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Abstract—We consider a System of Systems (SoS) wherein each
system Si, i = 1, 2, . . . , N , is composed of discrete cyber and
physical components which can be attacked and reinforced. We
characterize the disruptions using aggregate failure correlation
functions given by the conditional failure probability of SoS given
the failure of an individual system. We formulate the problem of
ensuring the survival of SoS as a game between an attacker
and a provider, each with a utility function composed of a
survival probability term and a cost term, both expressed in
terms of the number of components attacked and reinforced.
The survival probabilities of systems satisfy simple product-
form, first-order differential conditions, which simplify the Nash
Equilibrium (NE) conditions. We derive the sensitivity functions
that highlight the dependence of SoS survival probability at
NE on cost terms, correlation functions, and individual system
survival probabilities. We apply these results to a simplified model
of distributed cloud computing infrastructure.

I. INTRODUCTION

Critical infrastructures such as cloud computing facilities
and smart grids can be perceived as System of Systems (SoS),
wherein each system Si, i = 1, 2, . . . , N , is composed of
discrete cyber and physical components. The components of
a system must be operational as individual units and also
be available, such as being connected to the network. A
component may be disrupted by a direct cyber or physical
attack; in addition, it may be made unavailable by attacks on
other components, even though it is operational by itself. The
effects of disruptions may propagate among the components
of Si, and also beyond to other systems Sj , j 6= i. For
example, consider a distributed cloud computing infrastructure
with multiple server sites connected over a wide area network.
A cyber attack on a server may bring it down, and a physical
attack on a fiber line that connects a site to the network may
render all servers at the site unavailable to cloud users. In an
extreme case, the effects of component attacks may spread to
entire SoS. The SoS provider is tasked with developing defense
strategies to reinforce components of Si’s against attacks, by
accounting for both types of disruption propagation, namely,
within and between the systems.
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Let yi and xi be the number of components of Si attacked
and reinforced, respectively, wherein a reinforced component
survives a direct attack but may be disrupted indirectly. Let
Pi be the survival probability of Si, and PS be the survival
probability of entire SoS. The aggregate failure correlation
function Ci(Pi) is the failure probability of “rest” of SoS
(namely, without Si) given the failure of Si. Intuitively, it
indicates the relative importance of Si by capturing the fault
propagation from Si to rest of SoS, which is denoted by S−i.
In addition to these system-level correlations, those among the
components of individual systems are characterized by simple
product-form, first-order differential conditions on Pi [20] us-
ing the system multiplier functions. These conditions subsume
the contest success functions and statistical independence
conditions as special cases, and lead to simplified estimates
of survival probabilities at the Nash Equilibrium (NE). This
two-level characterization of correlations is natural to SoS, for
example, cloud computing and smart grid infrastructures [23],
and leads to a simplified analysis of NE conditions by “sepa-
rating” system-level aspects from component-level details.

The reinforcements and attacks on components entail certain
costs to the provider and attacker, respectively. In developing
defense strategies, the provider should weigh the costs against
benefits in terms of keeping SoS operational. This task requires
taking into account both types of correlations described above
as well as the costs incurred by the provider. We formulate a
game wherein individual system components can be disrupted
by the attacker, and can be reinforced by the provider to defend
against them. The costs of attacks and reinforcements of
systems are denoted by LA(y1, . . . , yN ) and LD(x1, . . . , xN ),
respectively. The provider minimizes the disutility function
given by a sum of two parts:

UD (x1, . . . , xN , y1, . . . , yN )

= FD,G(x1, . . . , xN , y1, . . . , yN )GD(x1, . . . , xN , y1, . . . , yN )

+ FD,L(x1, . . . , xN , y1, . . . , yN )LD(x1, . . . , xN ),

where the first part corresponds to reward and the second part
corresponds to cost. Each part is a product of two terms: (i)
first terms FD,G and FD,L are the reward and cost multiplier
functions, respectively, of the provider, and (ii) second terms
GD and LD represent the reward and cost of keeping SoS
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operational, respectively. Similarly, the attacker’s disutility
function is given by

UA (x1, . . . , xN , y1, . . . , yN )

