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Abstract—We consider an infrastructure consisting of a net-
work of systems each composed of discrete components that
can be reinforced at a certain cost to guard against attacks.
The network provides the vital connectivity between systems,
and hence plays a critical, asymmetric role in the infrastructure
operations. We characterize the system-level correlations using
the aggregate failure correlation function that specifies the in-
frastructure failure probability given the failure of an individual
system or network. The survival probabilities of systems and
network satisfy first-order differential conditions that capture
the component-level correlations. We formulate the problem
of ensuring the infrastructure survival as a game between an
attacker and a provider, using the sum-form and product-form
utility functions, each composed of a survival probability term
and a cost term. We derive Nash Equilibrium conditions which
provide expressions for individual system survival probabilities,
and also the expected capacity specified by the total number of
operational components. These expressions differ only in a single
term for the sum-form and product-form utilities, despite their
significant differences. We apply these results to simplified models
of distributed cloud computing infrastructures.

Keywords and phrases: networked systems, aggregated cor-
relation function, game theory, Nash Equilibrium

I. INTRODUCTION

A number of infrastructures, such as cloud computing
complex and smart energy grid, consist of networked systems.
Here, the network plays an important, asymmetric role by
providing the vital connectivity between the systems: its com-
plete failure makes them all unreachable, thereby rendering
the entire infrastructure unavailable. We represent such an
infrastructure by its constituent systems, Si, i = 1, 2, . . . , N ,
and the network represented as the system SN+1. Each system
consists of several discrete cyber and physical components
that must be operational as individual units and also be
available, namely, being connected to the network. The in-
dividual components of Si may be individually disabled, and
Si as a system may be disconnected from the network by
component cyber and physical attacks. The components can
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be reinforced at a certain cost to withstand such attacks. Non-
reinforced components can be disabled by attacks at a cost to
the attacker. Additionally, effects of component attacks may
propagate to other components within Si, and furthermore,
they may propagate to components of other systems Sj , j 6= i.
For example, consider a cloud computing infrastructure with
multiple sites, each housing several servers. A server may be
brought down by a cyber attack, but a single physical attack on
the network fiber to the site may disconnect all servers at the
site. In general, correlations between components and systems
lead to the propagation of disruptions within and beyond the
individual systems, respectively. In an extreme case, effects of
attacks may propagate across the network to all other systems,
and possibly degrade the entire infrastructure.

The infrastructure provider is tasked with strategically rein-
forcing the components against attacks by taking into account
various system-level and component-level correlations. Let ni
denote the number of components of Si, and yi and xi be
the number of components of Si attacked and reinforced,
respectively. A reinforced component survives a direct attack
but may be disrupted indirectly, for example, an operational
server being disconnected due to an attack on network fiber.
Let Pi be the survival probability of Si, and PI be the survival
probability of entire infrastructure. Also, let S−i denote the
infrastructure without Si, and P−i be its survival probability.
The aggregate failure correlation function Ci is the failure
probability of “rest” of the infrastructure S−i (namely, without
Si) given the failure of Si. Intuitively, it indicates the relative
importance of Si by capturing the disruption propagation from
Si to entire infrastructure. We consider an important special
case of an asymmetric network such that: (a) CN+1 = 1
indicating that the network failure will disrupt the entire
infrastructure, and (b) Ci = 0, for i = 1, 2, . . . , N indicating
that disruptions of individual systems are uncorrelated.

In addition to system-level correlations, the interdependen-
cies between components of individual systems are captured
by simple first-order differential conditions on Pi which ge-
neralize the contest success functions and statistical indepen-
dence conditions of component failures [21]. This two-level
characterization helps to conceptualize the basic correlations
in infrastructures such as cloud computing and smart grid
infrastructures [24]. In addition, it leads to a simplified analysis
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by “separating” the system- and component-level aspects, and
also provides insights into the needed defense strategies.

