
Merged Requests for Better Performance and
Productivity in Multithreaded OpenSHMEM

Swen Boehm, Swaroop Pophale, Matthew B. Baker, and Manjunath Gorentla Venkata

Computer Science and Mathematics Division

Oak Ridge National Laboratory

Oak Ridge, TN, USA

Abstract

 A merged request is a handle representing a group of Remote Memory Access (RMA), Atomic or
Collective operations. The merged re- quest can be created either by combining multiple outstanding
merged request handles or using the same merged request handle for additional operations. We show that
introducing such simple yet powerful semantics in OpenSHMEM provides many productivity and
performance ad- vantages. In this paper, we first introduce the interfaces and semantics for creating and
using merged request handles. Then, we demonstrate with a merge request that we can achieve better
performance characteristics in multithreaded OpenSHMEM application. Particularly, we show one can
achieve higher message rate, a higher bandwidth for smaller message, and better computation
communication overlap. Further, we use merged request to realize multithreaded collectives, where
multiple threads co-operate to complete the collective operation. Our experimental results show that in a
multithreaded OpenSHMEM program, the merged request based RMA operations achieve over 100 Million
Messages Per Second (MMPS). It achieves over 10 MMPS compared to 4.5 MMPS with default RMA
operations in a single threaded environment. Also, we achieve higher bandwidth for smaller message sizes,
close to 100% overlap, and reduce the latency by 60%.

Keywords: PGAS; Shared Memory; Interoperability

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE- AC05-00OR22725 with the U.S. Department of
Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the
United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

http://energy.gov/downloads/doe-public-access-plan

1. Introduction

 With the evolution of hardware technology and the trend towards fewer but more capable nodes with

thousands of cores and hundreds of hardware threads per core, applications need to be multithreaded to take advantage

of the capabilities. The OpenSHMEM specification committee is discussing various abstractions, which enables

performance for OpenSHMEM program on many threaded architectures. The thread safety proposal, which defines

the safe invocation of OpenSHMEM interfaces from multiple threads is the first step towards that goal and is close to

be ratified.

 The thread safety proposal defines the interaction between threads and Open- SHMEM interfaces. To provide

the necessary semantics for thread safety, four thread levels are being proposed: SHMEM_THREAD_SINGLE,

SHMEM_THREAD_FUNNELED, SHMEM_THREAD_SERIALIZED, and SHMEM_THREAD_MULTIPLE.

SHMEM_THREAD_SINGLE allows for one thread per process and does not define tread safety on the OpenSHMEM

API. The next level SHMEM_THREAD_FUNNELED permits processes to have multiple threads but only one of the

threads can make OpenSHMEM calls. Since all calls are expected to be funneled through a single thread it is the

programmer's responsibility to make certain that all the OpenSHMEM calls by a process are executed by the same

thread. The next level of thread support is SHMEM_THREAD_SERIALIZED, which allows processes to have multiple

threads that issue OpenSHMEM calls, but only one OpenSHMEM call per process can be active at any given time.

Since simultaneous calls from two threads belonging to the same process are not allowed, it limits concurrency

available through the multithreading approach. Finally, the SHMEM_THREAD_MULTIPLE level allows processes

to have multiple threads and any thread may issue an OpenSHMEM call at any time, subject to a few restrictions.

 Though these semantics enable OpenSHMEM programs to use multiple threads and thread packages, it does

not necessarily translate into performance advantages and does not provide enough abstractions to take advantage of

the capabilities in the network. Particularly, the modern High-Performance Computing (HPC) networks provide high

message rate and bandwidth with low latency, often exposing multiple resources to the software stack. To utilize these

resources and parallelism in an optimal way, we need to give the application programmer a way to provide hints to

the communication library, or to provide a way to expose the available resources in a portable way to the programmer.

 To address these bottlenecks, we propose to use merged requests introduced in [3]. The merged request

handle can represent a group of RMA or Atomic operations. Each of these handles can be progressed and completed

independently. The operations are non-blocking and can be progressed asynchronously; the operations are posted

using a post operation and completed with a wait operation. The wait operation completes all operations represented

by the merge request handle.

 This approach adds minimal complexity to the Application Programming Interface (API) and the

implementation, while providing various advantages for OpenSHMEM applications. Grouping related RMA

operations into a single request offers the ability to isolate different sets of operations, which can be progressed and

completed independently. The requests can be used to assign independent communication resources to the operations

for the merged request, and thus take advantage of multiple network resources available in modern HPC networks.

