to the coupled, nonlinear system of resulting differential-algebraic equations.
CTCN is designed to solve these equations. In anticipation of future alterations to
the model, flexibility and robustness have been a major criteria for development
of CTCN.

This manual describes the model, its numerical solution and includes a
user’s guide with several sample problems.

1.2 Mathematical Model

1.2.1 Governing Equations : The population balance permits complete treatment ot
the colloid problem including birth, growth, capture, and dissolution(Randolph
and Larson, 1988). The idea is to establish a phase space consisting of the three
spatial and one temporal coordinates (external coordinates) as well as each
property to be tracked as a separate axis (internal coordinates).

The usual transport equations are modified to include the internal axes. The
rate of change of the properties is assumed to be continuous thus leading to the
definition of a velocity along each property axis corresponding to the growth term.
Radioactive decay is treated by assigning a concentration property axis to each
species to be tracked. It must be noted that the species will not be conserved along
the internal axes and so we have to include ‘death’ and ‘birth’ terms into the
equations.

The equations for CTCN are ,
(i) Component mass balance for each dissolved species 1,
é)&+(V. V)e=DVa-ha-S
ot
where,

¢j = concentration of species ‘i’.

A = radioactive decay constant for species ‘i’.
Dj = effective diffusivity.
Si = sink term representing transfer of species between the colloids and the
matrix.
t = time
v = velocity of the fluid
(ii) Population balance for each colloidal species ‘i’,

m
awu+V'(V\Unk)'DbVZWnk+zM+Dk-8k=o
- o =R

where,
Wu = number density of colloid type ‘i’

& = property axis for property type ‘j’.

v, = diét] = property growth rate

M, = Brownian diffusion coefficient.
Bk = colloid birth function (due to nucleation, agglomeration etc.).

Dy = colloid death function (due to agglomeration, dissolution etc.).
(iii) Fluid velocity:

When there is flow through porous media we can have the saturated flow
regime or the unsaturated flow regime. We ruay also view the problem with a
macroscopic or a microscopic viewpoint. Eventually all these cases will be
incorporated as user specified subroutines. We presently use the Effective
Medium Theory (Sharma and Yortsos, 1987).

kA
-5
Ne
where,
q = superficial fluid velocity.
k = permeability.
Ap = macroscopic pressure drop
N = fluid viscosity
L = macroscopic length.
4 _ 4
8 k 1 P \
4 Z 4
\‘ r} +(S 1)rm I

U, =

where,
ur = mean fluid velocity in pores of radius 1.
Z = coordination number.
rp = pore radius.
I'm = mean pore radius.

We also incorporate the species and overall mass balance as well as the energyv
balance in the usual forms.

1.2.2. Submodels : The model re-ruires submodels for the following phenomena:

Birth (heterogeneous and homogeneous nucleation) rate

Death rate

Growth Rate

Agglomeration rate

De-agglomeration rate

Adsorption/desorption of radionuclides

Decay of Nuclei within or on a colloid
Randolph and Larson give birth mechanisms. H. van Olphen points out specitic
mechanisms for clay colloids. Jantzen and Bibler proposed that iron and glass
waste canisters react under geological conditions to produce iron silicate colloids.

Capture models have been given by McDowell-Boyer et al. for three tyvpes ot
removal: filter caking, straining, and physico-chemical removal (Brownian
motion, inertia, interception, hydrodynamic and sedimentation).

Agglomeration is treated by the birth and death rate terms in the population
balance. Smoluchowski first developed a diffusion limited agglomeration modvl
for monodispersed particles. Hidy and Brock reviewed his work and extensions by
Swift and Friedlander to polydisperse size distributions of agglomerating particles,

Recent work by Hurd included charge effects in a Witten-Sander model and
showed that the resulting fractal-like particle lias a fractal dimension of two but
the number of calculations required make this model useless for now.

Since these submodels are in various stages of development at LANL, the
code has been designed to incorporate them easily in later versions.

1.3. Numerical Model

In spite of the grea: importaiice of these equations to particulate system dynamics,
solutions have been difficult to obtain. Analytical solutions are available only tor
a few simple forms of the initial conditions and submodel formulations.
Numerical solutions have been reported but the optimum method for solving the
equations has not been determined.One promising class of methods for solving
the resulting equations is collocation on finite elements (Gelbard and Scinteld,
1978). It is a widely used method but there is considerable doubt and a large degree
of arbitrariness in the placement of collocation points. Traditional collocation
methods are not accurate since, due to large variations in magnitude of the size
variable, a single high-order polynomial fit is not feasible.

Marchai et al.(1988) present an effective argument for the use ot tinite-
difference techniques in the solution of the population balance equations. They
note that the methods using decomposition of the dependent variable(s) on a sl
of orthogonal functions suffer from a number of disadvantages. For example, the
choice of the set of orthogonal functions is arbitrary, and the ways to achiceve the
mathematical transformation are different from one problem to another. Despite
successes with these techniques, a degree of arbitrariness always remams
Moreover their result is the PSD as a continuous function whereas experimeoent.i
data using particle counters is a histogram because of the inherent lumping ot the
PSD in measurement. The theoretical message is here stronger than thc
experimental measurements (while the moments transtformations approa.
vields less information than the experimental data); the model is too precise ton
computational adjustment of kinetic parameters.

Thus we use finite-differencing techniques to solve the resulting equatic:
Due to uncertainties in the submodels at this point, the code has been designe -
handle a general system of coupled, nonlinear PDEs and ODEs. The Metho
Lines is a handy, reliable tool to numerically approximate the solution ot sv-+
of differential-algebraic equations. The PDEs are converted into sets of co i
first order ODEs by discretizing all but the temporal axis. Thus we get an O
each spatial point. These ODEs are then solved using a robust, adaptive
solver. This idea was first appliec’ by E. Rothe in 1930 (Liskovets, In
equations of parabolic type and indeex is a ‘natural’ method for parabolic I’
has been seen to be a very robust method for a variety of problems, notat.-
‘driven cavity’ problem using the streamline-vorticity formulation of the N
Stokes equations where it outperformed the ADI method (Melgaard and i
1981). Most general PDE software uses the method of lines (Melgaar:
Sincovec, 1981; Scheisser, 1971; Sincovec and Madsen, 1974; Loeb, 1974; t
1973; Hyman, 1976). Until recently, most of these packages addressed prot.. :
one or two spatial dimensions. However, recent advances in solving large -

of ODEs accurately and economically allow solution of large systems (upto four
dimensions) feasible.

If a survey is made of general purpose solvers for differential systems!
Machura and Sweet, 1980), it is seen that despite the emergence of many new
methods for the solution of such systems, the method of choice continues to be the
method of lines. It has been used in a variety of codes(put all MOL code ref.s).
The user implements this method by discretizing the spatial derivatives etc. with a
choice from an array of finite difference methods available in the code and
choosing from two general purpose ODE solvers.

To accommodate many yet to be defined submodels, constitutive
relationships, and boundary conditions, the CTCN code is designed to be a general
differential-algebraic solver. It is capable of solving equations of the form,

g _ i vzt du dy duy duy 02u; 92y 92y 92y A(xf) Ayhy Azt (”)(bﬁ')i
PIEE e AR AR R P dy’ dz’ or’ gx2’ 9y2’ 9z2 9r2’ dx T dy ' dz Jr |
Here, the subscript ‘i’ indicates the different dependent variables, x, y, z, and r arc
the four independent spatial axes and xf, yf, zf, and rf are terms comprising of flux
expressions for which it is sometimes desirable to difference them as a whole
expression. These flux variables can also be differenced directionally, i.e. forward
or backward differencing depending on the direction of the characteristics oriented
into the axes. Thus we have four such terms, one corresponding to each of the
four independent axes, along which its first derivative is to be taken. These terms
themselves can be functionals of the form,
2.0 92 92, 32

Xf(l) =g ui' X, ¥, Z, T, %&’ éi‘ ili‘ iul’ 9__&, a___u_l_' .a:ml,l‘_’ i..tj_
dx’ dy’ 9z’ dr’ 9x2 9y2’ 922 or2
and similarty for yf(i), zf(i) and rf(i).

Apart from the equations, we need grid specificatior< and boundary and
initial conditions. The equations are solved on a finite, artesian, equispaced,
orthogonal grid and with specific initial conditions specified by tI user. Initial
conditions need not be consistent with the boundary conditions.

