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Executive Summary 
The goal of this project was to create an energy saving paradigm shift in how polymers are 
manufactured in the 21st century.  It used Automatic Continuous Online Monitoring of 
Polymerization reactions (ACOMP) integrated for the first time with automatic active control to 
create the innovative ‘ACOMP/Control Interface’, or ‘ACOMP/CI’.  ACOMP/CI will begin the 
transformation from old, inefficient processes into highly evolved, energy and resource efficient 
ones.  The ACOMP platform is broadly applicable to many types of reactions and processes 
throughout the vast polymer industry.  The industry provides materials for sectors such as 
automotive, aerospace, oil recovery, agriculture, paints, resins, adhesives, pharmaceuticals and 
therapeutic proteins, optics, electronics, lightweight building materials, and many more. 
 The U.S. chemical industry is one of the last major sectors in which the U.S. has top global 
stature.  It consumes 24.4% of all U.S. manufacturing energy, produces over $800B of product 
annually, supports 25% of the U.S. GDP (via its support of auto, heavy equipment, aerospace, and 
other sectors) and employs over 6 million people.*  It is also a major source of GHG emissions.  
Polymers make up approximately 30% of this sector.  It is estimated that  annually 60 TBtu of energy 
could be saved and 3 million tons less of GHG emissions produced by optimizing production in the 
polyolefin manufacturing sector alone. 
 The scope of this project included the first time design and prototyping of an ACOMP/CI, the 
creation  of active reaction controllers coupled to the ACOMP data stream, demonstration of control 
capabilities on ideal, low concentration polymerization reactions, and a first set of demonstrations 
towards reactions of a more industrial nature.  All these elements of the scope were met, including 
advances and findings not  originally anticipated.  Extensions to more complex reactions, beyond the 
reactor capabilities of the current project ACOMP/CI, such as polyolefins and other high 
pressure/high temperature reactions, are being proposed in Fall 2017 to CESMII, a DoE based 
NNMI.  This is discussed below. 
 The initial proposal was for a three year funded project, but this was reduced to a two year 
project and budget due to funding constraints.  Hence, some of the original plans for the project, such 
as adaptation of the ACOMP/CI to more relevant industrial processes, such as emulsion and 
dispersion technologies, could not be carried out.  A third year of funding was requested at the end of 
the project, but DoE did not have resources available to grant this. 
 The sub-contractor Fluence Analytics (previously Advanced Polymer Monitoring Technologies, 
Inc) designed, prototyped, and commissioned a working ACOMP/CI within the first six months of 
the project (by June 2015).  This gave a leap to the project which avoided the refurbishing of a used 
ACOMP system for preliminary control interfacing, and led to active manual control of 
polymerization reactions by the end of the first year.   
 The control dimension of the project was staged as i) active manual control, ii) active computer-
assisted manual control, and iii) fully automatic active control.  The reaction characteristics to be 
controlled were i) conversion kinetics, ii) molecular weight , iii) copolymer composition, and iv) 
simultaneous molecular weight and composition.   
 A two pronged control strategy was used.  The Tulane/Fluence group took a basic principles 
approach that did not rely on kinetic models, and took direct advantage of the abundant, realtime 
polymer and reaction characteristics provided by ACOMP to control polymerization reactions.  The 
LSU  group took a more complex, non-linear model-oriented approach which involved complete 

* American Chemistry Council research and DoE-EIA energy consumption and emissions survey. 
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kinetic descriptions of the reaction system together with estimators and Kalman filters.  Each of these 
approaches proved successful in their own way. 
 Active manual control and active computer-assisted manual control were achieved for controlling 
reaction kinetics early in the project, after which the project focused exclusively on fully automatic 
active control.  The manual controllers can be of significant value, nonetheless, since, as active 
control of polymerization is introduced into polymer manufacturing, there will likely be an initial 
period of adoption in which active manual control will be favored so that operators are directly 
capable of influencing reactions, as they currently are.  It is surmised that, as manufacturers become 
more accustomed to active control, the fully automatic controllers will soon be implemented. 
 By April 2016 (the project’s second year) fully automatic control of conversion and weight 
average molecular weight, Mw, trajectories was achieved using the Tulane/Fluence (TF) basic 
principles controller.  Similar results were obtained by the LSU non-linear model controller by 
August 2016.  The demonstration system was aqueous free radical polymerization of acrylamide, 
Am. The control variables used in these demonstrations were temperature, and semi-batch feed to the 
reactor of Am monomer and initiator.  An early demonstration of active manual conversion control 
in an industrial process using high solids in inverse emulsion polymerization of Am was achieved. 
 During the Summer of 2016 the TF controller was used in conjunction with a chain transfer 
agent, yet another control variable, to automatically produce multi-modal molecular weight 
distributions, MWD, in a single reactor.  Industrially, multi-modal MWD are usually produced by 
mixing products made in separate reactors, requiring significant extra time, energy, and reactor 
resources.  Recognizing the industrial potential a patent on automatic production of multi-modal 
polymers was filed, and DoE acknowledged. 
 In the Fall of 2016 the TF team developed a basic principles controller for copolymer 
composition and demonstrated it on aqueous free radical copolymerization of the comonomers Am 
and styrene sulfonate, SS.  Shortly thereafter, TF fused the MWD and composition controllers to 
achieve simultaneous control of both molecular weight and copolymer composition trajectories.  
Numerous simultaneous trajectories were demonstrated, including a trimodal composition 
distribution with constant Mw.  Meanwhile, the LSU group developed a Kalman filter to improve the 
results of their automatic molecular weight and conversion controller and successful tests were 
carried out. 
 During the project the TF team developed a means of computing full MWD during polymer 
synthesis without need for any chromatographic separation, based on model distributions.  This 
means that the polymer product is ‘born characterized’ and this can eliminate post-manufacture 
analytical laboratory quality control.  TF filed a joint patent application on this new approach to 
chromatography-free determination of MWD with acknowledgment to DoE. 
 The Tulane group obtained a 60MHz NMR during the project and has recently completed the 
first work on separating three comonomers, Am, SS, and Na-acrylate, with a first demonstration of 
terpolymer composition control with the T/F basic principles controller. 
 Widespread dissemination of ACOMP/CI in the polymer manufacturing sector will bolster DoE 
goals of energy efficiency and reduced GHG emissions:  The ability to monitor and actively control 
polymerization reactions will lead to more efficient use of energy and non-renewable resources, plant 
and labor time, increase the safety of manufacturing personnel, and will enhance product quality and 
lead to feasibility of manufacturing of polymers currently too complex for industrial scale 
production, while leading to less GHG emissions per kilo of product, and allowing for increased U.S. 
competitiveness in this enormous manufacturing sector.  When ACOMP/CI is expanded to the 
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polyolefin industry it is estimated that 60 TeraBTU/year of energy can be saved.  Much of this saving 
is anticipated to come from optimized control of grade changeovers in steady state reactors and 
maintenance of steady states. 
 Conclusions:  Thanks to ACOMP’s ability to provide continuous realtime data streams of 
measured polymer and reaction characteristics it is possible, for the first time, to directly and 
automatically control free radical polymerization reactions.  Two different automatic control 
approaches were developed.  An industrial client of Fluence Analytics has requisitioned the first 
ACOMP/CI which uses the TF basic principles controller.  This sets the stage for FA to add control 
features to the ACOMP systems it has begun to install on the industrial scale beginning in 2014. 
 Recommendations: This successful project has been limited to ideal polymerizations not of an 
industrial sort, albeit early demonstration of conversion control of industrial-type inverse emulsion 
polymerization was made.  The most energy intensive portion of polymer manufacturing is 
polyolefins.  Adoption of ACOMP/CI to this enormous industrial sector faces the enormous 
challenges of high temperature, high pressure continuous sampling and high temperature sensor 
operation to obtain the continuous data needed for direct reaction control.  The project team has a 
strategy for achieving this ambitious goal and will present it in Fall 2017 as a proposal to 
CESMII/DoE.  It is recommended that this upcoming proposal be funded in order to make full use of 
the achievements of this just ended DoE project as the next step towards making polyolefin 
ACOMP/CI an energy saving reality.  It is projected that ACOMP/CI can have its first polyolefin 
testbed demonstrations within two years of beginning the proposed project. 

