V¢ kitware

28 Corporate Drive
Clifton Park, NY 12065
518.371.3971

Accelerated Climate Modeling for Energy (ACME)

Final Scientific/Technical Report
Prepared for: The U.S. Department of Energy, Office of Science
Grant Number: DE-SC0012356
Period of Performance: August 15, 2014 — August 14, 2017
Kitware, Inc.
28 Corporate Drive
Clifton Park, NY 12065
DUNS: 01-092-6207
Aashish Chaudhary, Principal Investigator

(518) 371-3971 Ext. 506
Aashish.chaudhary@Kkitware.com

This material is based upon work supported by the U.S. Department of Energy,
Office of Science under Award Number DE-SC0012356

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

mailto:Aashish.chaudhary@kitware.com

Major Goals

Seven Department of Energy (DOE) national laboratories, Universities, and Kitware, undertook
a coordinated effort to build an Earth system modeling capability tailored to meet the climate
change research strategic objectives of the DOE Office of Science, as well as the broader climate
change application needs of other DOE programs. The model development requirements are
derived from the following four high-level science drivers:

1. How do the hydrological cycle and water resources interact with the climate system on
local to global scales?

2. How do biogeochemical cycles interact with global climate change?

3. How do rapid changes in cryospheric systems interact with the climate system?

4. How do short-term variations in natural and anthropogenic radiatively active atmospheric
constituents interact with natural variability and contribute to regional and global
environmental change? The Accelerated Climate Modeling for Energy (ACME) project
will build and test a next-generation earth modeling system that can be run on current and
future generations of computing systems at Office of Science computing facilities,
including envisioned exascale systems. The initial three-year project plan calls for the
delivery to DOE and the broader research community of an open-source modeling system
and the results from control and prediction simulations that document its scientific and
computational performance.

The Accelerated Climate Modeling for Energy (ACME) project will build and test a next-
generation earth modeling system that can be run on current and future generations of computing
systems at Office of Science computing facilities, including envisioned exascale systems. The
initial three-year project plan calls for the delivery to DOE and the broader research community
of an open-source modeling system and the results from control and prediction simulations that
document its scientific and computational performance.

Kitware contributed to the development and maintenance of two products for climate scientists:
1) vCDAT, the web interface for climate data visualization and analysis build on top of UV-
CDAT, and 2) ParaView - in-situ capable large data parallel visualization tool. Additionally, we
fixed bugs and improved various features as reported by the ACME team within UV-CDAT. For
ParaView we have added specific capabilities needed by LANL, Sandia, and PNNL for I/O and
visualization related to CAM and MPAS.

VCDAT is a desktop and web based application designed to expose all UV-CDAT functionality
through an easy to use user interface. We developed the first version of this application. We
designed VCS.js, an API to separating the core functionality of vVCDAT (producing a
visualization) from the user interface. VCS.js can produce the visualization either by calling
VCS or by using client based (JavaScript) visualization libraries. We solved key performance
issues affecting VCDAT. As part of the vVCDAT development we fixed numerous bugs affecting
the correctness and performance of the UV-CDAT. Climate Data Analysis tool (UV-CDAT) is a
Python visualization and analysis library designed to meet the needs of climate scientists. It

This material is based upon work supported by the U.S. Department of Energy, Office of Science, under
Award Number DE-SC0012356

offers 1d plots such as line plots and scatter plots; plots for scalar data such as boxfill, isofill,
isoline, and meshfill; plots for vector data such as vector plots and streamlines; and 3D plots for
scalar and vector data. We contributed to the development and maintenance of UV-CDAT but
developing a testing infrastructure and solving bugs.

Our other effort includes enhancement to CAM and MPAS 1/0 and visualization in ParaView.
ParaView is an open-source, multi-platform data analysis and visualization application.
ParaView users can quickly build visualizations to analyze their data using qualitative and
quantitative techniques. The data exploration can be done interactively in 3D or
programmatically using ParaView’s batch processing capabilities. ParaView was developed to
analyze extremely large datasets using distributed memory computing resources. It can be run on
supercomputers to analyze datasets of petascale size as well as on laptops for smaller data, has
become an integral tool in many national laboratories, universities and industry, and has won
several awards related to high performance computation.