We formulate a game between the attacker and provider
wherein the costs of attacks and reinforcements of systems,
given by LA(y1, . . . , yN+1) and LD(x1, . . . , xN+1), respecti-
vely, are not known to the other. The provider maximizes the
sum-form utility function given by

UD+ = [PI(x1, . . . , xN+1, y1, . . . , yN+1)] gD

− CD(x1, . . . , xN+1),

where gD represents the benefit of keeping the infrastructure
operational. We also consider the product-form utility function
given by

UD× = [1− PI(x1, . . . , xN+1, y1, . . . , yN+1)]

× CD(x1, . . . , xN+1),

which will be minimized by the provider. It represents the
“wasted” cost to the provider since it is the expected cost under
the condition that the infrastructure has failed. The attacker’s
utility functions are similarly defined. We are interested in the
expected capacity of the infrastructure expressed in terms of
the expected number of available components, given by

NI =

N∑
i=1

niPi,

which reflects the average size of part of the infrastructure that
survives attacks.

In previous work, the sum-form utility function [21] and
the product-form utility function [22] have been considered
separately for a generic version of this game. They represent
two different ways of representing the value of keeping the
infrastructure operational: the sum-form represents a weaker
coupling of probability and cost terms, whereas the product-
form utility function is their product. In general they lead
to qualitatively different defense strategies that are derived
separately, and the expressions for the survival probabilities
appear to be structurally different. In this paper, we show that
under the asymmetric correlations, the Nash Equilibrium (NE)
of this game [9] leads to expressions for Pi’s and NI with
the same structure. We derive NE conditions that show the
dependence of Pi on cost terms, and their partial derivatives
and aggregate correlation functions. The estimates of Pi for
sum-form and product-form utilities have the same expression
in Theorem 4.1 except for one term, given by ξ+

i = 1
gD

∂CD

∂xi

and ξ×i = (1 − PI)
∂ lnCD

∂xi
= (1−PI)

CD

∂CD

∂xi
. To consider the

case where the sum-form and the product-form utilities are
equivalent, we equate the two terms and obtain the following
“equivalent” gain term of the sum-form

gD = CD/(1− PI) = CD

[
1 +

∞∑
i=1

P iI

]
,

which is an increasing function in both PI and CD. Or, equi-
valently we have, PI = 1−CD/gD. This similarity is striking
since the sum-form and product-form utilities represent two
quite different objectives.

We apply these results to a simplified model of cloud
computing infrastructure with multiple server sites connected
over a network. We derive expressions for Pi, i = 1, 2, . . . , N ,
and NI for both sum-form and product-form utilities. Even
under simple uniform independent distributions of component
attacks and reinforcements, they reveal useful and also com-
plex underlying relationships.

Our results extend previous results on interconnected sys-
tems in [11], [12] and cyber-physical infrastructures in [23],
[24] by considering more general systems and correlations.
Our results specialize results in [21], [22] by explicitly con-
sidering the communications network, and also unify their
results which are derived separately for sum-form and product-
form utilities.

The organization of this paper is as follows. We briefly
describe related work in Section II. In Section III, we describe
the infrastructure model along with the aggregate correla-
tion function and differential conditions on system survival
probabilities. We present a game-theoretic formulation in
Section IV, and derive NE conditions and estimates for system
survival probabilities and the expected capacity. We apply the
analytical results to a model of cloud computing infrastructure
in Section V. We present conclusions in Section VI.

II. RELATED WORK

Critical infrastructures of power grids, cloud computing,
and transportation systems provide vital public and private
services [8], [15]. They depend on complex communicati-
ons networks that connect the constituent systems, which
by themselves consist of many disparate cyber and physical
components [15]. The communications network plays a very
critical role in these infrastructures [6], in some ways more so
than the constituent systems, and its failure can significantly
degrade the entire infrastructure [3], [25]. These infrastructures
are under increasing cyber and physical attacks, which the pro-
viders are required to counter by applying defense measures
and strategies.

By capturing the interactions between providers and at-
tackers of these infrastructures, game-theoretic methods have
been extensively applied to develop the needed defense stra-
tegies [1], [4], [16], which attempt to ensure continued in-
frastructure operations in presence of evolving threats [26].
Partial differential equations and discrete components models
have been used in several of these infrastructures to model the
physical and cyber systems [2] in formulating the underlying
games. The game-theoretic formulations and the solutions de-
veloped for such infrastructures are quite varied and extensive.
They include: multiple-period games that address multiple
time-scales of system dynamics [14]; incomplete information
games that account for partial knowledge about the system
dynamics and attack models [18]; and multiple-target games
that account for possibly competing objectives [27].

A comprehensive review of the defense and attack models
in various game-theoretic formulations has been presented
in [13]. Recent interest in cyber and cyber-physical systems led
to the application of game theory to a variety of cyber security
scenarios [16], [28], and, in particular, for securing cyber-
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physical networks [5] with applications to power grids [6],
[10], [17], [19].

