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Abstract

Various statistical techniques are discussed that can be used to assign
a level of confidence in the prediction of models that depend on input data
with known uncertainties and correlations. The particular techniques re-
viewed in this paper are: 1) random realizations of the input data using
Monte-Carlo methods, 2) the construction of confidence intervals to as-
sess the reliability of model predictions, and 3) resampling techniques to
impose statistical constraints on the input data based on additional in-
formation. These techniques are illustrated with a calculation of the keff
value, based on the 235U (n, f) and 239Pu (n, f) cross sections.

1 Introduction
The propagation of uncertainty in models that depend on data with measured
values and correlations can be carried out using standard techniques from sta-
tistical inference theory. The goal is to quantify a level of confidence in a
value predicted by the model, given the uncertainties and correlations in its
inputs. This report presents some techniques to construct a confidence interval
for the prediction of a model with known input values and correlations. Sec-
tion 2 presents the methodology, which begins with a Monte-Carlo procedure
to generate random realizations of correlated input data, and then constructs
confidence intervals for the predictions of the model. Section 3 illustrates the
methodology using calculations of the keff value based on random realizations
of the energy-dependent 235U (n, f) and 239Pu (n, f) cross sections as input. In
addition, appendix A reviews the confidence interval formalism, and appendix
B gives a brief introduction to resampling techniques that can be used in case
the input data need to be brought into better agreement with supplementary
experimental information.
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2 Methodology

2.1 Stochastic versus deterministic
In this section, we consider an uncertainty quantification (UQ) method for a
model that depends on data with known uncertainties. In section 3 we give the
example of keff calculations using evaluated (n, f) cross sections with a known
energy-energy covariance matrix. The method we will use is based on a Monte-
Carlo simulation of the input data in order to generate a corresponding random
sample of outputs from the model. The model may be easy to compute, in
which case a large random sample can be used, or computationally costly, in
which case a smaller sample may have to be used. Regardless of of the size
of the sample, it is always possible to generate a confidence interval, with a
well-defined statistical interpretation for the model outputs.

In general, the error propagation for a model that is a function of uncertain
parameters can be performed by either a deterministic or a stochastic method.
An example of a deterministic error propagation method is given by the Kalman-
filter technique described in [1]: the model is first approximated as a linear
function of its parameters and then, given data values and their covariance ma-
trix (and optionally a covariance matrix for the optimal parameter values of the
model), a set of linear equations is derived to update the parameter values and
their covariances. In a stochastic approach, random realizations of the model
input data are generated in a Monte-Carlo process, and the model is executed
to calculate outputs for each random input. After a sufficient number of Monte-
Carlo trials, the output can be analyzed by various statistical techniques. In
this report, we will focus on the stochastic approach to generate model out-
puts and on confidence intervals (CI) [3, 4] as the statistical technique used to
interpret those outputs. The main advantages of stochastic UQ methods are
that they are typically easier to implement than the deterministic ones and are
not limited to a linear approximation for the model. The main disadvantage of
stochastic methods is the computational cost, if a large number of Monte-Carlo
simulations is required to achieve a required accuracy in the outputs.

2.2 Random realizations of input quantities
We consider a model M which is a function of a vector ~x of input values and
which produces an output quantity y,

y = M (~x) (1)

The problem can be generalized to a vector of output values ~y, but the principle
remains the same, and the application in section 3 is closer to the formulation
in Eq. (1). We will not need to assume that the functionM (~x) is linear, we will
however assume that the components of ~x are random variables with a normal
probability distribution function, and that their mean values ~µ and covariance
matrix Σ are provided. The assumption of a normal distribution is not essential,
and the results can be generalized to other other types of distributions (see, e.g.,
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section A.2.2 and reference [10]). There are well-known techniques for generating
random realizations of ~x (see, e.g., [2] and references therein). First, a matrix
C is determined such that

CCT = Σ (2)

where CT is the transpose of matrix C, and Σ is the covariance matrix defined
above. There are many ways of constructing the matrix C (e.g., Cholesky
decomposition, matrix square root, principal component analysis [2]). Once C
has been generated, a vector of (uncorrelated) values ~x0 is produced by drawing
each of its components independently from a standard normal distribution (i.e.,
with mean 0 and standard deviation 1). A random realization of ~x, whose
components are correlated through the covariance matrix Σ is then given by
the linear operation

~x = ~µ+ C~x0 (3)

Note that different decomposition methods can produce different matrices C,
but as long as they satisfy Eq. (2), then Eq. (3) will, after a sufficient number
of Monte-Carlo trials, produce the same probability distribution of ~x with mean
~µ and covariance matrix Σ.

