2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International
Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems

Experimental Analysis of File Transfer Rates Over
Wide-Area Dedicated Connections

Nageswara S. V. Rao, Qiang Liu, Satyabrata Sen, Greg Hinkel, and Neena Imam
Computer Science and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
{raons,liuq1,sens,hinkelgc,imamn} @ornl.gov

Bradley W. Settlemyer
Systems Integration Group
Los Alamos National Laboratory
Los Alamos, NM 87545
bws@Ianl.gov

Abstract—File transfers over dedicated connections, supported
by large parallel filesystems, have become increasingly important
in high-performance computing and big data workflows. It
remains a challenge to achieve peak rates for such transfers
due to the complexities of file I/0, host, and network transport
subsystems, and equally importantly, their interactions. We
present extensive measurements of disk-to-disk file transfers
using Lustre and XFS filesystems mounted on multi-core servers
over a suite of 10 Gbps emulated connections with 0-366 ms
round trip times. Our results indicate that large buffer sizes and
many parallel flows do not always guarantee high transfer rates.
Furthermore, large variations in the measured rates necessitate
repeated measurements to ensure confidence in inferences based
on them. We propose a new method to efficiently identify the
optimal joint file I/O and network transport parameters using
a small number of measurements. We show that for XFS and
Lustre with direct I/O, this method identifies configurations
achieving 97% of the peak transfer rate while probing only 12%
of the parameter space.

Index Terms—Wide area transport, dedicated connections,
TCP, RTT, throughput, file I/O read and write, profiling, profiling
overhead.

I. INTRODUCTION

In recent years, there has been an increasing demand for
wide-area data transfers in a number of scenarios involving
high-performance computing (HPC) work flows, cloud com-
puting server complexes, and big data computing facilities.
These transfers often involve disk-to-disk file transfers be-
tween remote sites, for example, between a supercomputing
facility and a remote storage site. To support these transfers
in HPC scenarios, the underlying infrastructures are being
enhanced: (a) networks, such as the Department of Energy’s
(DOE) ESnet, provide on-demand, dedicated connections [1];
(b) high-performance filesystems, such as Lustre [18], are
deployed with large collections of disk drives to provide site-
wide access; and (c) dedicated hosts, such as Data Transfer
Nodes (DTNG5) [7], are deployed that employ specialized trans-
fer protocols such as GridFTP [2] and transfer management
software such as Globus [3].

978-1-5090-4297-5/16 $31.00 © 2016 IEEE
DOI 10.1109/HPCC-SmartCity-DSS.2016.101

198

Tan Foster and Rajkumar Kettimuthu
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439
{foster,kettimut} @anl.gov

Chase Q. Wu and Daqing Yun
Department of Computer Science
New Jersey Institute of Technology
Newark, NJ 07102
{chase.wu,dy83} @njit.edu

High-performance disk-to-disk transfers require the com-
position of complex file I/O and network subsystems, and
host orchestration. For example, the Lustre filesystem employs
multiple Object Storage Targets (OSTs) to manage collections
of disks, multiple Object Storage Servers (OSSes) to stripe file
contents, and distributed MetaData Servers (MDSes) to pro-
vide site-wide file naming and access. Such complex filesys-
tem must be effectively coupled with DTNs and wide-area
networks to achieve peak file transfer rates. But, sustaining
high file transfer rates requires joint optimization of subsystem
parameters to account for the impedance mismatches among
them [22]. For Lustre filesystems, for example, important
parameters include the stripe size and number of stripes for the
files, typically specified at the creation time, and the number
of parallel I/O threads for read/write operations, specified at
the transfer time. Typically, I/O buffer size and the number of
parallel threads are chosen to be sufficiently large to sustain
high throughput, but as we will see, this simple heuristic is
not always optimal. Key parameters for TCP network transport
include the choice of congestion control module, number of
parallel streams, and various buffer sizes [8]. We focus here on
choosing the number of parallel flows for file I/O and network
transport, two critical factors in determining file transfer rates.

Throughput profiles for network transport and file I/O are
typically generated by sweeping the values for chosen param-
eters, using, for example, iperf and xddprof, respectively [23].
Given those profiles, we might hope to determine an optimal
profile for disk-to-disk file transfers via a simple composition
of individual network transport and file I/O profiles: for exam-
ple, by using the minimum of subsystem throughput maxima
as the transfer rate for a particular parameter combination.
However, increasingly complex file I/O and network trans-
port subsystems and inter-subsystem interactions mean that
such simple compositions can overestimate transfer rates. For
example, for wide-area file transfers over 10 Gbps networks
with files stored in Lustre filesystems and striped across 8
storage servers, accessed with 8 MB buffers, and with 8 I/O

IEEE
computer
® psouety

and TCP threads, we observe disk-to-disk transfer rates of
only 1.5 Gbps [20]. Yet the peak throughputs of the file and
network subsystems are each close to 10 Gbps.