= FA,G(x1, . . . , xN , y1, . . . , yN )GA(x1, . . . , xN , y1, . . . , yN )

+ FA,L(x1, . . . , xN , y1, . . . , yN )LA(y1, . . . , yN ),

where (i) FA,G and FA,L are the reward and cost multiplier
functions, respectively, of the attacker, and (ii) GA and LA
represent the reward and cost of disrupting the operation of
SoS, respectively. At NE, the attacker and provider minimize
their respective disutility functions [8]. The previously studied
sum-form [20] and product-form [21] utility functions are
special cases of these disutility functions. The sum-form utility
function is a linear combination of survival probability and
cost parts such that GD = gD is a constant, and FD,G =
1− PS , FD,L = 1 [20], and it is given by

UD+ (x1, . . . , xN , y1, . . . , yN )

= [1− PS(x1, . . . , xN , y1, . . . , yN )] gD + LD(x1, . . . , xN ).

The product-form utility function is a product of the two terms
such that FD,G = 0, FD,L = 1− PS , and it is given by

UD× (x1, . . . , xN , y1, . . . , yN )

= [1− PS(x1, . . . , xN , y1, . . . , yN )]LD(x1, . . . , xN ).

The sum-form utility function represents a weaker coupling
of the two terms, 1 − PS and LD, and leads to qualitatively
different defense strategies compared to the product-form
disutility. Typically, NE conditions for these two disutilities
are obtained using somewhat different derivations. Our gener-
alization provides a unified treatment of both forms, and also
provides simple expressions for the sensitivity functions at NE
involving a single gain-cost term that encompasses both forms.

We derive NE conditions that show the dependence of PS on
cost terms, correlation functions, system survival probabilities,
and their partial derivatives. We also estimate the sensitivity
functions of Pi in terms of: (i) gain-cost term involving the
cost and gain terms and their partial derivatives, (ii) system
multiplier functions defined in Condition 3.3, and (iii) terms
involving the correlation function and its partial derivative.
These “separate” terms clearly indicate the relative importance
of the correlations and system multiplier functions on Pi at
NE. These results extend previous results on interconnected
systems in [10], [11] by utilizing the aggregated correlations
and system multiplier functions to capture more general de-
pendencies. Also, the cyber-physical infrastructures considered
in [22], [23] constitute a special SoS class with N = 2.

The organization of this paper is as follows. We briefly
describe related work in Section II. In Section III, we describe
the discrete component infrastructure model along with the
aggregate correlation function and differential conditions on
system survival probabilities. We present a game-theoretic
formulation in Section IV, and derive NE conditions and
sensitivity estimates. We also describe the special case of OR
systems in Section IV-A, wherein the correlation effects are
significantly simplified. We apply the analytical results to a
simple model of cloud computing in Section V. We present
conclusions in Section VI.

II. RELATED WORK

Critical infrastructures [14], [3], [17] that support smart
grids, cloud computing, and transportation systems are vital to
national security. They can be viewed as system of systems,
since they rely on complex networked systems each with
disparate components. Game-theoretic methods have been ex-
tensively applied to capture the interactions between providers
and attackers of critical infrastructures [1], [4], [24]; they
lead to strategies that ensure their continued operation in the
presence of evolving threats. Several of these infrastructures
are modeled using complex dynamic models of the underlying
physical systems [2], in particular, using partial differential
equations. In general, both game-theoretic formulations and
their solutions are quite extensive for such infrastructures,
including: games with multiple time-scales of system dy-
namics [13]; incomplete information games under partial
knowledge of system dynamics and attack models [18]; and
multiple-target games with possibly competing objectives [25].
A comprehensive review of the defense and attack models
in various game-theoretic formulations has been presented
in [12]. In particular, game theory has been applied in a variety
of cyber security applications [15], [26], and in particular
for securing cyber-physical networks [5] with applications to
power grids [6], [16], [19], [9].