Further, this provides the flexibility to achieve a varying granularity of synchronization. The OpenSHMEM programs

can achieve fine-grained completion and ordering and do not have to rely on the coarse-grained synchronization

provided by quiet, fence, and barrier operations where fine grained synchronization are required. The merge request

abstraction also gives the programmer the flexibility to implement user defined collectives. For example,

OpenSHMEM is still limited to an active set and log of 2 based stride. By using merged requests, a programmer may

achieve a collective communication pattern that may have an irregular active set. This is different from defining a

collective with a loop as the OpenSHMEM program can achieve communication and computational overlap, in

addition to the simplicity of completing the related operations of the collective with a single handle.

 Our contributions in this paper:

• Define the interfaces and semantics of RMA and Atomic operations with merge request handle

• Demonstrate that RMA and Atomic operations using merge requests can achieve higher message rate

• Demonstrate that the merged request abstraction can be used to realize custom collectives

• Demonstrate that merged requests can be used to achieve performance and productivity in multithreaded

OpenSHMEM

• An in-depth analysis of the implementation of merged requests on a portable and scalable low level

communications library UCX

In Section 2, we introduce the non-blocking API with merged handles. In Section 3, we discuss our implementation

and the different considerations that had to be made to make the implementation thread safe. In Section 4, we discuss

results of the different micro benchmarks. Related work in this context is covered in Section 5. The highlights of our

analysis and our next steps are discussed in Section 6.

2. API for RMA and Atomic Operations with Merged Requests

 The proposal for merged requests adds new API functions for explicit nonblocking RMA to

OpenSHMEM. They follow the OpenSHMEM naming convention for RMA operations and add a _nbe

post fix. These functions return a handle to request objects. In the case of a merged request, multiple RMA

operations can share the same request. Additionally, operations to test and wait for completion of the request

are added to the OpenSHMEM API.

 The new functions for the non-blocking interfaces are explained below.

shmem_NAME_put_nbe (TYPE *target , const TYPE *source , size_t nelems , int pe ,

shmem_request_h * request);

shmem_put_SIZE_nbe (TYPE *target , const TYPE *source , size_t nelems , int pe ,

shmem_request_h * request);

 Just like the regular blocking and implicit non-blocking functions, the put operations for the

explicit non-blocking operations share the same interface, with the exception that they take a pointer to a

request handle as the last parameter.

shmem_NAME_get_nbe (TYPE *target , const TYPE *source , size_t nelems , int pe ,

shmem_request_h * request);

shmem_get_SIZE_nbe (TYPE *target , const TYPE *source , size_t nelems , int pe ,

shmem_request_h * request);

 The get functions follow the same pattern as the put functions.

 Additionally we introduce explicit non-blocking functions for the following atomic operations:

shmem_NAME_swap_nbe (TYPE *target , TYPE value , int pe , shmemx_request_h * request)

shmem_NAME_cswap_nbe (TYPE * target , TYPE cond , Type value ,

int pe , shmemx_request_h * request)

shmem_NAME_fadd_nbe (TYPE *target , TYPE value , int pe , shmemx_request_h * request)

 The following two functions are to manage outstanding requests:

shmem_request_test (shmem_request_h * request , int * flags);

The request handle is passed in as the first parameter, The second parameter is an integer pointer
and is set according to the status to the outstanding operation. It is set to 0 is the operation is still in
progress, and to 1 if the operation is finished. In the case that the operation is completed, the handle is
freed internally and the handle is set to NULL.

 shmem_request_wait (shmem_request_h * request);

 The wait function takes a pointer to the request handle as its argument and blocks the execution
of the calling context until the operation is completed. In the case of a multi threaded Processing Element
(PE), only the calling thread is blocked. Before the function returns, the request object is freed and the
handle is set to NULL, ready to be used again.

 shmem_request_alloc (shmem_request_params_t params , shmem_request_h * request);

This function can be used to explicitly allocate a request object. The flags argument that can be used to
pass hints to the runtime. After the successful allocation, the pointer is not NULL.

 shmem_request_free (shmem_request_h * request);

A request can be freed using this function.

 shmem_merge_request (size_t count , shmem_request_h ** requests ,

 shmem_request_h * request);

This function can be used to merge multiple requests into a single request. The input parameters are the
number of requests in the input array, a pointer to the input array and a pointer to the merged request.