When an experimental measurement of y and its uncertainty are available,
they can be compared to the distribution of values calculated using Eq. (1)
with random realizations of ~x. If there is an unacceptable discrepancy between
the measured and simulated y distributions, it may be possible to bring them
into better agreement by resampling the realizations of ~x. This technique is
described in appendix B. In this sense, resampling can be used to impose
additional experimental constraints on the input data. An example is given in
section 3.

2.3 Confidence intervals
Using the technique described in section 2.2, random realizations of the input
~x are generated, and Eq. (1) can be used to calculate the corresponding output
values yi of the model, where i = 1, . . . , n for n random realizations. For exam-
ple, the various ~x could be realizations of (n, f) cross sections as a function of
incident energy and the yi values could be corresponding calculated values of
keff. We now want to make statistical inferences about the yi values, and this
can be done using confidence intervals. Appendix A summarizes the formalism
needed to calculate CIs. Once we have determined the sample mean (ȳ) and
standard deviation (sy) of the set of yi values using Eqs. (5) and (6), respec-
tively, we can make the formal statement that the true (population) mean µy
is contained in the interval

ȳ − tα/2
sy√
n
≤ µy ≤ ȳ + tα/2

sy√
n

(4)

with 100× (1− α) % confidence, for a given value of α (and where 0 ≤ α < 1).
The tα/2 value in Eq. (4) depends only on the underlying distribution and the
α value (in particular, it does not depend on the sampled yi values), and can be
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calculated once and for all. Table 4 in appendix A gives tα/2 values for a normal
population distribution. We can interpret Eq. (4) In the context of the random
realizations described in section 2.2 as follows. Suppose we could generate a
very large number of realizations of ~x (i.e., n→∞), then the sample mean ȳ of
the yi values would tend to the population mean µy. If we repeatedly sampled
smaller sets of size n from the very large set of yi values (the one where n→∞),
then for say α = 0.05, we would expect that 95% of the CIs constructed using
Eq. (4) would contain the population mean µy. We give concrete examples of
this interpretation in section 3.

3 Application to keff

We illustrate the methodology described in section 2 with a calculation of keff
using random realizations of (n, f) cross sections. In a first example, 3984
random realizations of the 235U (n, f) cross section were generated using the
code Kiwi [5, 6, 2] and evaluated data from the ENDL2009.2 database. The
random realizations are plotted in Fig. 1. For each cross section realization, a
corresponding keff was calculated for Godiva, a bare sphere of highly enriched
uranium, using two different transport codes: ARDRA, a deterministic code
[7, 8], and Mercury, a Monte-Carlo code [9]. Figure 2 shows histograms of the
calculated keff values obtained from the two codes. Table 1 gives the mean and
standard deviations of the data plotted in Fig. 2. Note that the calculated
standard deviations agree well with the uncertainty of the experimental keff
value [12]. This may be purely coincidental, or it may be that the evaluated
235U (n, f) cross section was adjusted at some point to match the experimental
keff value. Whatever the origin of this agreement, it means that the cross-section
realizations do not need to be resampled in order to match the experimental keff
value.

ARDRA Mercury Experiment
mean 1.00055 1.00035 1.0000
std dev 0.00271 0.00271 0.0026

Table 1: Mean and standard deviation of the calculated keff from the ARDRA
and Mercury transport codes, compared to the measured experimental value
and its uncertainty. These statistics correspond to the distributions in Fig. 2.

We can now construct and test confidence intervals for the keff value. To
demonstrate that CIs can be reliably estimated even for small sample sizes, we
sample 5 cross sections at a time with replacement from the 3984 realizations
and their corresponding keff values obtained from ARDRA, and construct a
confidence interval from those 5 cross sections using Eq. (4) and the tα/2 values
in Table 4. We repeat this process 100000 times and count the fraction of times
that the confidence interval contains the value keff = 1.00055 from Table 1.
Table 2 compares requested CI for different confidence levels with the actual
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Figure 1: Plot of evaluated 235U (n, f) cross section from the ENDF2009.2
database (dashed line), and 3984 random realizations (solid lines) of this cross
section generated using the Kiwi code [5, 6].
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Figure 2: Histogram plots of the calculated keff values using the ARDRA (red
bars) and Mercury (blue bars) codes. The area of overlap of the two histograms
is shown in purple.

