
Experimental Analysis of File Transfer Rates Over
Wide-Area Dedicated Connections

Nageswara S. V. Rao, Qiang Liu, Satyabrata Sen, Greg Hinkel, and Neena Imam

Computer Science and Mathematics Division

Oak Ridge National Laboratory

Oak Ridge, TN 37831

{raons,liuq1,sens,hinkelgc,imamn}@ornl.gov

Ian Foster and Rajkumar Kettimuthu

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, IL 60439

{foster,kettimut}@anl.gov

Bradley W. Settlemyer

Systems Integration Group

Los Alamos National Laboratory

Los Alamos, NM 87545

bws@lanl.gov

Chase Q. Wu and Daqing Yun

Department of Computer Science

New Jersey Institute of Technology

Newark, NJ 07102

{chase.wu,dy83}@njit.edu

Abstract—File transfers over dedicated connections, supported
by large parallel filesystems, have become increasingly important
in high-performance computing and big data workflows. It
remains a challenge to achieve peak rates for such transfers
due to the complexities of file I/O, host, and network transport
subsystems, and equally importantly, their interactions. We
present extensive measurements of disk-to-disk file transfers
using Lustre and XFS filesystems mounted on multi-core servers
over a suite of 10 Gbps emulated connections with 0–366 ms
round trip times. Our results indicate that large buffer sizes and
many parallel flows do not always guarantee high transfer rates.
Furthermore, large variations in the measured rates necessitate
repeated measurements to ensure confidence in inferences based
on them. We propose a new method to efficiently identify the
optimal joint file I/O and network transport parameters using
a small number of measurements. We show that for XFS and
Lustre with direct I/O, this method identifies configurations
achieving 97% of the peak transfer rate while probing only 12%
of the parameter space.

Index Terms—Wide area transport, dedicated connections,
TCP, RTT, throughput, file I/O read and write, profiling, profiling
overhead.

I. INTRODUCTION

In recent years, there has been an increasing demand for

wide-area data transfers in a number of scenarios involving

high-performance computing (HPC) work flows, cloud com-

puting server complexes, and big data computing facilities.

These transfers often involve disk-to-disk file transfers be-

tween remote sites, for example, between a supercomputing

facility and a remote storage site. To support these transfers

in HPC scenarios, the underlying infrastructures are being

enhanced: (a) networks, such as the Department of Energy’s

(DOE) ESnet, provide on-demand, dedicated connections [1];

(b) high-performance filesystems, such as Lustre [18], are

deployed with large collections of disk drives to provide site-

wide access; and (c) dedicated hosts, such as Data Transfer

Nodes (DTNs) [7], are deployed that employ specialized trans-

fer protocols such as GridFTP [2] and transfer management

software such as Globus [3].

High-performance disk-to-disk transfers require the com-

position of complex file I/O and network subsystems, and

host orchestration. For example, the Lustre filesystem employs

multiple Object Storage Targets (OSTs) to manage collections

of disks, multiple Object Storage Servers (OSSes) to stripe file

contents, and distributed MetaData Servers (MDSes) to pro-

vide site-wide file naming and access. Such complex filesys-

tem must be effectively coupled with DTNs and wide-area

networks to achieve peak file transfer rates. But, sustaining

high file transfer rates requires joint optimization of subsystem

parameters to account for the impedance mismatches among

them [22]. For Lustre filesystems, for example, important

parameters include the stripe size and number of stripes for the

files, typically specified at the creation time, and the number

of parallel I/O threads for read/write operations, specified at

the transfer time. Typically, I/O buffer size and the number of

parallel threads are chosen to be sufficiently large to sustain

high throughput, but as we will see, this simple heuristic is

not always optimal. Key parameters for TCP network transport

include the choice of congestion control module, number of

parallel streams, and various buffer sizes [8]. We focus here on

choosing the number of parallel flows for file I/O and network

transport, two critical factors in determining file transfer rates.

Throughput profiles for network transport and file I/O are

typically generated by sweeping the values for chosen param-

eters, using, for example, iperf and xddprof, respectively [23].

Given those profiles, we might hope to determine an optimal

profile for disk-to-disk file transfers via a simple composition

of individual network transport and file I/O profiles: for exam-

ple, by using the minimum of subsystem throughput maxima

as the transfer rate for a particular parameter combination.