3. Implementation

To evaluate the Merge request extensions, we extended OpenSHMEM-X to sup- port RMA and Atomic

operations with merge requests.

 OpenSHMEM-X supports the functionality specified by the OpenSHMEM specification, as well as

several extensions. The extensions include support for thread safety, merge requests, contexts, nonblocking

RMA operations and several collectives. It is derived from the open source reference implementation [1].

The components in OpenSHMEM-X are shown in the figure 1.

 OpenSHMEM-X can use Unified Communication X (UCX) [2], Universal Common

Communication Substrate (UCCS), or GASNet as a communication abstraction. For this work, we leverage

UCX and extend it as required. UCX provides different sets of APIs. UC-Protocols (UCP) is the high level

API and is used by OpenSHMEM-X. Additionally, UCX provides the UC-Transports (UCT) API, which

abstracts the differences of various hardware architectures. Finally, the service API UC-Services (UCS),

provides functionality to write a portable networking framework.

3.1 Network and Resource Abstraction in UCX

UCX provides two different levels of network abstractions to the applications. The lower level abstraction,

UCT, abstracts a single network device, memory, and provides basic data transfer primitives. The higher

level abstraction, UCP, combines multiple UCT abstractions, defines the higher level message transfer

protocols, and also provides wire-up and connection management. The details of the these layers can be

found in our previous paper [2, 3].

 UCP Contexts: The UCP context defines a memory domain and memory allocation methods for

use with the network interface. A UCT memory domain represents the memory mapped to a single device.

It represents and co-ordinates the memory allocation, registration, and cleanup of the memory required for

the communication buffers. The UCP context combines multiple UCT memory do- mains as required for

the programming model. Typically, a single UCP context is used by a programming model instance. For

example, if application is using both Message Passing Interface (MPI) and OpenSHMEM in the program,

there is one UCP context for Message Passing Interface (MPI) and other for OpenSHMEM. This allows

each programming model to manage it's own memory without interfering with the other.

 UCP Worker: The UCP and UCT Worker abstracts the network resources, which include network

endpoints and the interface the endpoint attaches to. The UCT Worker represents a particular network

interface and its attached end points. The UCP Worker represents a collection of interfaces. It abstracts the

selection of the most efficient interface for the new endpoint and starts the wire up of the endpoint. Each

UCP Worker can be independently progressed and the operations on the Worker can be completed

independently. If the communication operations from an application thread are mapped onto a Worker,

there is no need for inter-thread synchronization for completing the communication operations of the thread.

To communicate between the Workers, the UCP Worker creates the UCP endpoint using UCT endpoints

attached to UCT interfaces. The UCT endpoints represent the connection endpoints of a single device, and

UCP endpoints represents the endpoints of multi device instances used by the programming models.

3.2 Mapping Merged Requests to Resources

As described above, the merged request represents a group of either RMA or Atomic operations. In

OpenSHMEM-X, we provide independent network resources to the merged requests as available by

mapping each merged request to a separate UCP worker. To reduce the overhead, the UCP Workers are

created during initialization and maintained in a pool. Workers are mapped to the merged request, when a

merged request is created, and are removed from the pool. When the merged request is completed by calling

shmem_request_wait(), the Worker is returned back to the pool. When the network resources (Workers) on

the pool are exhausted, the runtime will start sharing Workers.

3.3 Threads and Merged Requests

By using merged requests higher communication performance can be achieved in a multithreaded

OpenSHMEM program. In our experiments, we map the communication operations on a thread to a single

merged request. Mapping merged request to independent network resource in OpenSHMEM-X, translates

into a higher message rate and bandwidth (as shown in the results). Further, the communication operations

on the thread can be completed without the need for inter-thread synchronization.

 The mapping between the operations from a thread to a merged request and a UCP worker is

managed through Thread Local Storage (TLS). TLS is not dependent on library and thus can be used

regardless of the programming model chosen by the application developer. A reference to the Worker

associated with a thread is stored in a thread local variable. This can be one Worker shared by all threads,

a dedicated Worker per thread, or threads can be grouped together and the thread group shares a Worker.

The number of Workers can be controlled through environment variables. The decision to use TLS adds

additional overhead. The overhead introduced by the additional indirection was measured and is shown in

figure 2.