 
Introduction 

The long range, ultimate goal of this project is to increase energy savings by 60 TBtu in the 
polymer manufacturing industry, while considerably reducing GHG emissions per kilo of 
product, via widespread dissemination of ACOMP/CI.  Other benefits include more efficient use 
of non-renewable resources, plant and personnel time, higher quality products, and enhanced 
worker safety. 
 The enabling technology is ACOMP (automatic continuous online monitoring of 
polymerization reactions).  Most monitoring technologies attempt to insert sensors into reactors 
to obtain online data on reactions.  For small molecule reactions this is often effective, using 
different spectroscopic methods, such as near IR (NIR) and mid-IR (MIR), and Raman scattering. 
 For polymerization reactions, however, the reaction medium is frequently too harsh and 
heterogeneous for immersing sensors.  The polymerization reaction is often very viscous (up to 
106 cP), heterogeneous (e.g. emulsions or dispersions), may contain microgels and other 
unwanted particulates, and is frequently at high pressure and temperature.   
 Because of the difficulty of using sensors directly in polymerization reactors the most 
widely used method for polymerization monitoring in industry is periodic manual sampling of 
discrete aliquots, typically performed by a technician who directly samples the reactor and then 
brings the sample to a nearby analytical laboratory, where measurements are then made on this 
single time point from the reaction.  The disadvantages of this industry-standard procedure is that 
there is a long delay between sampling and measurement, typically one or more hours, making 
control decisions based on this procedure of little value, and the technicians are exposed to 
hazardous reactor conditions (e.g. volatile organic compounds), while inordinate amounts of 
harmful volatile material (e.g. hexane) may be released in the process. 
 ACOMP approaches the problem as follows:  It automatically withdraws a continuous, 
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small stream of reactor liquid, dilutes and conditions this stream, and thus produces a continuous, 
analytical quality sample flow that can then be continuously measured by any set of detectors 
needed to gain realtime data on the polymerization process.  This then sets the stage for active 
control of the polymerization process based directly on polymer and reaction characteristics, such 
as molecular weight, conversion kinetics, monomer and polymer concentrations, intrinsic 
viscosity, and copolymer composition.   

This DoE project was precisely to couple active reaction control to ACOMP thus 
creating, for the first time, the ACOMP/Control Interface, or ACOMP/CI.  Current control 
strategies lack the type of direct realtime data provided by ACOMP, and use signals such as 
temperature, pressure, and flow rates to build indirect, inferential models.  While there is some 
industrial utility to such models, they are typically time and labor intensive to develop, are very 
specific to given reaction types, and cannot normally handle deviations from model behavior due 
to common real-world problems (e.g. change of heat transfer coefficients as polymeric debris 
coats heat exchangers and other elements). 

Two approaches to automatic control were taken.  The Tulane/Fluence group developed 
basic principles control that does not involve kinetic models, while the LSU group developed 
non-linear model-based control. 

The target of the first ACOMP/CI was readily accessible reactions.  For this free radical 
reactions of butyl acrylate in butyl acetate at moderate temperatures 45oC to 70oC were targeted, 
followed by free radical aqueous polymerization of acrylamide (Am) in homogeneous phase.  
Later, as an early demonstration of basic control in inverse emulsion polymerization of Ac was 
made, this reaction being representative of industrial reactions.   

The results from the ACOMP/CI from this project can be prototyped to perform well for 
high value specialty polymers, such as acrylates and water soluble polymers such as acrylamide 
and vinyl pyrrolidone.  In fact, Fluence Analytics is currently developing the basic principles 
controller from the Fluence/Tulane portion of the collaboration into a prototype for a private 
sector polymer producer.  This is an immediate demonstration of industrial interest in the 
specialty polymer sector.  Fluence plans to aggressively pursue opportunities and marketing in 
this area. 