However, increasingly complex file I/O and network trans-

port subsystems and inter-subsystem interactions mean that

such simple compositions can overestimate transfer rates. For

example, for wide-area file transfers over 10 Gbps networks

with files stored in Lustre filesystems and striped across 8

storage servers, accessed with 8 MB buffers, and with 8 I/O

2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International

Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems

978-1-5090-4297-5/16 $31.00 © 2016 IEEE

DOI 10.1109/HPCC-SmartCity-DSS.2016.101

198

and TCP threads, we observe disk-to-disk transfer rates of

only 1.5 Gbps [20]. Yet the peak throughputs of the file and

network subsystems are each close to 10 Gbps.

To study these issues in more depth, we measured file I/O

and network throughput and file transfer rates over Lustre and

XFS filesystems for a suite of seven emulated connections

in the 0–366ms RTT range. We learned that: (a) conventional

practices of large buffers and higher parallelism do not always

translate into higher transfer rates; (b) direct I/O methods that

avoid file buffers at the hosts provide higher wide-area transfer

rates, and (c) significant statistical variations in measurements,

due to complex interactions of non-linear TCP dynamics with

parallel file I/O streams, necessitate repeated measurements to

ensure confidence in inferences based on them.

These results suggest a need for complete joint file trans-

fer rate profiles. However, building such joint profiles via

brute-force parameter sweeps is not feasible in operational

environments, as it would take weeks to months, during

which the system is unavailable to users. Thus we propose

a new d−w (for depth-width) method that we show can

identify close-to-optimal joint parameters with significantly

fewer measurements. By exploiting the overall unimodality,

namely, having a single maximum, of profiles, this method

implements a stochastic gradient method using d repeated

measurements over w-sized windows. It also uses domain

knowledge extracted from measurements to identify the start-

ing parameters for the search. We evaluate its performance

using Lustre and XFS measurements, and show that it reduces

measurement times to hours and days on those two systems,

respectively. More specifically, for both filesystems, the com-

puted parameters achieved 97% of peak transfer rate while

probing only 12% of the parameter space.

The rest of the paper is as follows. We summarize related

work in Section II; describe network transport and file I/O

subsystems, and XDD file transfers, in Section III; present

measurements of file transfer rates over emulated connections

in Section IV; and describe our d−w method and its perfor-

mance analysis in Section V. We conclude in Section VI.

II. RELATED WORK

Tools for choosing parameter values to maximize file trans-

fer performance have been a frequent area of interest. For TCP,

dynamic right-sizing of buffers has been used to improve file

transfer throughput [9], [11]. The GridFTP-APT project [14]

develops models that identify TCP buffer sizes and number of

TCP flows for improved transfer performance [12], and builds

tools for dynamically changing the number of connections

during a file transfer [13]. There is also previous work on

estimating optimal parallel storage system parameters [4],

[6], [17]; however, that work does not consider wide-area

networking models. Our approach is unique in simultaneously

optimizing both network and storage system parameters, and

using measurements rather than coarse-grain TCP behavior to

estimate optimal parameters.

Our work is also distinguished by its efficient method for

arriving at the selected parameters without exhaustive search.

The d−w scheme described in this paper is similar to existing

statistical blocking techniques, such as Latin Squares [27]

and Latin Hypercubes [19]; however, it exploits the overall

unimodality of the response regression surfaces to converge

more quickly on the optimal parameter set. In this respect, it is

similar to the more computationally intensive machine learning

techniques, such as stochastic gradient descent [5], but unlike

those methods it does not require significant amounts of

training data for each source-destination pair. Our method can

be viewed as a version of the stochastic approximation method

[16], [25], but with a derivative computation customized to the

observed profiles. As a result, it provides confidence estimates

based on finite samples rather than traditional asymptotic

convergence results.

Fig. 1: File transfers over long-haul connections

III. WIDE-AREA FILE TRANSFERS

A wide-area disk-to-disk file transfer encompasses storage

devices, data transfer hosts, and local- and wide-area connec-

tions: see Fig. 1. Major sites often use dedicated data transfer

hosts, such as DTNs, with high performance Network Interface

Cards (NICs) to access network connections and Host Channel

Adapters (HCAs) to access network storage systems. Transfers

also involve a range of software components, including filesys-

tem I/O modules for disk access and the TCP/IP stack for

network transport, which are used by the file transfer software

such as GridFTP [2] and XDD [28] running on the hosts.