 The data in the graph is normalized to the latency of the reference implementation. There is a small

overhead of less then 2% associated with using TLS, when the message size is below 8kb. After this

threshold, our experiments show a reduced latency compared to the standard implementation (without

TLS). For larger messages, the indirection does not play a critical role with respect to adding latency and

we can observe benefits from storing resources local to the thread.

4. Experimentation and Results

The section evaluates the merged request abstraction and presents the results. First, we evaluate the message

rate, and bandwidth achieved by RMA operations with merged request. We compare the message rate

achieved with multiple threads and compare it with the messaged rate achieved by multiple PEs. Then, we

evaluate the implementation with Giga Updates Per Second (GUPS) benchmark to understand the

performance impact on the application benchmark.

 Testbed: The experiments were conducted on Turning, a 16-node institutional cluster at Oak Ridge

National Laboratory (ORNL). Each node has two Intel® Xeon® E5-2660 processors with 10 physical cores

and hyper threading and 12GB RAM. The nodes are connected by a InfiniBand network with Mellanox

ConnectX-4 EDR IB. For these experiments, the communication does not cross the switch.

 Benchmarks: To measure the latency, bandwidth, and message rate, we used the extended versions

of Ohio State University (OSU) OpenSHMEM Benchmarks. The extensions include converting the

benchmarks to use merged request API, make OpenSHMEM calls from multiple threads, and use OpenMP

threads. To measure the overlap between communication and the computation, we modified the MPI

benchmark developed to measure the overlap achieved by nonblocking MPI operations [7]. This benchmark

was modified to use OpenSHMEM and the merged request API.

4.1 Achieving Higher Message Rate with merged request RMA Operations and Multiple
Threads

To establish the overhead of merged request operations, we compare the message rate of merged request

based RMA operations with the default RMA operations using modified OSU benchmarks. Figure 3 shows

the message rate achieved with single-thread OpenSHMEM PE with merged request and Non-Blocking

Implicit (NBI) put semantics. We observe that the merged request does have a performance advantage over

RMA operations without explicit request per operation. This is due to the relaxed semantics of the wait

operation, that can return as soon as the outstanding operation completes.

 In the experiment shown in the Figure 4, we configure the OpenSHMEM program with multiple

OpenMP threads. The OpenSHMEM program was initialized with SHMEM_THREAD_MULTIPLE. The

RMA operations on each thread was mapped to a merged request, and merged request was completed with

a wait operation. To measure the message rate, we modified the OSU put benchmark for this setup.

 Figure 4 shows the aggregated message rate of a PE increasing with the number of threads. For 40

threads, we can observe in the figure, the merged request achieves over 100 MMPS. Also, we observed in

the experiments the higher message rate could be achieved with the availability of more threads.

Unfortunately, the maximum number of threads on this system was 40 threads per node.

4.2 Achieving higher Message Rates for Atomic operations with non-blocking operations and
merged request

Merged requests where implemented for some Atomic operations. In this exper- iment the performance of

non-blocking semantics for shmem long fadd nbe is evaluated with a modi ed OSU message rate benchmark

using fadd. The experiment was run on two nodes with one PE each. The non-blocking functions achieve

an almost 4 times higher message rate.

4.3 Achieving Higher Bandwidth for Smaller Messages with merged request based
RMAOperations and Multiple Threads

In this experiment, we are measuring the aggregated bandwidth achieved with multiple threads and merged

request based RMA operations. Also, for the experiments a modified version of the OSU OpenSHMEM

benchmarks, that was extended to support multi-threading with OpenMP, was used. The experiments where

conducted on two nodes with one PE placed on each node.

 Figure 5 shows the aggregated bandwidth as a function of the message size. The message size is

plotted on the x-axis, and the bandwidth is plotted on the y-axis. All experiments but the single threaded

experiment saturate the network with a sufficiently large message size. The plot for one and two threads

shows a dip in the bandwidth when the message size exceeds 8 kB. This is due to a protocol switch in the

networking layer. If more than 2 threads are used, the impact of the protocol switch is mitigated by the

additional threads. From the figure, we can observe that the merged request based RMA operations help to

achieve higher bandwidth for multithreaded OpenSHMEM.