The system reliability and robustness parameters and vari-
ables can be explicitly integrated into these game formu-
lations [1], for example for smart grids, cloud computing
infrastructures and transportation systems. Within this class,
Stackelberg game formulations using discrete models of cyber-
physical infrastructures have been studied in various forms [7],
and a subclass of them is formulated using the number of cyber
and physical components that are attacked and reinforced [23].
These formulations characterize the infrastructures with a large
number of components, and are coarser than formulations
that consider the attack and defense of individual cyber and
physical components. In particular, these works utilize the
correlation functions to capture the dependencies between the
survival probabilities of two systems, namely, the cyber and
physical sub-infrastructures. Complex interacting systems that
consist of several such systems have been studied using game-
theoretic formulations in [11], and their two-level correlations
have been studied using the sum-form utility functions [20]
and the product-form disutility functions [21].

The sum-form utility represents a gain-centric priority,
wherein the gain term gD weighted by 1 − PS plus the cost
term is minimized by the provider. The product-form disutility,
on the other hand, represents a cost-centric priority, wherein
the expected cost is to be minimized. In terms of analysis,
these two formulations have a certain degree of commonality
but there are also differences; in particular, estimates of
PS can be obtained somewhat directly for the product-form
as shown in [21]. Also, they lead to qualitatively different
defense strategies, and in particular PS appears explicitly in
the sensitivity estimates of system survival probabilities in
the product-form but not in the sum-form. The sum-form and
product-form disutility functions are specific examples of the
general diutility function presented in this paper.
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III. DISCRETE SYSTEM MODELS

We capture the interactions between a system Si and rest
of SoS S−i in terms of their survival probabilities using the
aggregate correlation function Ci and its companion func-
tion C−i represented by the conditional failure probability
of Si given the failure of S−i [20]. We denote the failure
probability of Sj by Pj̄ = 1 − Pj , j = −N, . . . ,−(N −
1),−1, 1, 2, . . . , N − 1, N . The survival probability of SoS is
given by

PS = Pi,−i = 1− Pī∪−i,

where the last term corresponds to the probability that either
of Si and S−i is non-operational. Then, we have

Pī∪−i = Pī + P−i − Pī∩−i
wherein the last term is the joint failure probability of Si and
S−i given by

Pī∩−i = Ci (Pi) (1− Pi) = C−i (Pi) (1− P−i).

We highlight the dependence on Pi by explicitly showing it
as an operand of Ci and C−i.

Condition 3.1: Aggregate Correlation Function: The
probability that SoS is operational is given by

PS = Pi + P−i − 1 + C−i (Pi) (1− P−i),

where Ci (Pi) = C−i (Pi)
1−P−i

1−Pi
is the aggregate failure

correlation function of system Si, i = 1, . . . , N . �
We now present illustrative cases for the aggregate correla-

tion function. In the special case where the failure of Si leads
to definite failure of rest of SoS, we have Ci (Pi) = 1 such
that PS = P−i, that is, the survival probability of SoS solely
depends on S−i. Under the statistical independence of failures
of Si and S−i, we have C−i (Pi) = 1 − Pi, since the failure
probability of Si does not depend on that of S−i. Consequently
we have PS = PiP−i. In a simple cloud infrastructure with
NS servers where the fiber connections are represented by
system SF , we have PS = 1 −NS(1 − PF )/K, where K is
a normalization constant. In this case, we have CF = NS/K,
which shows that the fiber failure rate is amplified by NS in
rendering the servers unavailable.

We now consider that the effects of reinforcements and
attacks can be separated at the system level such that (i)
∂P−i

∂xi
≈ 0, which indicates that reinforcing Si does not directly

impact the survival probability of the rest of SoS, and (ii)
∂Pi

∂xj
≈ 0 for j 6= i, which indicates that reinforcing Sj does

not directly impact the survival probability of Si. We capture
such system-level considerations for the provider using the
following condition.

Condition 3.2: For PS in Condition 3.1, we have for i =
1, 2, . . . , N , j = 1, 2, . . . , N , j 6= i,

∂PS
∂xi

≈
[
1 + (1− P−i)

∂C−i
∂Pi

]
∂Pi
∂xi

∂PS
∂xj

≈
[
1− C−i(Pi) + (1− P−i)

∂C−i
∂P−i

]
∂P−i
∂xj

for the provider. �

A special class called OR systems corresponds to zero
correlations such that Pī∪−i = Pī + P−i or equivalently
Pī∩−i = 0. Thus, we have PS = Pi,−i = Pi+P−i−1, Ci = 0,
and C−i = 0. These systems represent some of the simplest
systems [20] to analyze due to the absence of correlations as
will be shown in Section IV-A.