The system availability, reliability and robustness aspects
can be explicitly integrated into the game formulations [1]
for infrastructures such as power grids, cloud computing and
transportation systems. In particular, discrete models of cyber-
physical infrastructures have been studied in various forms
under Stackelberg game formulations [7]. A subclass of these
models using the number of cyber and physical components
that are attacked and reinforced as the main variables have
been studied in [24]. These models characterize infrastructures
with a large number of components, and are coarser compared
to the models that consider the attacks and reinforcements of
individual cyber and physical components. Various forms of
correlation functions [21], [22], [24] are used in these works
to capture the dependencies between the survival probabilities
of constituent systems, such as the cyber and physical sub-
infrastructures.

Complex interacting collections of systems have been stu-
died using game-theoretic formulations in [12], and their two-
level correlations have been studied using the sum-form utility
functions in [21] and the product-form disutility functions
in [22]. The sum-form utility represents a gain-centric priority,
wherein an independent gain term weighted by PI represents
the gain to be maximized by the provider. The product-form
disutility, on the other hand, represents a cost-centric priority,
wherein the expected cost is to be minimized. The sum-form
utility function [21] and the product-form utility function [22]
are considered separately for a generic version of this game
wherein all systems play a similar role, unlike the asymmetric
role of the network considered here. In terms of analysis, these
two formulations have a certain degree of commonality but
there are also differences; in particular, estimates of PI can be
obtained somewhat directly for the product-form as shown in
[22]. These two utility functions also lead to qualitatively diffe-
rent defense strategies, and in particular PI appears explicitly
in the sensitivity estimates of system survival probabilities in
product-form but not in sum-form. In this paper, we show that
under the asymmetric correlations, these results can be unified
so that they have the same form and differ only in ξ+

i and ξ×i .
Additionally, we derive expressions for the expected capacity
of the infrastructure that also differ only in these two terms.

III. DISCRETE SYSTEM MODELS

We consider infrastructures wherein the constituent systems
consists of discrete components. We capture the underlying
correlations at the system-level using aggregate correlation
functions as well as those within each system using differential
conditions.

A. Aggregate Correlations

We capture the interactions between systems and also
between systems and network of the infrastructure in terms
of their survival probabilities using the aggregate correlation
functions in the following definition.

Condition 3.1: Aggregate Correlation Function: [21], [22]
The probability that infrastructure is operational is given by

PI = Pi + P−i − 1 + Ci(1− Pi)
= Pi + P−i − 1 + C−i(1− P−i),

where Ci and C−i are the aggregate correlation functions of
Si and S−i, respectively, such that

Ci(1− Pi) = C−i(1− P−i),

for i = 1, . . . , N + 1. �
The aggregate failure correlation function captures the in-

terdependence of rest of the system S−i on the failure of Si,
which can be illustrated using the following special cases.
(a) Asymmetric Network: In a cloud computing infrastructure

consider that the fiber connections to N sites, each with
l servers, constitute the network system SF = SN+1.
Then, we have

P−F = 1− l(1− PF )/K,

where K is a normalization constant, since the fiber
failure rate is amplified by l in rendering the servers
unavailable. Thus, we have

PI = [1− (CF − l/K)]PF + CF − l/K.

(b) Statistical Independence: The system failures satisfy a
statistical independent condition given by Ci = 1− P−i,
indicating that the failure probability of S−i is not depen-
dent on Pi. This condition in turn leads to PI = PiP−i,
which indicates the statistical independence of the sur-
vival processes of Si and S−i. More generally, if Ci >
1 − P−i, the failures in S−i are positively correlated to
failures in Si, that is, they occur with a higher probability
following the latter. If we denote the failure probability
of Si by Pī, then we have P−i|̄i > P−i, or equivalently
failure in Si leads to a higher probability of failure in S−i.
If Ci < 1−P−i, failures in S−i are negatively correlated
to latter failures, that is P−i|̄i < P−i.

(c) Definite Failure: In another case, when the failure of Si
leads to a definite failure of rest of the infrastructure,
we have Ci (Pi) = 1 such that PI = P−i. This condition
indicates that the infrastructure survival probability solely
depends on the marginal failure probability of S−i.