To study these issues in more depth, we measured file I/O
and network throughput and file transfer rates over Lustre and
XFS filesystems for a suite of seven emulated connections
in the 0-366ms RTT range. We learned that: (a) conventional
practices of large buffers and higher parallelism do not always
translate into higher transfer rates; (b) direct I/O methods that
avoid file buffers at the hosts provide higher wide-area transfer
rates, and (c) significant statistical variations in measurements,
due to complex interactions of non-linear TCP dynamics with
parallel file I/O streams, necessitate repeated measurements to
ensure confidence in inferences based on them.

These results suggest a need for complete joint file trans-
fer rate profiles. However, building such joint profiles via
brute-force parameter sweeps is not feasible in operational
environments, as it would take weeks to months, during
which the system is unavailable to users. Thus we propose
a new d—w (for depth-width) method that we show can
identify close-to-optimal joint parameters with significantly
fewer measurements. By exploiting the overall unimodality,
namely, having a single maximum, of profiles, this method
implements a stochastic gradient method using d repeated
measurements over w-sized windows. It also uses domain
knowledge extracted from measurements to identify the start-
ing parameters for the search. We evaluate its performance
using Lustre and XFS measurements, and show that it reduces
measurement times to hours and days on those two systems,
respectively. More specifically, for both filesystems, the com-
puted parameters achieved 97% of peak transfer rate while
probing only 12% of the parameter space.

The rest of the paper is as follows. We summarize related
work in Section II; describe network transport and file I/O
subsystems, and XDD file transfers, in Section III; present
measurements of file transfer rates over emulated connections
in Section IV; and describe our d—w method and its perfor-
mance analysis in Section V. We conclude in Section VI.

II. RELATED WORK

Tools for choosing parameter values to maximize file trans-
fer performance have been a frequent area of interest. For TCP,
dynamic right-sizing of buffers has been used to improve file
transfer throughput [9], [11]. The GridFTP-APT project [14]
develops models that identify TCP buffer sizes and number of
TCP flows for improved transfer performance [12], and builds
tools for dynamically changing the number of connections
during a file transfer [13]. There is also previous work on
estimating optimal parallel storage system parameters [4],
[6], [17]; however, that work does not consider wide-area
networking models. Our approach is unique in simultaneously
optimizing both network and storage system parameters, and
using measurements rather than coarse-grain TCP behavior to
estimate optimal parameters.

Our work is also distinguished by its efficient method for
arriving at the selected parameters without exhaustive search.

199

The d—w scheme described in this paper is similar to existing
statistical blocking techniques, such as Latin Squares [27]
and Latin Hypercubes [19]; however, it exploits the overall
unimodality of the response regression surfaces to converge
more quickly on the optimal parameter set. In this respect, it is
similar to the more computationally intensive machine learning
techniques, such as stochastic gradient descent [5], but unlike
those methods it does not require significant amounts of
training data for each source-destination pair. Our method can
be viewed as a version of the stochastic approximation method
[16], [25], but with a derivative computation customized to the
observed profiles. As a result, it provides confidence estimates
based on finite samples rather than traditional asymptotic
convergence results.

==

storage
switch |==]

storage
controller

storage
switch | ==}

storage
controller

Lustre Lustre

disk
array

Fig. 1: File transfers over long-haul connections

III. WIDE-AREA FILE TRANSFERS

A wide-area disk-to-disk file transfer encompasses storage
devices, data transfer hosts, and local- and wide-area connec-
tions: see Fig. 1. Major sites often use dedicated data transfer
hosts, such as DTNs, with high performance Network Interface
Cards (NICs) to access network connections and Host Channel
Adapters (HCAs) to access network storage systems. Transfers
also involve a range of software components, including filesys-
tem I/O modules for disk access and the TCP/IP stack for
network transport, which are used by the file transfer software
such as GridFTP [2] and XDD [28] running on the hosts.

A. Experimental Setup

We measured file transfer rates for both Lustre and XFS
filesystems using XDD (described in next section) between
two dedicated 48-core Linux servers over emulated 10 Gbps
connections for RTT, 7 = 0.4, 11.6, 22.6. 45.6, 93.6, 183,
and 366 ms. The 0.4, 11.6, 22.6, 45.6 ms RTTs correspond to
cross-country connections, the 93.6 and 183 ms RTTs to inter-
continental connections, and the 366 ms RTT to a connection
spanning the globe. The connections are emulated in hardware
using ANUE-ixia devices to which host 10GigE interfaces are
directly connected: see Fig. 2. The network packets are sent to
the emulator, which delays them based on the specified RTT,
a process that closely matches the transport over a physical
connection: in particular, TCP dynamics and file transfer rates
are more closely matched than when using simulators such as
ns-3 and OPNET. Fig. 1 shows the filesystem configurations