However, the bulk of industrial manufacturing tonnage is in the polyolefin area, including 
polyethylene, polypropylene, and copolymers of these.  There are serious inefficiencies in the 
polyolefin industry for solution, slurry, and gas phase reactors.  The majority of the production 
involves continuous reactors, and the large inefficiencies are found in two areas;  1) the 
changeover between polymer product grades, which typically results in the wastage of many tons 
of polymer per hour, and 2) deviations from steady state during production which lead to off 
grade materials.  As an example, a large manufacturer may be producing 25 tons per hour of 
polymer in a single reactor, and grade changeover can last from several hours to over one day.  
Losses during change over can exceed $1M, with corresponding waste of energy and non-
renewable feedstocks. 

IT is estimated that 60 TBtu per year in the U.S. can be saved by increasing the efficiency 
of the polyolefin industry alone.   Such estimates are based on studies by Franklin Associates, 
Nexant, and Bloomberg, and correspond well to DoE Chemical bandwidth studies. 

While this project has provided a commercialization path for ACOMP/CI in specialty 
chemicals, the largest energy and GHG reduction will result from bringing ACOMP/CI to the 
polyolefin industry.  The challenges associated with automatic continuous sampling at high 
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pressure and temperature, production of an analytical grade sample stream, and making 
continuous high temperature measurements are formidable but surmountable, and the payoff for 
success will be great. 

Because of the intense secrecy of chemical manufacturers’ concerning their specific 
processes, it is essential to seek ‘agnostic’ support for the polyolefin development.  DoE is the 
agency best poised to support such work in such a fashion that the results will be widely 
deployed in manufacturing for maximum energy efficiency and GHG reduction.  While it is 
likely that support for such work from a single, large manufacturer might be found, such a 
business would require exclusivity of the results for a period of time, thus significantly delaying 
the deployment of the technology. 

Development of the high temperature sampling, measurement, and data analysis portion 
of the polyolefin project will last about two years, during which Tulane will work on the 
fundamental aspects, whose results are handed off to Fluence for engineering prototype 
instrumentation.   During this development there will be cross-correlations between the 
continuous polymer and reaction characteristics from ACOMP and the industry standard 
characterization using GPC, CRYSTAF, TREFF, and other methods.  Meanwhile, the LSU and 
other groups can develop control software and emulators, using a data driven approach, such that 
when the ACOMP/polyolefin prototype is ready the data stream can be fed directly into the 
controllers.  At the end of the second year the Fluence prototype can be implemented on a 
testbed, either at a university reactor, or at a company which agrees to extract particular benefit 
but not to demand exclusivity.  The idea is that once a generic polyolefin reaction controller is 
developed, Fluence can work with specific companies to adapt the technology to their processes. 
 

Background 
Quantitative control of polymerization reactions can open the possibility both for more efficient and 
higher quality production of polymers, and for achieving complex polymeric structures and 
compositions that might otherwise be unobtainable.  The global polymer industry is vast and 
involves thousands of different products. It is generally recognized that there is a large margin for 
improved efficiency in the use of energy, non-renewable feedstocks, plant and labor time, and an 
opportunity for improved worker safety and reduction in emission per kilo of polymeric product.  
The ability to actively and quantitatively control molecular weight and composition distributions, 
branching, crosslinking, and other polymer characteristics during synthesis may lead to the ability to 
produce advanced polymers by specifying the desired properties. Applications requiring highly 
specific molecular weight distributions (MWD), such as in electronic and optical devices, may 
benefit from this type of approach.1,2  It may be especially enabling for stimuli responsive polymers 
and other that make use of controlled radical polymerization.   

The weight average molecular weight Mw and MWD of a polymer are usually the most 
important characteristics used to assess its properties, and were the focus of this group’s first work in 
active control of polymerization reactions.  Obtaining polymer MWD by such methods as Gel 
Permeation Chromatography (GPC),3 Field Flow Fractionation (FFF),4 Matrix Assisted Laser 
Desorption Ionization – Time of Flight mass spectroscopy (MALDI-TOF),5 and others, constitutes a 
sub-field in its own right.   

Several methods for attempting to control final MWD have been devised but until now, most 
are inferential in nature, and none are based on direct, continuous measurements of molecular 
weight, simply because such continuous measurements have not commonly been available.  With the 
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advent of ACOMP, however, Mw and other properties are continuously and directly measured.  
Hence, the object of this work is to take these continuous data directly and build a controller for Mw 
that does not require either a detailed kinetic model or an inferential approach.  A model independent 
histogram representation of the full MWD is also available.  To go further a model must be invoked 
to relate the instantaneous Mw, or Mw,inst, to specific MWD, such as the binomial distribution, or its 
daughter geometric and normal distributions.  These aspects are addressed in the Results. 

Work in polymer reaction engineering has been multidisciplinary, combining monitoring, 
modeling, control, and optimization approaches.6 The complexities of time critical data gathering 
and analyses have tended to separate online monitoring and control approaches in the literature.7 
There are also major distinctions based on reaction scale (microscale, laboratory scale, pilot, and 
large industrial reactors) and type (batch, semi-batch, continuous), and the nature of the process; 
homogeneous or heterogeneous phase, bulk, high temperature, high viscosity, etc. 6,7  Currently there 
is no widely applicable control scheme that incorporates both on-line process multi-variable 
characterization with active process control.8  

Small scale research oriented studies maximize accuracy of the information about the system 
using advanced on-line monitoring techniques.6,8,9,10  The kinetic information gained from online 
characterization has been left for future model predictive control (MPC) and process optimization in 
most cases. Spectroscopic techniques such as on-line GPC,11 UV, and NMR12 can be used for direct 
measurement of process variables, while Raman,13 ATR FTIR,14 NIRS,15 and Low Resolution 
Raman 16 can be used in combination with other techniques to obtain calibration curves related to 
conversion, molecular weight, copolymer composition and other process characteristics.6,11  The 
limitations of all the above mentioned methods is detailed in the literature.6  Incorporation of control 
and online optimization with on-line active process characterization were presented by Skilton et 
al.,14 using NMR, and Sans et al.,17 using ATR FT-IR.  Both utilized continuous flow reactors and 
small molecule esterification reactions, not polymerization reactions, for proof of on-line closed loop 
optimization.  Nogueira and Pinto used near IR spectroscopy and viscosity deduced from reactor 
stirring torque and used these two measurements together to gauge and automatically control both 
conversion and molecular weight in a polyurethane reaction using calibration curve fits for the IR 
and conversion correlation.15 