A. Experimental Setup

We measured file transfer rates for both Lustre and XFS

filesystems using XDD (described in next section) between

two dedicated 48-core Linux servers over emulated 10 Gbps

connections for RTT, τ = 0.4, 11.6, 22.6. 45.6, 93.6, 183,

and 366 ms. The 0.4, 11.6, 22.6, 45.6 ms RTTs correspond to

cross-country connections, the 93.6 and 183 ms RTTs to inter-

continental connections, and the 366 ms RTT to a connection

spanning the globe. The connections are emulated in hardware

using ANUE-ixia devices to which host 10GigE interfaces are

directly connected: see Fig. 2. The network packets are sent to

the emulator, which delays them based on the specified RTT,

a process that closely matches the transport over a physical

connection: in particular, TCP dynamics and file transfer rates

are more closely matched than when using simulators such as

ns-3 and OPNET. Fig. 1 shows the filesystem configurations

199

Fig. 2: Testbed configurations of emulated
long-haul connections

Fig. 3: Throughput profile of TCP CUBIC
as a function of RTT with 8 streams

Fig. 4: Qthreads implement parallel XDD
disk-to-disk flows

used: Lustre is mounted over a local InfiniBand network and

XFS is mounted locally on each host over SSDs connected to

its PCI bus. The XFS and Lustre filesystems provide peak file

I/O throughput greater than 10 Gbps, and thus it is the network

link rather than the filesystems that are a limiting factor for

these file transfer rates.

B. XDD File Transfers

A single XDD file transfer process spawns a set of threads

to open a file and perform data transfers between either storage

and memory or memory and network. To initiate a file transfer,

it creates a set of source and destination XDD processes that

are paired as shown in Figure 4. A source XDD process creates

a TargetThread that opens the file, initiates a connection with a

destination XDD process, and subsequently creates a number

of QThreads that issue read commands to fill a thread-local

buffer. Once a thread’s buffer is filled, that thread transmits the

data over the network to a destination XDD process; the size

of the buffer is referred to as the request size. Similarly, the

destination XDD process creates a TargetThread that listens

for a connection from a source XDD process and then creates

QThreads that receive data from the network and write the

data into the storage system. The number of source and

destination QThread pairs is equal to the number of TCP

parallel streams, and hence we refer to each source-destination

QThread connection as a flow. XDD reports read transfer rate

at the sender and write transfer rate at the receiver for each

file transfer by aggregating across all flows.

An XDD file transfer rate profile is a complex composition

of file I/O and network throughput profiles. The file transfer

dynamics depend in particular on the complex non-linear,

possibly chaotic [10], TCP dynamics, modulated by those of

file I/O systems; which lead to high statistical variations in

measured file transfer rates, as we show in Section IV.

C. Network Transport and File I/O Profiles

We characterize the throughput of network transport and

disk file I/O by sweeping over chosen parameters to cre-

ate individual throughput profiles for each component that

plot performance as a function of parameter values for data

transfers in 1–100GB range. For network transport, we vary

three parameters, namely the number of parallel threads, TCP

congestion control protocol used, and RTT. We set the host-

level TCP/IP buffer sizes to the recommended values for

(a) 1 flow (b) 8 flows

Fig. 5: XDD memory transfer rates for different request sizes (KB)

200 ms RTT [26] to cover most cross-country and inter-

continental connections and then use iperf to collect TCP

throughput measurements over these connections while vary-

ing both number of parallel threads and congestion control

scheme. Fig. 3 shows the profile obtained when using the

CUBIC [21] congestion control module, the default on Linux

systems. We repeated the measurements using Hamilton TCP

[24] and Scalable TCP [15] congestion control modules and

saw throughput rates within a few percent of CUBIC results;

hence we do not show those results here. For disk I/O, we use

a tool called xddprof to measure performance while varying

three parameters: number of parallel read/write threads, buffer

sizes, and (for Lustre) stripe sizes and numbers and the choice

of either direct or default I/O.

IV. DISK-TO-DISK TRANSFER MEASUREMENTS

We collected two sets of XDD disk-to-disk file transfer

measurements, one from XFS to XFS and one from Lustre to

Lustre. Each experiment was repeated 10 times; the repetitions

can be regarded as independent of one another. We considered

both buffered I/O (the Linux default) and direct I/O options

for Lustre. In the latter, XDD avoids the local copies of files

on hosts by directly reading and writing into its buffers, which

significantly improves the transfer rates.

