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RF Signal Processing
• Generally must be 

comparable in 
size to the RF 
wavelength

• SWaP increases 
with performance

Ring resonator Whispering gallery
mode resonatorBragg grating Asymmetric MZI

• Very large inherent 
bandwidth (>100THz)

• Integrated photonics could 
yield dramatic size  and 
power reductions

• Filters 
• Time delay line
• Phase shifter 
• Frequency 

converter
• Etc.

RF Electronics

RF Photonics
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RF MEMS
Acoustic (Phononics) Devices

• Surface acoustic wave (SAW) devices: 

• Sound ~10,000x slower than light

• Lifetimes 10-3 to 10-6 seconds

• Low-frequency stability

Example: Narrow-band filtering and compact signal delay routinely achieved with 
SAW technology

SAW < 3GHz

Bulk Acoustic Wave (BAW) > 3GHz
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Signal Processing with Optomechanics

Microwave Phonons

Photons

• Integrated
• COTS
• Programmable
• Signal distribution
• Signal distortion
• Power demands

• Bandwidth (THz)
• Dynamic range
• RF amplification
• Laser linewidth/freq.
• Nonlinearity
• Delay

• Large delay
• COTS
• Sharp filtering
• Bandwidth (MHz)
• Low frequency (GHz)
• Lossy

RF Opto-
mechanics

Photonic-Photonic RF Platform
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Stimulated Brillouin Scattering (SBS)
• Backward SBS typically seen in optical fiber

• Third-order nonlinear optical process
• Mediated by electrostriction
• Strong confinement of longitudinal acoustic modes 

allows for long-range interactions

• Forward SBS recently observed in photonic 
crystal fiber

• Transverse acoustic confinement 
enables new coupling mechanisms
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Enhancement of SBS

Rakich, et al., Phys. Rev X 2, 011008 (2012)

• Combination of electrostriction and 
radiation pressure more than double 
optomechanical forces

• Microscale SBS theory under-predicts 
nanoscale optomechanical forces

• Nanoscale geometric effects
• Different photoelastic coefficients

• Nanoscale forces 100x larger than microscale 
prediction  SBS gain ~4·103m-1W-1

Radiation pressure Electrostriction
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Chip-Scale SBS Structures

Light

Each slot acts as a 
wideband phononic 
mirror

Si3N4 membrane

Air slots

Brillouin-active membrane 
and waveguide

Si waveguide

• Reducing phonon dissipation

• Photonic waveguide (silicon)

• Phononic waveguide (SiN between slots)

• Strong photon-phonon confinement

Air slots

Si3N4 membrane

Si waveguide
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Chip-Scale SBS Amplification
Stokes: Amplification

< 2MHz

3.7 GHz

3 dB

Phononic Crystal BAM waveguide
• Bragg reflection guides phonons

• Silicon waveguide  1um wide

• Low propagation loss  ~0.5dB/cm

• High power handling  300mW

• Brillouin nonlinearity  ~5x Kerr

• Gain  2750W-1m-1

Results: 3 dB

Anti-Stokes: Depletion

3.7 GHz

< 2MHz

Shin, et al., Nat. Comm. 4, 1944 (2013)
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Photon-Phonon Emitter-Receiver (PPER)

Photonic-phononic emitter-receiver (PPER)
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What are phononic crystals?
 Periodic arrangement of elastic scattering centers in 

a matrix material that exhibits both incoherent and 
Mie and Bragg resonant scattering

 Requires sufficient mechanical impedance 
mismatch

PnC

Phononic Crystals (PnCs)
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Phononic Crystals (PnCs)
Square lattice PnC

a = 1 m
r  = 0.385 m

r
a

Khelif, et al., Phys. Rev. E 74, 046610 (2006)



10/04/2016 12

Dual-Waveguide PnC Cavity System
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PPER Device RF Response

Center frequency, fo = 2.93GHz

3-dB bandpass bandwidth, B = 3.15MHz

Stopband attenuation, A > 70dB

Rejection bandwidth, BR = 1.9GHZ

High power handling, 36mW (110mW 
for 3dB/cm loss)

Shin, et al., Nat. Comm. 6, 6427 (2015)
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PnC Engineering of Coupling Strength
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PPER Device RF Response

W W

• Center frequency tuned by 
changing the phononic cavity 
width, W

• Peak separation and/or bandwidth 
tuned by varying the number of 
PnC hole layers

N Nc N
�

����

�
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Comparison with RF Photonics

Ring resonatorWhispering gallery mode resonator

Bragg gratingAsymmetric MZI

RF Photonic Filters Using All-Optical Methods

Resonator-based RF photonic filters

• Requires high optical Q (~107)

• Low power handling (optical nonlinearities)

• Requires narrow linewidth lasers

• Requires frequency locking

• Higher-order filter responses difficult

Signal in

Drop Add

Throughput
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Summary

 Demonstrated SBS gain values 
as large as >2000m-1W-1 in a 
7mm-long device, equivalent to 
the SBS nonlinearity of more 
than a meter of conventional 
silica fiber

 Demonstrated chip-scale, agile 
RF filtering with MHz 
linewidths, GHz bandwidth, and 
>70dB of dynamic range
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SBS in Nanophotonic Waveguides

• Nano-scale photonic waveguides
• Tight optical mode confinement  Strong interaction 

with waveguide boundaries
• Mediated by both electrostriction and radiation 

pressure
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Stimulated Mach-Wave Phonon Emission

Electrostrictive Forces

Radiation Pressure 

300nm x 300nm

Enhanced optical forcesNew Physics: Stimulated Mach-wave Phonon Emission 

Nanoscale 
waveguide

Hypersonic optical pulse
stimulates phonon Stimulated

Mach-wave
Phonon

Result: Ultra-Broadband Stimulated Phonon Emission

Rapid escape of acoustic energy
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Phonon Gain BW Mach-wave emission:
• New chip-scale signal 

processing platform
• Wide-band and 

narrow-band 
parametric processes

http://en.wikipedia.org/wiki/File:Schlierenfoto_Mach_1-2_Pfeilfl%C3%BCgel_-_NASA.jpg