(d) OR Systems: The OR systems as modeled in [24] corre-
spond to the special case N = 2 where the infrastructure
consists of cyber and physical systems (denoted by i = C
and −i = P , respectively) that can be independently
analyzed. For OR systems, the failure probability of cyber
or physical sub-infrastructure is Pī∪−i = Pī + P−i or
equivalently Pī∩−i = 0. Thus, we have PI = Pi+P−i−1
and Ci = 0. This condition indicates that the failure
processes of Si and S−i are uncorrelated. We generalize
this condition next in Condition 3.2 for N systems
considered in this paper.

We now consider an important special case where network
plays a strong asymmetric role in that its failure disconnects
all systems Si, i = 1, 2, . . . , N . Furthermore, these systems
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are suitably shielded so that their failures are uncorrelated in
that they do not escalate to the infrastructure level. We capture
such scenarios using the following condition.

Condition 3.2: Asymmetric Network and Uncorrelated
Systems Conditions: The aggregated correlation functions of
Si, i = 1, 2, . . . , N + 1 satisfy the conditions: (i) for the
network SN+1, we have CN+1 = 1, and (ii) for the constituent
systems, we have Ci = 0, i = 1, 2, . . . , N . �

The part (i) of this condition implies that PI = P−(N+1),
thereby indicating the role of rest of the infrastructure S−(N+1)

without the network. The part (ii) of this condition implies
PI = Pi + P−i − 1, i = 1, 2, . . . , N which separates failures
of the constituent systems from rest of the infrastructure S−i.

We further consider that the effects of reinforcements and
attacks can be separated at the system level such that

(i) ∂P−i

∂xi
≈ 0 for i = 1, 2, . . . , N which indicates that

reinforcing Si does not directly impact the survival pro-
bability of the rest of the infrastructure, and

(ii) ∂Pi

∂xj
≈ 0 for i = 1, 2, . . . , N+1, j = 1, 2, . . . , N and j 6=

i, which indicates that reinforcing Sj does not directly
impact the survival probability of Si.

We capture such system-level considerations for the provider
using the following condition.

Condition 3.3: For PI in Condition 3.1, we have for i =
1, 2, . . . , N + 1,

∂PI
∂xi
≈ (1− Ci)

∂Pi
∂xi

+ (1− Pi)
∂Ci
∂xi

for the provider. �
In the cases Ci is constant, we note that ∂Ci

∂xi
= 0, which is

the case under both parts of Condition 3.2.
The conditions in this section correspond to system-level

correlations, and are not fine enough to capture the component-
level correlations. In the next section, we consider generic
differential conditions that characterize component-level cor-
relations.

B. System Survival Probabilities

We consider that the system survival probabilities satisfy the
following differential condition, which was originally defined
for cyber and physical sub-infrastructures [21], [23].

Condition 3.4: System Multiplier Functions: The survival
probabilities Pi and P−i of system Si and S−i, respectively,
satisfy the following conditions: there exist system multiplier
functions Λi and Λ−i such that

∂Pi
∂xi

= Λi(x1, . . . , xN , y1, . . . , yN )Pi

∂P−i
∂xi

= Λ−i(x1, . . . , xN , y1, . . . , yN )P−i

for i = 1, 2, . . . , N + 1. �
The derivative in the above condition is linear in Pi for

Λi = 1, and is faster than linear if Λi > 1 and slower than
linear if Λi < 1. This somewhat abstract condition is satisfied
in two special cases studied in literature.

1) Statistically Independent Components: The special case
when component survival probabilities are statistically inde-
pendent with and without reinforcements has been studied in
[23]. Let pi|R and pi|N denote the conditional survival proba-
bility of a component of Si with and without reinforcement,
respectively. Under the statistical independence condition of
component failures, the probability that Si with ni components
survives the attacks is

Pi = pxi

i|Rp
ni−xi

i|N

as in [23], or equivalently

lnPi = ni ln pi|N + xi ln

(
pi|R

pi|N

)
.

By differentiating with respect to xi we obtain

∂Pi
∂xi

= ln

(
pi|R

pi|N

)
Pi.

The condition for faster than linear derivative is pi|R > epi|N .
The condition that the survival probability of a reinforce
component is higher than that of non-reinforced component
but less than epi|N , namely, epi|N > pi|R > pi|N , corresponds
to only slower than linear derivative.