A wide variety of boundary conditions can be incorporated into the problem
domain. In general, the following types of boundary conditions are used,

Ju.
. 1L — , _ A e
qu+ b, - ¢ at the x - boundaries

and similarly for the other boundaries. CTCN incorporates boundary
conditions by using fictitious points and cubic interpolation. It is somctimes
necessary tQ impose a boundary condition that should actually be enforced at
infinity but is enforced numerically at a large distance from the last meaningtul
grid point. CTCN obviates the use of such artificial and error-prone procedures.
This kind of condition is handled by setting all coefficients (a, b and ¢) tor that
boundary condition to be set to zero. The code then interpolates the values ot the
dependent variables as required into the fictitious points.

The code offers many options for the type of finite-difference spatial
discretizations to be performed. It incorporates these into the equations alony with
the boundary conditions to form a set of ordinary differential equations. It there
are NPDE dependent variables on (NX * NY * NZ * NR) grid points in the tour

axes respectively, then we get (NPDE * NX * NY * NZ * NR) ODEs. As can be seen,
the design of the code is geared towards flexibility and generality. This version of
CTCN shculd be seen as a research version designed to be able to incorporate
submodels, equations and boundary conditions under development and also to
assist the development of these very submodels. Once these parameters have been
set, the code can be ‘fixed’ in the sense that the user would only have t¢ input a
data file giving values for the parameters entering the equations etc. There would
be no need for user-specified subroutines and consequently CTCN could be set up
so that only the output and input data files would be visible to the user.

The ODEs resulting from any MOL(method of lines) discretization are stift,
i.e. components of the solution have time constants that vary in orders of
magnitudes. This inherent stiffness is compounded by stiff features within the
original system of equations (e.g. reactions with drastically different rate constants,
diffusion etc.). There has been a lot of work on solving huge systems of stiff ODEs
largely motivated by the generality and effectiveness of the MOL approach.
Hindmarsh consolidated these efforts into his set of codes ODEPACK at LLNL. Of
these codes, experience has shown the code LSODES to be the most effective
package for the problems we consider. However, LSODES is not efficient for large
problems (> 20-40,000 ODEs). Recent research by Hindmarsh and Brown resulted
in the development of an experimental solver LSODPK which has so far proved to
be more effective than LSODES.

The code is designed to accommodate either solver with minimal
modifications.

2.0 CODE DESCRIPTION
2.1 Files and Operating Parameters

CTCN is targeted for use on Sun 4.0 and VAX computers running UNIN or
VMS operating systems. Efforts have been made to make the code as machine-
independent as possible. CTCN is written in Fortran77 and can be used on any
computer running UNIX or VMS without any modifications except possibly the
cpu-timing calls. A working knowledge of Fortran77 is necessary to use the code
For two-dimensional problems, a post-processing option is available to creatc
ASCII input files for the NCSA Imagetool graphics package.

The package consists of the following files and subroutines:

Files Routines

makefile

inc.for include file

dims.h include file

user.f main program, subroutines eqn, func
and bound.

face.f subroutine face.

setup.f subroutines bset, bcal, fder, dercal and

set.
Isodes.f ODE solver LSODES.
Isodpk.f ODE solver LSODPK.

These files have counterparts for VMS systems.
2.2 Subroutines and their description

See fig. 1 for a structural overview of CTCN. A list of the tasks performed by the
various subroutines follows.

1. main program sets up choice of options for CTCN and the ODE
solver. Defines the grid points and initial
conditions.

2. subroutine egn defines the equations for the dependent variables.

3. subroutine func defines the flux terms.

4. subroutine bound defines the boundary conditions.

5. subroutine face incorporates boundary conditions into the initial

data. Calls the ODE solver for the different output
times, times the code, prints data for CTCN and
some of the ODE sc..ver’s outputs, allocates array
sizes for the ODE solver and may be used to change
some of the other >ptional inputs to the ODE

solver.

6. subroutine set calculates the right hand side of the ODEs for the
ODE solver.

7. subroutine dercal evaluates the spatial derivatives of the dependent
variables.

8. subroutine fder evaluates the first derivatives of the flux terms.

9. subroutine bset evaluates the values of the dependent variables at

the fictitious points to incorporate the boundary
conditions into the discretization.

10. subroutine bcal calculates the boundary values.
11. subroutine Isodes driver routine for the ODE solver package LSODES
(and lsodpk) (and the package LSODPK).

2.3 Step-wise Operation

For any particular problem the user has to modify files ‘user.f’, ‘inc.for’ and
possibly ‘face.f” according to the step-wise procedure detailed below.

Step 1: Enter the dimensions of the system in file ‘inc.for’. This is a
one-line file of the form,
parameter (npde=1, nx= 101, ny=1, nz=1,nr=1).
Set the unused axes to have at least one grid point and that
for a one-dimensional problem, the x-axis has to be the
independent axis for correct results. For two-dimensional
problems, the x and y axes have to be used (and not the x and
z axes or the y and z axes etc.) and so on. Also, once the axes
are chosen, they must be set so that the number of gridpoints
is in the order NX < NY < NZ < NR. This does not include
the dummy axes and is essential for maximum efficiency
when using the LSODES solver.
Step 2: Modify the MAIN program in file ‘user.f’. Set the following
variables (see example problems),
(i) output times - tout, tint, tlast, nout.
(i1) ODE solver options - itol, rtol, atol, mf.
(iii) Evaluation flags for the derivatives - meth.
(iv) Grid points and initial conditions - x, v. z, r and u.

Step 3 : Modify subroutine EQN in file ‘user.f’. Enter the equations
for the system using either the one grid point form or the one
call form.

Step 4 : Modify subroutine FUNC in file ‘user.f’. Enter the flux terms,

if any, for the system using either the one grid point form or
the one call form.

Step 5: Modify subroutine BOUND in file ‘user.f” so as to reflect the
boundary conditions for the system.
Step 6 : - Modify the block data module BDAT in file ‘user.t’. Here, one

only needs to make the dimensions of variable meth in the
main program consistent with the number of zero’s entered
in the data statement in BDAT.

Once these steps have been completed, the code is ready to use. It may be ne.ossary
to modify subroutine FACE in file ‘face.f’ if the cpu timing calls need to be
modified for a particular computer or if the printing routine needs to be modificd.

The operation of the code for UNIX machines is as follows (commands to be typed

in are in italics) :

(1)The user modifies files ‘inc.for’ and ‘user.f’ according to his problem as detailed
later.

(2)If the ODE solver needs to be changed or the printing and/or code timing calls
need to be modified, the user may modify file ‘face.f’.

(3)The user types in the make command and an executable file ‘ctex’ is created.

(4)Typing in the filename for the executable ctcx begins execution. The output tile
‘ctcn.out’ is created at the end of the run.

The operation of the code for VMS machines is as follows:

(1)The user modifies files ‘inc.for’ and ‘user.for’ according to his problem as
detailed later.

(2)If the ODE solver needs to be changed or the printing and/or code timing calls
need to be modified, the user may modify file ‘face.for’.

(3)The command @make has to be executed once before using a third-party make.
This executes the file ‘make.com’. This is necessary only once after each
fresh login since this file links with a script containing default rules and
software for the make command.

(4)The user types in the make command and an executable file ‘ctcn.exe’ is created.

(5)Typing in the command run ctcn begins execution. The output file ‘cten.out’ is
created at the end of the run.

3.0. EXAMPLE PROBLEMS

In this section a complete description of the code is given by showing it-
usage for solving two example problems. The first problem is a simple dittusio:
equation in one dimension while the second one is a two-dimensional tracture
problem that uses the population balance approach in its most elementary 1o
but is readily extensible to a complete model with aggregation, birth terms etc

01

NDLD JO MIAIAQ TRINIONNG 1 813

MdAO0S1/ S4dost
13A108 30

\ﬂ

v Dd sunnoigns vOudQ duunoiqns

1qsa sunnoxqns) (¥d@d dunnoiqns

’ 35 aunnolqns

/ 44DV, ot
] ~
q aunnoIqns

NO

gDV aunnoigns

(NNOG duunoiqns wessoid NIVIN

Tpatjipow 151y 4 HASN, o

3.1. Example 1: Conduction in a Semi-infinite Medium : A semi-infinite medium,
x 2 0, is initially at zero temperature. For times t > 0, the boundary surface at x = 0
is subjected to a temperature Tp (= 1.0). We wish to calculate the temperature
distribution at any given time. The equation is ,

oT_, ¥T
o ax2
Initial Conditions : u=0.
Boundary Conditions :
atx=0,u=10 and at x = infinity, u = 0.