A. Memory-to-Memory Transfers

To assess overheads introduced by XDD in its use of TCP

flows, we decoupled the filesystems to measure the memory-

to-memory transfer rates between XDD’s sender and receiver

buffers. We show in Fig. 5 results for both 1 and 8 flows as a

function of RTT and for different request sizes. With 1 flow,

XDD transfer rates vary with request size but are consistently

lower than the TCP rates shown in Fig. 3. The highest transfer

200

(a) XFS read (Left) / write (Right) (b) Lustre default I/O write: 2 (L) / 8 (R) stripes (c) Lustre direct I/O write: 2 (L) / 8 (R) stripes

Fig. 6: Transfer rates for RTT = 22.6 ms as a function of number of flows (used interchangeably with the terms “threads” for XFS and
“streams” for Lustre). Each line is a different experiment.

rates are achieved with the lowest request size, a result that we

attribute to the finer granularity of input data chunks delivered

to TCP threads. With 8 flows, the XDD memory transfer rate

closely matches the iperf throughput in Fig. 3, which indicates

that XDD does not create transfer rate bottlenecks between

network transport and file I/O for sufficient number of flows.

(a) 1 flow (b) 10 flows

Fig. 7: XFS file write transfer rates

(a) Write rates: Line plot (b) Write rates: Surface plot

Fig. 8: Mean XFS file write rates

B. XFS-to-XFS File Transfers

We next turn to disk-to-disk transfers. We shall see that file

transfer rates are lower and variations more pronounced when

filesystems are engaged, despite the fact that our filesystems

are capable of greater read and write speeds than the network.

We first consider XFS-to-XFS transfers. The results in Fig.

6(a), for RTT = 22.6 ms, show wide variations among repeated

experiments as shown in different colors. (As the read and

write transfer profiles are similar for a given configuration,

we present only the file write transfer rates in the figures that

follow.) Fig. 7 shows the write results in box plot form, for 1

and 10 flows. We see that:

(a) Throughput increases with the number of flows. For

instance, whereas the mean throughput peaks at 5 Gbps

with 1 flow, the peak (occurring with 0.4 ms-RTT) rapidly

jumps to above 9 Gbps with 4 flows, even closely

approaching 10 Gbps with 7 flows. In fact, the same

is largely true for other RTTs as well, which can be

confirmed by the aggregate mean throughput line plot

in Fig. 8(a).

(b) Mean throughput generally decreases with RTT, consis-

tent with most data transfer protocols. The surface plots

in Fig. 8(b) indicate an monotonically increasing trend,

a special case of unimodality.

(c) The concave region of the throughput profile (with respect

to RTT) is extended with more flows. In particular, as

shown in Fig. 7, with 1 flow, the transition point from

concave to convex profiles occurs at a much lower RTT

than when more flows are used.

C. Lustre-to-Lustre File Transfers: Default I/O

In the default I/O Lustre setup, the number of flows varies

from 1 to 8, and the number of stripes is either 2 or 8. Figs 9

shows write transfer rates with 2 and 8 stripes and with flows

nf ∈ {1, 2, 4, 8}. Compared to XFS, the overall throughput

is much lower, especially for smaller RTTs. (Such differences

become less pronounced as RTT increases.) One surprising

result in Figs. 9(d) and (h) is that the mean throughput

plummets below 2 Gbps (with the exception of the 366 ms-

RTT case) and then actually increases with RTT.

Fig. 10 provides another perspective on the default I/O

Lustre setup results. At lower RTTs, mean throughput peaks at

4 flows, starts to decrease with 5 flows, and takes a nosedive

at 6 flows. The sharp drop is delayed at higher RTTs, with

throughput peaking at 5 flows for 91 ms RTT and at 6 flows

for 183 ms RTT, and increasing all the way through 8 flows

for 366 ms RTT. The overall trend with respect to the number

of flows is unimodal with respect to the number of flows: a

somewhat more complex response than the monotonicity that

we saw for XFS transfers and that we will see for Lustre with

direct I/O, as discussed in the next subsection.

The box plots in Fig. 9 show some minor differences in 2

vs. 8 stripe performance. With 2 stripes, rates are somewhat

higher at lower RTTs with 2 flows and 4 flows, whereas with 8

stripes we see slightly higher rates at higher RTTs with 8 flows.