Accomplishments

UV-CDAT
1. Buildbot-GitHub integration to use for UV-CDAT testing

UV-CDAT has used Travis-ClI for continuous integration testing for some time. As a
free service, Travis-Cl limits the total amount of time a build can run. Because the
computational resources available on a Travis-Cl node is quite small, we have been very
limited in the amount of testing that we can do. In addition, we don’t have direct access
to the machines where the builds take place, so it is often difficult to debug issues that
occur. To solve these issues, we have set up and deployed a custom ClI testing system
that works very similarly to Travis.
We maintain a Buildbot server locally that listens for change events on the UV-CDAT
repository. When a change occurs, the buildbot server will trigger builds on one or more
slaves. The build slaves notify Github of the status of the test when the build is finished.
The details link goes to the CDash submission for the test, which provides detailed
information about what failed and why including image comparisons for tests involving
screenshots.

Add more commits by pushing to the wves3D_fix_dw3d_list branch on UV-CDAT/uvcdat
® Failed — 2 failing and 2 successful checks Hide all checks
¥ continuous-integration/kitware-buildbot/uvcdat-garant-linux-release/ — Buil : Details
¥ continuous-integration/kitware-buildbot/uvcdat-test-laptop-linux-release/ 1 Details
Details

Details

Merge with caution!

] = Merge pull request
You can also merge branches on the command line.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, under
Award Number DE-SC0012356

Testing started on 2015-05-06 16:18:22

Site Name: garant

Build Name: 66ff3ff1-build218-uvcdat-garant-linux-release
Total time: 8m 45s 780ms
0S Name: Linux

0S Platform: x86_64

OS Release: 3.16.0-34-generic

0S Version: #47~14.04.1-Ubuntu SMP Fri Apr 10 17:49:16 UTC 2015
Compiler Version: unknown

3 tests failed.

dv3d_vector_test
CDMS_Test_multiple_formats

Zonal Wind (m/s;
Slicing

UVENCOAT

2. Fixed bugs and implemented new features in UV-CDAT
a. BUG #1811: Show point information for plots using a geographic projection. The
computation previously used in UV-CDAT was assuming uniform grid so it could
not work for data using a geographic projection.

Fig. 1 shows a meshfill plot using Robinson projection. Information such as longitude,
latitude and attribute value is shown for the point clicked.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, under
Award Number DE-SC0012356

b. BUG #1886: Polar projection does not change pole. The order of the Y (latitude)
axis specifies the pole that is used for the projection. If Y1 < Y2 we use the South
Pole, otherwise we use the North Pole. This specification was not implemented
correctly before our fix.

c. ENH #1880: ratio=autot now works for geographic projected datasets. This option
instructs UV-CDAT to use the appropriate X/Y ratio for data instead of changing
the ratio based on the window size. Fig. 2 shows an example of a plot before our
change where the image is deformed based on window X/Y ratio and after our
change where the image maintains the data ratio.

Fig 2. Boxfill with Mollweide projection. Images before (left) and
after (right) our fix with the same window size. Current behaviour
(right) maintains the data ratio rather than deforming the data to
match the window ratio (left).

d. ENH #1881: Add plot_based_dual_grid option to plot(). Traditionally, we created
a point or cell dataset based on the plot requested. For isofill, isoline and vector
we created point datasets, for boxfill and meshfill we created cell datasets. We
keep this behavior for backward compatibility but we add a parameter
plot_based_dual_grid to plot(). If this parameter is missing or it is True, we have
the traditional behavior. If this parameter is False, we create the dataset that is
specified in the file, regardless of the plot requested.

e. ENH #1885: Show info at clicked point for point datasets

BRRE BAMC2.S RITLIE Vi AMIP 1 Your Smuation © 1979-1584)
u Monthiy Moan Eastward Wind Spoed mis 1997171 DO00
200

Maan 1585 e 48 3515 -1,

This material is based upon work supported by the U.S. Department of Energy, Office of Science, under
Award Number DE-SC0012356

f. BUG #1959: Fix memory override for vtkContourFiler in isofillpipeline. This
resulted in vtkStripper to generate double coverage of isocountours which resulted
in messed-up patterns. Also adjusted plot patterns to easier to discriminate.

g. BUG #1985: orthographic projection plot is empty. This is because proj4 sets
points that are not visible to infinity. We set those points to 0 and hide them.

et Total cloudiness % wrenn 0-0:0.0
Mean 62.71 Max 100 Min D 197911 0:0:0.0

h. BUG #1947: isofill does not handle out of bounds levels correctly. When smallest
level is bigger than min scalar value or highest level is smaller than max scalar
value isofill creates the wrong image. Also, out of range (white color) was shown
black.