Optimization and Control of industrial reactors has been proposed with open loop model 
predictive control utilizing commonly monitored process variables such as temperature and pressure, 
and state estimation techniques, extensively described in the literature, to estimate online process 
data to update the model in real time.  A major issue for industrial control applications is the 
computational time required by state estimation and related techniques.   These long times can delay 
control action leading to dangerous run away reaction situations.  Furthermore, observability and 
convergence are not guaranteed due to the non-linearity of polymerization processes.18,19 The model 
utilized must balance the need for high accuracy and precision with the quick response time required 
for active control7,18 while maintaining desired quality.20,21 The most commonly used method for 
state estimation is calorimetry and much literature has been devoted to the refinement of this 
technique to estimate the conversion.11,22,23  Lack of convergences or even observability over the 
entire reaction24 and time severally limits this technique for dynamic control throughout an entire 
reaction.  Vega et al25 proposed an alternative to calorimetry and typical state estimation techniques 
using aliquot measurements of viscosity and density correlated to molecular weight and conversion, 
combined with a simplified process model. The use of conversion and molecular weight as the 
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optimized variables shows how refined online process characterization eases the burden requirement 
for process control and optimization. 26 

Automatic Continuous Online Monitoring of Polymerization reactions (ACOMP) was 
introduced in 1998 and used to monitor the free radical polymerization of vinyl pyrrolidone.27  Since 
then, it has been used in a wide variety of reactions including controlled radical polymerization, step 
growth, emulsions and inverse emulsions, and batch, semi-batch, and continuous reactors.28 

The basic principle of ACOMP is to automatically and continuously withdraw a small sample 
stream from the polymerization reactor, and conditioning it so that a highly dilute  sample stream 
results, which is of an analytical grade and which flows continuously through a series of detectors 
chosen to continuously monitor desired characteristics of the reaction; e.g. using multi-angle static 
light scattering (MALS), refractive index (RI), ultraviolet absorption (UV), and a viscometer, allows 
weight average molecular weight Mw, intrinsic viscosity [η], and monomer conversion and 
copolymer co-conversion and composition to be monitored. 

Figure 1 shows the principle of ACOMP along with a schematic.  It is noted that ACOMP is 
not a chromatographic method, but a chromatographic system, such as GPC, can be used with it 
since the continuous dilute, conditioned sample stream is at the same concentration as used for GPC 
injections. 

 
Figure 1.  ACOMP principle of operation and schematic 
 
 Figure 2 shows typical data from ACOMP, in this case from a batch free radical 
terpolymerization reaction.  It shows how a subset of signals from the UV, light scattering, 
viscosity, and refractive index detectors change as the comonomers are first added stepwise, and 
then after the reaction is initiated. 
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Figure 2.  A subset of  raw ACOMP detector signals for a free radical terpolymerizati0n reaction 
 

ACOMP was previously used as a means of predicting polymerization trajectories for 
molecular weight29 and, separately, for copolymer composition.30  In those reports, however, there 
was no active control during the polymerization.  Instead, based on kinetics and Mw  from prior 
ACOMP data, feed rates of monomer and comonomers needed to follow a desired path were 
computed offline, implemented on the ACOMP reactions, and followed without change. 

From the beginning the guiding strategy for polymerization reaction control in this project is 
the following:  Target trajectories can be established, versus time or versus polymer concentration, 
for critical polymer and reaction characteristics, which will lead to very specific endproducts.  If a 
reaction follows the target trajectory then the same product will result each time.  Examples include  
conversion, MWD, intrinsic viscosity, and copolymer composition  vs time or vs  polymer 
concentration.  In the long run it will be possible to determine which polymer distributions yield 
which specific properties, and optimal target trajectories leading to these distributions can be 
computed, and then followed in realtime with ACOMP/CI.   

Figure 3 illustrates the above principle.  It shows a target trajectory for fractional monomer 
conversion of Am vs time (black), where the temperature was incremented from T=40oC to 65oC  
during the reaction (dashed black).  In the next step an operator provided active manual control, 
holding the temperature constant at T= 45oC and manually controlling the pump rate of initiator into 
the reactor in order to follow the target trajectory.  As seen, the active manual control succeeded in 
keeping the trajectory within 5% of the target trajectory at all times.  These two reactions were 
termed an ‘isomorphic reaction pair’, since they have the same shape, but the shape is attained in two 
different ways; i) varying T and holding initiator concentration fixed, and ii) varying initiator 
concentration and holding T fixed.  It is noted that this was the first instance of successful control in 
the project and preceded the 12-22-2015 go/no-go milestone of active manual control of Mw. 
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Figure 3.  The first success at active manual control of conversion to follow a free radical 

polymerization target trajectory.  This is an isomorphic reaction pair. 
 
The control variables that can be used include temperature, initiator, chain transfer agent, 

oxygen, nitrogen, comonomers, branching agents, etc. 
Figure 4 shows a schematic of how the entire ACOMP/CI works:  The extraction pump 

continuously removes liquid from the reactor recirculation loop, and this stream is diluted and 
conditioned and fed through the detector train.  Via software the detector signal are analyzed to give 
the process characteristics, such as Mw, conversion, etc., and these are then fed to the process 
controller.  This latter can then actuate various process control variables, such as nitrogen, monomer, 
initiator, T, etc. 
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Figure 4.  Schematic of the complete ACOMP/CI 
 

 In developing the fully automatic controller in this work three steps in active control were 
made: i) Active manual control, ii) Computationally assisted active manual control, and iii) Active 
automatic control.  Practically speaking any of these approaches can be used for MWD control, since 
no previous direct means of active control is available, although the automatic one may generally be 
preferred.   
 The control strategies use break into two approaches: 1) full non-linear modeling based on 
full kinetic equations, together with parameter estimation and Kalman filters, and 2) basic principles 
control where maximum use of the available continuous high level polymer and reaction 
characteristics is made and basic reaction principles are used rather than full kinetic models. 
 The agenda for increasing sophistication and control capabilities using aqueous Am free 
radical polymerization was led by the following path: 

1) Control conversion in batch homopolymerization with temperature and initiator 
concentration 

2) Control Mw in batch homopolymerization with temperature and initiator concentration 
3) Control conversion in semi-batch homopolymerization using monomer feed to the reactor 
4) Control Mw in semi-batch homopolymerization using monomer feed to the reactor 
5) Automatically produce multimodal MWD with combined feeds of monomer and chain 

transfer agent 
6) Control copolymer composition in semi-batch operation, using control of reactor feeds from  

two separate comonomer reservoirs 
7) Simultaneously control both Mw and copolymer composition by combining the Mw and 

composition controllers with dual reservoir feeds.  Use this to follow a variety of different 
Mw and composition target trajectories simultaneously. 