Requested (%) Achieved (%)
50.0 50.000
68.0 67.903
80.0 80.063
90.0 90.032
95.0 94.978
99.0 99.036

Table 2: Requested and achieved confidence intervals for the data in Fig. 2.

coverage frequency achieved, and shows the excellent agreement between the
two. In this example, it was possible to check the validity of the CIs by analyzing
a large number of small samples. In other cases, the computational cost of
evaluating the model may be too high and we may only be able to obtain
a small number of sampled points. Table 2 shows that reliable CIs can be
constructed even with only 5 sampled points in this example. Of course, the
larger the sample size, the tighter the confidence interval will be, both because
of the 1/

√
n factor in Eq. (4) and the decreasing behavior of the tα/2 values

with increasing n, as can be seen in Table 4.
Finally, we noted in the discussion of Table 1 that the sample mean and

standard deviation for the ARDRA and Mercury calculations were both already
very close to the experimental values, however, we can improve this agreement
by using the resampling technique discussed in appendix B. By resampling
100000 selections from the ARDRA results for example, we obtain a new sample
mean of 0.999994 and a new sample standard deviation of 0.002578, which are
both closer to the experimental values than the original values quoted in Table
1. Note that the size of the resampled data set is much larger than the size of the
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Figure 3: Probability distribution for keff obtained from ARDRA calculations
with 4000 random realizations of the 239Pu (n, f) cross section (solid black
curve). The probability distribution obtained are resampling 105 in order to
bring the keff mean value and standard deviation into agreement with experi-
mental measurements is shown as a dashed red line.

initial sample (3984), and therefore some cross-sections and their corresponding
keff value were sampled multiple times.

A similar application with ARDRA to the 239Pu Jezebel critical assembly
with 4000 realizations of the 239Pu (n, f) cross section produces a mean value
of 1.0010 with standard deviation of 0.0036, compared to the measured value
1.000 ± 0.002 [13]. Resampling 105 cross sections, we can bring the ARDRA
result to a mean of 1.0000 and a standard deviation of 0.0020, in substantially
better agreement with the experimental values. Figure 3 shows the effect of
resampling the Pu cross section data on the probability distribution of keff.
Although the mean value is not substantially affected by the resampling proce-
dure, since it was already very close to the experimental one, the width of the
distribution is noticeably narrower after resampling.
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4 Conclusion
In this paper we have discussed several statistical tools that can be used together
to quantify a level of confidence in predictions from a model that relies on
uncertain input data, provided the uncertainties and correlations of the input
data are known. The main techniques discussed are 1) random realizations of the
input data, 2) the construction of confidence intervals and their interpretation,
and 3) resampling techniques to compensate for inadequacies in the input data
values and uncertainties. These statistical tools have been illustrated using a
calculation of keff.
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A Calculation of confidence intervals for the mean
of a distribution

Given a random sample of n numbers {x1, x2, . . . , xn} drawn from a probability
distribution with unknown mean µ and a standard deviation σ (which may or
may not be known), we can estimate µ from the sample mean

x̄ =

∑n
i=1 xi
n

(5)

In many applications, the sample standard deviation is also calculated,

s =

∑n
i=1 (xi − x̄)

2

n− 1
(6)

and used as an estimate for σ, if it is unknown. Then the quantity x̄ ± s/
√
n

is quoted as the estimate of the mean and its uncertainty. What this statement
implies is that if repeatedly drew samples {x1, x2, . . . , xn}, and constructed the
interval [

x̄− s√
n
, x̄+

s√
n

]
(7)

each time, we would expect ≈ 68.27% of those intervals to contain the true
population mean µ. The interval in Eq. (7) is said to be a 68.27% confidence
interval on the mean of the distribution. We can generalize this result and
construct intervals for any desired level of confidence and for any underlying
probability distribution.
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A.1 Large sample size
If the sample size is sufficiently large (typically, n ≥ 30 is considered large [3])
then, regardless of the form of the population distribution, the central limit
theorem [4] ensures that the sample mean values x̄ from repeated draws are
approximately normally distributed with mean µ and standard deviation σ/

√
n.

In that case, the quantity
z =

x̄− µ
σ/
√
n

(8)

will have a normal distribution with mean 0 and standard deviation 1 (i.e.,
the standard normal distribution). The probability that z lies in some interval
[−c, c] is then given by the integral

P (−c ≤ z ≤ c) =

ˆ c

−c
dξ

1√
2π
e−ξ

2/2

= erf
(

c√
2

) (9)

where erf is the error function. Constructing a confidence interval amounts to
solving Eq. (9) for c, given a probability P (−c ≤ z ≤ c). By convention, this
probability equation is written as