I. BUG #1944: Rename line to linetype for isoline, unified1d and vector.

J. BUG #16744 in VTK: Resources are not removed for a renderer removed from
the window.

k. BUG #1770: Display meshfill template elements through renderTemplate. This
deletes some displays which reduces memory leaks.

I. BUG: Fix system dependent display of the outline of a dataset. We increase the
parallel projection parallelepiped with 1/1000 so that it does not overlap with the
outline of the dataset. This resulted in system dependent display of the outline.

m. ENH in VTK: Add vtkTextProperty::UseTightBoundingBox to center a label to
anchor. This property allows the user to center the string to the anchor point. By
default, the bounding box for the string is computed using the font metrics which
includes ascents and descents. As descents might not be present in the string, the
label will not be perfectly centered on the anchor point. Setting this property on
will compute the bounding box using the current string rather than the font metric.
This results in perfectly centered labels. This does not work well for temporal data
if the string changes as it results in text that moves around.

n. BUG in VTK: Improve text alignment.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, under
Award Number DE-SC0012356

0. BUG: Fix isofill levels: BUG #1265: Fix datawc zoom-in for geographic
projections, BUG #5: vtkPolyData::RemoveDeletedCells does not remove
Globallds or points, We set scalar value for hidden points to a valid value. BUG:
Set hidden points scalars and vectors to minimum value from the range.

BUG #16909 in VTK: Save vtkLogoRepresentation to postscript.

ENH: VCS export to matplotlib

QT

228.84% vV R =

r. Worked on Virtual GL + Turbo VNC installation to support UV-CDAT
customers that intend to plot datasets on remote machines.

VCDAT

1. VvCDAT is developed such that it cleanly separates the visualization server (UV-CDAT
visualization and analysis using vtk-web) from the web server (Django application). As a part of
this refactor, we set up a series of Bootstrap templates from which to derive all of the web
components for ACME to maintain a unified appearance. The templates are also designed so that
the components of VCDAT can be used as part of the overarching dashboard user interface being
developed in parallel.

a. vtk-web launcher
In order to serve the application as a service, it is necessary to have the ability to launch
new visualization instances on demand. The vtk-web launcher is designed to exist as an
internal service that the main Django application can post requests to for a logged in user.
The launcher is responsible for starting up a python process that will communicate with
the user’s web browser over a websocket. For security purposes, the launcher itself nor
any of the visualization nodes should be accessible from the outside. Instead, the
launcher configures the Apache instance running the application to proxy websockets to
the appropriate host and port. The launcher also handles closing old instances and
spreading the load among the available resources.

b. Visualization server
The visualization server itself uses the web RPC library called Autobahn by wrapping
python functions that make use of UV-CDAT to create visualizations and stream the
results back to the client as images. The Autobahn library makes it easy to expose new
functionality from UV-CDAT as development continues.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, under
Award Number DE-SC0012356

® [} CDAT Web x

€ > C' [3 acme-cdatweb.oml.gov GL

CDATWeb

QSesrcH A=Nx

ESGF Search

esg.css.omnl

The ESGF host URL to search. For example, "esg.ccs.ornl.gov/esg-search"

Text TS A=K x
A free text search query in any metadata field
ACME TS surface femperature K 0791 0.0:00
Mean 288.9 Max 315.372 Min 201.367 0-9-10:0:00

Search by project

10

The maximum number of files to return

Off Set

‘Start at this result

.