2) Contest Survival Functions: The contest survival functi-
ons are to express Pi in [12] such that Pi = ξ+xi

ξ+xi+yi
for a

suitably selected slack variable ξ, which in turn leads to

∂Pi
∂xi

=

[
yi

(ξ + xi + yi)(ξ + xi)

]
Pi.

The condition for slower than linear derivative is

yi[1− (xi + ξ)] < (ξ + xi)
2

which is satisfied for larger values of xi sufficient to make the
left hand side negative.

IV. GAME THEORETIC FORMULATION

The provider’s objective is to make the infrastructure resi-
lient by reinforcing xi components of Si by optimizing the
corresponding utility function, namely, minimizing the sum-
form or maximizing the product-form. Similarly, the attacker’s
objective is to disrupt the infrastructure by attacking yi com-
ponents of Si by optimizing the corresponding utility function.
NE conditions are derived by equating the corresponding
derivatives of the utility functions to zero, which yields the
following for sum- and product-form utilities, respectively:

∂UD+

∂xi
=
∂PI
∂xi

gD −
∂CD
∂xi

= 0

∂UD×
∂xi

= −∂PI
∂xi

CD + (1− PI)
∂CD
∂xi

= 0

for i = 1, 2, . . . , N + 1 for the provider.
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A. NE Sensitivity Functions

We now derive estimates for Pi at NE using partial deri-
vatives of the cost and failure correlation functions to infer
qualitative information about their sensitivities to different
parameters.

Theorem 4.1: Under Conditions 3.1, 3.3, and 3.4, estimates
of the survival probability of system Si, for i = 1, 2, . . . , N+1
is given by

P̂Ai;D =
∂Ci

∂xi
− ξAi

∂Ci

∂xi
− (1− Ci)Λi

where A = + and A = × correspond to sum-form and
product-form, respectively, such that

ξAi =

{
1
gD

∂CD

∂xi
if A = +

(1− PI)∂ lnCD

∂xi
, if A = ×

for i = 1, 2, . . . , N + 1 under the condition: Ci < 1 or
∂Ci

∂xi
6= 0. Under the asymmetric network correlation coeffi-

cient CN+1 = 1, the survival probability of the network is
given by

PA−(N+1);D =
ξAN+1

Λ−(N+1)

for A = +,×.
Proof: Our proof is based on deriving NE conditions sepa-
rately for sum-form and product-form utility functions, and
then comparing them to identify their common structure and
the difference terms. At NE, for sum-form we have

∂PI
∂xi

=
1

gD

∂CD
∂xi

= ξ+
i .

Then, using the equation in Condition 3.3 and ∂Pi

∂xi
= ΛiPi

from Condition 3.4, we have

(1− Ci)ΛiP+
i;D + (1− P+

i;D)
∂Ci
∂xi

=
1

gD

∂CD
∂xi

. (1)

Under the condition Ci < 1 or ∂Ci

∂xi
6= 0, we have

∂Ci

∂xi
− (1− Ci)Λi 6= 0, and hence, we obtain

P+
i;D =

∂Ci

∂xi
− 1

gD
∂CD

∂xi

∂Ci

∂xi
− (1− Ci)Λi

=
∂Ci

∂xi
− ξ+

i

∂Ci

∂xi
− (1− Ci)Λi

,

for i = 1, 2, . . . , N + 1. Similarly, for product-form we have

∂PI
∂xi

= (1− PI)
1

CD

∂CD
∂xi

= (1− PI)
∂ lnCD
∂xi

= ξ×i . (2)

Then, using the equation in Condition 3.3 and ∂Pi

∂xi
= ΛiPi

from Condition 3.4, we have

(1− Ci)ΛiP×i;D + (1− P×i;D)
∂Ci
∂xi

= (1− PI)
∂ lnCD
∂xi

.

Then, we have

P×i;D =
∂Ci

∂xi
− (1− PI)∂ lnCD

∂xi

∂Ci

∂xi
− (1− Ci)Λi

,

for i = 1, 2, . . . , N + 1.
Consider the survival probability of the infrastructure, under

the asymmetric network condition, we have CN+1 = 1 and
∂CN+1

∂xN+1
= 0, which imply the condition Ci < 1 or ∂Ci

∂xi
6= 0 is

not satisfied; hence, the above formula cannot be used directly
since the denominator ∂Ci

∂xi
− (1 − Ci)Λi = 0. Instead, using

CN+1 = 1 in Condition 3.1, we obtain PI = P−(N+1), which
implies

∂PI
∂xN+1

=
∂P−(N+1)

∂xN+1
.