P
(
−zα/2 ≤ z ≤ zα/2

)
= 1− α (10)

where the quantity 100×(1− α) is the confidence level expressed as a percentage
(e.g., α = 0.05 corresponds to a 95% confidence level). The number zα/2 is the
value of z that leaves an area of α/2 for z ≥ zα/2 under the standard normal
distribution curve. Likewise, −zα/2 is the value of z that leaves an area of α/2
for z ≤ −zα/2 under the standard normal distribution curve. From Eq. (9), this
means we want

zα/2 =
√

2erf−1 (1− α) (11)

The zα/2 value can be obtained by calculating Eq. (11) (Mathematica provides
an InverseErf function for example), or from published tables (see, e.g., [3]). A
few values of zα/2 are listed in Table 3 for different confidence levels. As we
mentioned in the introduction to this appendix, the 68.27% confidence interval
is just a special case where zα/2 = 1.

Recalling the definition of z from Eq. (8), we therefore have

P

(
−zα/2 ≤

x̄− µ
σ/
√
n
≤ zα/2

)
= 1− α (12)

or,

P

(
x̄− zα/2

σ√
n
≤ µ ≤ x̄+ zα/2

σ√
n

)
= 1− α (13)

which defines the 100× (1− α) % confidence interval for the mean:[
x̄− zα/2

σ√
n
, x̄+ zα/2

σ√
n

]
(14)
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Confidence α zα/2

50% 0.5 0.67449
68.27% 0.3173 1
80% 0.2 1.28155
90% 0.1 1.64485
95% 0.05 1.95996
99% 0.001 2.57583

Table 3: Table of zα/2 values from Eq. (11) for various confidence levels.

A.2 Small sample size
The problem of calculating a confidence interval is more complicated when the
sample size is small and the standard deviation σ is unknown. Perhaps sur-
prisingly, it is still possible to construct a meaningful confidence interval, even
with a single sampled value (provided something is known about the underlying
probability distribution) [10, 11].

A.2.1 Normal population distribution

If the population distribution is normal (but with µ and σ not necessarily
known), then the quantity

t =
x̄− µ
s/
√
n

(15)

which differs from Eq. (8) by the use of the sample standard deviation (Eq. (6))
in the denominator, is known to follow a Student t distribution with ν = n− 1
degrees of freedom [3], which has the probability distribution function (pdf)

f (t) =
Γ
(
ν+1
2

)
Γ
(
ν
2

)√
πν

(
1 +

t2

ν

)−(ν+1)/2

(16)

The small difference between Eqs. (8) and (15) is crucial: the sample standard
deviation s is not a constant, but a random variable with its own pdf. In fact, for
a sample of size n, the ratio of the sample variance to the population variance,
s2/σ2, is known to have a χ2

n−1/ (n− 1) distribution with ν = n − 1 degrees
of freedom, mean 1, and variance 2/ (n− 1) [3, 4]. In light of this fact, we can
re-write Eq. (15) as

t =
x̄− µ
σ/
√
n
× 1√

s2/σ2

=
z√
s2/σ2

(17)

where z in the last line matches the definition in Eq. (8) and therefore has a
standard normal distribution. The form of the t distribution in Eq. (16) then
follows from the known distributions of the numerator and of the denominator
in Eq. (17) [3, 4].
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Confidence α tα/2 for n = 5 tα/2 for n = 10 tα/2 for n = 100

50% 0.5 0.740697 0.702722 0.676976
68.27% 0.3173 1.14165 1.05875 1.0051
80% 0.2 1.53321 1.38303 1.29016
90% 0.1 2.13185 1.83311 1.66039
95% 0.05 2.77645 2.26216 1.98422
99% 0.01 4.60409 3.24984 2.62641

Table 4: Table of tα/2 values from Eq. (23) for various confidence levels and
different sample sizes n (and corresponding degrees of freedom ν = n− 1).

As we did in Eq. (10), we now seek the value tα/2 for a given α such that

P
(
−tα/2 ≤ t ≤ tα/2

)
= 1− α (18)

It is useful at this stage to introduce the cumulative distribution function (cdf),

F (t) ≡
ˆ t

−∞
dt′ f (t′) (19)

Then, Eq. (18) becomes

F
(
tα/2

)
− F

(
−tα/2

)
= 1− α (20)

Because f (t) in Eq. (16) is an even function of t, it follows from Eq. (19) that

F
(
−tα/2

)
= 1− F

(
tα/2

)
(21)

and therefore, combining Eqs. (20) and (21), the equation we need to solve is

F
(
tα/2

)
= 1− α

2
(22)

In principle we can invert the cdf for the t distribution numerically to obtain
tα/2 as

tα/2 = F−1
(

1− α

2

)
(23)

We can also use the Mathematica function InverseCDF[ StudentTDistri-
bution[ nu ] , x ], which returns F−1 (x) for ν degrees of freedom. Table 4
gives the tα/2 values for different confidence levels and different sample sizes.
Note that, as the sample size increases, the tα/2 values tend to the zα/2 values
in Table 3.