SearcH ResULTS A%
+ Project: CMIPS
Experiment: decadal2005
Title: cct_Amon_CMCC-CM_decadal2005_r1ilpl_200511-201512.n¢
Downlaod
Variables: cct

+ Project: CMIPS

- i T 1 T T T T T
Experiment: decad=[2005 1] 30E S0E Q0E 1208 150E 180W 150W 120W oW HOW 30w
Title: cct_Amon_CMCC-CM_decadal2005_r1i1p1_201601-202512.n¢ i

Downlaod
200 210 220 230 240 250 260 270 280 200 300 310

Variables: cct
|| |

+ Project: CMIPS
Experiment: decadal2005 UVESTIAT
Title: ect_Amon_CMCC-CM_decadal2005_r1ilp1_202601-203512.n¢ s 4
Downlaod
Variables: cct

+ Project: CMIPS
Experiment: decadal2005
Title: €l_Amon_CMCC-CM_decadal2005_r1i1pl_200511-201512.n¢
Downlaod
Variables: cl

« Project: CMIPS
Experiment: decadal2005
Title: ¢i_Amon_CMCC-CM_decadal2005_r1/1p1_201601-202512.nc
Dovinland g2

c. Server deployments
As a proof of concept, all components of the CDATWeb system have been deployed on
two virtual machines at ORNL. The Django front end is deployed at acme-
cdatweb.ornl.gov and the visualization launcher at acme-uvcdat.ornl.gov. These
deployments will continue to be updated as development of VCDAT proceeds to collect
feedback on the user interface. Another development deployment of the visualization
server has been deployed at aims1.1Inl.gov which is intended to be used for internal
development and testing.

2. Continuous integration testing infrastructure was added to VCDAT’s github repository.
On push to the repository a job is submitted to CircleCI running the test suite and
reporting back to github’s status API. For the initial infrastructure, both client side
(jshint, jscs) and server (flake8) linting and style tests were added.

3. Additional development includes:

This material is based upon work supported by the U.S. Department of Energy, Office of Science, under
Award Number DE-SC0012356

a. UV-CDAT docker builds
One significant problem encountered while developing CDATWeb was that the
visualization server requires a full install of UV-CDAT to work on. To aid other
developers, we have created a docker image containing a bleeding edge version of
UV-CDAT available at docker hub
(https://registry.hub.docker.com/u/uvcdat/uvcdat/). This image makes it easy to
try out command line scripts for UV-CDAT. For example once docker is
installed, a user can execute a UV-CDAT script as follows:

docker run -t uvcdat/uvcdat script.py

The base UV-CDAT docker image was extended to support launching
visualization servers in a similar manner:

docker run -p 8000 -t uvcdat/cdatweb-vtkweb

This method of launching a visualization server can be used with the vtk-web
launcher to simulate the functionality of a real deployment. Documentation in the
VCDAT repository describe how to configure the launcher for local testing.

b. We developed vagrant and ansible provisioning for UV-CDAT.

Ansible provisioning playbooks and vagrant configurations were added to the
UV-CDAT repository to quickly spin up a repeatable development environment.
The deployment scripts feature a configuration file to enable optional features in
the provisioned virtual machine including memory allocation and GUI support.

c. We investigated ESGF authentication. Redeployments of the ESGF servers has
broken the ability to log in to the ESGF through UV-CDAT. Because most of the
data hosted on the ESGF requires an authenticated connection to be accessed, this
was a major blocker for the VCDAT ESGF interface. Kitware investigated this
issue and concluded that it was likely a server problem (https://github.com/UV-
CDAT/uvcdat/issues/1337).

d. We listed plot type and templates in VCDAT client. To help in the development of
the client side user interface, RPC methods were added to server interface that
will list all available plot types and templates. This is used by the client to render
a list of choices that the user can select.

e. We fixed a vtk-web bug preventing multiple plot windows to be created reliably.
Multiple plot windows could not reliably be opened in VCDAT because of a bug
in VTK related to comparing pointers. This was fixed in pull request to VTK
(https://github.com/UV-CDAT/VTK/pull/1).

f. We returned full variable information to the web client. This information enables
the client to create a variable selection and subsetting dialog similar with the Load
Variable dialog in the Qt UV-CDAT interface. This dialog lists all variables
present in a NetCDF file. For each variable, the dialog lists all its axes, and allows
the user to specify a new range for each axis. This way, the user can load the
entire variable or, only a subset of it. Fig. 3 shows the information sent to vVCDAT
client for a NetCDF file.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, under
Award Number DE-SC0012356

https://github.com/UV-CDAT/uvcdat/issues/1337
https://github.com/UV-CDAT/uvcdat/issues/1337
https://github.com/UV-CDAT/VTK/pull/1

