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Problem Statement and Approach

Given an induced fracture system in a horizontal well with elevated

electrical conductivity, what can be said about the fractures from surface
measurements of DC potential differences?

Forward model the Earth/borehole/fracture system with unstructured finite
elements conformal to conductivity boundaries

— compute the prefrack, postfrack and pre-post DC potential differences
— parametric analysis of fracture conductivity effect
— quantify topographic effects

— linear inversion synthetic responses for simple fracture mapping
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Finite element forward solver: Benchmark test
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. . . < m N
an arbitrary conductivity model o excited 0'13'"@ IZOm Q 0.15m
by a source currentd: DA pro le
PPV g 1A oSS o
o] Sated \ -
—V'(O'VCI)):V'JS -20}
_40 -
Homogeneous Dirichlet BC on mesh bottom and % 60|

sides, Neumann BC on mesh top to simulate —sok
air/Earth interface. A _100k
—120{
—140

(s O
l l l l

-100 =50 0 50 100
position along profile [m]

(right) finite element mesh for
benchmark comparison against
analytic solution of 2 spheres in

a wholespace (Aldridge and
Oldenburg, Geophysical
Prospecting, 1989)

(above) comparison of finite element and
analytic solutions of scattered electric
potential for an offset point source
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Earth model of exploration scenario

Idealized (below) and discretized (right) Earth model
for finite element analysis (FEA). Electrode location
indicated by symbols, with 3 possible contact points
(A-C) of the +’ve electrode with steel well casing.

1000 m

AIR

A "y A A
EARTH
[ 0.001 $/m S

300m

0.00025/m jJ___1570m




DC potential on the ground over the well head

(left) Plan view of electric potential
(in Volts) at Earth’s surface (z = 0 m)
over the well head (x =y =0 m)
where the Earth model is energized
by +1 A current source at the well
head (case A) and a—-1 Asinkaty =
1000 m.

(right) Potential difference (in
microvolts) at z = 0 m computed by
subtracting the response of the Earth
model with a set of 10 S/m fractures
from one where the fractures are
absent, thus simulating a time-lapse
scenario for detection of electrically
enhanced fractures.
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How do the ground-based measurements arise?

Oblique view of the magnitude of

electric potential for case A (+'ve

electrode at the well head) along two abs(e) [V]
intersecting surfaces: a vertical slice at
x = 0 m through the well track and
fracture set; and, a horizontal slice at z
= 0 m along the air/Earth interface. | sso0z

2,0e-01

1.0e-02

Intersecting the slices are the well
track and fractures. Note the local
perturbation near the well heel due to
the fractures, as well as the dominance —3.2e:04
of the —1 A current source on the lm&m
potentials at z = 0.

—3.2e-03

—1.0e-03

Generally small amplitudes of the potential in the region below z = =800 m are consistent
- with its relatively high 0.03 S/m conductivity — in contrast to the low (< 0.001 S/m)
g@i PIC conductivity in the region above z = -800 m.
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Topography effect: 3D-1D residual

Topography: 860m to 970m elevation 3D DC FEA calculation w/ topo topo — flat FEA residual

~1% change in voltage due to topography
This relative magnitude is comparable to the change expected from
(b] PTC electrically conductive fracture set.
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Predicted data for inline measurement array

DC response along x=0

(top curve) Potential difference along line x = 0 = - AN\frode (=1A)
directly through the well head and over the =~ 410-1 } PRE 7 ‘wellhead (+1A)
horizontal section of the well, in the absence of ’LT? T
conducting fractures for 1 A source located atthe > \
well head (case A) and -1 Asource aty =-1000 5 107° | (\
m. Dashed lines indicate negative values; solid 75 -
lines, positive. o
L=y
[

"0 POST-PRE ..~ \
(bottom curve) Scattered potential differences [

arising from a 10 S/m fracture set near the heel of 1077 | 20 nV noise floor
the well bore. u . ! ! !