A. System Survival Probabilities

We consider that the system survival probabilities satisfy the
following differential condition, which was originally defined
for cyber and physical sub-infrastructures [22].

Condition 3.3: The survival probabilities Pi and P−i of sys-
tem Si and S−i, respectively, satisfy the following conditions:
there exist system multiplier functions Λi and Λ−i such that

∂Pi
∂xi

= Λi(x1, . . . , xN , y1, . . . , yN )Pi

∂P−i
∂xi

= Λ−i(x1, . . . , xN , y1, . . . , yN )P−i

for i = 1, 2, . . . , N . �
We now illustrate two cases for which the above condition

is satisfied.
(a) Statistically Independent Component Failures: Let pi|R

and pi|N denote the conditional survival probability of
a component of Si with and without reinforcement,
respectively. Under the statistical independence condition
of component failures, the probability that Si with Ni
components survives the attacks is Pi = pxi

i|Rp
Ni−xi

i|N [22],
which in turn leads to

∂Pi
∂xi

= ln

(
pi|R

pi|N

)
Pi.

(b) Contest Survival Functions: The contest survival func-
tions are to express Pi in [11] such that Pi = ξ+xi

ξ+xi+yi
,

which in turn leads to
∂Pi
∂xi

=

[
yi

(ξ + xi + yi)(ξ + xi)

]
Pi.

IV. GAME THEORETIC FORMULATION

The provider’s objective is to make the infrastructure re-
silient by reinforcing xi components of Si and minimizing
the corresponding disutility function. Similarly, the attacker’s
objective is to disrupt the infrastructure by attacking yi compo-
nents of Si and minimizing the corresponding disutility func-
tion. NE conditions are derived by equating the corresponding
derivatives of disutility functions to zero, which yields

∂UD
∂xi

=

(
GD

∂FD,G
∂PS

+ LD
∂FD,L
∂PS

)
∂PS
∂xi

+ FD,G
∂GD
∂xi

+ FD,L
∂LD
∂xi

= 0

for i = 1, 2, . . . , N for the provider. We define

LDG,L = GD
∂FD,G
∂PS

+ LD
∂FD,L
∂PS

as the composite gain-cost term, and

FD,iG,L = FD,G
∂GD
∂xi

+ FD,L
∂LD
∂xi
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as the gain-cost gradient with respect to xi, i = 1, 2, . . . , N .
Hence, at NE we have the following simplified condition

∂PS
∂xi

= −
FD,iG,L

LDG,L
.

For the attacker, we similarly obtain

∂UA
∂yi

=

(
GA

∂FA,G
∂PS

+ LA
∂FA,L
∂PS

)
∂PS
∂yi

+ FA,G
∂GA
∂yi

+ FA,L
∂LA
∂yi

= 0

for i = 1, 2, . . . , N .

A. OR Systems

The OR systems [22] constitute a SoS sub-class where
simultaneous failures of two or more systems is extremely
unlikely, namely, their probability is zero. These systems
are simpler to analyze due to the absence of system-level
correlation terms, and indeed an estimate of Pi can be derived
as a simple ratio of gain-cost gradient and system multiplier
function Λi. Using PS = Pi + P−i − 1, we obtain

∂Pi
∂xi

= −
FD,iG,L

LDG,L
= −Θi (x1, . . . , xN , y1, . . . , yN ) ,

where Θi (·) is called the scaled gain-cost gradients of system
Si. Then, Condition 3.3 provides us an estimate for the
survival probability of Si as the ratio of scaled gain-cost
gradient and system multiplier function given by

P̃i;D (x1, . . . , xN , y1, . . . , yN )

= −Θi (x1, . . . , xN , y1, . . . , yN )