We use a grid of 101 points distributed evenly in 0 < x < 1.0 taking a = 0.005 and
seek the solution for t = 5.
The analytical solution is

T=Tp erfc(—M_é____(;—;)

Detailed below is the complete procedure for solving the first example equations.

Step 1: Modify file ‘inc.for’ to reflect the dimensionality of the problem. We will
solve this one-dimensional PDE on a grid of 101 points. In this case tile
‘inc.for’ is written as,

parameter (npde=1,nx =101, ny=1,nz=1,nr=1)

Note that we must set the unused axes to have at least one grid point and

that for a one-dimensional problem, the x-axis has to be the independent

axis for correct results.

Step 22 Modify the main program. The following variables are to be set,

(i) output times : Set the number and values of the output times where
the solution is to be calculated. For our problem we want otitput at t =
5.0 s. The integration must begin at t =0 and end at t =5.0. The
following variables are to be set,

1. dimension TOUT as TOUT(1) since we need output at just one time.

2. TINT - Integration starts at t = TINT and initial values are given
at this time. Set TINT = 0.

3. TOUT(NOUT) - array of size NOUT. Contains the values for the
output times. Set TOUT(1) = 5.0.

4. TLAST - Integration ends att = TLAST. Set TLAST = 5.0.

5. NOUT - number of output times. Set NOUT = 1.

(i)).ODE solver options : Four parameters are to be set. Three are
concerned with error tolerances for solving the ODEs. Relative and
absolute error tolerances can be specified in scalar or vector form, i.e.
for the whole system of equations or for any number of subsystems
(e.g. for each dependent variable etc.). ITOL, RTOL and ATOL are
these three parameters. If RTOL(relative error tolerance) and/or
ATOL(absolute error tolerance) are vectors they must be dimensioncd
accordingly and ITOL(flag) must be set to two, otherwise it should be
set to one. The tolerances may be set as vectors if one of the
dependent variables differs significantly in magnitude with the others

11

Step 3:

and so would require a different level of accuracy during integration.
A good rule for choosing the tolerances is that if the data requires
precision of 10-" then RTOL should be set to 10- (" + 1 and ATOL should
be two orders of magnitude less than RTOL.

The fourth parameter is the ODE integration flag MF. Usually it
should be set to 10 for a non-stiff problem and 22 for a stiff problem if
LSODPK is to be used and 10 and 222 respectively if LSODES is to be
used. For more details see the documentation for these solvers. The
changes to be made are,

1. ITOL - Set ITOL = 1 (RTOL and ATOL are scalars).

2. RTOL - Set RTOL = 10-4 (need a precision of 10-3).

3. ATOL - Set ATOL = 10-6.

4. MF - Set MF = 22 (the problem is stiff and the solver is LSODPK).

(iii) Evaluation flags for the derivatives : For every dependent variable
we must indicate which spatial and/or flux derivatives are to be
calculated and by what methods. Since there are two spatial and one
flux derivatives for each of the four axes, there are (2+1) x 4 = 12 tlags
for each dependent variable. Total number of flags = 12 * NPDE. Thus
we allocate integers for a variable METH of dimensions (NPDE, 12).
The flag corresponding to each term and the options for its value and
their significance are given in the comments in the code.

1. METH - Looking at the equations we see that we need to calculate
only the second derivative with respect to x for the one dependent
variable. Thus we need only to set a value for

METH(1,11). We choose to use centered second order
differencing for the derivatives. Thus, we set
meth(1, 11) = 2

(iv) Grid points and initial conditions : The grid points must be given
values and the initial conditions for the system must be specified.
Since our problem is one-dimensional we need to set DX, X(J) and UL,
J, 1,1,1) as follows,

c grid extends from 0 to 1.0. grid spacing dx = ***
dx=1.0/(nx-1)

do 20 j=1,nx

¢ set values for x(j) and initial conditions in u(1,j,1,1,1)

x(j)=(j-1D*dx
_-u(1,j,1,1,1)=0.0

20 continue

Modify subroutine EQN for the problem so as to describe the right-hand

side of the equations. The time derivatives of the dependent variables

are to be defined in terms of the grid points (x, y, z, r), time t and the
spatial (ux -> first derivative of u(l) with respect to x, uxx -> second
derivative of u(l) with respect to x etc.) and flux derivatives (tx ->
derivative of flux term xf(1) with respect to x) of the dependent variables.

This subroutine may be written in two forms. In the first form the

subroutine defines the equations at one spatial mesh point for each cail

12

This form is the most applicable and easy for the user. Sometimes,
however, the second form of the subroutine in which the user defines all
the equations at all the grid points in one call to subroutine EQN, is more
efficient. The second form may be used if the user needs to prescribe
special discretizations, use unequal grid spacings, incorporate global
integral relationships into the equations or to include ODEs as boundary
conditions. This would be essential for any detailed population balance
model since terms like the birth of particles into a size region would be
given by an integral term involving particles with sizes less than this
particular size range (aggregation). The choice of the second form is
indicated to CTCN by setting IX > NPDE. We give both forms of the
subroutine for cur example problem,
Form 1: One call defines equations at one grid point.

subroutine eqn(ut,u,ux,uy,uz,ur,uxx,uyy,uzz,urr,fx,fy £z fr,t x,y

& ,Z,T,ix)

integer ix,npde

include 'inc.for'

real ut(npde),u(npde),ux(npde),uy(npde),uz(npde),ur

& (npde),uxx(npde),uyy(npde),uzz(npde),urr(npde),

& fx(npde), fy(npde), fz(npde), frnpde),t,x,y,z,r
¢ ***modify the lines below to reflect the equations to be solved****

ut(1)=0.005*uxx(1)
C *!"b***l&#lﬂ(‘no need to set ix**!ﬂ(’*****#*
¢ *****end of problem specific part*****

return

end

Form 2 : One call defines equations at all grid points.
subroutine eqn(ut,u,ux,uy,uz,ur,uxx,uyy,uzz,urr,fxfy,fzfr,t,x,y
& ,Z,1,iX)
integer ix,npde
include 'inc.for'
c ******note changes in dimensioning for this form of the sub.****
real ut(npde,nx,ny,nz,nr),u(npde,nx,ny,nz,nr)ux(npde,nx,ny,nz,nr
&),uy(npde,nx,ny,nz,nr),uz(npde,nx,ny,nz,nr),ur(npde,nx,ny,
& nz,nr),uxx(npde,nx,ny,nz,nr)uyy(npde,nx,ny,nz,nr),uzz(
& npde,nx,ny,nz,nr),urr(npde,nx,ny,nz,nr),fx(npde,nx,ny,nz,nr)
& fy(npde,nx,ny,nz,nr) fz(npdenx,ny,nznr) fr(npde,nx,nynz,
& nr)t,x(nx),y(ny),z(nz),r(nr)
c***end of changes in dimensioning for this form of the subroutine**
¢ ***modify the lines below to reflect the equations to be solved***~
¢ ***note the do loop for this one dimensional problem involves
¢ only the x subscript. All other subscripts are one.*****
do10j =1, nx
ut(1,j,1,1,1)=0.005*uxx(1,j,1,1,1)
10 continue

13

Step 4 :

Step 5:

c***This form is indicated to CTCN by setting ix to be greater than
C npde**l‘*il

ix=4
¢ *****end of problem specific part*****

return

end
When the equations involve the derivative of a flux function, that
function should be defined in subroutine FUNC to retain the divergence
form of the equations in the discretizations. These terms can also
optionally be differenced by directional differencing. Subroutine FUNC
defines four flux terms so as to provide the first derivative with respect to
each of the axes. These terms are XF, YF, ZF and RF for the x, y, zand r
axes respectively. The structure of the subroutine and the definition ot
the four terms are analogous with the structure of subroutine EQN and
the definition of the time derivatives in it. Again, we may use
subroutine FUNC in the same two forms as subroutine EQN except that
then CTCN's directional differencing option may not be used to
difference the flux terms. For this example we do not use a flux term.

