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Abstract

High-energy diffraction microscopy (HEDM) constitutes a suite of combined X-ray

Laboratory, 2230 10th Street, characterization methods, which hold the unique advantage of illuminating the
stighffpattefsoﬂ AFB, OH 45433, microstructure and micromechanical state of a material during concurrent in situ
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Full list of author information is mechanical deformation. The data generated from HEDM experiments provides a

available at the end of the article heretofore unrealized opportunity to validate meso-scale modeling techniques, such
as crystal plasticity finite element modeling (CPFEM), by explicitly testing the accuracy
of these models at the length scales where the models predict their response.
Combining HEDM methods with in situ loading under known and controlled boundary
conditions represents a significant challenge, inspiring the recent development of a
new high-precision rotation and axial motion system for simultaneously rotating and
axially loading a sample. In this paper, we describe the initial HEDM dataset collected
using this hardware on an alpha-titanium alloy (Ti-7Al) under in situ tensile
deformation at the Advanced Photon Source, Argonne National Laboratory. We
present both near-field HEDM data that maps out the grain morphology and
intragranular crystallographic orientations and far-field HEDM data that provides the
grain centroid, grain average crystallographic orientation, and grain average elastic
strain tensor for each grain. Finally, we provide a finite element mesh that can be
utilized to simulate deformation in the volume of this Ti-7Al specimen. The dataset
supporting this article is available in the National Institute of Standards and
Technology (NIST) repository (http://hdl.handle.net/11256/599).

Keywords: High-energy diffraction microscopy (HEDM), X-ray diffraction, Far-field
diffraction, Near-field diffraction, Three-dimensional microstructure, Crystal plasticity
finite element modeling (CPFEM)

Data description

Introduction

High-energy diffraction microscopy (HEDM) is a suite of experimental techniques that
utilizes high-energy monochromatic synchrotron radiation to non-destructively inter-
rogate the microstructure and micromechanical state of a material during deformation
[1-3]. This offers a powerful tool to characterize the internal structure and mechanical
behavior of deformable solids, which can be used to instantiate, and then later validate,

micro- and meso-scale models such as crystal plasticity finite element modeling
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(CPFEM) [4-6]. The dataset presented in this paper represents concurrently collected
near-field HEDM (nf-HEDM) [7-9] and far-field HEDM (ff-HEDM) measurements
[10-13]; a first analysis of these data is contained in [14]. The nf-HEDM technique uti-
lizes an area detector placed approximately 5 mm from the specimen and measures the
grain morphology and local crystallographic orientations within and between grains,
while the ff-HEDM technique measures the centroid and the average elastic strain ten-
sor and crystallographic orientation in each individual grain. These data are co-
registered into a single HEDM dataset that tracks the deformation of a polycrystalline
material during in situ mechanical loading.

Material

The titanium alloy utilized in this experiment (Ti-7Al) was a single-phase (a, hexagonal
close-packed crystal structure) material. It was initially cast as a 75-mm ingot, hot iso-
static pressed before being extruded into a 30-mm? bar. It was then uni-directionally
rolled at 955 °C to a final thickness of 7.5 mm. The material was then recrystallized at
955 °C for 24 h and furnace cooled. This produced a single-phase material with a grain
size of approximately 100 pm [1, 14]. The tensile specimen was fabricated with the ten-
sile axis transverse to the rolling and normal directions. The material has significant
elastic and plastic anisotropy [15-18], making it an ideal material to study with HEDM
in order to examine the heterogeneity that develops even within the initial elastic por-

tion of loading.

Experimental methods

The specific dataset presented here was collected in an HEDM experiment that was
conducted at the 1-ID-E beamline of the Advanced Photon Source (APS) at Argonne
National Laboratory (ANL). The experimental methods are generally described in
Schuren et al. [1], and the specific in situ loading equipment developed for this, as well
as the subsequent experiments, is detailed in Shade et al. [14]. Specifically, we utilized a
rotational and axial motion system (RAMS) [14] to concurrently rotate the tensile spe-
cimen seen in Fig. 1, while applying an axial load. The RAMS is an insert held inside
an MTS 858 load frame, whereby load is transferred to the sample through the load
frame and RAMS device, while the RAMS provides simultaneous and independent ro-
tation of the specimen during the experiment. As indicated in Fig. 1, the specimen had
an initial 8-mm gage length, with a cross section of approximately 1 x 1 mm.