Λi(x1, . . . , xN , y1, . . . , yN )
,

for i = 1, 2, . . . , N . These estimates for individual systems de-
pend mainly on the corresponding scaled gain-cost gradients,
and thus represent a “separation” of the individual systems at
this level. In this sense, OR systems constitute an important
analytical case wherein the correlations between the individual
systems may be ignored. In addition, these estimates provide
the sensitivity information of the survival probabilities of the
individual systems with respect to various quantities of Si.
In particular, the survival probability estimate P̃i;D is propor-
tional to the corresponding weighted cost and reward functions
and inversely proportional to their weighted derivatives. This
seemingly counter-intuitive trend applies only to the set of
Nash equilibria and not to the overall system behavior. In the
rest of the paper, we denote Λi (x1, . . . , xN , yi, . . . , yN ) and
Θi (x1, . . . , xN , yi, . . . , yN ), by Λi and Θi, respectively, to
simplify the notation.

B. NE Sensitivity Functions

We now derive estimates for Pi and P−i at NE using partial
derivatives of the cost and failure correlation functions to infer
qualitative information about their sensitivities to different
parameters.

Theorem 4.1: Aggregate Correlation Function: Under Con-
ditions 3.1, 3.2, and 3.3, an estimate of the survival probability
of rest of the infrastructure S−i, for

P̂−i;D (x1, . . . , xN , y1, . . . , yN )

=
1− C−i

(
P̂i;D

)
+ ∂C−i

∂P−i

2∂C−i

∂P−i

±

√√√√√1− C−i
(
P̂i;D

)
+ ∂C−i

∂P−i

2∂C−i

∂P−i

2

+
Θj

Λ−i
∂C−i

∂P−i

,

and, for ∂C−i

∂P−i
= 0, is

P̂−i;D (x1, . . . , xN , y1, . . . , yN ) = − Θj

Λ−i [1− C−i (Pi)]
.

An estimate of the survival probability of system Si is

P̂i;D (x1, . . . , xN , y1, . . . , yN )

= − Θi

Λi

[
1 + (1− P̂−i;D)∂C−i

∂Pi

] .
Proof: At NE, we have ∂PS

∂xi
= −Θi and ∂PS

∂xj
= −Θj . By

using the formulae in Condition 3.2, we have[
1 + (1− P−i)

∂C−i
∂Pi

]
∂Pi
∂xi

= −Θi[
1− C−i(Pi) + (1− P−i)

∂C−i
∂P−i

]
∂P−i
∂xj

= −Θj .

We now substitute expressions for ∂Pi

∂xi
and ∂P−i

∂xj
based on

Condition 3.3, and obtain the system of equations:[
1 + (1− P−i)

∂C−i
∂Pi

]
Pi = −Θi

Λi
(1)[

1− C−i(Pi) + (1− P−i)
∂C−i
∂P−i

]
P−i = − Θj

Λ−i
. (2)

The expression for P̂−i;D is obtained by solving for P−i using
quadratic Equation 2, and the expression for P̂i;D follows from
quadratic Equation 1. �

The estimates P̂−i;D and P̂i;D above provide sensitivity
information about the corresponding survival probabilities
with respect to various parameters (the estimates may not
necessarily lie within [0,1]). In particular, they qualitatively
relate Pi and P−i to the aggregate correlation function C−i
between them. In these estimates, however, the quantities
related to Si are essentially captured by the ratios Θj

Λ−i
and

Θi

Λi
, which do not involve the aggregate correlation function.

In fact, the dependence on the correlation function can be
discussed separately from these ratios.

As indicated above, there are significant system-level inter-
actions reflected in both P̂−i;D and P̂i;D compared to OR
systems. In particular, P̂−i;D depends on both C−i(·) and
its partial derivative with respect to P−i; while an increase
in the former leads to a decrease in P̂−i;D, the effect of
the latter depends on its sign and it can in some cases
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Fig. 1. Cloud computing infrastructure with NS sites.

mitigate the decrease due to the former. Also P̂−i;D depends
on the partial derivative of LD with respect to xj multiplied
by (1 − PS), and this multiplication factor is not present
in similar expressions derived for sum-form utilities [20].
It also depends on Θj (which involves the cost factor LD
and its derivative) and Λ−i as expected. Its dependence on
Pi is through the failure correlation function C−i(Pi). The
qualitative behavior of P̂i;D is quite similar with respect to LD
in Θi. And, they both are affected by Λ−i and Λi, and each
of them in turn depends on the number of component attacks
and reinforcements of system Si. Thus, the estimates P̂−i;D
and P̂i;D reflect the system-level correlations between S−i
and Si explicitly through C−i(Pi) term; they also represent
component-level correlations indirectly through Λ−i and Λi
terms.