4.4 Communication / Computation overlap

In the experiment, we measure the overlap achieved by the merged request based RMA operations using a

modified version of the COMB benchmark [7]. The modifications include support for OpenSHMEM and

merged request based RMA operations. The benchmark supports two modes, Post-Work-Wait and Post-

Work-Poll modes of operation. The Post-Work-Wait is used to measure the largest uninterrupted

computation-communication overlap duration, and we use this mode for the experiments in the paper.

 The benchmark has three steps:

• Compute the communication time for a given message size.

• Estimate the work loop which is equivalent to the communication time. The work loop in our

experiments is a busy loop.

• Post the communication operation. Upon return from the communication operation, the

computation / work loop is started. After completion of computation / work loop, the wait is called

for the completion of communication operation.

The overlap is measured by comparing the time to complete step 3 and step 2, while repeating the step (3)

by incrementing the work done until the work in step 3 is equal to work in step 2.

 Figure 6 shows the overlap achieved for small (64 Bytes) and large message (6 MB) as the work is

increased. We can observe that as we increase the work, the merged request based RMA operations achieve

close 100% overlap. For large message, the experiment measured 99.89% with a computation to

communication ratio of 1.01. For smaller message sizes, the overlap is still close to 90%.

4.5 Custom Collective
This section measures the latency of multithreaded collective. In this collective, multiple threads participate

in the same collective. The latency for the multithreaded Broadcast is shown in Figure 7. Here, each thread

participating in the Broadcast sends a part of the buffer. Besides the latency advantages, these custom

collectives are expected to be useful for many-threaded systems such as Graphical Processing Unit (GPU)

based extreme-scale systems [10].

 Figure 7 shows the latency of Broadcast as we increase the message size. We can observe that as

number of threads participating in the Broadcast increase, the latency decreases. For medium and larger

size messages the improvement is significant.

4.6 GUPS
The GUPS benchmark measures the performance of the RMA operations by determining the number of

memory locations that can be randomly updated. In the context of OpenSHMEM, this is done on the

symmetric heap and is using a read-modify-write operation. The results can be seen in figure 8. The x-axis

in the graph is showing the number of threads per PE, and the y-axis is showing the number of Giga updates.

The benchmark is run with one PE per node with a symmetric heap size of half of a nodes system memory.

Adding threads to the benchmarks enables an increase in the number of updates possible. The GUPS are

increasing for all benchmark runs with increasing numbers of threads.

5. Related Work

Other Partitioned Global Address Space (PGAS) low level libraries like GASNet [4] and ARMCI [9]

provide similar ways to aggregate non-blocking communication as we do with merged requests. Making it

available at the OpenSHMEM level gives more control to the application programmer to exploit

concurrency at a much finer level. The Message Passing Interface (MPI) 1.0 [6] utilizes communicators

which are a logical stream for two-sided communication. For interoperability amongst programming

models that use threads MPI community has explored endpoints [5, 11] for MPICH that relax the one-to-

one relationship between processes and threads by generating additional MPI ranks that can be assigned to

threads used in the execution of such models. The MPI endpoints are similar to the merged request to the

extent that it can be used to identify set of resources that will support independent execution of

communication operations. The MPI 2.0 [8] one-sided mechanisms achieve the same using windows. All

ranks in the group have to call MPI_Win_allocate that returns a window object that can be used by all

processes in the communicator to perform RMA operations. One significant difference from the approach

proposed for OpenSHMEM is that the endpoints and windows created in MPI are a collective call, which

is not the case for merged requests.

6. Conclusion

In this paper, we demonstrated how merged request abstraction can be used to achieve productivity and

performance for multithreaded OpenSHMEM programs. The abstractions were implemented in high-

performing experimental OpenSHMEM-X. The results show that implementation can be realized without

incurring overhead (Figure 4).

 The simple yet powerful semantics help achieve higher performance in the case of multithreaded

OpenSHMEM, which we can observe in the various results shown in the evaluation section. Particularly,

we can observe in the results shown in Figure 4, we achieve over 100 MMPS. Also, it helps improve the

bandwidth utilization for small messages as seen in the Figure 5. The results of the GUPS benchmark are

another indicator, that multithreaded OpenSHMEM applications with merged request operations can

greatly improve the performance of applications (see figure 8). Finally, we measured the overlap of

computation and communication, and see that especially for large messages the computation-

communication overlap is close to 100%. Another benefit is the ability to utilize threads in custom

collectives. We demonstrate its use with the implementation of multithreaded Broadcast. As shown in figure

7 utilizing threads for collective operations can notably decrease the latency of the operation.