However, the line plots Figs. 10(a) and (c) show that the sharp

drop in throughput, if any, occurs earlier, at 5 flows, when 8

stripes are used instead of 2 stripes, which demonstrates the

longer concave regime (with respect to the number of flows)

201

(a) 2 stripes, 1 flow (b) 2 stripes, 2 flows (c) 2 stripes, 4 flows (d) 2 stripes, 8 flows

(e) 8 stripes, 1 flow (f) 8 stripes, 2 flows (g) 8 stripes, 4 flows (h) 8 stripes, 8 flows

Fig. 9: Default I/O Lustre file write rates, varying stripes and flows

(a) 2 stripes: Line plot (b) 2 stripes: Surface plot

(c) 8 stripes: Line plot (d) 8 stripes: Surface plot

Fig. 10: Mean default I/O Lustre file write rates

of the latter. This result is also confirmed by the surface plots:

the “dome” in Fig. 10(d) is narrower than that in Fig. 10(b).

D. Lustre-to-Lustre File Transfers: Direct I/O

We repeated the experiments of the previous section using

direct I/O Lustre. The results in Figs. 11 and 12 show that:

(a) Throughput with 1 flow is lower that for default I/O

Lustre, but steadily increases with the number of flows.

The direct I/O option also introduces more variation, as

reflected in elongated box plots.

(b) Using 2 stripes yields somewhat higher transfer rates

compared to 8 stripes for lower flow counts. With more

flows, overall throughput is higher, and 8 stripes is the

better option. Although the peak rates with 10 flows and 8

stripes are lower compared to XFS, they are significantly

higher that with default I/O.

(c) We observe in Fig. 12 monotonicity trends similar to

those seen for XFS in Fig. 8. The XFS surface, however,

is higher and increases faster at lower RTTs, as a result of

rates starting higher with one flow and further improving

and approaching the peak with additional flows.

(a) 2 stripes, 1 flow (b) 2 stripes, 10 flows

(c) 8 stripes, 1 flow (d) 8 stripes, 10 flows

Fig. 11: Direct I/O Lustre file write rates, varying stripes and flows

In summary, file transfer rates for both XFS and Lustre

are affected by the number of flows. The mean rate increases

monotonically with number of flows for both XFS and direct

I/O Lustre (Figs. 8 and 12), but degrades beyond a certain

point for default I/O Lustre (Fig. 10). The number of stripes in

Lustre seems to have less impact on transfer rate than does the

number of flows. Additional measurements with request sizes

of 65 MB and 145 MB show that the default 8 MB selection

used in this paper consistently yields the best performance.

This result is expected, as the smaller request size provides

finer-resolution data chunks to TCP streams.

202

(a) 2 stripes – line plot (b) 2 stripes – surface plot

(c) 8 stripes – line plot (d) 8 stripes – surface plot

Fig. 12: Mean direct I/O Lustre file write rates

V. FAST PROBING METHOD FOR PEAK TRANSFER RATE

We now introduce and evaluate the performance of our fast

probing depth-width (d−w) method.

A. The D−W Method

Our d−w method exploits the observed unimodality of

transfer rates with respect to the number of flows; for XFS

and Lustre with direct I/O, these rates exhibit the stronger

monotonicity property. The basic approach is based on a

stochastic gradient search method that starts with the largest

number of flows and continues to collect measurements at

different configurations while the gradient is positive within

a certain window. Due to variations in measurements the

gradient can only be estimated approximately and may not

always provide the right direction, and indeed can lead to

premature termination or over sampling. We mitigate such

effects by repeating d measurements at each configuration and

considering measurements within a w-window to jump over

local variations; the former accounts for the variability and the

latter attempts to avoid local maxima.

The method strategically probes multiple configurations

with the goal of achieving the highest possible throughput with

the fewest probes. Algorithm 1 sketches the method for XFS.

(The Lustre version repeats measurements with 2 and 8 stripes

at each stage and chooses the one with the higher rate.) We

start with the highest flow count, i = 10, because we know

that more flows typically yield higher transfer rates. We then

repeatedly reduce the number of flows at each probing step by

the width w. To reduce the risk of premature termination due to

variability (e.g., due to insufficient observations), we require

two consecutive decreases in the maximum of d traces for

each configuration—that is, two consecutive negative gradient

estimates—before we stop probing.