10GigE 10GigE

Myrinet Myrinet f2
HP48-core |l e B 1P 48-core | —— . XDD source XDD destination
4-socket 10GigE 4-socket - E
Uk nost £ R 8 — Median Qthread 0 Qthread 0
connection emulation:) = +
latency 0-800 ms S gsﬂ/ -
. " . 0 — 5% 5%
(a) 10GigE dedicated connection ' - Soff‘lm
n n ile
:zz: TCP connection Lr::lsj:(9 (==
RTT=0-366ms
P R
10Gb
ke 0 01 116 26 456 N6 1B %6
(b) TCP throughput profile configuration .
ms

Fig. 2: Testbed configurations of emulated Fig. 3: Throughput profile of TCP CUBIC Fig. 4: Qthreads implement parallel XDD

long-haul connections

used: Lustre is mounted over a local InfiniBand network and
XFS is mounted locally on each host over SSDs connected to
its PCI bus. The XFS and Lustre filesystems provide peak file
1/0O throughput greater than 10 Gbps, and thus it is the network
link rather than the filesystems that are a limiting factor for
these file transfer rates.

B. XDD File Transfers

A single XDD file transfer process spawns a set of threads
to open a file and perform data transfers between either storage
and memory or memory and network. To initiate a file transfer,
it creates a set of source and destination XDD processes that
are paired as shown in Figure 4. A source XDD process creates
a TargetThread that opens the file, initiates a connection with a
destination XDD process, and subsequently creates a number
of QThreads that issue read commands to fill a thread-local
buffer. Once a thread’s buffer is filled, that thread transmits the
data over the network to a destination XDD process; the size
of the buffer is referred to as the request size. Similarly, the
destination XDD process creates a TargetThread that listens
for a connection from a source XDD process and then creates
QThreads that receive data from the network and write the
data into the storage system. The number of source and
destination QThread pairs is equal to the number of TCP
parallel streams, and hence we refer to each source-destination
QThread connection as a flow. XDD reports read transfer rate
at the sender and write transfer rate at the receiver for each
file transfer by aggregating across all flows.

An XDD file transfer rate profile is a complex composition
of file I/O and network throughput profiles. The file transfer
dynamics depend in particular on the complex non-linear,
possibly chaotic [10], TCP dynamics, modulated by those of
file I/O systems; which lead to high statistical variations in
measured file transfer rates, as we show in Section IV.

C. Network Transport and File 1/O Profiles

We characterize the throughput of network transport and
disk file I/O by sweeping over chosen parameters to cre-
ate individual throughput profiles for each component that
plot performance as a function of parameter values for data
transfers in 1-100GB range. For network transport, we vary
three parameters, namely the number of parallel threads, TCP
congestion control protocol used, and RTT. We set the host-
level TCP/IP buffer sizes to the recommended values for

as a function of RTT with 8 streams

200

disk-to-disk flows

10

—8192
~65536
148576

|

Gbps
>

N

0 2
0.1 116 226 456 936 183 366 0.1 11.6 226 456 93.6

rt-ms rtt-ms
(a) 1 flow (b) 8 flows
Fig. 5: XDD memory transfer rates for different request sizes (KB)

183 366

200 ms RTT [26] to cover most cross-country and inter-
continental connections and then use iperf to collect TCP
throughput measurements over these connections while vary-
ing both number of parallel threads and congestion control
scheme. Fig. 3 shows the profile obtained when using the
CUBIC [21] congestion control module, the default on Linux
systems. We repeated the measurements using Hamilton TCP
[24] and Scalable TCP [15] congestion control modules and
saw throughput rates within a few percent of CUBIC results;
hence we do not show those results here. For disk I/O, we use
a tool called xddprof to measure performance while varying
three parameters: number of parallel read/write threads, buffer
sizes, and (for Lustre) stripe sizes and numbers and the choice
of either direct or default 1/O.

IV. DISK-TO-DISK TRANSFER MEASUREMENTS

We collected two sets of XDD disk-to-disk file transfer
measurements, one from XFS to XFS and one from Lustre to
Lustre. Each experiment was repeated 10 times; the repetitions
can be regarded as independent of one another. We considered
both buffered I/O (the Linux default) and direct I/O options
for Lustre. In the latter, XDD avoids the local copies of files
on hosts by directly reading and writing into its buffers, which
significantly improves the transfer rates.