Before the specimen was loaded, ff-HEDM data were collected in a volume that
spanned 600 pum along the gage length and included the entire 1 x 1 mm gage cross
section. A 600-um tall “box” X-ray beam was used to define the measurement volume
for this dataset. The ff-HEDM measurements took approximately 12 min in order to
fully rotate the specimen in 0.25° rotation intervals over a rotation range of 360°. Subse-
quent analysis of the diffraction patterns utilizing the HEXRD code [13] provided a
characterization of the initial grain centroid location, as well as the full average elastic
strain tensor in each grain before deformation' with a resolution of ~1 x 10™*. Next,
we collected nf-HEDM data over a 200-pm long volume in the middle of the larger
ff-HEDM volume, utilizing a 2-um tall line-focused X-ray beam. These measurements
took approximately 24 h to complete. We analyzed the nf-HEDM diffraction data
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Fig. 1 Specimen geometry for HEDM experiments using the RAMS load frame insert. a Side view with
dimensions in (millimeters). b Isoparametric view. All units are in millimeters

X

with the IceNine data reduction code [9] to characterize the 3D grain morphology
and intragranular orientation distribution, with a spatial resolution of ~2 ym and an
accuracy of ~0.1° in crystallographic orientation. During these measurements, a small
axial load (23 MPa) existed on the specimen as a result of the specimen loading pro-
cedure, where a slight axial translation was unavoidable while tightening the grips
that held the specimen during testing. This initial unloaded state will hereafter be re-
ferred to as load 0.

After the initial HEDM measurements at load 0, we loaded along the y-axis of the
specimen to three additional levels (load 1 (180.88 MPa), load 2 (339.81 MPa), Load
3 (495.90 MPa)), each below the macroscopic yield point (Fig. 2), where we conducted
ff-HEDM measurements at each load level. The specimen was initially overloaded
past each of these desired axial load levels and then unloaded approximately 10 % to
minimize any change in material state during the ff-HEDM measurements due to
stress relaxation [19]. From Fig. 2, it becomes apparent that the loading curve deviates
from linearity between load 2 and load 3, which is likely an indication of the onset of
plasticity. The strain levels were measured by a two-point digital image correlation on
the surface of the specimen, specifically by measuring the distance between two gold
fiducial markers placed on the surface that also serve as reference features for align-
ment [20]. In this manner, the initial strain at load 0 is assumed to be zero, despite
the 23-MPa axial load, as no DIC measurement was made prior to clamping the spe-

cimen in the grips.

Dataset description

The dataset supporting the results of this article is available in the National Institute of
Standards and Technology (NIST) repository (http://hdl.handle.net/11256/599), con-
taining a single HDF5 file (https://www.hdfgroup.org), a format designed to store large
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Fig. 2 Macroscopic stress-strain curve for the HEDM experiment. The sample was held at load 0, load 1, load
2, and load 3 in order to take f-HEDM measurements. Note that a slight non-linearity appears to develop between
load 2 and load 3

datasets whereby a portion of the file may be extracted for analysis without having to
load the entire dataset into memory. This provides a highly efficient file format for ma-
nipulating large data and can be conveniently viewed with HDF5Viewer (https://
www.hdfgroup.org/products/java/hdfview/).

In the HDF5 file, the folder titled Sample contains the Macro Strain and the Macro
Stress data fields. These fields provide the stress-strain data plotted in Fig. 2, represent-
ing the points in the test (load 0, load 1, load 2, and load 3) where the specimen was
held under load to capture the ff-HEDM measurements.

The ff-HEDM data is also contained within the HDEF5 file, including Confidence
Index, Elastic Constants, Grain ID, and nFFgrains. These fields are found in the main
Farfield folder in the file and represent data that are applicable to each load step. The
nFFgrains field is a scalar number representing the number of grains in the ff-HEDM
diffraction volume (605). Confidence Index is a similar metric as in the nf-HEDM data,
containing a value between 0.0 and 1.0 representing the fit of the diffraction data to a
certainty of the underlying datapoint evaluated by HEXRD in the initial analysis. Elastic
Constants is a field with five single-crystal elastic constants (Cy;, Cyo, Cy3, Cs3, Cyq),
used to convert the elastic strain in the ff-fHEDM data into stress [21-23]. Grain ID is
a scalar value that uniquely identifies each grain in both fffHEDM and nf-HEDM
datasets.