Then, NE condition for the sum-form is given by

∂PI
∂xN+1

=
∂P+
−(N+1);D

∂xN+1
= Λ−(N+1)P

+
−(N+1);D =

1

gD

∂CD
∂xN+1

.

Similarly, for the product-form we obtain,

∂PI
∂xN+1

= Λ−(N+1)P
×
−(N+1);D = (1− PI)

∂ lnCD
∂xN+1

,

which completes the proof. �
The estimates P̂i;D above provide sensitivity information

about the corresponding survival probabilities with respect
to various parameters (the estimates may not necessarily lie
within [0,1]). In particular, they qualitatively relate Pi to
the corresponding aggregate correlation function Ci and its
derivative, and also to Λi. These dependencies are identical for
both sum-form and product-form utility functions. Indeed, the
difference between the two formulae is captured by the single
term ξAi , which is proportional to the derivative term ∂CD

∂xi
in

both cases. The main difference is that ξ×i is an increasing
function of PI , whereas ξ+

i does not depend on PI . Also,
the dependence on CD is different for these two terms. Since
ξ+
i = 1

gD
∂CD

∂xi
and ξ×i = (1−PI) 1

CD

∂CD

∂xi
, the role of gD in the

former is played by CD/(1− PI) in the latter. Typically, gD
is chosen as a constant in the sum-form, and PI is a function
of xi and yi.

We now consider that the network failure renders entire
infrastructure unavailable, and those of individual systems
are uncorrelated with others given by Condition 3.2. The
following theorem provides a single, simplified expression for
the expected capacity under these conditions.

Theorem 4.2: Asymmetric Network Correlations: Under
Conditions 3.1-3.4, the expected capacity is given by

NA
I =

N∑
i=1

(
ni
ξAi
Λi

)
where A = + and A = × correspond to sum-form and
product-form, respectively, such that

ξAi =

{
1
gD

∂CD

∂xi
if A = +

(1− PI)∂ lnCD

∂xi
, if A = ×

for i = 1, 2, . . . , N .
Proof: Equations (1) and (2) in Theorem 4.1 under part (ii)
of Condition 3.2 simplify to the same equation ΛiP

A
i;D = ξAi

for A = +,× and i = 1, 2, . . . , N . Thus, we have PAi =
ξAi
Λi

,
which provides the expression for NA

I . �
For the sum-form,

N+
I =

N∑
i=1

(
ni
∂CD

∂xi

gDΛi

)
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indicates that higher gain gD leads to lower number of
operational components. For the product form,

N×I = (1− PI)
N∑
i=1

(
ni
∂CD

∂xi

CDΛi

)
indicates that higher survival probability of the network leads
to lower number of operational components. The dependence
on Λi is similar in both cases, namely, faster than linear leads
to lower number of available component, and vice versa. The
dependence on CD is somewhat different due its presence in
the denominator for product-form, even though ∂CD

∂xi
appears

in the numerator in both forms.

V. DISTRIBUTED CLOUD COMPUTING INFRASTRUCTURE

A distributed cloud computing infrastructure consisting of
N sites, each with li servers at site i, i = 1, 2, . . . , N has been
studied in [20] by using separate cyber and physical models
for each site. The sites are connected over a communication
network SN+1 as shown in Figure 1. The network consists of
a number of routers each of which manages lN+1 connections
as shown in Figure 2.

This infrastructure is subject to a variety of cyber and
physical attacks on its components. Cyber attacks on the
servers may be launched remotely over the network since
they are accessible to users. Meanwhile, routers are located at
geographically separated sites and access to them is limited (to
network administrators), and they are not as easily accessible
over the network. Cyber attacks on routers require different
techniques and represent different costs to the attacker compa-
red to server attacks. Furthermore, this infrastructure is subject
to physical attacks in the form of fiber cuts, which require a
proximity access by the attacker. In particular, the network
fibers that connect server sites to routers may be physically
cut, and disconnect the entire site making it inaccessible to the
users. And, such attacks may also be launched on the network
fibers between routers at different locations on the network.

The infrastructure provider may employ a number of rein-
forcements to protect against attacks, including replicating
the servers and routers to support fail-over operations, and
installing physically separated redundant fiber lines to the sites
and between router locations. These measures could require
significant costs, and hence must be strategically chosen.