19 
 



In addition 
8) Make the first forays into industrially relevant reactions, i) via copolymerization work in 6)-

7) above, and by taking a full industrial process, inverse emulsion polymerization of Am, and 
control conversion. 

9) Introduce, for the first time, process NMR (60 MHz) to separate three monomers in 
terpolymer reactions.  This opens the door to three and more comonomers as are frequently 
used industrially; e.g. adhesive polymer production frequently uses five or more comonomers  

10) A model based method for chromatography-free determination of MWD was found during 
the project. 

  
The project was led from Tulane University, W.F. Reed, PI.  The PI has been active in the 
physical characterization of polymer equilibrium properties and non-equilibrium processes for 
the past 32 years.  This activity has included design and patenting of new instrumentation, new 
theories and numerical analyses, extensive work with polymer manufacturers and biotechnology 
companies, training undergraduate, graduate, and postdoctoral students, and co-founding the spin 
off company Fluence Analytics (previously called Advanced Polymer Monitoring Technologies). 
 He holds numerous patents and has published many articles and book chapters. 
 The Fluence Analytics lead was Michael F. Drenski, the Chief Technical Officer of 
Fluence Analytics and a former graduate student of the PI.  He has the most extensive experience 
in the world in prototyping and building ACOMP systems and is co-author on many of the PI’s 
publications.  Fluence is an engineering company providing solutions to polymer manufacturers 
to increase the efficiency of their operations and enable production of more advanced polymeric 
materials. 

Jose A. Romagnoli is the Gordon A. & Mary Cain Chair and M.E. Gautreaux/Ethyl Chair 
Professor and Fellow of the Australian Academy of Technological Sciences and Engineering at 
Louisiana State University (LSU). His work experience includes many senior consultancy works for 
many international private companies. He has supervised a large number of graduate students over 
his career (50 PhD and7 MS students). He is currently advising at LSU, 5 PhD and two MS students. 
Jose A. Romagnoli has authored or co-authored over 300 referred journal articles most of which are 
in the areas of advanced optimal process operations and intelligent systems. He is also the author of 
two books (one of them a textbook in process control).  
 

Results and Discussion 
 
Bulleted Summary of major milestones 
 

• Fluence Analytics designed and built two first ever ACOMP/CI instruments by 6/2015 
• Active manual control of conversion trajectories was achieved by 10/2015 
• Demonstration of O2 as a potential control variable for both kinetics and Mw was made by 

11/2015 
• Active manual control of Mw trajectories was achieved by 12/2015 
• A basic principles, nearly model-free active automatic controller was developed by the 

Tulane/Fluence group by 3/2016 
• The T/F basic principles automatic controller followed target conversion trajectories 

automatically by 3/2016 
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• The LSU group developed a first-principles mathematical model by using reaction rate laws 
available in polymerization literature.  

• The LSU model was validated by comparing the simulations with experimental data 
• The validated LSU model was used to perform parameter estimation and adjust the kinetic 

parameters for the proposed system.  
• LSU conducted model-based optimization analysis, formulated a nonlinear state estimation 

strategy, and tested alternative linear and nonlinear control strategies.  
• A means for model based chromatography free MWD was completed by the 

Tulane/Fluence group by 4/2016 
• The basic principles automatic controller followed target Mw trajectories by 5/2016 
• The basic principles Mw automatic controller was used to produce targeted multimodal 

molecular weight distributions by 7/2016 
• The LSU model based non-linear automatic controller followed conversion target 

trajectories by 7/2016 
• The LSU model based automatic controller followed Mw target trajectories by 8/2016 
• LSU group developed and implemented an Extended Kalman Filter (using ACOMP data) 

to predict all the state variables on real-time has been initiated.  
• A basic principles automatic controller for following target copolymer composition 

trajectories was developed by Tulane/Fluence and used by 9/2016 
• A combined basic principles controller for simultaneous control of Mw, conversion, and 

copolymer composition was achieved by 10/2016 
• The CEO of APMT, Inc. (Alex Reed) was listed by Forbes as one of America’s thirty leading 

entrepreneurs under the age of thirty in the area of industry and manufacturing for 2016. 
• A 60 MHz NMR was integrated into the ACOMP system in 11/2016 
• First terpolymerization reaction monitoring using combined NMR and UV in the 

ACOMP system was made in 2/2017 
• First terpolymerization composition control achieved using combined NMR and UV in 

ACOMP 
• Active manual control of conversion in an industrial type inverse emulsion 

polymerization was achieved in 1/2017 
• The polymerization of acrylamide in water solution using potassium persulfate (KPS) as 

initiator is studied to demonstrate the effectiveness of the module and framework. 
• Fluence Analytics has contracted with an industrial ACOMP client to provide a beta 

version of the basic principles Tulane/Fluence Mw controller along with the ACOMP 
• Fluence Analytics is in discussions with over 30 chemical companies in a range of 

polymer applications, and many are interested in the future availability of the molecular 
weight controller technology for their applications.  
 

 
I. The ACOMP/CI instrumentation 
 Fluence Analytics (formerly APMT) designed and built the prototype ACOMP/CI in the first 
seven months of the project, and transferred this to Tulane University where it was commissioned.  
As part of its cost share, Fluence built a second ACOMP/CI, identical in all respects, except it has a 
64 liter pilot reactor and full scale industrial fast loop with heavy duty gear pump, while the Tulane 
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ACOMP/CI has a 2 liter reactor with a small gear pump and miniature fast loop.  Figure 5 shows the 
two ACOMP/CI systems with the ACOMP cabinet marked, and the separate Control Interface 
cabinet labeled ‘Reactor Control rack’. 
 