subroutine func(xf,yf,zf,rf,u,ux,uy,uz,ur,uxx,uyy,uzz,urrt,x,y,z

& ,Lixnpde)

real xf(npde),yf(npde),zf(npde),rf(npde),u(npde),ux

& (npde),uy(npde),uz(npde),ur(npde),uxx(npde),uyy

& (npde),uzz(npde),urr(npde),t,x,y,zr,v,p

integer ix,npde
¢ *****modify this part for the specific problem******

c no flux term

¢ *****end of problem-specific part********
return
end

When the boundary conditions are not defined in subroutine EQXN usinz
the second form (define the equations at all grid points in one calb. i
user must set them in subroutine BOUND. This is done by giving vl
to the variable B. As mentioned earlier, the general form ot the boun«..:-
conditions is,

M
ox

for_the x-axis and analogously for the other axes. Thus the variable &
an array consisting of 3 x 2 x 4 x NPDE elements since there are tour -
with two boundaries each and three coefficients (a, b and ¢) for .
dependent variable (=NPDE dependent variables) at each boundar:
these elements we define only the ones relevant to the problem, 1 -
one-dimensional problem we define only those concerned with ti -
x-boundaries. If the actual boundary condition is to be entor.. -
infinity, it is frequently more useful to not impose a boundary con
at an artificially large distance in the grid but to allow cubic interp

at that boundary. This option is chosen by setting the coetficients (.

qu +b

14

c) to zero. We make use of this option for our problem at the boundary x
= 0.2. Thus for our problem the subroutine BOUND looks as follows,
subroutine bound(u,b,x,y,z,r,t)
integer npde
include 'inc.for'
real u(npde),b(npde,24),x,y,z 1t
¢ This subroutine defines the boundary conditions - a*u + b*(du/dn) = ¢
¢ du/dn is the outward normal derivative at the boundary
¢ i,b,care functions of x,y,z,r,t,u(i).
c The a,b and c values are entered in variable b in the following way:
¢ b(i,1), b(i,2) and b(i,3) --> a,b and ¢ at x=x(1) for the i-th component
¢ b(i,4), b(i,5) and b(i,6) -~-> a,b and ¢ at x=x(nx) for the i-th compe—ent
c¢b(i,7), b(i,8) and b(i,9) ---> a,b and c at y=y(1) for the i-th component
¢ b(1,10), b(i,11) and b(i,12) ---> a,b and c at y=y(ny) for the i-th component
¢ b(i,13), b(i,14) and b(i,15) ---> a,b and c at z=z(1) for the i-th component
¢ b(i,16), b(i,17) and b(i,18) ---> a,b and ¢ at z=z(nz) for the i-th component
¢ b(i,19), b(i,20) and b(i,21) ---> a,b and c at r=r(1) for the i-th component
¢ b(i,22), b(i,23) and b(i,24) ---> a,b and ¢ at r=r(nr) for the i-th component
¢ CAUTION: Enter all values of b. Default values are not zero!
c******begin problem-specific part. set values for b.**”#****
¢ at x=0,
c ul=1
b(1,1)=1.0
b(1,2)=0.0
b(1,3)=1.0
c at x=1.0,
¢ Atx = infinity, u =0.
b(1,1)=0.0
b(1,2)=0.0
b(1,3)=0.0
c******end problem-specific part********
return
end
Step 6: Modify the block data module BDAT. There is only one line that needs
modification and that is the data statement for variable METH. It must be
made dimensionally consistent with METH in the main program. As
explained before, for this problem METH has dimension 12. Theretore
our modification is,
DATA METH/12 * 0/

We now give a complete listing of the file USER.F for the first example
problem. Comment lines are italicized . Actual Fortran code is in plain type and
the problem-specific parts of this code are in bold type. Modifications are preceded
by asterisks in the comment lines.

3.1.1. Code Listing for example 1

15

(TR WL T o TN oY

o0

O 6 0O 60 6 6 606

o0

6o a0 00 a6

i)

Lv)

o0 0

~Noee e 0

oo 0 6

program user
This program interfaces with CTCN to solve systems of coupled, nonlinear
PDEs of upto second order in upto four spatial ixes and first order in
time. Thus we solve for u(i,jk,1,m) where,
i =1 to npde (number of PDEs)
J =1 to nx (number of points in the x axis)
k =1 to ny (number of points ir the y axis)
| = 1 to nz (number of points in the z axis)
m =1 to nr (number of points in the r axis)
The problem should be set up so that the axes should be used in order x,yzr.
thus, a 1-dimensional problem MUST use the x-axis only. A 2-D problem must
use the x and y as principal axes (not x and z or y and r or y and z etc.).
after this the number of points must be ordered as nx <= ny <= nz <= nr.
This is only necessary for using the LSODES solver efficiently.
Thus for a two dimensional 10 x 61 grid, nr=nz=1, nx=10 , ny=61.
The basic problem parameters are defined in this main program. The eqn.s
are written out in subroutine egn, the boundary conditions in subroutine
bound and flux terms in subroutine func. Boundary conditions may be of the
general form, --> a*u + b*(du/dn) = ¢ --> a,b and c are functions of the
spatial coordinates,time and other u variables. du/dn is the derivative
normal to the boundary. Boundary conditions need not be specified at all,
in which case a cubic extrapolation technique is used.

For some problems it may be desirable to difference certain terms by
skewed differences by considering the variation with u of the terms to be
differenced. in this case, these terms may be entered using subroutine
func and the appropriate differencing method selected. See subroutine
func for further details.

Thus, to solve any given system, the user needs to modify this program
and include file INC.FOR.

Include file ‘inc.for’ sets up the dimensions.

integer npde,nx,ny,nz,nr,meth,idim

include 'inc.for'

double precision u(npde,nx,ny,nz,nr),tol,dx,dy,dz,dr,du,x,y,z,r

common /cl/ tol,dx,dy,dz,dr,du

common /¢6/ x(nx),y(ny),z(nz),r(nr)

common_/c7/ idim,meth(npde,12)
This is the user-defined program specific to a particular problem
and sets up parameters for CTCN.

tout(i)---> array of output times. nout=i

tint---> initial value for time.

tlast---> final value of t. Integration is done upto tlast.

rtol---> relative tolerance for the ODE integrator.

atol---> absolute tolerance for the ODE integrator. Can be a vector

defined for each ODE, if so, set itol(below)=2.
*Rerxtirihis is where the modifications begin®*rrreereE

16

c Y™™ modification™** dimension tout****rrrrr
double precision tout(1),tint,tlast,rtol,atol
¢ nout---> no. of output times. Dimension of the tout array.
c mf---> ODE integration method flag, the solver LSODPK is used.
¢ itol---> 1 or 2 accordingly as atol is a scalar or a vector.

integer nout,mf,itol
Bdat is the block data subprogram at the end of this file.
external bdat
Integration starts from t=tint
modification*set tint****
tint=0.d0
c Enter array of times when output is required.
c****modification*****set tout(nout)=******
tout(1)=5.d0
c Integration stops at t=tlast.
c*****modification******set tlast*rrrrrr
tlast=5.d0
¢ The number of output times=array size for tout=nout
c ™ modification*****set nout
nout=1
c Itol,rtol and atol are used to specify error tolerances for LSODPK-the ODE
c integrator.
c****modifications****set itol,rtol and atol******

(o]

(oW oY

itol=1

rtol=1.d-4

atol=1.d-6
¢ ode solvers require an ODE integration flag
¢ for LSODPK solver = mf = 22 for stiff problems, &
c = 10 for non-stiff problems.
c for LSODES solver = mf = 222 for stiff problems, &
¢ = 10 for non-stiff problems.
cT**modification**** *set mfrreererr

mf=22

¢ The type of differencing for each term is indicated by meth.
¢ meth(i,1)= flag for ur(i), i.e. du/dr for the i-th pde.

¢ meth(i,2)= flag for urr(i), i.e. d2ufdr2 for the i-th pde.
¢ meth(i,3)= flag for fr(i), i.e. d(rf)dr for the i-th pde.

¢ meth(i4)= flag for uz(i), i.e. du/dz for the i-th pde.

¢ meth(i,5)= flag for uzz(i), ie. d2u/dz2 for the i-th pde.
¢ meth(i,6)= flag for fz(i), i.e. d(zf)/dz for the i-th pde.