A. System-Level Correlations

The cyber and physical aspects of a site Si can be repre-
sented by using S(i,c) and S(i,p) that correspond to cyber and
physical model, respectively. Similarly, those of the network
SN+1 are represented by S(N+1,c) and S(N+1,p), which are
the cyber and physical models as illustrated in Figure 3.
The relationships between these system-level models can be
captured using the the aggregate correlation functions as
follows (as described in [21], [20]). For the communications
network, we have

C(N+1,c) = lN+1C(N+1,p)

which reflects that a cyber attack on a router will disrupt all its
lN+1 connections, thereby illustrating the amplification effect

Fig. 1. Cloud computing infrastructure with N sites.

Fig. 2. Network of cloud computing infrastructure.

of cyber attacks. For the server sites, we have a similar effect
due to physical fiber attacks reflected by

C(i,p) = liC(i,c)

which indicates that at site Si the fiber disruption will discon-
nect all its li servers.

B. Component-Level Correlations

We now consider a special case where the attacker and
provider choose the components to attack and reinforce, re-
spectively, according to uniform distribution. Let n(i,c) and
n(i,p) represent the number of cyber and physical components,
respectively, of site Si such that ni = n(i,c) +n(i,p). Similarly,
let x(i,c) and x(i,p) represent the number of cyber and physical
components reinforced at site Si such that xi = x(i,c) +x(i,p),
and let y(i,c) and y(i,p) represent the number of cyber and
physical components reinforced at site Si such that yi =
y(i,c) + y(i,p). Then, corresponding to the site physical model
S(i,p), i = 1, 2, . . . , N , there are [n(i,p) − x(i,p)]+ non-
reinforced fiber connections, where [x]+ = x for x > 0,
and [x]+ = 0 otherwise. Similarly, there are [n(i,c) − x(i,c)]+
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non-reinforced servers. If a cyber component (i.e., a server) is
reinforced, it will survive a cyber attack but can be brought
down indirectly by a fiber attack. Then, the probability that
a cyber-reinforced component survives y(i,p) fiber attacks is
approximated by

p(i,c)|R =
f(i,c)

1 + li
[
y(i,p) − x(i,p)

]
+

,

where the normalization constant f(i,c) is appropriately cho-
sen.

On the other hand, if a cyber component is not reinforced,
it can be brought down by either a direct cyber attack, or
indirectly through a fiber attack. Thus, we approximate the
survival probability of a cyber component at site k as

p(i,c)|N =
f(i,c)

1 + y(i,c) + li
[
y(i,p) − x(i,p)

]
+

,

which reflects the additional lowering of the survival proba-
bility in inverse proportion to the level of cyber attack y(i,c).
Using these formulae, for cyber model S(i,c) of site Si, we
have, under the independence of component attacks

Λ(i,c)(x(i,p), y(i,c), y(i,p)) = ln

(
1 +

y(i,c)

1 + li
[
y(i,p) − x(i,p)

]
+

)
.

It is interesting to note that it does not depend on the
cyber reinforcements term x(i,c) even though it corresponds
to ∂P(i,c)

∂x(i,c)
. It, however, depends on the physical reinforcement

term x(i,p).
Under the statistical independence of cyber and physical

attacks, we have the following generalization of the condition
derived in Section III-B1

Pi = p
x(i,c)

(i,c)|Rp
n(i,c)−x(i,c)

(i,c)|N p
x(i,p)

(i,p)|Rp
n(i,p)−x(i,p)

(i,p)|N

or equivalently

lnPi = n(i,c) ln p(i,c)|N + x(i,c) ln

(
p(i,c)|R

p(i,c)|N

)
+ n(i,p) ln p(i,p)|N + x(i,p) ln

(
p(i,p)|R

p(i,p)|N

)
By differentiating by x(i,c) we obtain

∂Pi
∂x(i,c)

= ln

(
p(i,c)|R

p(i,c)|N

)
Pi = Λ(i,c)Pi.