In addition, each load step (load 0, load 1, load 2, and load 3) has a folder inside the Far-
field folder that contains ff-HEDM data specific to that load level. Each of these folders
contains the following variables: Centroid, Grain Mean Strain, Grain Mean Stress, and
Quaternions. The Centroid field contains the Cartesian location of each grain centroid.
Grain Mean Strain is the full 3D elastic strain tensor determined from HEXRD, written in
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vector notation (€11, €, €33, €23, €13, €12) (https://github.com/FrankieLi/IceNine). Grain
Mean Stress is determined by using the Elastic Constants in conjunction with the Elastic
Strains. It is also written in vector notation (073, 029, 033, 023, 013, 012). Finally, the Quater-
nions field contains the crystallographic orientation of each grain in the fffHEDM volume
written in the quaternion orientation parameterization [24].

The file also contains the nf-HEDM data collected at load 0 to measure the morph-
ology and intragranular orientation distribution of grains in the specimen. This data
was reduced from the raw diffraction data through the use of the IceNine analysis
software. These data contain multiple points within each grain, for a total of
3,388,294 data points. The nf-HEDM data were aligned with the initial ff-HEDM
grain centroids that were also collected at load 0. The alignment between these data-
sets was accomplished through the use of the MJT MATLAB library [25], which reg-
istered the grain centroids between the datasets, using crystallographic misorientation
between nf-HEDM and ff-HEDM grain orientations as a metric for that alignment. The
nf-HEDM data consists of 69 grains fully contained in the center of the nf-HEDM volume
(nf-volume 200 pm x 1 mm x 1 mm). These grains represent a subset of the nf-HEDM
data but were selected as they each had a match to one of the grains in the ff-HEDM data.
We found that these nf-HEDM grains registered within an average of 16.3 um to a corre-
sponding ff-HEDM grain centroid, and those matches had a mean misorientation of 0.13°
between the ff-HEDM and the nf-HEDM grains. The specifics of the alignment procedure
will be the focus of a future publication on the technique for registering large 3D datasets.

The nf-HEDM data collected at load O consists of five fields inside the HDF5 file:
Confidence Index, Grain ID, Location, Quaternions, and nNFpoints. The number of in-
dividually measured nf-HEDM datapoints is contained in nNFpoints, while the spatial
location of each datapoint (in Cartesian x-y-z notation) is contained in Location, and
the crystallographic orientation of each datapoint, written as quaternions, is contained
in the Quaternions field. In addition, each nf-HEDM datapoint is provided a grain
assignment in the IceNine software, represented by an integer value, and recorded in
the Grain ID field. After registering the datasets, the Grain ID in the nf-HEDM data
corresponds exactly to the Grain ID in the ff-HEDM data. Multiple datapoints will
belong to the same grain, which when assembled provides the morphology of the grain
to within the resolution of the measurements (approximately 2 um for this dataset).
Finally, the confidence index, calculated based on the certainty that the orientation of
the underlying nf-HEDM datapoint matches the diffraction pattern on the near-field
detector [9], is provided in the Confidence Index field. This is a floating point number
scaled between 0.0 and 1.0, where 1.0 means that 100 % of the simulated Bragg peaks
from that pixel matched experimentally observed scattering. A greater degree of such
overlap in the forward model technique provides greater assurance that the orientation
in Quaternions is correct.

To view the data, a finite element mesh is included in the HDF5 datafile, contained
in the FEM data field. Inside the FEM folder are the following fields: connectivity,
nelem, nnodes, and node. The nelem and the nnodes fields are the number of elements
(1.5 million) and the number of nodes (1,540,351), respectively, for this particular finite
element mesh. The mesh consists of 8-node hexahedral finite elements. The node field
contains the Cartesian location of the nodal points, while the connectivity field denotes
how those nodes are assembled into a finite element mesh.
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Fig. 3 The ff-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Figure 3 uses the finite element mesh as a means to view the ff-HEDM dataset. In
this case, each element in the mesh is assigned a unique ff-HEDM grain, and multiple
elements are assembled to represent the grains. The grains are then a voxellated repre-
sentation of the actual grain, where in this case no distortion has been introduced to
smooth the grain boundaries. The color of each grain represents the Grain ID field in
the ff-HEDM data. Since only the ff-HEDM data are used in this representation, the
exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.