¢ meth(i,7)= flag for uy(i), i.e. du/dy for the i-th pde.

¢ meth(i,8)= flag for uyy(i), i.e. d2u/dy2 for the i-th pde.
¢ meth(i,9)= flag for fy(i), i.e. d(yf)ldy for the i-th pde.

¢ meth(i,10)= flag for ux(i), i.e. dujdx for the i-th pde.

¢ meth(i11)= flag for uxx(i), i.e. d2u/dx2 for the i-th pde.
¢ meth(i,12)= flag for fx(i), i.e. d(xf)/dx for the i-th pde.

17

if meth(**) = 2 ---> second order centered differences
= 4 ---> fourth order centered differences
= -2 ---> second order skewed differences
(only for flux terms written into rf,zf,yf xf)
-4 ---> third order :kewed differences
(only for flux terms written into rf.zf,yf,xf)
Default value = 0
******modl'fication(s)ﬁ******set meth (!(-/ ’(-) ok o % k%
meth(1,11)=2
c Enter the axes grid sizes, default = 1.d0. dr=delta(r),...etc.
crHtmodification(s)***** *enter grid sizes****
dx=1.d0/dble(nx-1)
¢ Enter grid point values.Input r(i)--> grid points on r axis....etc.
cr***modification(s)*****enter grid values*******
do 20 j =1,nx
x(j)=(j-D*dx
¢ Enter initial conditions. no default values.
c****modifications*******enter initial conditions******
u(1,j,1,1,1)=0.D0
20 continue
¢ Call the interfacing subroutine CTCN
call cten(u,rtol,atol,tint,tlast,tout,nout,mf,itol)
stop
end

o000 n 00
H

subroutine eqn(ut,u,ux,uy,uz,ur,uxx,uyy,uzz,urrfx,fy fzfr.t,x,y
& ,Z,T,iX)
¢ This subroutine is used to enter the PDEs
integer ix,npde
include 'inc.for'
c *****optional modifications*****change dimension statement if second form
c of subroutine EQN is to be used*********
double precision ut(npde),u(npde),ux(npde),uy(npde),uz{npde),ur
& (npde),uxx(npde),uyy(npde),uzz(npde),urr(npde),
& fx(npde),fy(npde),fz(npde), fr(inpde),t,x,y,z,r
¢ Input the PDEs in the form ut(i)=f(u(i),x,y,z,r t,ux(i),uy(i),uz(i),ur(i)
¢ ouxx(i),uyy(i),uzz(i),urr(i) fx(i) fy(i) fz(i) fr(i)
c****modifications******problem spccific equations****
ut(1)=5.d-3*uxx(1)
return
end

subroutine func(xf,yf,zf,rf,u,ux,uy,uz,ur,uxx,uyy,uzz,urr,t,x,y,z
& ,I,ix,npde)
¢ This subroutine defines flux terms for which it is desirable that they be

¢ differenced as a whole, using centered or skewed differences. Four flux

18

¢ terms are defined corresponding to the four axes so that it is possible
c to calculate their first derivatives with respect to the corresponding axes.
c *****optional modifications*****change dimension statement if second form
c of subroutine func is to be used*********

double precision xf(npde),yf(npde),zf(npde), rf(npde),u(npde),ux

& (npde),uy(npde),uz(npde),ur(npde),uxx(npde),uyy

& (npde),uzz(npde),urr(npde),t,x,y,zr

integer ix,npde
c*****modifications******enter flux terms for the problem*****
c no flux term

return

end

subroutine bound(u,b,x,y,z,r,t)
¢ This subroutine defines the boundary conditions - a*u + b*(dufdn) = ¢
¢ ab,.c are functions of x,yz.rtu(i). dufdn is the normal derivative at
c the boundary.
¢ The a,b and c¢ values are entered in variable b in the following way:
c b(i,1) , b(i,2) and b(i,3) ---> a,b and ¢ at x=x(1) for the i-th component
c b(i,4), b(i,5) and b(i,6) ---> a,b and c at x=x(nx) for the i-th component
c b(i,7) , b(i,8) and b(i,9) ---> a,b and ¢ at y=y(1) for the i-th component
¢ b(i,10) , b(i,11) and b(i,12) ---> a,b and c at y=y(ny) for the i-th component
¢ b(i,13) , b(i,14) and b(i,15) ---> a,b and ¢ at z=z(1) for the i-th component
c b(i,16) , b(i,17) and b(i,18) ---> a,b and c at z=z(nz) for the i-th component
¢ b(i,19) , b(i,20) and b(i,21) ---> a,b and c at r=r(1) for the i-th component
¢ b(i,22) , b(1,23) and b(i,24) ---> a,b and c at r=r(nr) for the i-th component
¢ CAUTION: Enter all values of b. Default values are not zero!

integer npde

include 'inc.for’

double precision u(npde) ,b(npde,24),x,y,z,r,t
c****modification(s)*****enter boundary conditions******
c at x=0,
¢ u(l) =1

b(1,1)=1.d0

b(1,2)=0.d0

b(1,3)=1.d0
catx=0.2, -
c At infinity , u(1) = 0.

b(1,4)=0.d0

b(1,5)=0.d0

b(1,6)=0.d0

return

end

block data bdat
integer npde,nx,ny,nz,nr,meth,idim, mff

19

include 'inc.for'
¢ Include file dims.h sets up all the common blocks.

include 'dims.h'’
c***modification***make number of zeros in data statement consistent with
c dimensioning of meth for this problem*******

data meth/12*0/

end

Include file ‘inc.for’ : parameter(npde=1, nx=11, ny=11, nz=41, nr=1)

Example Problem 1 : Conduction in a Semi-infinite Medium
1.0

0.9 -1 O—Frrimercat)

—+o—{ T (abhalytical)
0.8

0.7 3 UV S

0.6 t

0.5

e

0.4

0 T T e T Sy T e e T SRR SRR PR

0.2

0.1

4
0.0 +— v , . ~—t

00 0.1 0.2 03 04 05 06 07 08 09 1.0
X

3.2. Example 2 :Three-dimensional Fracture Problem: The system consists of a
narrow rectangular fracture which contains colloids of various sizes flowing in
groundwater at a certain velocity. The colloids are instantly adsorbed into the rock
matrix on coming in contact with it. In the principal flow direction, the transport
is dominated by the convection term while in the other direction, diffusion is the
dominant process. Since the diffusivity is a function of particle size, the PSD
(particle size distribution) at the outlet is very different from the PSD at the inlet.
For this example, we are taking a very idealized boundary condition
(instantaneous adsorption) and neglecting effects like agglomeration, birth, death,

20

etc. However, as can be seen, these terms are very easily incorporated into this
example.
The equation is,

N o -‘1)2)92+Dx&+1)y82“
ot 5/ |ox Ix2 dy?
The velocity profile above can be derived for a rectangular fracture. Here v
(average velocity) = 2/3 v ., (maximum velocity). The parameters for the
simulation are taken from Rundberg’s report.
Vmax = 0.0024 cm/s
D, =0.0011cm?/s
d = half-width of the fracture = 0.0295 cm
Length of fracture = 12 cm.
Assuming spherical particles and substituting values for water at 20 © C into
the Stokes-Einstein equation, we get
D= 213x10°°
Y™ radius (in microns) cm2/s
If we were to include aggregation and other processes, we would use another axis
as he size axis. This procedure will be followed here also since it makes data
interpretation easier. Thus we have three independent axes. We will use a grid ot
11 x 11 x 41 (NX x NY x NZ) where, as indicated in the previous example, we must
use the axes as follows,
X ----> Size axis. We use a logarithmic scaling from 1 nm to 1 p.
Thus, X =In(r/ 1u) / In (Inm / 1u) where r is the radius of the
particle.
Y ----> Width of the fracture, 0 €Y €0.0259 cm.
Z ----> Length of the fracture, 0 < X <12 cm.

Initial Conditions : u=20

Boundary Conditions :
at X =0, no boundary condition imposed (size axis).
at X =1, no boundary condition imposed (size axis).
atY =0, du / dy =0 (symmetry).
at Y =0.0295, u=20 (instant adsorption).
atZ =0, u=10 (input PSD).
atZ =12, boundary condition at infinity, i.e. u = 0 at Z = infinity.