A. Memory-to-Memory Transfers

To assess overheads introduced by XDD in its use of TCP
flows, we decoupled the filesystems to measure the memory-
to-memory transfer rates between XDD’s sender and receiver
buffers. We show in Fig. 5 results for both 1 and 8 flows as a
function of RTT and for different request sizes. With 1 flow,
XDD transfer rates vary with request size but are consistently
lower than the TCP rates shown in Fig. 3. The highest transfer

Ghps
Ghps

o

Ghps
Ghps

/

10

5
no. threacs

5
no. threacs

(a) XFS read (Left) / write (Right)

no. streams

- B ®w R O oo N B @
PR S R)

=]

10

=]

10

no. streams no. streams: no. streams

(b) Lustre default I/O write: 2 (L) / 8 (R) stripes (c) Lustre direct /O write: 2 (L) / 8 (R) stripes

Fig. 6: Transfer rates for RTT = 22.6 ms as a function of number of flows (used interchangeably with the terms “threads” for XFS and

“streams” for Lustre). Each line is a different experiment.

rates are achieved with the lowest request size, a result that we
attribute to the finer granularity of input data chunks delivered
to TCP threads. With 8 flows, the XDD memory transfer rate
closely matches the iperf throughput in Fig. 3, which indicates
that XDD does not create transfer rate bottlenecks between
network transport and file I/O for sufficient number of flows.

10 10

i
B

=
=

=

8

6

Gbps
Gbps

——
116 226 456 936 183 366

[
0.4 11.6 226 456 93.6 183 366
it -

(a) 1 flow (b) 10 flows
Fig. 7: XFS file write transfer rates

Gbps

O I S SR)
&
3

-)

e

~. B
RO

o™ na

°

° 2 8 10 no. threads

6
no. threads rt-me

(a) Write rates: Line plot (b) Write rates: Surface plot

Fig. 8: Mean XFS file write rates

B. XFS-to-XFS File Transfers

We next turn to disk-to-disk transfers. We shall see that file
transfer rates are lower and variations more pronounced when
filesystems are engaged, despite the fact that our filesystems
are capable of greater read and write speeds than the network.

We first consider XFS-to-XFS transfers. The results in Fig.
6(a), for RTT = 22.6 ms, show wide variations among repeated
experiments as shown in different colors. (As the read and
write transfer profiles are similar for a given configuration,
we present only the file write transfer rates in the figures that
follow.) Fig. 7 shows the write results in box plot form, for 1
and 10 flows. We see that:

(a) Throughput increases with the number of flows. For
instance, whereas the mean throughput peaks at 5 Gbps
with 1 flow, the peak (occurring with 0.4 ms-RTT) rapidly
jumps to above 9 Gbps with 4 flows, even closely

201

approaching 10 Gbps with 7 flows. In fact, the same
is largely true for other RTTs as well, which can be
confirmed by the aggregate mean throughput line plot
in Fig. 8(a).

Mean throughput generally decreases with RTT, consis-
tent with most data transfer protocols. The surface plots
in Fig. 8(b) indicate an monotonically increasing trend,
a special case of unimodality.

The concave region of the throughput profile (with respect
to RTT) is extended with more flows. In particular, as
shown in Fig. 7, with 1 flow, the transition point from
concave to convex profiles occurs at a much lower RTT
than when more flows are used.

(b)

(©)

C. Lustre-to-Lustre File Transfers: Default 1/0

In the default I/O Lustre setup, the number of flows varies
from 1 to 8, and the number of stripes is either 2 or 8. Figs 9
shows write transfer rates with 2 and 8 stripes and with flows
ny € {1,2,4,8}. Compared to XFS, the overall throughput
is much lower, especially for smaller RTTs. (Such differences
become less pronounced as RTT increases.) One surprising
result in Figs. 9(d) and (h) is that the mean throughput
plummets below 2 Gbps (with the exception of the 366 ms-
RTT case) and then actually increases with RTT.

Fig. 10 provides another perspective on the default I/O
Lustre setup results. At lower RTTs, mean throughput peaks at
4 flows, starts to decrease with 5 flows, and takes a nosedive
at 6 flows. The sharp drop is delayed at higher RTTs, with
throughput peaking at 5 flows for 91 ms RTT and at 6 flows
for 183 ms RTT, and increasing all the way through 8 flows
for 366 ms RTT. The overall trend with respect to the number
of flows is unimodal with respect to the number of flows: a
somewhat more complex response than the monotonicity that
we saw for XFS transfers and that we will see for Lustre with
direct I/O, as discussed in the next subsection.

The box plots in Fig. 9 show some minor differences in 2
vs. 8 stripe performance. With 2 stripes, rates are somewhat
higher at lower RTTs with 2 flows and 4 flows, whereas with 8
stripes we see slightly higher rates at higher RTTs with 8 flows.
However, the line plots Figs. 10(a) and (c) show that the sharp
drop in throughput, if any, occurs earlier, at 5 flows, when 8
stripes are used instead of 2 stripes, which demonstrates the
longer concave regime (with respect to the number of flows)