Figure 4 uses the same finite element mesh to show the 69 grains used to align the
nf-HEDM data with the ff-HEDM data. In this case, the morphology of the grains is

0.6 mm

X

Fig. 4 The nf-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number
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represented to within the resolution of the finite element mesh. This shows the distinct
difference in grain shape when using the full field morphology from the nf-HEDM data.

Potential applications of this dataset

The data discussed in this paper is a novel, first of its kind HEDM dataset that com-
bines two distinct techniques with disparate data streams into a rich dataset for use in
micromechanical model validation. For instance, Fig. 5 displays the axial stress compo-
nent (oy,) determined from the ff-HEDM data for load 0 (nominally 23 MPa axial
stress), plotted onto the nf-HEDM grains. This kind of data can be used to instantiate a
CPFEM or other micromechanical modeling techniques such as the fast Fourier trans-
form (FFT) methods. While the full aspects of these methods are beyond the scope of
this work, many studies have directly incorporated microstructure into a micromecha-
nical modeling framework and then attempted to validate the accuracy of the model on
the microstructural level [26—34].

It is interesting to note from Fig. 5 that even with the processing schedule used in
this work to minimize the residual stress in the material, significant grain-to-grain vari-
ation exists in the nominally unloaded state. The mean grain axial stress ranges from a
minimum of -56.8 MPa to a maximum of 81.8 MPa. Some of this variation is undoubt-
edly due to the fact that load 0 is not truly an unloaded state, but the fact that some
grains experience axial compression shows that any modeling technique would have to
capture the initial grain-level stress variation to adequately capture the grain-level
deformation in subsequent time-steps.

Figure 6 represents the analog to Fig. 5 but at the load 3 state (average axial stress of
495.5 MPa). Significant grain-to-grain variation in the axial stress component is still
seen at this relatively high macroscopic load level. This kind of data can be directly
compared to micromechanical models in order to validate the modeling methodology.
This would allow an analysis of the accuracy of a given model, allowing the researcher
the ability to change model parameters or formulation in order to better capture the
deformation behavior at the microstructural level. In turn, this kind of data will then
drive the development and use of models that incorporate a rich description of
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Fig. 5 Axial stress plotted onto 69 grains in the center of the volume for load 0 (average oy, of 23 MPa,
maximum oy, of 81.8 MPa, and minimum ay,, of —56.8 MPa). The morphology of the grains is determined
through the nf-HEDM data, while the stress is determined from the ff-HEDM diffraction data on the same grains
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Axial Stress (MPa)
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Fig. 6 Axial stress plotted onto 69 grains in the center of the volume for load 3 (average oy, of 4959 MPa,
maximum oy, of 611 MPa, and minimum o,, of 359 MPa). The morphology of the grains is determined
through the nf-HEDM data, while the stress is determined from the ff-HEDM diffraction data on the same grains

J

microstructure, potentially enhancing engineering design by including more of the
physics of materials science into the development of engineering components.

Availability and requirements of software used

Several software packages were used in the creation of this dataset. The HEXRD soft-
ware package reduces the ff-HEDM diffraction data from the diffraction patterns on
the area detector into the grain data presented in the HDF5 file. HEXRD is freely avail-
able for download and can be found on GitHub (https://github.com/praxes/hexrd). It
was developed and tested under Linux Operating Systems. IceNine is another software
package that analyzes the nf-HEDM data, reducing the data from the initial diffraction
patterns to the point data found in the HDF5 file. It was also developed and tested
under Linux Operating Systems, available on GitHub (https://github.com/FrankieLi/
IceNine). MJT is a MATLAB library developed and maintained by the Air Force Re-
search Laboratory. We developed this suite of library functions to further analyze the
data from HEXRD and IceNine, registering the two datasets into a combined datafile
found in the HDF5 file. MJT is available upon request and subsequent clearance of
public release. It can run on any operating system running Matlab. However, the data
presented in the HDF5 file format represent processed data that do not require the use

of any of these software packages.

Availability of supporting data
The dataset supporting the results of this article is available in the NIST repository
(http://hdl.handle.net/11256/599).

Endnotes

"Normally, this is referred to as residual stress. However, stress is an inferred quan-
tity, as it cannot be directly measured. Rather, elastic strain is measured and converted
to stress through the judicious use of a constitutive relationship.
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