

MRS Spring Meeting & Exhibit, April 17 – 21, 2017, Phoenix, Arizona
 Symposium ES5—Advances in Materials, Experiments and Modeling for Nuclear Energy

Molecular Dynamics Simulations of Substitutional Diffusion

X. W. Zhou^{1,*}, R. E. Jones¹, and J. Gruber^{1,3}

¹*Sandia National Laboratories, Livermore, CA 94550, USA*

²*Drexel University, Philadelphia, PA 19104, USA*

ABSTRACT

In atomistic simulations, diffusion energy barriers are usually calculated for each atomic jump path using a nudged elastic band method. Practical materials often involve thousands of distinct atomic jump paths that are not known a priori. Hence, it is often preferred to determine an overall diffusion energy barrier and an overall pre-exponential factor from the Arrhenius equation constructed through molecular dynamics simulations of mean square displacement of the diffusion species at different temperatures. This approach has been well established for interstitial diffusion, but not for substitutional diffusion at the same confidence. Using $\text{In}_{0.1}\text{Ga}_{0.9}\text{N}$ as an example, we have identified conditions where molecular dynamics simulations can be used to calculate highly converged Arrhenius plots for substitutional alloys. This may enable many complex diffusion problems to be easily and reliably studied in the future using molecular dynamics, provided that moderate computing resources are available.

Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors gratefully acknowledge research support from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, under Contract Number DE-AC04-94AL85000.

*Email: xzhou@sandia.gov; Tel.: 925-294-2851