Console

® VW top v Preserve log
55T(12,90,180) [SEA SURFACE TEMPERATURE, Deg C]: (TIME, COADSY, COADSX), rectilinear
UWND(12,98,180) [ZONAL WIND, MS5]: (TIME, COADSY, COADSX), rectilinear
VWND(12,9@,180) [MERIDIONAL WIND, M/S]: (TIME, COADSY, COADSX), rectilinear
AIRT(12,9@,180)[AIR TEMPERATURE, DEG C]: (TIME, COADSY, COADSX), rectilinear
COADSX(188) [COADSX, degrees east: (21, 379)]
COADSY (90) [COADSY, degrees north: (-89, 89)]
TIME{12) [TIME, hour since 0808-01-081 @6:00:88: (366, B8401.335)]

Fig. 3. Information sent to VCDAT client about variables in a
NetCDF file. For instance SST is a variable stored on a rectilinear
grid with extents TIME=12, COADSY=90 and COADSX=180.

g. We added the ability to create plots based on subsetted variables. This is done by
including additional specification when creating the plot: for each variable used in
the plot, we can specify a list of axes name and range pair. Fig. 4 shows a vector
plot for a full grid and for a portion of it.

ZalUWND,VWND A= X x [EaUWNDVWND A=XX

W AT N
Fig. 4. Vector plot for a grid with longitude between 21 and 379
and latitude between -89 and 89 (left) and a vector plot for the
same grid only showing longitude between 60 and 180 and
latitude between 0 and 90.

h. Defined VCS.js, an API and a library for the accessing web based, VCS like
plotting facility. VCS.js defines both server and client based plotting. vVCDAT is
using VCS.js as a result of this work. See https://github.com/UV-CDAT/vcs-js for
the implementation of this library.

i. vCdat experimented to using plain RPC for implementing the server side calls to
VCS causing major performance issues. We switched back to using vtk-web for
showing VCS plots in the browser which fixed the performance issues
experienced. We support clicking on a plot to show context information,

This material is based upon work supported by the U.S. Department of Energy, Office of Science, under
Award Number DE-SC0012356

https://github.com/UV-CDAT/vcs-js

interaction with 3D plots, multiple plots in different canvases or on the same
canvas and we partially support resizing of a plot. In the next figure we show a
3D plot and a vector plot of a subset variable. The following figure shows a vcs
3D plot and a vector plot in a browser window.

[- ORORCECDAMFEERMIE A B EAMC DAEMAENC GRS EAEE DT - T EDLETE0M

& C 00 oot]

B Apps N Kitware BN Langusge BN OpenGL B Graphics B8 CAM B Dats B Com B Build B Weather B Supercomputers BN ParsView I Flostingpoint B Geo I Mome M keboard W Blogs B Car B Cooking B Bike B Web
x 3

AlR TEMPERATURE (DEG C)

Sicing 3 s - - n

ParaView

CAM NetCDF Reader

The CAM NetCDF Reader reads in files produced by the Community Atmospheric Model
(CAM) simulation program and produces an unstructured grid.

The grid is unstructured in the XY plane but it is rectilinear in the Z direction. This results in
layers of hexahedral cells along the Z direction. If we read only one layer we produce
quadrilateral cells.

There are three kind of attributes in these files: Single layer attributes, midpoint layer attributes
and interface layer attributes. Single layer attributes are associated with the XY point data and
depend on variables (time, ncol). Midpoint layer attributes are associated with the XY points and
the midpoint of a layer. These attributes depend of variables (time, lev, ncol). Interface layer
attributes are associated with the XY points and the interface points of layers. These attributes
depend on variables (time, ilev, ncol). Note that the number of interface layers (ilev) is equal
with the number of midpoint layers (lev) plus one.

The reader requires two files: the main file has all attributes, the connectivity file has point
positions and cell connectivity. Improvements include

1. Select to read single layer, midpoint layer and interface layer attributes using the Vertical
Dimensions reader setting. A user could read only single layer and midpoint layer
attributes before this work.