We seek a solution at t = 5000 s. Other simulations in two dimensions (taking
particles of one particular size) with a variety of boundary conditions at the tutt
and considering unsaturated flow have been performed using CTCN.

3.2.1. Code listing for example 2 :

program user
This program interfaces with CTCN to solve systems of coupled, nonlincar
PDEs of upto second order in upto four spatial axes and first order in
time. Thus we solve for u(i,j.kl,m) where,
i =1 to npde (number of PDEs)
j =1 to nx (number of points in the x axis)

[T ST WK S W

21

v}

ST SN S ST T W TS

(T S N

[}

to ny (number of points in the y axis)
to nz (number of points in the z axis)
m =1 to nr (number of points in the r axis)
The problem should be set up so that the axes should be used in order x,y.z.r.
thus, a 1-dimensional problem MUST use the x-axis only. A 2-D problem must
use the x and y as principal axes (not x and z or y and r or y and z etc.).
also, after this the number of points must be ordered as nx <= ny <= nz <= nr.
This is only necessary for using the LSODES solver efficiently.
Thus for a two dimensional 10 x 61 grid, nr=nz=1, nx=10 , ny=61.

T' - basic problem parameters are defined in this main program. The eqn.s
are written out in subroutine eqn, the boundary conditions in subroutine
bound and flux terms in subroutine func. Boundary conditions may be of the
general form, --> a*u + b*(du/dn) = ¢ --> a,b and c are functions of the

spatial coordinates,time and other u variables. du/dn is the derivative
normal to the boundary. Boundary conditions need not be specified at all,

in which case a cubic extrapolation techniqu. is used.

For some problems it may be desirable to difference certain terms by
skewed differences by considering the variation with u of the terms to be
differenced. in this case, these terms may be entered using subroutine
func and the appropriate differencing method selected. See subroutine
func for further details.

Thus, tc solve any given system, the user needs to modify this program
and include file INC.FOR.

Include file ‘inc.for’ sets up the dimensions.

integer npde,nx,ny,nz,nr,meth,idim

include 'inc.for'

double precision u(npde,nx,ny,nz,nr),tol,dx,dy,dz,dr,du,x,y,z,r

common /cl/ tol,dx,dy,dz,dr,du

common /c6/ x(nx),y(ny),z(nz),r(nr)

common /c7/ idim,meth(npde,12)
This is the user-defined program specific to a particular problem
and sets up parameters for CTCN.

tout(i)---> array of output times. nout=i

tint---> initial value for time.

tlast---> final value of t. Integration is done upto tlast.

rtol---> relative tolerance for the ODE integrator.

atol---> absolute tolerance for the ODE integrator. Can be a vector

‘defined for each ODE, if so, set itol(below)=2.
*eretrxxtthis is where the modifications begin*rrrrrrerEx
A modification**** dimension tout**rrerrrr
double precision tout(1),tint,tlast,rtol,atol

nout---> no. of output times. Dimension of the tout arr:

mf---> ODE integration method flag, the solver LSODPK is used.
itol---> 1 or 2 accordingly as atol is a scalar or a vector.
integer nout,mf,itol
Bdat is the block data subprogram at the end of this file.

=1
=1

22

external bdat
c Integration starts from t=tint
c ***modification***set tint****

tint=0.d0
c Enter array of times when output is required.
c****modification™****set tout(nout)="******

tout(1)=5.d3

c Integration stops at t=tlast.
c****modification®*****set tlast T

tlast=5.d3
¢ The number of output times=array size for tout=nout
c *“*“**modification*****set nout*****

nout=1
c Itol,rtol and atol are used to specify error tolerances for LSODPK-the ODE
c integrator.
c****modifications****set itol,rtol and atol******

itol=1

rtol=1.d-4

atol=1.d-6
c ode solvers require an ODE integration flag
c for LSODPK solver = mf = 22 for stiff problems, &
c = 10 for non-stiff problems.
c for LSODES solver = mf = 222 for stiff problems, &
c = 10 for non-stiff problems.
C*i&**nlodification*****set mf:(-:u-wn-»wn-

mf=22

¢ The type of differencing for each term is indicated by meth.
¢ meth(i,1)= flag for ur(i), i.e. du/dr for the i-th pde.

¢ meth(i,2)= flag for urr(i), i.e. d2ufdr2 for the i-th pde.

¢ meth(i,3)= flag for fr(i), i.e. d(rf)/dr for the i-th pde.

¢ meth(i4)= flag for uz(i), i.e. du/dz for the i-th pde.

¢ meth(i,5)= flag for uzz(i), i.e. d2u/dz2 for the i-th pde.

¢ meth(i,6)= flag for fz(i), i.e. d(zf)/dz for the i-th pde.

¢ meth(i,7)= flag for uy(i), i.e. du/dy for the i-th pde.

¢ meth(i,8)= flag for uyy(i), i.e. d2u/dy2 for the i-th pde.

c meth(i,9)= flag for fy(i), i.e. d(yf)/dy for the i-th pde.

c meth(i,10)= flag for ux(i), i.e. du/dx for the i-th pde.

¢ meth(i,11)= flag for uxx(i), i.e. d2u/dx2 for the i-th pdc.
¢ meth(i,12)= flag for fx(i), i.e. d(xf)/dx for the i-th pde.

¢ if meth(**) = 2 ---> second order centered differences

c = 4 ---> fourth order centered differences

¢ = -2 ---> second order skewed differences

¢ (only for flux terms written into rf,zf,yf.xf)
¢ = -4 ---> third order skewed differences

c (only for flux terms written into rf.zf,yf xf)

i)

Default value = 0

23

e+ modification(s)*******set meth (*, *) Ut
meth(1,4)=2
meth(1,5)=2
meth(1,8)=2
¢ Enter the axes grid sizes, default = 1.d0. dr=delta(r),..etc.
cr*****rrmodification(s)******enter grid sizes*™**
dx=1.d0/dble(nx-1)
dy=2.95d-2/dble(ny-1)
dz=1.2d1/dble(nz-1)
¢ Enter grid point values.Input r(i)--> grid points on r axis....etc.
c** 2 modification(s)*****enter grid values*******
do 10 i=1,nx
x(i)=(i-1)*dx
10 continue
do 20 i=1,ny
y(i)=(i-1)*dy
20 continue
do 30 i=1,nz
z(i)=(i-1)*dz
30 continue
¢ Enter initial conditions. no default values.
c*****modifications*******enter initial conditions******
do 50 i=1,nz
do 50 k=1,ny
do 50 j=1,nx
u(1,j,k,1,1)=0.D0
50 continue
¢ Call the interfacing subroutine CTCN
call ctenfu,rtol,atol, tint,tlast, tout,nout,mf,itol)
stop
end

subroutine eqn(ut,u}.ux,uy,uz,ur,uxx,uyy,uzz,urr,fx,fy,fz,fr,t,x,y
& ,Z,T1X)
¢ This subroutine is used to enter the PDEs
integer ix,npde
include 'inc.for'
¢ *****optional modifications*****change dimension statement if second for
c of subroutine EQN is to be used*********
double precision ut(npde),u(npde),ux(npde),uy(npde),uz(npde),ur
& (npde),uxx(npde),uyy(npde),uzz(npde),urr(npde),
& ix(npde),fy(npde),fz(npde), fr(npde)t,x,y,zr
¢ Input the PDEs in the form ut(i)=f(uli),x,y,z,r,tux(i),uy(i),uz(),uri
¢ ouxx(i)uyy(i)uzz(i)urr(i) fx(i) fy(i) fz(i) fr(i)
c****modifications******problem specific equations
ut(1) = - 2.4d-3*(1.d0-(y/2.95d-2)“‘2)*uz(1)+1.1d-3*uzz(1)+2.l3d-9/

* 44

& (exp(x*6.90776) *1.d-3)*uyy(1)
c**** 6.90776 = In (1 micron /| 1 nm) = [n (1000) ****
return
end

subroutine func(xf,yf,zf,rf,u,ux,uy,uz,ur,uxx,uyy,uzz,urr,t,x,y,z
& ,I,ix,npde)
This subroutine defines flux terms for which it is desirable that they be
differenced as a whole, using centered or skewed differences. Four flux
terms are defined corresponding to the four axes so that it is possible
to calculate their first derivatives with respect to the corresponding axes.
*****optional modifications*****change dimension statement if second form
of subroutine junc is to be used*********
double precision xf(npde),yf(npde),zf(npde),rf(npde),u(npde),ux
& (npde),uy(npde),uz(npde),ur(npde),uxx(rnde),uyy
& (npde),uzz(npde),urr(npde),t,x,y,zr
integer ix,npde
cr*****modifications******enter flux terms for the problem™****
return
end