I

==k 5
6 6 6 6
@ @ @ —j— @
4 4 4 4
—e e
—_— e = T e —_—
2 —_ 2 —_— 2 ——p— 2 —_—— e =
———— —_—
o]] o] o
0.4 11.6 226 456 93.6 183 366 0.4 11.6 226 456 936 183 366 0.4 11.6 226 456 93.6 183 366 0.4 11.6 226 456 93.6 183 366
r
(a) 2 stripes, 1 flow (b) 2 stripes, 2 flows (c) 2 stripes, 4 flows (d) 2 stripes, 8 flows
10 10 10 10
8 8 8 8
— =
—— ==
g ° 2 ° g ° == 2 °
= = = =
8] e 8]
4 4 4 4
ol
—— e == ——
2 e 2 — 2 e 2 e ==]
— —_
o] o o o
0.4 11.6 226 456 93.6 183 366 0.4 0.4 11.6 226 456 93.6 183 366 0.4

11.6 226 456 93.6 183 366
rt-ms -

(e) 8 stripes, 1 flow (f) 8 stripes, 2 flows

11.6 226 456 93.6 183 366

(g) 8 stripes, 4 flows (h) 8 stripes, 8 flows

Fig. 9: Default /O Lustre file write rates, varying stripes and flows

—e—o04ms
11 ms
22ms
45 ms
91 ms
183 ms

—#—366 ms

Gbps

o™
By < e 966
a7 B
2 e
o="na
rt-me

et
e
e
2 56

4 8 no. streams
no. streams

(a) 2 stripes: Line plot (b) 2 stripes: Surface plot

—e—0.4ms
11ms
22ms
45 ms
o1ms

Ghps

183 ms
—#—366 ms

no. slieams

rt-me

a
no. streams

(c) 8 stripes: Line plot (d) 8 stripes: Surface plot

Fig. 10: Mean default I/O Lustre file write rates

of the latter. This result is also confirmed by the surface plots:
the “dome” in Fig. 10(d) is narrower than that in Fig. 10(b).

D. Lustre-to-Lustre File Transfers: Direct I/0

We repeated the experiments of the previous section using
direct I/O Lustre. The results in Figs. 11 and 12 show that:
(a) Throughput with 1 flow is lower that for default I/O
Lustre, but steadily increases with the number of flows.
The direct I/O option also introduces more variation, as
reflected in elongated box plots.
Using 2 stripes yields somewhat higher transfer rates
compared to 8 stripes for lower flow counts. With more
flows, overall throughput is higher, and 8 stripes is the
better option. Although the peak rates with 10 flows and 8
stripes are lower compared to XFS, they are significantly
higher that with default I/O.

(b)

202

(c) We observe in Fig. 12 monotonicity trends similar to
those seen for XFS in Fig. 8. The XFS surface, however,
is higher and increases faster at lower RTTs, as a result of
rates starting higher with one flow and further improving
and approaching the peak with additional flows.

Gbps
Gbps

—_— e
—
s

366

116 226 456 93.6 183 04 116 226 456 93.6 183 866
itt-me it -me

(a) 2 stripes, 1 flow (b) 2 stripes, 10 flows

TR~ _
;LEI
- ==

i
6 i

Gbps
Gbps

e
—
s

116 226 456 93.6 183 366
rt-ms

o

o

0.4 04 11.6 226 456 93.6 183 366
rt-ms

(c) 8 stripes, 1 flow (d) 8 stripes, 10 flows

Fig. 11: Direct I/O Lustre file write rates, varying stripes and flows

In summary, file transfer rates for both XFS and Lustre
are affected by the number of flows. The mean rate increases
monotonically with number of flows for both XFS and direct
I/O Lustre (Figs. 8 and 12), but degrades beyond a certain
point for default I/O Lustre (Fig. 10). The number of stripes in
Lustre seems to have less impact on transfer rate than does the
number of flows. Additional measurements with request sizes
of 65 MB and 145 MB show that the default 8 MB selection
used in this paper consistently yields the best performance.
This result is expected, as the smaller request size provides
finer-resolution data chunks to TCP streams.

—e—o04ams s
11 ms
22ms
45 ms
91ms
183 ms

,/k
//
i/,/‘ —#—366ms o
Bt
0
P — \\
3

S
s e

Gbps
o =+ M w B G o N o o

4 3 no. streams o
no. streams

(a) 2 stripes — line plot

—o—04ms
11 ms
22ms
45 ms
91ms

Ghbps

5 4 M w B G o N B O

183 ms
——366 ms

o 2 4 6 8
no_ streams:

10

no. strcams o

(c) 8 stripes — line plot (d) 8 stripes — surface plot

Fig. 12: Mean direct I/O Lustre file write rates

V. FAST PROBING METHOD FOR PEAK TRANSFER RATE

We now introduce and evaluate the performance of our fast
probing depth-width (d—w) method.

A. The D—W Method

Our d —w method exploits the observed unimodality of
transfer rates with respect to the number of flows; for XFS
and Lustre with direct 1/O, these rates exhibit the stronger
monotonicity property. The basic approach is based on a
stochastic gradient search method that starts with the largest
number of flows and continues to collect measurements at
different configurations while the gradient is positive within
a certain window. Due to variations in measurements the
gradient can only be estimated approximately and may not
always provide the right direction, and indeed can lead to
premature termination or over sampling. We mitigate such
effects by repeating d measurements at each configuration and
considering measurements within a w-window to jump over
local variations; the former accounts for the variability and the
latter attempts to avoid local maxima.