2. Specify which attributes are read from the file. This feature saves time and memory as
only the data needed is loaded.

3. Choose to read only a single layer instead of reading all layers. This feature saves time
and memory and enables further analysis of individual data layers.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, under
Award Number DE-SC0012356

File Edit View Sources Filters Tools Catalyst Macros Help

pEBEwa 2?2 KA PBME mp 0

T I (s I REsdbtsd:e2 [Beoea
VCPRTOQE=L00B LEdw R
Pipeline Browser O Layout #1 %
builtin: o @ m s e Ry Renderview |1 e o=

@ cam_se ne30_sample_h0_output.nc

| Properties | fon |

Properties (&)
[Fapy][@Reset | Mpeete | 7]
[Search .. (use Esc to clear text)]@

[= Properties (cam se ne30_sample ho output.nc)]@@@@
h

Connectivity r v

file Name ! o lation.nc |

Vertical Dimension [Nidpaint layers [time, lev, ncoll =]
3% Point Array Status

%] &2 PS [time, ncol]
%] 55 T [time, lev, ncol]

[Single Midpoint Layer
Midpoint s]
Layer Index 00— @@]
[] Single Interface Layer
B | LI —
Layer Index

=y ' : [EYEYEY

Representation [surface ‘ 'H

MPAS NetCDF Reader

We provide a number of improvements to the MPAS NetCDF Reader such are reading new attributes
invisible before, better using the VTK pipeline to improve performance and cleaning up the code. Ul
changes include adding an Extra Dimension Indices

e Support for loading arrays with data types other than double.

e Removed limit of 100 attribute arrays.

e Old version only read attribute arrays with dimensions:

([Time,] (nCells | nVertices) [, nVertLevels)

New version will load arrays with dimension signature:

([Time,] (nCells | nVertices), [dim1, [dim2, [dim3,...1]1])

Vertical dimension is configurable at runtime. Defaults to nVertLevels for backwards
compatibility. Other dimensions (dim1, dim2, etc above) are fixed at a configurable value.

e A vertical dimensions is no longer required to read an MPAS NetCDF file.

e Array names now optionally include dimension info. Instead of just, e.g. “tracers”, users will see
"tracers(Time, nCells, nVertLevels, nTracers)". This feature can be disabled via the
UseDimensionedArrayNames boolean.

e Removed special loading of “vertexMask” array. This was hardcoded to expect a certain
signature (which wasn’t always used), and crashed if the file didn’t match. The array is now
loaded using the generic attribute array mechanism.

e Added mechanism to validated dimensions of NetCDF variables before loading them, improving
general stability.

e Refactored reader to properly use pipeline. Some Set[...] methods were causing the data to be
regenerated immediately, rather than defering to RequestData.

e Added awareness of the “on_a_sphere” attribute, and updated the EliminateXWrap method and
multilayer extrusion code appropriately for when the data is planar.

e Removed many unused variables and unimplemented methods from the vikMPASReader API.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, under
Award Number DE-SC0012356

Changes to the ParaView Ul

Properties

= Properties (all_dimensioned_fields_planar.nc) D 6B H =

® Point Array Status E
2% cellsOtherDimlDReal(Time, nCells) \\

cellsOtherDim2DReal(Time, nCells, nOtherDim)
cellsOtherDim3DReal(Time, nCells, nOtherDim, TWO)
cellsOtherDim4DReal(Time, nCells, nOtherDim, TWO, R3)
cellsotherDim1DInteger(Time, nCells)
cellsotherDim2Dinteger(Time, nCells, notherDim)
cellsotherDim3DInteger(Time, nCells, nOtherDim, TWO)
cellsotherDimlDRealNoTime(nCells)
cellsotherDim2DRealNeTime(nCells, nOtherDim)