Acknowledgment

This work is supported by the United States Department of Defense and used resources of the Extreme

Scale Systems Center located at the Oak Ridge National Laboratory.

References

1. OpenSHMEM reference implementation. https://github.com/openshmem-org/openshmem, accessed:

2017-06-26

2. Baker, M., Aderholdt, F., Venkata, M.G., Shamis, P.: Openshmem-ucx: Evaluation of UCX for

implementing openshmem programming model. In: Venkata et al. [12], pp. 114-130,

http://dx.doi.org/10.1007/978-3-319-50995-2_8

3. Boehm, S., Pophale, S., Venkata, M.G.: Evaluating openshmem explicit remote memory access

operations and merged requests. In: Venkata et al. [12], pp. 18-34, http://dx.doi.org/10.1007/978 3-319-

50995-2_2

4. Bonachea, D.: Gasnet specication, v1.1. Tech. rep., Berkeley, CA, USA (2002)

5. Dinan, J., Balaji, P., Goodell, D., Miller, D., Snir, M., Thakur, R.: Enabling mpi interoperability through

exible communication endpoints. In: EuroMPI 2013. Madrid, Spain (2013)

6. Forum, M.P.: Mpi: A message-passing interface standard. Tech. rep., Knoxville, TN, USA (1994)

7. Lawry, W., Wilson, C., Maccabe, A.B., Brightwell, R.: COMB: A portable benchmark suite for assessing

MPI overlap. In: 2002 IEEE International Conference on Cluster Computing (CLUSTER 2002), 23-26

September 2002, Chicago, IL, USA. pp. 472-475. IEEE Computer Society (2002),

https://doi.org/10.1109/CLUSTR.2002.1137785

8. Li, G., Palmer, R., DeLisi, M., Gopalakrishnan, G., Kirby, R.M.: Formal specification of mpi 2.0: Case

study in specifying a practical concurrent programming api. Sci. Comput. Program. 76(2), 65-81 (Feb

2011), http://dx.doi.org/10.1016/j.scico.2010.03.007

9. Nieplocha, J., Carpenter, B.: ARMCI: A portable remote memory copy library for distributed array

libraries and compiler run-time systems, pp. 533-546. Springer Berlin Heidelberg, Berlin, Heidelberg

(1999), http://dx.doi.org/10.1007/BFb0097937

10. Potluri, S., Rossetti, D., Becker, D., Poole, D., Venkata, M.G., Hernandez, O.R., Shamis, P., Lopez,

M.G., Baker, M., Poole, W.: Exploring openshmem model to program gpu-based extreme-scale systems.

In: OpenSHMEM and Related Technologies. Experiences, Implementations, and Technologies - Second

Workshop, OpenSHMEM 2015, Annapolis, MD, USA, August 4-6, 2015. Revised Selected Papers. pp. 18-

35 (2015), https://doi.org/10.1007/978-3-319-26428-8_2

11. Sridharan, S., Dinan, J., Kalamkar, D.D.: Enabling efficient multithreaded mpi communication through

a library-based implementation of mpi endpoints. SC14: International Conference for High Performance

Computing, Networking, Storage and Analysis 00, 487-498 (2014)

12. Venkata, M.G., Imam, N., Pophale, S., Mintz, T.M. (eds.): OpenSHMEM and Related Technologies.

Enhancing OpenSHMEM for Hybrid Environments – Third Workshop, OpenSHMEM 2016, Baltimore,

MD, USA, August 2-4, 2016, Revised Selected Papers, Lecture Notes in Computer Science, vol. 10007.

Springer (2016), http://dx.doi.org/10.1007/978-3-319-50995-2

Fig. 1. Various components in the OpenSHMEM reference implementation

Fig. 2. shows the difference in the put latency between the vanilla and the TLS implementation

Fig. 3. Average message rate for a single thread.

Fig. 4. Aggregated message rate for a multi threaded PE with increasing no. of threads

Fig. 5. Bandwidth for a single thread as a function of the message size (in bytes)

Fig. 6. Overlap between communication and computation using non-blocking put operations.

Fig. 7. Latency for put based broadcast using 32 PEs

Fig. 8. Results for GUPS benchmark using OpenMP and OpenSHMEM with merged requests