Intuitively, a larger d provides stable gradient estimates,

thereby increasing the chance of reaching higher transfer

rates, but at the cost of extra probing overhead. And, a

Algorithm 1 The d−w Algorithm for XFS

1: initialize: probe configuration: i = 10 flows d times;

2: Ti,max = maxj∈{1,2,...,d} Ti,j ; Tmax = Ti,max;

3: flag ← 0;

4: while i > w and flag < 2 do
5: i← i− w; probe configuration with i flows d times;

6: Ti,max = maxj∈{1,2,...,d} Ti,j ;

7: if Ti,max > Ti−w,max then
8: Tmax = Ti,max; flag ← flag +1;

9: else flag ← 0;

larger w reduces the number of configurations to be probed,

but may skip configurations that contain the true maximum.

In particular, a larger w jumps over adjacent configurations

whose peak rates are close enough to make the measured

rates statistically similar; consequently, the probing process

terminates faster.

B. Performance Assessment

We evaluate the overall performance of the d−w method

in terms of probing overhead given by the percentage of

a complete configuration sweep that is actually performed.

We also evaluate probing accuracy given by the percentage

of the maximum throughput that it returns. To demonstrate

the joint effect of the two probing parameters, we study the

performance of various parameter combinations.

The d−w algorithm fails to return the peak throughput

if the unimodality condition is not satisfied by the configu-

rations it probed. The fraction of such combinations among

those measured is an indication of the likelihood of such a

failure. Thus, we estimate the confidence of the d−w method

by measuring the fraction of configurations that satisfy the

unimodality property among the total configurations in our

measurements. For XFS, Lustre with direct and default I/O, we

estimate the confidences using 700 configurations (10 flows,

10 repetitions, and 7 RTTs) for each request size used in our

measurements. The likelihood that the d−w method returns the

peak throughput is correlated with high confidence estimates

as will be described next,.

1) XFS Write: Fig. 13 shows the confidence estimates for

different flow counts, for XFS at 22.6 ms RTT, for four (d, w)
combinations. More probes for each configuration, i.e., larger

d, correspond to a higher confidence, which also corresponds

to peak configuration (10 flows) identified by the d−w method.

Fig. 14 shows the probing profile for XFS write transfers,

including overhead and accuracy. From Fig. 14(b), the probing

overhead for most cases is below 20%; that is, a total of less

than 20 traces out of 100. The results indicate that d has a

greater impact on overhead than w, due largely to the early

termination rule for the probing process. The 11.6 ms-RTT

case requires the most probing, because as seen in Fig. 8(c), its

average throughput curve exhibits a zigzag pattern that extends

to the maximum rates, preventing the prompt termination that

would be triggered by two back-to-back decreases.

203

(a) d = 5, w = 1 (b) d = 3, w = 1

(c) d = 5, w = 2 (d) d = 3, w = 2

Fig. 13: Confidence estimates for XFS; RTT = 22.6 ms.

(a) Probing overhead (b) Probed vs. actual peak throughput

Fig. 14: D−w performance for XFS

Fig. 14(c) shows probing accuracy, i.e., the percentage of

average probed throughput relative to the actual maximum

throughput from a full sweep. Most probes give throughput

rates above 99% of the corresponding maximum; for a number

of scenarios, notably 0.4 ms and 45.6 ms, they achieve over

99.5%. The relatively lower throughput performance for 183

ms RTT can be attributed to the larger variations among traces

seen in Fig. 7(b). Note that for fixed w, increasing d leads to

higher throughput, but increasing w alone does not always lead

to consistent performance. This result demonstrates the trade-

off between faster termination by avoiding probing adjacent

configurations with close rates and the missed probing due to

certain configurations being skipped.

2) Direct I/O Lustre Write: Fig. 15 shows the confidence

estimates for various configurations of Lustre with direct I/O,

again for 22.6 ms RTT. As seen in Fig. 6(c), the peak rate is

achieved with the highest number of flows (10), which also

corresponds to high confidence (similar to XFS). We also note

that the envelopes of peak throughput rates for both 2 and

8 stripes are better defined (Fig. 6(c)) than for XFS (Fig.

6(a)), which indicates a higher confidence for selecting the

configuration with peak transfer rate (8 stripes, 10 flows).

From Fig. 16, we see that the probing overhead is ≤15%:

even better than in the XFS write case. Meanwhile, the

probed transfer rates are ≥98% of the actual maxima in most

scenarios. We also see that the use of w = 2 vs. w = 1

(a) d = 5, w = 1 (b) d = 3, w = 1

Fig. 15: Confidence estimates for direct I/O Lustre; RTT 22.6 ms.

