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I. INTRODUCTION

Inferring the operational status of a reactor facility using
measurements from an independent in-situ monitoring system
is critical to the assessment of its compliance to agreements. In
particular, such a monitoring system could assist in identifying
activities beyond the agreed upon ones, for instance, longer
operational periods. In this paper, we consider the problem
of inferring the on/off status of a reactor facility by using
effluence measurements of three gases, namely, Ar-41, Cs-138,
and Xe-138, which are collected on its stack.

We implement and study classifiers to infer the on/off status
using ground truth measurements collected over a period of
one year. We first present classifiers based on thresholding the
measurements of individual effluence types, and then present
methods that combine their outputs or measurements. We de-
velop sample-based implementations of four fusers based on a
simple majority rule, Chow’s recognition function [1], physics-
based radiation counts model [2], and correlation-coefficient
(closely related to the sum of squared difference) method [3].
We apply the latter three fusers to pairs and all three gas
effluence types. Our results show that: (i) these gas effluence
measurements are effective in inferring the on/off status of a
reactor facility, for example, best fusers achieve 97% detection
at 1% false alarm rate, and (ii) the performance depends on
the data and classification method, and in particular, fusers that
combine three effluence types based on physics-based models
and correlation-coefficients outperform the majority rule and
Chow’s fusers as well as individual and pairs of effluence
types.

II. EFFLUENCE MEASUREMENTS OF REACTOR FACILITIES

Effluence measurements of Ar-41, Cs-138, and Xe-138
gases are collected on the ventilation off-gas stack of the
High Flux Isotope Reactor (HFIR) in Oak Ridge National
Laboratory (ORNL). These gases are continuously monitored
using a feeding tube in the stack as shown in Figure 1, and
the measurements are statistically analyzed and provided every
four hours. The stack itself is shared by another reprocessing
facility at ORNL, which complicates the on/off classification
task for HFIR. The Figures 2(b), 2(c), and 2(d) show scatter
plots of the ground truth data for on/off periods of HFIR from
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Figure 1. Stack instrumentation of reactor facility.

January 2015 to January 2016 shown in Figure 2(a).

(a) Isotopes and operational time-
line of facility.

(b) Ar-41 on/off measurements.

(c) Cs-138 on/off measurements. (d) Xe-138 on/off measurements.

Figure 2. Effluence Measurements.

III. CLASSIFIERS DESIGN AND PERFORMANCE

We train the individual classifiers with four different thresh-
olds for each set of Ar-41, Cs-138, and Xe-138 ground truth
measurements, and combine their outputs using four types of
fusers.



A. Classifier Thresholds and Majority Fuser
To infer on/off status of the facility, we train individual

classifiers using the ground truth data, and combine their
outputs using a simple majority rule. Using half of the
data when the facility is off, we identify 3%, 5%, 7%, and
10% top and bottom measurements, and set the threshold
τi,j to be the maximum of remaining measurements, where
i ∈ {Ar41, Cs138, Xe138} and j ∈ {3%, 5%, 7%, 10%}. We
then compare the rest of the off-periods data as well as all on-
periods data (that is, when the facility is on) to the individual
threshold τi,j : the decision is on if the measurements are above
the threshold, and off otherwise. Using these testing datasets,
we estimate the false alarm and positive detection rates for
individual classifiers. For each percentage j, we combine the
individual classifiers’ decisions for all i, corresponding to Ar-
41, Cs-138, and Xe-138, using a simple majority rule.

Figure 3. Summary ROC curve.

B. Chow’s Fuser
For the second fuser, we make use of the statistical in-

dependence of measurements, which are radiation counts.
We adapt Chow’s recognition function for binary recognition
problem to thresholding classifiers in the previous subsection.
In this Chow’s fuser, we utilize a threshold weighted-majority
decision (derived under statistically independent decisions)
for all three gas types as well as considering them in pairs.
Let ai,1 = {on-data} and ai,2 = {off-data}, for i ∈
{Ar41, Cs138, Xe138}. The individual threshold classifier
decisions xi,l, for l ∈ {Date : Time} are assigned the weights
given by the logarithmic ratio wi = log

(1−βi,1)βi,2

βi,1(1−βi,2)
where

βi,k = P(xi,l = 0|ai,k). These weighted decisions {wixi,l}
are used to compare their total or pairwise sum to the threshold
τ =

∑n
i=1 log

βi,1

βi,2
to make fused on/off decision.

C. Physics-Based Fuser
We now exploit the fact that measurements follow a Poisson

distribution, for which the Sequential Probability Ratio Test
(SPRT) is given by 0 <

∑n
i=1 wi(mSi

− mBi
) for i ∈

{Ar41, Cs138, Xe138}. Based on this equation, these exist
weights {wi} such that the sum of the weighted differences be-
tween the on measurements and off measurements is positive.

Using ground truth data, we divide the sets of measurements
into a training set and a test set. We use the training set
to maximize the sum of differences in measurements, where
the weights are wi ∈ {−1, 1}. We then use these weights
to define a threshold τ = 1

4

∑n
i=1 wi(mSi

− mBi
) and use

the test measurements to estimate the false alarm and positive
detection rates. We do this by maximizing the sum

∑n
i=1 wimi

with wi ∈ {−1, 1} and comparing it against the threshold τ .
We call this fuser Poisson’s fuser and as with Chow’s fuser,
we test it pairwise and for all gas effluence types.
D. Correlation-Coefficient Fuser

The last fuser is based on fixing a window of background
measurements, say {~m0

Bi
} for i ∈ {Ar41, Cs138, Xe138},

and computing its correlation coefficient for both on and off
measurements. Let w ∈ N be the window size and assume
~mTi

is either an on or off training measurement, we define
the correlation coefficient to be ~m0

Bi
~mTi

=
∑w
j=1m

j
Bi
mj
Ti

.
Using the correlated training set, we maximize the sum of
weighted differences between the on-data measurements and
the off-data measurements, that is max

∑3
i=1 wi(~m

0
Bi
~mSi
−

~m0
Bi
~mBi

) with wi ∈ {−1, 1}. As with the Poisson fuser,
we then use these weights to define a threshold τ =
1
4

∑n
i=1 wi(~m

0
Bi
~mSi
− ~m0

Bi
~mBi

) and use the test measure-
ments to estimate the false alarm and positive detection rates.
We do this by maximizing the sum

∑3
i=1 wi ~m

0
Bi
~mi with

wi ∈ {−1, 1} and comparing it against the threshold τ .
IV. PERFORMANCE COMPARISON

We estimate the false alarm and detection rates of various
classifiers, and the results are summarized in Figure 3, wherein
the false alarm and detection rates are shown on X and Y
axes, respectively. In general for a classifier, lowering of the
threshold parameter leads to higher detection rate but also
increases the false alarm rate. The desired performance of
a classifier is a high detection rate at a low false alarm
rate, as indicated for physics-based and correlation-coefficient
fusers applied to all three effluence types. Our results lead to
the following conclusions: (i) These gas effluence types are
effective in inferring the on/off status of a facility. However,
the best case with 97% detection at 1% false alarms re-
quired fusing all three effluence types using the physics-based
or correlation-coefficient method. (ii) Overall, the fusion of
multiple gas effluences provides better performance compared
to those based on individual and pair-wise effluence types.
(iii) Fusers based on physics-based models and correlation-
coefficient outperform the simple majority and Chow’s fusers,
thereby illustrating the importance of the fuser choice.
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