V. DISTRIBUTED CLOUD COMPUTING INFRASTRUCTURE

A distributed cloud computing infrastructure consists of NS
sites, with Lk servers at site k, k = 1, 2, . . . , NS as shown in
Figure 1. These sites are connected over a communication
network wherein each router manages LN connections as
shown in Figure 2. Servers and routers can be brought down
by cyber attacks, and the communication fibers that connect
server sites to routers may be physically cut. To reinforce the
components of this infrastructure, servers and routers may be
replicated, and redundant fiber lines may be installed.

This infrastructure is modeled by SoS consisting of 2NS+2
systems where S(k,c) and S(k,p) represent the cyber and
physical models of server site k, and S(NS+1,c) and S(NS+1,p)

represent the cyber and physical models of the communica-
tions network as illustrated in Figure 2. Thus, in terms of
original indices, we have:

(i) Sl = S(l,c), for l = 1, 2, . . . , NS , SNS+1 = S(NS+1,c),
(ii) SNS+1+l = S(l,p), for l = 1, 2, . . . , NS , and

(iii) S2NS+2 = S(NS+1,p).

The relationships between the aggregate correlation func-
tions can be captured as follows (as described in [20]). For

Fig. 2. Network of cloud computing infrastructure.

the communications network, we have

C(NS+1,c) = LNC(NS+1,p)

which reflects that a router attack will disrupt all its LN
connections. For the sites, we have the opposite given by

C(k,p) = LkC(k,c)

which indicates that at site k the fiber disruption will discon-
nect all its servers. This multiplicative effect carries over to
partial differentials since

∂C(k,p)

∂P(k,p)
= Lk

∂C(k,c)

∂P(k,p)
and

∂C(k,p)

∂P(k,c)
= Lk

∂C(k,c)

∂P(k,c)

for k = 1, 2, . . . , NS , and LNS+1 = 1/LN . Based on The-
orem 4.1, this multiplier effect in partial differentials will be
reflected in P̂(k,p);D and P̂−(k,p);D in addition to correlations.

For illustration, we now consider that the attacker and
provider choose components to attack and protect, respec-
tively, according to the uniform distribution. Then, correspond-
ing to the site cyber models S(k,c), k = 1, 2, . . . , NS , there
are [y(k,p) − x(k,p)]+ non-reinforced fiber connections, where
[x]+ = x for x > 0, and [x]+ = 0 otherwise. Then, for cyber
model S(k,c) of site k, k = 1, . . . , NS , we have

Λ(k,c)(x(k,p), y(k,c), y(k,p)) = ln

(
1 +

y(k,c)
1 + Lk[y(k,p) − x(k,p)]+

)
,

which interestingly does not depend on x(k,c). Since the term
Λ(k,c) appears in the denominator, P̂(k,c);D in Theorem 4.1
decreases with the number of cyber attacks y(k,c), and in-
creases with [y(k,p)−x(k,p)]+ which is the number of physical
attacks exceeding the reinforcements. The latter condition
may appear counter-intuitive at the surface but note that it
only characterizes the states that satisfy NE conditions. An
analogous dependence of P̂−i;D = P̂−(k,c);D and P̂j;D =

P̂(k,p);D on the parameters x(k,c), x(k,p), y(k,c), and y(k,p)

(shown in Theorem 4.1) is less direct since Λ−(k,c) and Λ(k,p),
respectively, appear inside the square root but is qualitatively
somewhat similar since they appear in the denominator.
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Fig. 3. SoS representation of cloud computing infrastructure.