 
Figure 5.  Photographs of the two ACOMP/CI units built by Fluence Analytics. The one on the left 
was built as partial Fluence Analytics cost-share and is housed at Fluence.  The one on the right is 
housed at Tulane University. 
 
 The active manual controller projects continuous, live polymer and reaction characteristics on a 
computer screen, together with a target trajectory for these characteristics, and an operator manually 
controls process variables such as temperature and reagent flows to steer the actual reaction 
trajectory as close to the target trajectory as possible.  In the active manual computer assisted mode, a 
computer processes the characteristics and recommends control actions to the operator to take 
concerning temperature, reagents flow and other process variables.  In the fully automatic controller 
the controller directly commands pumps, heaters, and all other process variables according to its 
computations from the ACOMP data stream characteristics. 

The operator interacts with the ACOMP/CI system through a custom designed Human-
Machine Interface (HMI), built using the Rockwell Factory Talk View SE environment over the 
Logix5000 programming software. This was interfaced with all ACOMP hardware through a 
Rockwell Control Logix PLC. All sensor and detector signals were compiled into the Rockwell 
database tables locally, which were then sent to the ACOMP Analysis package over an Open 
Platform Communications gateway (OPC). The ACOMP Analysis software was programmed in C++, 
which interprets all appropriate sensor and detector signals for characterization of the reaction and 
polymer properties. The ACOMP Controller software, which receives the online analyses data and 
sends control signals to regulate different process variables, was developed in Python 3.5 which also 
communicates with the Rockwell automation through the OPC gateway. In the current application 
the fully automatic active controller regulated the flow rate of Am from the concentrated reservoir 
into the reactor. 

 
 II.  Prelude: Active manual control 
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The plan for ramping up to fully automatic active control involved the preliminary step of active 
manual control.  In this, the operator observes the trajectory of one or more reaction process 
characteristics and tries to match the ongoing reaction trajectory to a pre-determined target trajectory 
by controlling one or more process variables. 
 Figure 6 shows the first achievement in the control of Mw.  This met and surpassed the criterion 
for the go/no-go decision at the end of year one of the project (December 2015).  In figure 6 the 
target trajectory (black) for Mw was established by increasing the reactor temperature from 45oC to 
65oC during Am polymerization.  This causes Mw to drop more rapidly than in a batch reaction.  In a 
subsequent reaction the operator held the reaction temperature constant at 45oC and manually 
increased the initiator concentration in order to produce a trajectory (blue) as close to the target 
trajectory as possible.  Increasing initiator has a similar effect on the reaction as increasing 
temperature; it leads to increased reaction rate and decreased Mw.  The two curves in figure 6 
represent an ‘isomorphic reaction pair in Mw’.  They are isomorphic because they have the same 
shape but are produced by two different means; one by increasing T and holding initiator 
concentration constant, and the other by holding temperature constant and increasing initiator 
concentration. 
 The trajectory of the second reaction followed the target trajectory to within 10% or less during 
the entire reaction.  The original DoE SOPO for the go/no-go decision called for agreement within 
35%.  Hence, this experiment on 12-21-2015 exceeded the go/no-go criterion and fell within the 
projected timeline. 
 This paved the way for fully automatic control, described below. 
 

 
Figure 6.  The first active manual control of Mw during Am polymerization 
 
 III.  The basic principles Tulane/Fluence automatic controller 
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 In parallel with the model based non-linear control developed by the LSU group, a basic 
principles approach was taken that seeks to maximize the benefit of the continuous ACOMP stream 
of polymer and reaction characteristics, and minimize dependence upon any specific kinetic models. 
      
1. Conversion and Mw control 
 

III.1.1 Approach to the basic principles Tulane/Fluence controller 
It is evident that a specific trajectory of Mw vs time will yield a specific MWD, because each 

small interval of M in the MWD is visited by the trajectory during the production of an interval of 
polymer concentration.  Conversely, given a desired MWD a multitude of trajectories can be found 
which will yield it.  In this work the subject of the optimal trajectory is not addressed, and the focus 
is on proving that, once a specific target Mw trajectory is established, Mw,t(t), it can be followed by 
the controller during the polymerization reaction.  Later work will focus on specific MWDs and 
optimization of trajectories.  Optimization of chemical processes, in general, is a highly developed 
field.31,32 

The term ‘trajectory’ needs explanation.  Time is the natural independent variable during a 
reaction and ACOMP measures the relevant quantities of monomer and polymer concentration and 
weight average molecular weight, Cm, Cp, and Mw, respectively, directly in time.  However, having 
these quantities at each instant means that any of them can be used as a variable against which the 
others can be mapped.  The specification of MWD depends on how instantaneous weight average 
molecular weight, Mw,inst, builds with Cp, so that Cp is the natural variable to be used against which to 
measure the trajectory of Mw; i.e. Mw(Cp) is the favored representation of trajectory.  Concretely, for 
polymerization reactions for which the time to produce a polymer chain is much shorter than the total 
reaction time, e.g. free radical polymerization, the relationship between Mw(Cp) and Mw,inst(Cp) is, by 
definition 
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Mw(Cp) is measured directly from light scattering and concentration detectors in the ACOMP system. 
 Mw,inst(Cp) can be computed from the ACOMP value of Mw(Cp) according to equation 1 by 
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Computation of Mw,inst from the primary ACOMP values of Mw and Cp allows the 
instantaneous weight average of the MWD to be followed, and a histogram representation of the 
MWD to be made as synthesis proceed. The histogram, however, does not take the instantaneous 
MWD into account.  Up to this point all quantities are model-independent and based on primary 
detector measurements.  While the histogram representation is very useful to gauge the width and to 
detect multi-modal populations, it will underestimate the polydispersity that results from the full 
MWD, since it includes no information on the instantaneous MWD or polydispersity.  Below, it will 
be shown that if a model-dependent assumption on the form of the instantaneous MWD is made, e.g. 
the Flory-Schulz distribution, then the Mw,inst histogram can be used to estimate the polydispersity 
indices Mw/Mn,  Mz/Mw and others, and to also make continuous MWD representations, if desired, 
similar to those obtained by GPC or other separation methods. 

It is important to note that from any cumulative property measured by ACOMP, Y(Cp), the 
instantaneous value Yinst(Cp) can be computed by 
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Y(Cp) can include such properties as comonomer composition, reduced or intrinsic viscosity, 
diffusion coefficient, polymer dimensions, etc.  Some of these will be considered in the results 
below. 