The method strategically probes multiple configurations
with the goal of achieving the highest possible throughput with
the fewest probes. Algorithm 1 sketches the method for XFS.
(The Lustre version repeats measurements with 2 and 8 stripes
at each stage and chooses the one with the higher rate.) We
start with the highest flow count, + = 10, because we know
that more flows typically yield higher transfer rates. We then
repeatedly reduce the number of flows at each probing step by
the width w. To reduce the risk of premature termination due to
variability (e.g., due to insufficient observations), we require
two consecutive decreases in the maximum of d traces for
each configuration—that is, two consecutive negative gradient
estimates—before we stop probing.

Intuitively, a larger d provides stable gradient estimates,
thereby increasing the chance of reaching higher transfer
rates, but at the cost of extra probing overhead. And, a

203

Algorithm 1 The d—w Algorithm for XFS

1: initialize: probe configuration: ¢ = 10 flows d times;
2: 7;,mam = mMaX;c{1,2,...,d} 7;,]'; Tmaw = ﬁ,maw;
3: flag < 0;
4: while i > w and flag < 2 do
i <— i — w; probe configuration with ¢ flows d times;
ﬂ,maz = manE{l,Z,...,d} 7;,.7';
if ﬁ,maw > ﬁ—w,maz then
’Enam = Ji,mazxs flag — flag +1;
else flag < 0;

Y %R

larger w reduces the number of configurations to be probed,
but may skip configurations that contain the true maximum.
In particular, a larger w jumps over adjacent configurations
whose peak rates are close enough to make the measured
rates statistically similar; consequently, the probing process
terminates faster.

B. Performance Assessment

We evaluate the overall performance of the d—w method
in terms of probing overhead given by the percentage of
a complete configuration sweep that is actually performed.
We also evaluate probing accuracy given by the percentage
of the maximum throughput that it returns. To demonstrate
the joint effect of the two probing parameters, we study the
performance of various parameter combinations.

The d —w algorithm fails to return the peak throughput
if the unimodality condition is not satisfied by the configu-
rations it probed. The fraction of such combinations among
those measured is an indication of the likelihood of such a
failure. Thus, we estimate the confidence of the d—w method
by measuring the fraction of configurations that satisfy the
unimodality property among the total configurations in our
measurements. For XFS, Lustre with direct and default I/O, we
estimate the confidences using 700 configurations (10 flows,
10 repetitions, and 7 RTTs) for each request size used in our
measurements. The likelihood that the d—w method returns the
peak throughput is correlated with high confidence estimates
as will be described next,.

1) XFS Write: Fig. 13 shows the confidence estimates for
different flow counts, for XFS at 22.6 ms RTT, for four (d, w)
combinations. More probes for each configuration, i.e., larger
d, correspond to a higher confidence, which also corresponds
to peak configuration (10 flows) identified by the d—w method.

Fig. 14 shows the probing profile for XFS write transfers,
including overhead and accuracy. From Fig. 14(b), the probing
overhead for most cases is below 20%; that is, a total of less
than 20 traces out of 100. The results indicate that d has a
greater impact on overhead than w, due largely to the early
termination rule for the probing process. The 11.6 ms-RTT
case requires the most probing, because as seen in Fig. 8(c), its
average throughput curve exhibits a zigzag pattern that extends
to the maximum rates, preventing the prompt termination that
would be triggered by two back-to-back decreases.

confidence
confidence

1 2 38 4 5 6 7 8 9
no. threads

7 8 9 10

4 5 6
no. threads

M d=3w=1

(@d=5w=1

confidence
confidence

1 2 8 4 5 6 7 8 9
no. threads

10 1 2 3 4 5 7 &8 9

6 10
no. threads

©d=5w=2 dd=3 w=2

Fig. 13: Confidence estimates for XFS; RTT = 22.6 ms.

o o7

04 11.622645.6 93.6 183 366 04 11.6226465.6 93.6 183 366

(a) Probing overhead (b) Probed vs. actual peak throughput

Fig. 14: D—w performance for XFS

Fig. 14(c) shows probing accuracy, i.e., the percentage of
average probed throughput relative to the actual maximum
throughput from a full sweep. Most probes give throughput
rates above 99% of the corresponding maximum; for a number
of scenarios, notably 0.4 ms and 45.6 ms, they achieve over
99.5%. The relatively lower throughput performance for 183
ms RTT can be attributed to the larger variations among traces
seen in Fig. 7(b). Note that for fixed w, increasing d leads to
higher throughput, but increasing w alone does not always lead
to consistent performance. This result demonstrates the trade-
off between faster termination by avoiding probing adjacent
configurations with close rates and the missed probing due to
certain configurations being skipped.