(a) Probing overhead (b) Probed vs. actual peak throughput

Fig. 16: D−w performance for direct I/O Lustre

has little impact on performance, due to the well-behaved

envelope of peak throughput rates across the configurations;

in particular, the peak configuration is typically selected after

two negative gradient computations.

3) Default I/O Lustre Write: In certain workflows, host

systems perform many more local I/O operations than long-

haul transfers. In these cases, default I/O is a natural choice

since it provides higher host transfer rates, even though it is

not ideal for (fewer) long-haul transfers. We now consider

such cases wherein long-haul transfers are handled by XDD.

We see from Fig. 17 that the peak configuration (with 2 stripes

and 4 flows) is selected with confidence of 0.7 with d = 5 and

w = 1; but it becomes lower with d = 3 and w = 1. A close

examination of Fig. 6(b) reveals that on rare occasions, the

decreasing lineup from 8 → 7 → 6 flows results in the sub-

optimal configuration with 2 stripes and 8 flows being picked

after probing. Because the top throughput at lower RTTs (4

flows) is located almost halfway from the starting point (8

flows), a larger overhead would be incurred, as can be seen

from Fig. 18(b). With w = 2, the overhead is equivalent to

that from a complete probe, since the termination rule will

not be checked in time once the probing ends with 2 flows.

With the exception of 93.6 ms and 183 ms with w = 2, most

identified throughput rates are within 95% of peaks, which

also correspond to higher confidences. The throughput (∼90%)

in the former cases is due mainly to the peak throughput

occurring with 5 flows, a case that is not probed with w = 2,

and the adjacent configurations yielding substantially lower

transfer rates.

Our d−w probing method can be applied to other scenarios

that require parameter selections based on profiles, such as

choosing the number of parallel TCP threads for memory

transfers. It strikes a balance between the cost and perfor-

mance compared to methods that build a full sweep profile

204

(a) d = 5, w = 1 (b) d = 3, w = 2

Fig. 17: Confidence estimates for default I/O Lustre; RTT 22.6 ms

(a) Probing overhead (b) Probed vs. actual peak throughput

Fig. 18: D−w performance for default I/O Lustre

by repeating mesurements at each configuration a certain

minimum number of times. The results demonstrate that the

d−w method can generate the relevant portions of the transfer

rate profiles with a small number of repetitions, while finding

configurations with close to peak transfer rates.

VI. CONCLUSIONS

We report on extensive disk-to-disk file transfer measure-

ments for Lustre and XFS filesystems over emulated dedicated

connections for a wide range of RTTs. Our results provide

valuable insights into factors that effect transfer rates. In

particular, they reveal surprising interactions between disk

and network systems that necessitate careful configuration to

achieve good performance. We also find that large variations

require repeated measurements to ensure estimation confi-

dence. Our gradient-descent based d−w method avoids the

need for repeated time-consuming sweeps of all parameter

combinations by probing a small number of measurements to

identify configurations that achieve peak rates.

Future directions include detailed analytical development of

the d−w method and its variants in terms of performance

guarantees. It will be of interest to develop methods that

dynamically adapt d and w values based on measurements.

Other considerations beyond peak throughput, such as resource

utilization, can be incorporated into this framework by using

the corresponding measurements. It will also be interesting to

study other probing methods that are not based on the gradient

descent approach.

ACKNOWLEDGMENTS

This work is supported in part by the United States Department

of Defense, using resources of the Computational Research and

Development Programs, and the Net2013 and RAMSES projects,

Office of Advanced Computing Research, Department of Energy,

under Contracts DE-AC05-00OR22725 and DE-AC02-06CH11357.

REFERENCES

[1] On-demand secure circuits and advance reservation system.
http://www.es.net/oscars.

[2] W. Allcock, I. Foster, S. Tuecke, A. Chervenak, and C. Kesselman.
Protocols and services for distributed data-intensive science. In AIP
Conference Proceedings, pages 161–163. Institute of Physics, 2000.

[3] B. Allen, J. Bresnahan, L. Childers, I. Foster, G. Kandaswamy, R. Ket-
timuthu, J. Kordas, M. Link, S. Martin, K. Pickett, et al. Software as a
service for data scientists. Communications of the ACM, 55(2):81–88,
2012.

[4] B. Behzad, S. Byna, M. Snir, et al. Pattern-driven parallel I/O tuning.
In 10th Parallel Data Storage Workshop, pages 43–48. ACM, 2015.