Then, by noting that ∂xi

∂x(i,c)
= 1, we obtain

∂Pi
∂xi

= Λ(i,c)Pi,

which enables us to approximate Λi by Λ(i,c).
Consider P̂Ai;D in Theorem 4.1, the term Λi appears in

the denominator with a negative sign. Thus, in qualitative
terms, it depends linearly with a multiplier a on the logarithm
of the number of cyber attacks y(i,c), and inversely on the
logarithm of

[
y(i,p) − x(i,p)

]
+

which is the number of attacks
exceeding the reinforcements. The sign of the multiplier a
could be positive or negative based on the other factors
∂Ci

∂xi
and ξAi , where A = +,×. This condition may appear

Fig. 3. Representation of cloud computing infrastructure.

somewhat counter-intuitive at the surface but note that it only
characterizes the states that satisfy NE conditions, and in
particular, it illustrates the richness of infrastructure behavior
at NE.

C. Expected Capacity

In terms of the expected capacity NA
I , the dependence on

y(i,c) and
[
y(i,p) − x(i,p)

]
+

is more direct, and qualitatively
similar for both sum-form and product-form, since the term
Λi appears in the denominator. Based on Theorem 4.2 we
obtain the following expressions: for the sum-form,

N+
I =

N∑
i=1

 ni
∂CD

∂xi

gD ln

(
1 +

y(i,c)

1+li[y(i,p)−x(i,p)]+

)
 ,

and for the product form,

N×I = (1− PI)
N∑
i=1

 ni
∂CD

∂xi

CD ln

(
1 +

y(i,c)

1+li[y(i,p)−x(i,p)]+

)
 .

In both cases, the multipliers ni, gD and CD are positive,
and it is reasonable to assume the condition ∂CD

∂xi
≥ 0,

since the reinforcement cost does not decrease with xi. Thus,
the expected capacity decreases with y(i,c) and the opposite
is true with respect to

[
y(i,p) − x(i,p)

]
+

. In both cases, the
dependence on the number of servers li at site i is qualitatively
similar in that the expected capacity increases proportional to
its logarithm.

In summary, the overall dependencies considered here are
quite simple, namely, under the statistical independence and
uniform distributions of components chosen by both defender
and attacker. Even under such simple conditions, the detailed
NE conditions are quite complex to characterize.

VI. CONCLUSIONS

We consider a class of infrastructures with multiple sy-
stems, each with discrete cyber and physical components.
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These systems are connected over a communications network
which plays an important asymmetric role by providing the
critical connectivity that makes these systems available, and
consequently requires an explicit consideration in ensuring the
performance of the infrastructure. Individual components of a
system can be disrupted directly or indirectly by either a cyber
or physical attack. The components are reinforced against such
attacks by explicitly taking into account the correlations bet-
ween the systems and also between the components within in-
dividual systems. We characterize the system-level correlations
using the aggregate failure correlation function that specifies
the infrastructure failure probability given the failure of an
individual system or network. The survival probabilities of
systems and network satisfy first-order differential conditions
that capture the component-level correlations.

We formulated the problem of ensuring the infrastructure
survival as a game between an attacker and a provider, using
two different utility functions, namely, the sum-form and
product-form; the former is the sum of a survival probability
term and a cost term, and the latter is their product. We derived
Nash Equilibrium conditions in terms of the partial derivatives
of cost terms and failure correlation functions. In particular, we
derive expressions for individual system survival probabilities,
and also the expected capacity specified by the total number
of operational components. These expressions differ only in
a single term for the sum-form and product-form utilities,
despite their significant differences in modeling objectives. We
applied this approach to simplified models of cloud computing
infrastructures.

These results extend or specialize previous results on in-
terconnected systems [11], [12] and cyber-physical infrastruc-
tures [23] by using the general utility functions. They also
unify the results that were separately developed for the sum-
form utility functions in [21] and the product-form disutility
functions in [22] for the cases wherein the network plays a
critical, asymmetric role.

Several extensions of the formulation studied in this paper
can be pursued in future studies, including cases where the
effects of attacks and reinforcements of specific individual
components are explicitly accounted for. It is of future interest
to compare this formulation to one where the utility function
contains the expected capacity term in place of infrastructure
survival probability. Another future direction is to consider
the simultaneous cyber and physical attacks on multiple com-
ponents. It would be interesting to study sequential game
formulations of this problem, and cases where different levels
of knowledge are available to each party. Applications of
our approach to more detailed models of cloud computing
infrastructure, smart energy grid infrastructures and high-
performance computing complexes would be of future interest.
It would also be of future interest to explore the applicability
of this overall method to continuous models such as partial
differential equations describing individual systems or the
entire infrastructure.
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