2) Direct I/O Lustre Write: Fig. 15 shows the confidence
estimates for various configurations of Lustre with direct I/O,
again for 22.6 ms RTT. As seen in Fig. 6(c), the peak rate is
achieved with the highest number of flows (10), which also
corresponds to high confidence (similar to XFS). We also note
that the envelopes of peak throughput rates for both 2 and
8 stripes are better defined (Fig. 6(c)) than for XFS (Fig.
6(a)), which indicates a higher confidence for selecting the
configuration with peak transfer rate (8 stripes, 10 flows).

From Fig. 16, we see that the probing overhead is <15%:
even better than in the XFS write case. Meanwhile, the
probed transfer rates are >98% of the actual maxima in most
scenarios. We also see that the use of w = 2 vs. w =1

204

confidence

1 =
23456,7

streams stipes

b)yd=3, w=1

Fig.

04 116226466936 163 366
rit-ms

04 11.6 226466 936 183 366

(a) Probing overhead (b) Probed vs. actual peak throughput

Fig. 16: D —w performance for direct I/O Lustre

has little impact on performance, due to the well-behaved
envelope of peak throughput rates across the configurations;
in particular, the peak configuration is typically selected after
two negative gradient computations.

3) Default I/O Lustre Write: In certain workflows, host
systems perform many more local I/O operations than long-
haul transfers. In these cases, default I/O is a natural choice
since it provides higher host transfer rates, even though it is
not ideal for (fewer) long-haul transfers. We now consider
such cases wherein long-haul transfers are handled by XDD.
We see from Fig. 17 that the peak configuration (with 2 stripes
and 4 flows) is selected with confidence of 0.7 with d = 5 and
w = 1; but it becomes lower with d = 3 and w = 1. A close
examination of Fig. 6(b) reveals that on rare occasions, the
decreasing lineup from 8 — 7 — 6 flows results in the sub-
optimal configuration with 2 stripes and 8 flows being picked
after probing. Because the top throughput at lower RTTs (4
flows) is located almost halfway from the starting point (8
flows), a larger overhead would be incurred, as can be seen
from Fig. 18(b). With w = 2, the overhead is equivalent to
that from a complete probe, since the termination rule will
not be checked in time once the probing ends with 2 flows.
With the exception of 93.6 ms and 183 ms with w = 2, most
identified throughput rates are within 95% of peaks, which
also correspond to higher confidences. The throughput (~90%)
in the former cases is due mainly to the peak throughput
occurring with 5 flows, a case that is not probed with w = 2,
and the adjacent configurations yielding substantially lower
transfer rates.

Our d—w probing method can be applied to other scenarios
that require parameter selections based on profiles, such as
choosing the number of parallel TCP threads for memory
transfers. It strikes a balance between the cost and perfor-
mance compared to methods that build a full sweep profile

confidence

streams streams

stripes

@d=5w=1 b d=3, w=2

17: Confidence estimates for default I/O Lustre; RTT 22.6 ms

ue 100
0
as
30 o5
,’25 3
- 20 .
15 =,
o 85 04 1162264566 93.6 183 366
ft-ms

04 11.622646.6 93.6 183 366
rit-ms

(a) Probing overhead (b) Probed vs. actual peak throughput

Fig. 18: D —w performance for default I/O Lustre

by repeating mesurements at each configuration a certain
minimum number of times. The results demonstrate that the
d—w method can generate the relevant portions of the transfer
rate profiles with a small number of repetitions, while finding
configurations with close to peak transfer rates.

VI. CONCLUSIONS

We report on extensive disk-to-disk file transfer measure-
ments for Lustre and XFS filesystems over emulated dedicated
connections for a wide range of RTTs. Our results provide
valuable insights into factors that effect transfer rates. In
particular, they reveal surprising interactions between disk
and network systems that necessitate careful configuration to
achieve good performance. We also find that large variations
require repeated measurements to ensure estimation confi-
dence. Our gradient-descent based d —w method avoids the
need for repeated time-consuming sweeps of all parameter
combinations by probing a small number of measurements to
identify configurations that achieve peak rates.

Future directions include detailed analytical development of
the d —w method and its variants in terms of performance
guarantees. It will be of interest to develop methods that
dynamically adapt d and w values based on measurements.
Other considerations beyond peak throughput, such as resource
utilization, can be incorporated into this framework by using
the corresponding measurements. It will also be interesting to
study other probing methods that are not based on the gradient
descent approach.

ACKNOWLEDGMENTS

This work is supported in part by the United States Department
of Defense, using resources of the Computational Research and
Development Programs, and the Net2013 and RAMSES projects,
Office of Advanced Computing Research, Department of Energy,
under Contracts DE-AC05-000R22725 and DE-AC02-06CH11357.

205

(1

—

2

—

=
it

[4

=

[5

—

(6]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

REFERENCES

On-demand secure circuits and advance reservation
http://www.es.net/oscars.