O 6O 06 6 6060

subroutine bound(u,b,x,y,z,r,t)
¢ This subroutine defines the boundary conditions - a*u + b*(dujdn) = ¢
¢ ab,c are functions of x,y,z,r,t,u(i). dujdn is the normal derivative at
¢ the boundary.
¢ The ab and c values are entered in variable b in the following way:
c b(i,1), b(i,2) and b(i,3) ---> a,b and c at x=x(1) for the i-th component
c bi,4), b(i,5) and b(i,6) ---> a,b and c at x=x(nx) for the i-th component
¢ b(i,7) , b(i,8) and b(i,9) ---> a,b and c at y=y(1) for the i-th component
¢ b(i,10), b(i,11) and b(i,12) ---> a,b and c at y=y(ny) for the i-th component
¢ b(i,13) , b(i,14) and b(i,15) ---> a,b and c at z=z(1) for the i-th component
¢ b(1,16) , b(i,17) and b(i,18) ---> a,b and ¢ at z=z(nz) for the i-th component
c b(i,19) , b(i,20) and b(i,21) ---> a,b and c at r=r(1) for the i-th component
c b(i,22) , b(i,23) and b(i,24) ---> a,b and c at r=r(nr) for the i-th component
c CAUTION: Enter all values of b. Default values are not zero!

integer npde

include ‘inc.for'

double precision u(npde),b(npde,24),x,y,zr,t
c****modification(s)*****enter boundary conditions******

c at x=0,

c no boundary conditio.: imposed
b(1,1)=0.d0
b(1,2)=0.d0
b(1,3)=0.d0

c at x=1,

c no boundary condition imposed

25

Plots far Example Problem 2

The number density of colloids is plotted against the width and the size
axes. Thus these plots are for a particular point on the length 2xis. The
time is 5000 sec.

size axis
»

i 8yl o}

auljallusd wWol} aouelslp

Plats for Example Prablem 2 (contd)

b(1,4)=0.d0
b(1,5)=0.d0
b(1,6)=0.d0

at y=0,

o(u(l))/dy=0
b(1,7)=0.d0
b(1,8)=1.d0
b(1,9)=0.d0

at y=0.0295 ,

u(l) =0
b(1,10)=1.d0
b(1,11)=0.d0
b(1,12)=0.d0

at z=0,

c enter the input psd as a function of size(=x). u = function(x)
b(1,13)=1.d0
b(1,14)=0.d0
b(1,15)=1.d0

at z=12,

boundary condition at infinity
b(1,16)=0.d0
b(1,17)=0.d0
b(1,18)=0.d0
return
end

a0

L !

o

(o T

block data bdat
integer npde,nx,ny,nz,nr,meth,idim,mff
include 'inc.for'
¢ Include file dims.h sets up all the common blocks.
include 'dims.h'’
c***modification***make number of zeros in data statement consistent with
c dimensioning of meth for this problem*******
data meth/12*0/
end

Include file ‘inc.for’ : parameter(npde=1, nx=11, ny=11, nz=41, nr=1)

4. TEST CASES

26

4.1. Simple ODE
This is a simple ordinary differential equation of the form,
du/dt=-u.
The dimensionality of this problem is zero. The initial condition is taken to be,
uy = 1.0. The analytical solution is

u = ugy exp(-t).

‘o Test Problem 1 : Simple ODE

0.9 == F==="TTumepcal sa.

——9$— | analyfical sojn.
0.8 4 \
0.7

e

¥

0.5 A1

0.4

0.3

0.2 v T v v v r v r r v
0.0 0.1 0.2 03 04 05 06 07 08 09 10

time
4.2. Euler Equations of Gas Dynamics (Hyman,1976)

Three variables (density, momentum and energy) of a gas are describ» ..
the following equations,

2 Y 0
Q—h——a—F(w)=Sa——\£— where w= and Fw)=vw+{ p
P 2 "

t X ax‘ U3 p (VA

Here, u, = mass density, , u, = momentum,, us = total energy per unit volun-
Therefore, v = velocity = u, / u; and p = pressure = 2/3 (u3- 1/2 u; v2).
& = 0.006 = artificial dissipation coefficient.

Initial Conditions :
For 0<x<3/4 For3/4<x<2

27

u; =10 up = 0.125

u, = 0.0 uy = 0.0

u; =15 u; =0.15
Boundary Conditions :

At both boundaries (x = 0 and x = 2), they ar:

(41)x=0, uy;=0.0, (uy),=0.
Results agreed with Hyman's data within the error tolerance specified for the ODE
solver.

4.3. Reaction Diffusion Equations (Hyman, 1976)

A system of autocatalytic chemical reactions, described by Robertson, can be
written in the form,

k]
e
A B k, = 0.04
k,
B+C———® A +C k_)zlo.;
k3
_—> -
2B C+B ko= 3x107

The differential equations describing the kinetics of this system are very stitt, and
Robertson’s model has become a standard test problem for stiff ODE methods. We
modify the equations to include spatial variations and passive diffusion. The
corresponding system of PDEs for these reactions is,

QE:-kLH—k,vw%—dabu
ot ox*
%:——ku k2\'w kv~+dgxz
ow 9w

— =k, V
T daxz

where the independent variable x lies between 0 and 1, the diffusion coefticient d =
0.1 and u = [A]. v = [B] and w = [C] denote the concentrations of the chemical

components.
Initial Conditions : v=w=0and u =1.5(for x 20.50) and u = 0.5 (for x < U.3).
Boundary Conditions : At both boundaries (x = 0 and x = 1), we have
-~ 8_u = @_ = a_w =0
ox ox o0x

Results agreed with Hyman's data within the error tolerance specitied tor the QDI
solver.

4.4. Elliptic Equation (Melgaard & Sincovec, 1981)

This example is an elliptic PDE that represents a parallel plate heated by a
nearly oblong object. The PDE is,

analyticlwéolltion numerical solution
fest Problem 4.4 : klliptic Equation

lest Problem 4% - Burger's tquation

du _ 0% 9%

g—axz+é;£-6xyexey(xy+x+y-3)
onthegrid0<x<1,0<sy<1
Boundary and Initial Conditions : u=0.
For this problem the steady-state solution is 3 exeY (. - x2) (y - y2), which

can be approximated by integrating the original problem until the time derivative
is nearly zero. We choose a uniformly spaced 10 x 10 mesh and relative and
absolute error tolerances of 10 and 10-8 respectively. Another run with a 20 x 20
mesh reduced the error by approximately 1/4th, indicating that the errors were
mainly due to the spatial discretization as expected.

4.5. Burger’s Equation (Melgaard & Sincovec, 1981)

The second two-dimensional test case is the familiar Burger’s Equation,

du (au du 0%u 0%

—=-U{=—+=—|+001|—+

ot ox oy ox2 9y?
Initial and Boundary Conditions : u=(10+ex+y-t)-1

With these conditions the solution is a straight-line wave (u is constant
along x = - y) moving in the direction 68=mn/4
Because of this straight-line nature of the solution, we may obtain the numerical
solution of this problem by determining the solution over a rectangular strip.
Therefore, we choose uniformly spaced rectangular meshes with NX =5, NY = 31
and NX = 10, NY = 61 defined over 0 £y <1 and 0 < x < NX/(NY - 1) and relative
and absolute error tolerances of 10-> and 10-7 respectively. As before, the errors
were mainly due to the spatial discretization.

4.6. Coupled System of PDEs (Melgaard & Sincovec, 1981)

The third two-dimensional case consists of two coupled, nonlinear I[s
with all three types of boundary conditions,
du _ ‘i(ou +§{ oV oV, 49u v
S agva oyl ' 9y Yox "oy oy
v ov
5y

u -3
y

_df du) 9 ov
ot ﬁ{ Vox) * 55(Y ox
on a uniform grid in theregion, 0 < x<1,0<y <1
Initial Conditions : u=x+y, v=2x+3y.
Boundary Conditions :
Atx =0, u=t+y, v=t+3y.
Atx =1, u=t+y+1, ov/ox = 2.
Aty =0, du/dy =0, v +ov/dy=t+2x+3.
Aty =1, vou/dy =t+2x+3, v=t+2x+3.
Analytical Solution:u =t + x +y, v=t+2x+3y.
Results obtained were consistent with the analytical solution.