VI. CONCLUSIONS

A class of system of systems each with discrete cyber and
physical components are studied under the general disutility
functions. The components of a system can be disrupted
directly or indirectly by either a cyber or physical attack.
They can be reinforced against such attacks by explicitly
taking into account the correlations between the systems and
also between the components within individual systems. These
reinforcements entail certain costs which should be weighted
against their benefits.

By formulating a game between an infrastructure provider
and attacker, we derived Nash Equilibrium conditions in terms
of the partial derivatives of cost terms, failure correlation
functions and survival probabilities of component systems
and their partial derivatives. We then estimated the sensitivity
functions that indicate the dependence of the infrastructure sur-
vival probability on these quantities. We applied this approach
to models of cloud computing infrastructures. These results
extend previous results on interconnected systems [10], [11]
and cyber-physical infrastructures [22] by using the general
disutility functions, with the sum-form utility functions [20]
and the product-form disutility functions [21] as specific ex-
amples. These results enable us to derive cost-centric strategies
using a simple model of cloud computing infrastructures.

Several extensions of the formulation studied in this paper
can be pursued in future studies, including cases where the
effects of attacks and reinforcements of specific individual
components are explicitly accounted for. Another future di-
rection is to consider the simultaneous cyber and physical
attacks on multiple components. It would be interesting to
study sequential game formulations of this problem, and cases
where different levels of knowledge are available to each party.
Applications of our approach to more detailed models of cloud
computing infrastructures, smart energy grid infrastructures
and high-performance computing complexes would be of
future interest. It would also be of future interest to explore
the applicability of this overall method to continuous models
such as partial differential equations describing the individual
systems or the entire infrastructure.
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theory meets network security and privacy. ACM Computing Surveys
(CSUR), 45(3):25, 2013.

[16] Y. Mo, T. H.-J. Kim, K. Brancik, D. Dickinson, H. Lee, A. Perrig,
and B. Sinopoli. Cyber–physical security of a smart grid infrastructure.
Proceedings of the IEEE, 100(1):195–209, 2012.

[17] J. Moteff and P. Parfomak. Critical infrastructure and key assets:
definition and identification. DTIC Document, 2004.

[18] M. Nikoofal and J. Zhuang. Robust allocation of a defensive budget
considering an attackers private information. Risk Analysis, 32(5):930–
943, 2012.

[19] F. Pasqualetti, F. Dörfler, and F. Bullo. Cyber-physical attacks in power
networks: Models, fundamental limitations and monitor design. In
Decision and Control and European Control Conference (CDC-ECC),
2011 50th IEEE Conference on, pages 2195–2201. IEEE, 2011.

[20] N. S. V. Rao, C. Y. T. Ma, K. Hausken, F. He, and J. Zhuang. Defense
strategies for infrastructures with multiple systems of components. In
International Conference on Information Fusion, 2016.

[21] N. S. V. Rao, C. Y. T. Ma, K. Hausken, F. He, and J. Zhuang.
Game-theoretic strategies for systems of components using product-form
utilities. In IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems, 2016.

[22] N. S. V. Rao, C. Y. T. Ma, F. He, J. Zhuang, and D. K. Y. Yau. Cyber-
physical correlations for infrastructure resilience: A game-theoretic
approach. In International Conference on Information Fusion, 2014.

[23] N. S. V. Rao, C. Y. T. Ma, U. Shah, J. Zhuang, F. He, and D. K. Y. Yau.
On resilience of cyber-physical infrastructures using discrete product-
form games. In International Conference on Information Fusion, 2015.

[24] S. M. Rinaldi, J. P. Peerenboom, and T. K. Kelly. Identifying, under-
standing, and analyzing critical infrastructure interdependencies. Control
Systems, IEEE, 21(6):11–25, 2001.

[25] X. Shan and J. Zhuang. Hybrid defensive resource allocations in the face
of partially strategic attackers in a sequential defender-attacker game.
European Journal of Operational Research, 228(1):262–272, 2013.

[26] S. Shiva, S. Roy, and D. Dasgupta. Game theory for cyber security.
In Proceedings of the Sixth Annual Workshop on Cyber Security and
Information Intelligence Research, page 34. ACM, 2010.