W. Allcock, I. Foster, S. Tuecke, A. Chervenak, and C. Kesselman.
Protocols and services for distributed data-intensive science. In AIP
Conference Proceedings, pages 161-163. Institute of Physics, 2000.

B. Allen, J. Bresnahan, L. Childers, I. Foster, G. Kandaswamy, R. Ket-
timuthu, J. Kordas, M. Link, S. Martin, K. Pickett, et al. Software as a
service for data scientists. Communications of the ACM, 55(2):81-88,
2012.

B. Behzad, S. Byna, M. Snir, et al. Pattern-driven parallel I/O tuning.
In 10th Parallel Data Storage Workshop, pages 43—48. ACM, 2015.

L. Bottou. Large-scale machine learning with stochastic gradient
descent. In COMPSTAT, pages 177-186. Springer, 2010.

P. H Carns, B. W. Settlemyer, and W. B. Ligon III. Using server-to-
server communication in parallel file systems to simplify consistency and
improve performance. In ACM/IEEE Conference on Supercomputing,
page 6. IEEE Press, 2008.

Science DMZ: Data Transfer Nodes, https://fasterdata.es.net/science-
dmz/DTN.

Energy Sciences Network. http://www.es.net.

W. Feng, M. Gardner, M. Fisk, and E. Weigle. Automatic flow-control
adaptation for enhancing network performance in computational grids.
Journal of Grid Gomputing, 1(1):63-74, 2003.

J. Gao, N. S. V. Rao, J. Hu, and J. Ai. Quasi-periodic route to chaos in
the dynamics of internet transport protocols. Physical Review Letters,
2005.

M. Gardner, S. Thulasidasan, and W. Feng. User-space auto-tuning for
TCP flow control in computational grids. Computer Communications,
27(14), 2004. Special Issue on Network Support for Grid Computing.
T. Ito, H. Ohsaki, and M. Imase. On parameter tuning of data transfer
protocol GridFTP for wide-area grid computing. In 2nd International
Conference on Broadband Networks, pages 1338—1344. IEEE, 2005.
T. Ito, H. Ohsaki, and M. Imase. Automatic parameter configuration
mechanism for data transfer protocol GridFTP. In International Sympo-
sium on Applications and the Internet. IEEE, 2006.

T. Ito, H. Ohsaki, and M. Imase. GridFTP-APT: Automatic parallelism
tuning mechanism for data transfer protocol GridFTP. In 6th IEEE
International Symposium on Cluster Computing and the Grid, 2006.

T. Kelly. Scalable TCP: Improving performance in high speed wide area
networks. Computer Communication Review, 33(2):83-91, 2003.

H. J. Kushner and C. G. Yin. Stochastic Approximation and Recursive
Algorithms and Applications. Springer-Verlag, 2003. Second Edition.
N. Liu, C. Carothers, J. Cope, P. Carns, R. Ross, A. Crume, and
C. Maltzahn. Modeling a leadership-scale storage system. In Parallel
Processing and Applied Mathematics, pages 10-19. Springer, 2011.
Lustre Basics, https://www.olcf.ornl.gov/kb_articles/lustre-basics.

M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of
three methods for selecting values of input variables in the analysis of
output from a computer code. Technometrics, 42(1):55-61, 2000.

N. S. V. Rao, G. Hinkel, N. Imam, and B. W. Settlemyer. Measurements
of file transfer rates over dedicated long-haul connections. In 2nd
International Workshop on The Lustre Ecosystem, 2016.

I. Rhee and L. Xu. CUBIC: A new TCP-friendly high-speed TCP
variant. In 3rd International Workshop on Protocols for Fast Long-
Distance Networks, 2005.

B. W. Settlemyer, J. D. Dobson, S. W. Hodson, J. A. Kuehn, S. W.
Poole, and T. M. Ruwart. A technique for moving large data sets over
high-performance long distance networks. In IEEE 27th Symposium on
Mass Storage Systems and Technologies, pages 1-6, May 2011.

B. W. Settlemyer, N. S. V. Rao, S. W. Poole, S. W. Hodson, S. E.
Hicks, and P. M. Newman. Experimental analysis of 10Gbps transfers
over physical and emulated dedicated connections. In International
Conference on Computing, Networking and Communications, 2012.
R.N. Shorten and D.J. Leith. H-TCP: TCP for high-speed and long-
distance networks. In 3rd International Workshop on Protocols for Fast
Long-Distance Networks, 2004.

J. C. Spall. Introduction to Stochastic Search and Optimization:
Estimation, Simulation, and Control. Wiley Pub, 2003.

Linux tuning, https://fasterdata.es.net/host-tuning/linux.

B. J. Winer. Latin squares and related designs. In Statistical Principles
in Experimental Design. McGraw-Hill Book Company, 1962.

XDD - The eXtreme dd toolset, https://github.com/bws/xdd.

system.