[5] L. Bottou. Large-scale machine learning with stochastic gradient
descent. In COMPSTAT, pages 177–186. Springer, 2010.

[6] P. H Carns, B. W. Settlemyer, and W. B. Ligon III. Using server-to-
server communication in parallel file systems to simplify consistency and
improve performance. In ACM/IEEE Conference on Supercomputing,
page 6. IEEE Press, 2008.

[7] Science DMZ: Data Transfer Nodes, https://fasterdata.es.net/science-
dmz/DTN.

[8] Energy Sciences Network. http://www.es.net.
[9] W. Feng, M. Gardner, M. Fisk, and E. Weigle. Automatic flow-control

adaptation for enhancing network performance in computational grids.
Journal of Grid Gomputing, 1(1):63–74, 2003.

[10] J. Gao, N. S. V. Rao, J. Hu, and J. Ai. Quasi-periodic route to chaos in
the dynamics of internet transport protocols. Physical Review Letters,
2005.

[11] M. Gardner, S. Thulasidasan, and W. Feng. User-space auto-tuning for
TCP flow control in computational grids. Computer Communications,
27(14), 2004. Special Issue on Network Support for Grid Computing.

[12] T. Ito, H. Ohsaki, and M. Imase. On parameter tuning of data transfer
protocol GridFTP for wide-area grid computing. In 2nd International
Conference on Broadband Networks, pages 1338–1344. IEEE, 2005.

[13] T. Ito, H. Ohsaki, and M. Imase. Automatic parameter configuration
mechanism for data transfer protocol GridFTP. In International Sympo-
sium on Applications and the Internet. IEEE, 2006.

[14] T. Ito, H. Ohsaki, and M. Imase. GridFTP-APT: Automatic parallelism
tuning mechanism for data transfer protocol GridFTP. In 6th IEEE
International Symposium on Cluster Computing and the Grid, 2006.

[15] T. Kelly. Scalable TCP: Improving performance in high speed wide area
networks. Computer Communication Review, 33(2):83–91, 2003.

[16] H. J. Kushner and C. G. Yin. Stochastic Approximation and Recursive
Algorithms and Applications. Springer-Verlag, 2003. Second Edition.

[17] N. Liu, C. Carothers, J. Cope, P. Carns, R. Ross, A. Crume, and
C. Maltzahn. Modeling a leadership-scale storage system. In Parallel
Processing and Applied Mathematics, pages 10–19. Springer, 2011.

[18] Lustre Basics, https://www.olcf.ornl.gov/kb articles/lustre-basics.
[19] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of

three methods for selecting values of input variables in the analysis of
output from a computer code. Technometrics, 42(1):55–61, 2000.

[20] N. S. V. Rao, G. Hinkel, N. Imam, and B. W. Settlemyer. Measurements
of file transfer rates over dedicated long-haul connections. In 2nd
International Workshop on The Lustre Ecosystem, 2016.

[21] I. Rhee and L. Xu. CUBIC: A new TCP-friendly high-speed TCP
variant. In 3rd International Workshop on Protocols for Fast Long-
Distance Networks, 2005.

[22] B. W. Settlemyer, J. D. Dobson, S. W. Hodson, J. A. Kuehn, S. W.
Poole, and T. M. Ruwart. A technique for moving large data sets over
high-performance long distance networks. In IEEE 27th Symposium on
Mass Storage Systems and Technologies, pages 1–6, May 2011.

[23] B. W. Settlemyer, N. S. V. Rao, S. W. Poole, S. W. Hodson, S. E.
Hicks, and P. M. Newman. Experimental analysis of 10Gbps transfers
over physical and emulated dedicated connections. In International
Conference on Computing, Networking and Communications, 2012.

[24] R.N. Shorten and D.J. Leith. H-TCP: TCP for high-speed and long-
distance networks. In 3rd International Workshop on Protocols for Fast
Long-Distance Networks, 2004.

[25] J. C. Spall. Introduction to Stochastic Search and Optimization:
Estimation, Simulation, and Control. Wiley Pub, 2003.

[26] Linux tuning, https://fasterdata.es.net/host-tuning/linux.
[27] B. J. Winer. Latin squares and related designs. In Statistical Principles

in Experimental Design. McGraw-Hill Book Company, 1962.
[28] XDD - The eXtreme dd toolset, https://github.com/bws/xdd.

205