Now, the ACOMP controller is based on two basic principles and does not involve any 
detailed kinetic or inferential models with many parameters.  These principles are: 

i) The instantaneous kinetic chain mass Mν is proportional to Cm, and Mw,inst  is proportional 
to the kinetic mass Mν 

minstw pCaMM == ν,                                                     (4) 
This is a fundamental principle of linear free radical chain growth polymerization. The 
proportionality constant p subsumes all the complex parameters that constitute the relationship in 
equation 4, without the need to explicitly know any of them.  In a typical standard free radical kinetic 
model, for example, p would be given by 
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where kp is the propagation constant, kt is the termination constant, k3 is the chain transfer constant, 
[R] is the free radical concentration, [CTA] is the concentration of chain transfer agent , and d is a 
dimensionless constant on the order of unity that depends on what percentage of termination is by 
disproportionation and what by recombination, as well as the instantaneous relationship between the 
weight average chain length and most probable (kinetic) chain length.   
 Each of these parameters can be steep functions of temperature and to further increase the 
complexity of p, [R] is composed of additional terms.  In the free radical polymerization quasi-steady 
state approximation (QSSA),33 for example, 
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where F is the initiator efficiency, kd is the initiator decomposition rate constant, and [I2] is the 
initiator concentration.  These can also have steep temperature dependences, and [I2] is generally 
time dependent. 
 The robustness of the ACOMP controller in its current form derives from the fact that none 
of these many parameters, and how they change during the reaction, need be known. After having an 
Ansatz value of p, e.g. from a previously monitored batch reaction, p can be re-computed  at intervals 
during a reaction and the new value will subsume changes in all the parameters into this single, 
experimentally measured parameter, without requiring any specific kinetic model.  The first re-
computation of p during the reaction will also correct errors in the Ansatz value. 
 ii) The rate of polymerization of monomer is proportional to the concentration of monomer.  
That is 
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This is the standard first order or pseudo-first order expression that controls myriad processes in 
nature, from radioactive decay and spontaneous atomic emission spectra, to biological populations.  
The proportionality parameter α(t) may change in the course of time so that equation 7 yields an 
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exponential solution only when α is constant in time.  For free radical polymerization α(t) subsumes 
several other parameters.  For example, in a typical kinetic model 
 

][)( Rkt p=α                                                     (8) 
where [R] can change in time due to changes in parameters, for example, those in equation 6, and kp 
can change both due to temperature, chain length, viscosity of the reaction milieu, and other 
quantities. 
 Again, the robustness of the ACOMP controller resides in the fact that after an Ansatz value 
of α(t) is used, e.g. as determined in a previously monitored batch reaction, α can be re-computed  at 
intervals during a reaction and the new value will subsume changes in all the parameters into this 
single, experimentally measured parameter, without requiring any specific kinetic model.  The re-
computation of α(t) during the reaction will also correct errors in the Ansatz value.  It is noted that 
the controller makes no assumption of a simple exponential first order reaction, since α(t) can 
change during the reaction. 
 
III.1.2 Instrumentation and data analysis background 
The ACOMP Process Flow Diagram was shown in  Figure 4.  The sample is continuously extracted 
from the reactor recirculation loop at a rate between 0.25 and 0.50 cm3/minute, depending on the 
experiment, by the Extraction Pump and is immediately quenched and diluted 80x with solvent 
(distilled water in these experiments) from the Solvent Pump, and homogenized in the Mixing 
Chamber, from which the sample flows through a 4 wavelength UV/Vis detector UV/Vis 159 
detector by Gilson, (Middleton, WI.), which continuously monitors the absorption of the monomer 
during the polymerization.  Polymer conversion was calculated using the 245 nm wavelength. After 
flowing through the UV/Vis detector, a fraction of the sample stream is diverted by an Isocratic 
Pump to achieve a continuous and pulse free flow through the remaining detector train comprising a 
custom built Multi Angle Laser Light Scattering (MALS) detector, with four angles; 65o, 90o, 115o, 
130o , and a custom built single capillary Viscometer. Based on the reaction and polymer 
characteristics determined by the ACOMP/CI the reactor temperature, nitrogen, monomer or initiator 
feeds can be adjusted to control the desired aspects of the polymerization; in this work the 
trajectories of the total Cm and Mw were controlled by manual active control using temperature and 
initiator flow in batch mode, and full active automatic control of Cm and Mw was achieved with 
monomer flow in semi-batch mode. 

The delay from the reactor to the first detector, the UV, is 85 seconds.  To correct for this 
delay time in the control computations, forward linear regression from the previous 30 seconds to the 
current instant, t, of real-time was used for Cm, which controls Mw,inst via equations 4 and 5. 

Use of UV absorption, viscosity, and MALS to compute monomer and polymer 
concentration, reduced viscosity, ηr, Mw and z-average mean square radius of gyration <S2>z have 
been detailed in previous ACOMP publications.32,33  For the latter, the usual Zimm equation was 
used,34,35 where IR(θ) is the excess Rayleigh scattering ratio from the polymer solution at scattering 
angle θ 
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where, Cp is polymer concentration, qs is the magnitude of the scattering vector  
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K is an optical constant, given for vertically polarized incident light by 
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where dn/dCp is the differential index of refraction for the polymer in a solvent of refractive index  n, 
NA is Avogadro’s number and λ is the vacuum wavelength of the incident laser.  For Am in water 
dn/dc=0.181cm3/g was used, n=1.333, and λ=660nm from a 35mW Laser Max linearly polarized 
miniature diode laser. 
 In equation 9 A2 is a complex average of the second virial coefficient.  It was found on end 
products to be 3.29x10-4 cm3-Mole/g2 +/- 20% and was only weakly dependent on Mw, and was 
hence used as a constant correction factor.  The maximum concentration of pAm in the detector train 
was 4x10-4 g/cm3, which leads to a correction factor in equation 9 of 2A2MwCp~0.26, for a value of 
Mw~106g/mole in the estimate.  With an error bar of 20% on A2 this leads to a maximum systematic 
error of 5% for Mw at maximum concentration and high Mw.  
 