—-2000 0 2000
y [m]

Ad

Potential differences computed using 100 m electrode separation, & = 50 m. For reference,
z also shown is the 20 nV noise floor for the 32-bit ZEN receiver from Zonge Engineering
, P (http://zonge.com/instruments-home/systems/distributed-em-systemsy/).
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Effect of source location and fracture conductivity
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Inline scattered potential differences (& = 50 m) as a function of fracture conductivity over the range
0.1-100 S/m for a —1 A source aty = -1000 m and +1 A source located at either the well head, heel, or
toe (cases A-C). Dashed lines indicate negative values; solid lines, positive.

Note that location of the +1 A source has minimal effect on scattered potential differences, and that
fracture response is saturated for conductivities greater than ~10 S/m.
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Effect of fracture location
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Inline scattered potential differences (& = 50 m) as a function of fracture conductivity over the range
0.1-100 S/m for a —1 A source aty = =1000 m and +1 A source, fractures located at either the well heel
(left), or toe (right). Dashed lines indicate negative values; solid lines, positive.

Note the pronounced left/right asymmetry of the toe-fracture result, and that fracture response remains
saturated for conductivities greater than ~10 S/m.
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Motivation for empirical LQS inversion

Oblique view of the magnitude of POST-PRE
scattered electric potential for case A along two
intersecting surfaces: a vertical slice through the well

track and fracture set at x = 0 m; and, a horizontal slice @] [v]

along the air/Earth interface rosos
Z= 0 m. 32205
Region where ® > 0 is denoted by (+) whereas the —3200
region ® < 0 is denoted by (-). Superimposed on the .

slices are the well bore and fractures.

Observe that this POST—-PRE difference data arises
primarily from a combination of sources — one due to
the conductivity perturbation at the fractures, and the
other, a change in the relative potential of the borehole
casing due to current leakage at the fracture.

Empirical LQS inversion: invert time-lapse surface data for linear charge density (lambda)
on the well casing; point charge q at the fracture, and position s of the fracture.

ﬁ@? PIC
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LQS inversion: eyeball minimization of the misfit norm
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(left) problem setup for LQS inversion of toe- (right) eyeball-minimized data misfit of time
fracture data with known fracture location, s. lapse inline potential differences. A = 5.6E-15
Inversion is linear in charge magnitudes A and q. C/m,q=1.7E-11 C.
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LQS Inversion: minimize the L2 norm

LQS INVERSION — QB Synthetic Example

_ 107 - observed
10F E - predicted
_o > B
: sl minimum norm solution — B
2 1667m 3 -
S o
| 6F :]_) 1075 k
3 true solution = -
I 4} 570m © -
E 5 .
= 5| 5 -
8— 1076 |k
OL ! ! ! ! ! ! F
0.0 0.2 0.4 0.6 0.8 1.0
s position, y [km]
(left) Line search on s for minimum L2 misfit. (right) L2-minimized data misfit of time lapse inline
At each candidate location, s, the linear inverse potential differences. A = 5.1E-15 C/m, q = 1.8E-11 C.

problem for (A,q) is solved.

? @g}ﬂ PTC
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LQS inversion: 2D array of 2-component data

(above) Broaden the array to a massive 20x20
grid of 2-component measurements on a 4x4 km
area. Time-lapse potentials in grey scale with red
contours. Stations indicated by + signs. Well
head and ground pointindicated by yellow dots.

Q'ric

Color scaled L2 norm values of optimal (A,q) pairs for candidate ‘s’
points in a plane orthogonal to the horizontal section of the well bore
and through the fracture set (left), and in a plane containing the entire
well bore (right).
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LQS Inversion: 3D fracture location

Inversion of synthetic data taken from
a massive 20x20 grid of 2-component
measurements on a 4x4 km area.
Time-lapse potentials in grey scale
with red contours.

Stations indicated by + signs. Well
head and ground point indicated by
yellow dots.

Red isosurface surrounding the
fractures is taken at x?=2, a value
where its width is similar to that of the
fractures.
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Note the strong differences in vertical
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Conclusions

Assuming electrical continuity of the well casing, DC fracture response is
generally independent of source contact point.

DC response of the fracture set saturates for conductivities greater than 10
S/m in the scenarios tested here. Further investigation is required to
quantify such thresholds in other geologic settings.

Topographic effects introduce signals comparable in magnitude to those of
the fractures.

Time-lapse DC response of the fractures is reasonably approximated by a
simple 3-parameter charge model and easily invertible.
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