4.7. Anisotropic Diffusion

29

This problem is a simple three-dimensional anisotropic diffusion equation,
u _ D Q-z—u—+ D 9&1 D Hu
ot T*9x2 Yoy2 *az2

on a unit cube. The diffusion coefficients may be given different values and the

profiles judged accordingly.

Initial Conditions : u = 0 except at the center where u = 5.

Boundary Conditions : Homnogeneous Neumann boundary conditions are
imposed. At all boundaries, the outward normal
derivative is zero (impermeable walls).

Results were consistent with what would be qualitatively expected.

4.8. Lotka - Volterra Model in 3-D (Brown & Hindmarsh, 1988)

This problem is based on a reaction-diffusion system arising from a Lotka-
Volterra predator-prey model, with diffusion effects in three space dimensions.
There are two species variables, ¢! and ¢? representing respeively the prey and
predator species densities over a spatial habitat consisting of a unit cube, and time t
ranging from 0O to 10 seconds. The equations are,

act

—ét—=chi+f(cl,c2) (i=1,2)
d] = 005, dz = 10
fl(cl,c2)= cl(by-ajcl-a;pc2), £2(cl,c2)= c2(by-ay ¢l -ay c2),
an =1O6, a12=l, a = 106 "1, 822-:106 ,

by=by=(1+axyz)(106-1+10-6).

Initial Conditions : c! (x,y,z,0) =500 + 250 cos(rn x) cos(3 n y) cos(10 « z)
c2(x,y,z,0) =200 + 150 cos(10 x) cos(r y) cos(3 rt z).
Boundary Conditions : Homogeneous Neumann boundary conditions at all
boundaries. The outward normal derivatives are zero.
The coefficients have been chosen so that as t —> infinity, the solution ot
the system approaches a steady state which is (intentionally) not flat in space. This
steady state is given roughly by the asymptotic solution of the problem without
diffusion, namely:

_cd=(1-100)(1+axyz), =106 1+axyz)
The two PDEs are discretized on a regular] by Kby L grid. We consider o = 0 and

a =0.2and vary] = K =L from 6 to 20. Tolerance parameters are taken to be RTOI.
= 10-% and ATOL = 10-8. Results were consistent with the asymptotic solution but
run-times were higher since Brown and Hindmarsh tested a problem-specific code.

30

REFERENCES

Saltelli, A., Avogadro, A., and Bidoglio, G., “Americium Filtration in Glauconitic
Sand Columns,” Nuclear Technology, 67, 245, 1984.

Fried, S. M,, et al., Argonne National Laboratory report ANL-76-127, 1976.

Champ, D. R., Merritt, W. F,, and Young,]. L., “Potential for the Rapid Transport ot
Plutonium in Groundwater as Demonstrated by Core Column Studies,” Scientific
Basis for Nuclear Waste Management, Werner Lutze (Ed), North-Holland, NY, 5,
745-754, June,1982.

Travis, B. J. and Nuttall, H. E., “A Transport Code for Radiocolloid Migration:
With an Assessment of an Actual Low-Level Waste Site, Scientific Basis tfor
Nuclear Waste Management VIII,” edited by C. M. Jantzen, J. A. Stone, R. C.
Ewing, (Materials Research Society, Pittsburgh, Pennsylvania), 44, 969-976, 1955.
Fried, S. M., Friedman, A. M., Hines, J. J., and Quarierman, L. A., “Annual Report
in DWMT Project AN0115A, FY 1975,” Argonne National Laboratory report ANL-
75-64, 1975.

Ho, C. H. and Miller, N. H., J. Colloid Interface Sci., 1986, 113, 222-240.

Means, J. L., Crerar, D. A., and Duguid, J. O., Science, 1978, 200, 1477-81.

Champ, D. R. et al.,, Water Pollut. Res. J. Can., 1984, 19, 35-54.

Gschwend, P. M., and Reynolds, M. D,, J. Contam. Hydrol., 1987, 1, 309-27.

McDowell-Boyer, L. M., Hunt, James R., and Sitar, Nicholas, “Particle Transpo::
Through Porous Media,” Water Resources Research, 22, (13), 1901-1921, 1986

Randolph, A. D., “A Population Balance for Countable Entities,” Can. |. ¢ .2
Eng., 42, 280-81, 1962.

Hulburt, H. M., and Katz, S., “Some Problems in Particle Technology,” Chu:.
Engineering Science, 19, 555-74, 1964.

Randolph, A. D., and Larson, M. A., Theory of Particulate Processes, 2n.! - -
Academic Press, 1988.

Gelbard, F., and Seinfeld, John H., “Numerical Solution of the Dynamic Equ: i
for Particulate Systems,” Journal of Computational Physics, 28, 357-375, 1978

31

Marchal, P., David, R,, Klein, J. P.,, and Villermaux, J., “Crystallization and
Precipitation Engineering-I. An Efficient Method for Solving Population Balance
in Crystallization with Agglomeration,” Chemical Engineering Science, 43(1), 59-
67, 1988.

Madsen, Niel K., and Sincovec, Richard F., “Software for Nonlinear Partial
Differential Equations,” ACM Transactons on Mathematical Software, 1(3), 232-260,
1975.

Loeb, A. M., “User’s Guide to a New User-Oriented Subroutine for the Automatic
Solution of One-Dimensional Partial Differential equations,” Advances in
Computer Methods for Partial Differential Equations, R. Vichnevetsky (ed.), Publ.
AICA-1975, 167-175.

Hyman, J. M., “The Method of Lines Solution of Partial Differential Equations,”
NYU Report COO-3077-139, 1976.

Carver, M. B., “"FORSIM: A Fortran Oriented Simulatin Package for the Automated
Solution of Partial and Ordinary Differential Equation Systems,” Report AECL-
4608, Atomic Energy of Canada, Limited, Chalk River, Ontario, 1973.

Liskovets, O. A., “The Method of Lines (Review),” Differentsial’'nye Uraveniya,
1(12), 1662-78, 1965.

Melgaard, David K., and Sincovec, Richard F., “General Software for Two-
Dimensional Nonlinear Partial Differential Equations,” ACM Transactons on
Mathematical Software, 7(1), 106-125, 1981.

Brown, Peter N., and Hindmarsh, Alan C., “Matrix-Free Methods for Stiff Systems
of ODE’S,” SIAM J. Numer. Anal., 23(3), 610-638, 1986.

Hindmarsh, Alan C., “ODE Solvers for Time-Dependent PDE Software " PDL
Software: Modules, Interfaces and Systems, B. Engquist and T. Smedsas (ed 325-
341, Elsevier Science Publishers B. V. (North-Holland), IFIP, 1984.

Machura, M., and Sweet, R. A., “A Survey of Software for Partial Difterential
Equations,” ACM-Trans. Math. Softw., 6, 1980, 461-488.

Scheisser, W. E., DSS/2, Differential Systems Simulator, an introduction to the
numerical method of lines integration of partial differential equations, Lehigh
University, Bethlehem, PA, 1977

Sharma, M. M. and Yortsos, Y. C., “Transport of Particulate Suspensions in Porous
Media : Model Formulation,” AIChE Journal, 33(10), 1636-1643, 1987.

32

van Olphen, H., An Introduction to Clay Colloid Chemistry, 2d ed.,]. Wiley &
Sons, NY, 1977.

Jantzen, C. M. and Bibler, N. E., “The Role of Groundwater Oxidation Potential
and Radiolysis on Waste Glass Performance in Crystalline Repository
Environments,” Proceedings of the Material Science Society, Stockholm, Sweden,
Sept. 8 - 11, 1985.

Hidy, G. M. and Brock, J. R., “Topics in Current Aerosol Research,” Pergamon
Press, NY, 1971.

Hurd, A. J.,, “Diffusion Limited Aggregation of Silica Microspheres in Two
Dimensions,” Physics of Complex and Supermolecular Fluids, S. Safran & N.
Clark ed.s, Wiley, 1986.

33