2% cellsOtherDim3DRealNoTime(nCells, notherDim, TWO)
eS P PR

Y PNy P TP e Tin_ Do

DG

%/ Cell Array Status

*®|] verticesOtherDim2DIntegerNoTime(nVertices, nOtharDim)
®| (fl verticesOtherDim3DIntegerNoTime(nVertices, nOtherDim, TWO)
® {7l latvertex(nvertices)

|l lonvertex(nVertices)

x|] wvertex(nvertices)

x| ffl yertex(nVertices)

x| ffl 2vertex(nVertices)

x| ffl indexToVertexID(nVertices)

x| {fl areaTriangle(nvertices)

x| f edgesonvertex(nvertices, vertexDegree)

i T AP Y

KD

Extra Dimension Indices
R3 ¥

TWO ¥

maxEdges [}

notherDim [}

nVertlevels [}

[=10R=10N=1RN-1R -1)-]

vertexDegree [}
Yertical nvertLevels -
Project Lat Lon @

e Display new dimensioned array names. All dimensions other than “Time”, “nCells”, and
“nVertices” appear in a new “Extra Dimensions Indices” box, where the slice index can be set.
The vertical dimensions can be selected from a dropdown box of all “special” dimensions.
Disabled when MultiLayer is not enabled.

e Removed the existing “Vertical Level” slider, as it’s redundant with the new “Extra Dimensions”
Ul.

e Updated the remove-periodic.cpd filter to reflect recent changes in ParaView (numpy must be
imported manually post-4.0).

Project Impact

Scientific visualization plays an important role in current scientific endeavors. Visualization transforms
abstract data into images on a computer screen. Scientists examine and interact with these representations
of the data to gain scientific insight and better understanding of the phenomenon studied.
We work on two products that deliver visualization to scientists involved in climate research: UV-CDAT
- a visualization library and desktop application for climate data and vVCDAT - a web based visualization
application which uses UV-DAT at its core. We improved and developed UV-CDAT in important ways
which include:
e \We enable running UV-CDAT in a reproducible way using docker as well as running it in a
virtual machine using vagrant and ansible. These tools can save valuable time in deploying UV-
CDAT on a target platform. This is important for scientists as well as VCDAT developers.
e We improved the interactive query tool which enable scientists to get information about any point
in the visualization improving their analysis capabilities.
This material is based upon work supported by the U.S. Department of Energy, Office of Science, under
Award Number DE-SC0012356

e We improved data presentation for data transformed through geographic projections. This enables
scientists to see data as is rather than being deformed based on the window size.
Improvements in UV-CDAT have an equal impact in vCDAT, as this web-based tool has UV-CDAT at
its core. For vCDAT we continued development efforts and moved closer to having a tool that delivers
similar capabilities with the UV-CDAT desktop visualization application.
e We deliver plot types and templates to the client. This enables scientists to interactively choose
the desired visualization to match their scientific goals.
e We deliver full data information to the client. This enables the web client to build an interface to
interactively load the data to visualize.
e \We enabled visualizing only a section of the full data. Together with the previous bulled this
enables scientists to zoom-in and analyze only the section of interest rather than the full data.
Climate scientists use our tools to visualize data. Scientists explore and analyze climate data which
enables new insights and new understanding of the science behind the studied phenomenon. This
ultimately leads to improvements in climate models. Visualization is also used in communicating
scientific results which results in increased collaboration which is one of the catalysts of scientific
discovery.

Kitware Contributors

e Aashish Chaudhary, Principal Investigator: Managed project and served as the technical lead for
development efforts.

Jonathan Beezley, Research and Development Engineer: Developer for vCDAT and UV-CDAT.
Dan Lipsa, Research and Development Engineer: Developer for UV-CDAT and vCDAT.
Allisson Vacanti, Research and Development Engineer: Developer for UV-CDAT.

Sankhesh Jhaveri, Research and Development Engineer: Developer for UV-CDAT.

Training and Professional Development

Weekly meetings were held. Most weeks, a different member of team presents a paper or a
technology of interest to our work in the project. This allows us to learn about new ideas and
technologies and discuss possible applications in our work. We continue to use web resources to
improve our skills in visualization, server side and web development.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, under
Award Number DE-SC0012356

	Major Goals
	Accomplishments
	UV-CDAT
	vCDAT
	ParaView
	CAM NetCDF Reader
	MPAS NetCDF Reader
	Changes to the ParaView UI

	Project Impact
	Kitware Contributors
	Training and Professional Development