A.2.2 Arbitrary population distribution

The t pdf in Eq. (16) gives the distribution of the sampled values {x1, x2, . . . , xn}
when they are drawn from a normal population distribution with unknown σ.
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Suppose now that the sample is drawn from a distribution which is not neces-
sarily normal (e.g., a uniform or a Cauchy distribution). In that case, we can no
longer use the t distribution and the tα/2 values from Table 4. We must instead
calculate equivalent tα/2 values that correspond to the actual probability distri-
bution (e.g., uniform, Cauchy, Poisson, etc.). This calculation is also discussed
in [10]. As in Eqs. (10) and (18), we need to solve the probability equation

P
(
−uα/2 ≤ u ≤ uα/2

)
= 1− α (24)

for the unknown uα/2 value where

u ≡ x̄− µ
s/
√
n

(25)

does not necessarily follow the t distribution. If we think of the set of sampled
values {x1, x2, . . . , xn} as the coordinates of a point in n-dimensional space,
then the inequality on the left-hand side of Eq. (24),

−uα/2 ≤ u ≤ uα/2 (26)

defines a region R in that space. If we know the population pdf f (x), then Eq.
(24) can be written as

ˆ
. . .

ˆ
R
dx1 . . . dxn f (x1) . . . f (xn) = 1− α (27)

Then, in principle, for a given value of uα/2, the region R is defined and the
multiple integrals in Eq. (27) can be performed numerically giving a value for
1 − α. In this way, a table of uα/2 values and corresponding 100 × (1− α) %
confidence levels can be constructed for any pdf f (x), even if f (x) does not
have an analytical form (e.g., if it is given by a table of numerical values). A
numerical algorithm to construct the uα/2 values is presented in [10].

B Importance resampling
Suppose we have a set of sampled values {x1, x2, . . . , xn} drawn from a pop-
ulation pdf f (x), and we wish to sample values {y1, y2, . . . , yn} which satisfy
a different pdf g (x). For example, the xi may represent keff values each one
calculated from a random realization of an (n, f) cross section. Suppose we find
that the sampled keff values have a standard deviation which differs from the
experimental uncertainty, and we wish to enforce agreement with the experi-
mental keff uncertainty. This particular example is discussed in section 3. One
way to proceed is to resample the cross-section realizations with weights so that
the corresponding keff values have a normal distribution with the desired stan-
dard deviation. The resampled cross sections form a set that is now consistent
with the measured keff value and its uncertainty. This technique is known as
importance resampling [14].
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We start by defining the weights

w (x) ≡ g (x)

f (x)
(28)

for each sampled value and form the set {w (x1) , w (x2) , . . . , w (xn)}. We then
calculate the sum of the weights

W =

n∑
i=1

w (xi) (29)

Next, we generate a pseudo-random number between 0 and W sampled from a
uniform pdf,

r = U (0,W ) (30)

and we step through each xi value incrementing the running sum

Si =

i∑
j=1

xi (31)

The first xi for which Si + w (xi) ≥ r is then selected and stored in the set
of resampled values. This process is repeated until a sufficiently large set
{y1, y2, . . . , ym} of m resampled values has been constructed. Figure 4 shows
an example of a standard normal distribution (mean µ = 0, standard deviation
σ = 1) resampled into a target normal distribution with mean 0.5 and standard
deviation 1.1. For the original 106 sample points, we calculate a sample mean
(x̄) and standard deviation (sx) of

x̄ = 0.00040

sx = 1.00175
(32)

while for the 106 points in the resampled distribution we have

ȳ = 0.49962

sy = 1.10044
(33)

as expected.
An important point to keep in mind is that, in general, the greater the

difference between the original and desired pdfs, the larger the sample size will
need to be. For example, if the target pdf g (x) is a normal distribution with
mean µ = 1 and standard deviation σ = 2, with 106 points in the original and
resampled data we find

ȳ = 0.81736

sy = 1.81640
(34)

which are not in good agreement with the population mean and standard devi-
ation.

13



Figure 4: Histogram of points sampled from a normal distribution with mean
0 and standard deviation 1 (black solid curve), compared to a histogram of
resampled data with a target normal distribution with mean 0.5 and standard
deviation 1.1. Both the original and resampled distributions contain 106 sample
points.
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