III.1.3  Details of the conversion controller 
In this first version of an automatic feedback ACOMP controller a single control variable is used, the 
flow rate of monomer from a concentrated monomer reservoir (51% Am) into the reactor; i.e. semi-
batch operation is used.  This flow rate is designated Q(t), and it is the automatic computation of Q(t) 
and the automatic setting of the reservoir pump to the computed value that provides the Mw control 
needed to follow the target trajectory Mw,t(t).  The ACOMP extraction rate from the reactor is q(t), 
which is usually small, between 0.25 and 0.5 cm3/min, and held constant.  It is treated as negligible 
in the following.  This outflow from the reactor provides the continuous sample stream that is diluted 
and conditioned for the ACOMP measurements.  V(t) is the volume of liquid in the reactor and Vo is 
the initial volume. 
 The change in monomer concentration dCm over an interval dt is given by 

dttQ
tV

CCtdC m
mm 








+−= )(

)(
')(α                                                (12) 

 
where the rate principle of equation 7 is used together with the addition of monomer to the reactor 
via the pump rate Q(t).  Cm’ is the concentration of monomer in the reservoir and V(t) the reactor 
volume as a function of time. 

 Monomer concentration control. Equation 12 allows Cm(t) to be the controlled process 
characteristic, which can frequently be valuable in its own right, and is just one step away from 
control of Mw, once p is introduced.  Let Cm,t(t) be the target trajectory for Cm(t).  The object will 
then be to make Cm(t) in a reaction follow Cm,t(t) 
 The controller now breaks the reaction up into finite control intervals ∆ti, where ∆ti is the 
duration of the ith control interval, and ∆ti is very short compared to the duration of the entire 
reaction, which allows changes in variables and characteristics to be approximated as linear over the 
short intervals. At the beginning of control interval i, which starts at ti, the required amount of 
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monomer change over this interval, ∆Cm,t,i, is the target trajectory value at ti+∆ti minus the current 
measured value Cm(ti), that is 

)()(,,, imiitmitm tCttCC −∆+=∆                                        (13) 
 
 Expanding dt to ∆ti in equation 12, and using equation 13, Q(ti) is computed by 
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The ACOMP controller then sets the monomer feed pump to Q(ti) at ti.  Cm(ti) in equation 14 is the 
measured value of Cm(t), not the target trajectory value.   

In equation 14 α(ti) is the latest value of α(t). α(ti) can be computed over any previous time 
interval ∆τ during the reaction as follows.  The rate at which polymer is produced is 
  

m
p C

dt
dC

α=                                                          (15) 

so that the polymer concentration at any time, by mass balance, is 
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where Cm,o is the initial amount of monomer in the reactor. Cm(t) is measured directly by ACOMP, 

∫
t

dttQ
0

')'(  is known by automatic integration of the pump flow rate and V(t) is given by 
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where q is the constant ACOMP withdrawal rate.  Hence, α(ti) can be computed over any previous 
time interval ∆τ before ti by 
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The actual value of ∆τ used depends on signal/noise considerations and does not have to correspond 
to the control interval values ∆ti. 
 Figure 7 shows an example of monomer concentration control using the above approach.  In 
this it was decided that a non-monotonic trajectory for Cm,t(t) would be interesting, to set it apart 
from a simple exponential decay in a corresponding batch reaction.  A sinusoid of the form 

( ) )(g/cm    sin002.0010.0)( 3
, ttC tm ω+=                         (19) 

was used, where ω=2.5x10-4π radians/s.  The reaction was carried out at T=55oC. 
The controller result is quite excellent and falls well within a 2% error bar from the target 

trajectory, and is in fact indistinguishable from the target trajectory in the first half of the cycle.  Also 
shown in Figure 7 for contrast is the monomer concentration trajectory in an equivalent pure batch 
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reaction with no monomer feed; i.e. the controller follows a conversion trajectory very different from 
the natural batch trajectory. 

 
Figure 7.  Automatic control of conversion (black)  along a sinusoidal target trajectory (blue).  Also 
shown is the uncontrolled batch trajectory (red). 
 

While the purpose of the reaction was to control Cm it is interesting to see the corresponding 
result for Mw and Mw,inst..  These are shown in Figure 8.  Mw,inst follows roughly the sinusoidal form 
of Cm(t), whereas Mw has a damped sinusoidal form. 

 

Figure 8.  Mw and Mw,inst for the reaction shown in figure 7. 

III.1.4  Mw control and results 
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The previous section has set the stage for Mw control, including a description of how α(ti) is 
computed.  To control Mw requires use of the proportionality parameter p(t) introduced in equation 4. 
 First, a target trajectory for Mw,inst or Mw(t) is decided upon.  For the former, the target trajectory is 
denoted Mw,inst,t(t).  In further practice this is better represented in terms of Cp, Mw,inst,t(Cp), as 
discussed above.  The Mw,t(Cp) control trajectory is then determined according to equation 1. Since 
Cp(t) is known the representation in terms of Mw,inst,t(t) will be used in the following.  The subscript 
‘i’ in ti and ∆ti will also be dropped for ease of notation. 

Consider that from a time t to a time ∆t in the future Mw,t(t+∆t) can be written as 
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where Mw,t(t+∆t) is the value the experimental Mw,e should be at t+∆t, where Mw,e(t) is the 
experimentally measured value from ACOMP, and the approximate expression on the right is the 
expansion of 1/(Cp+∆Cp) to first order.  This will apply after some Cp has been accumulated, to 
justify the series truncation;  i.e. when Cp>>∆Cp.  It is also necessary to accumulate a finite Cp in 
order to get an accurate measurement of Mw,e(t) from the ACOMP light scattering detector. 

Now, the first integral is what the target Mw,t(Cp) should be at t, whereas it is desired that the 
target Mw,t(t+∆t) be reached at t+∆t.  Hence, the trajectory has to be corrected over t to t+∆t to 
achieve this, and the interval starts at the real, experimentally measured Mw,e(t).  Hence, the first 
integral from 0 to Cp is replaced by Mw,e(t). Further, calling <Mw,inst,t> the average Mw,inst over the 
concentration interval Cp(t) to Cp(t+∆t) allows the theorem of the mean to be invoked for the second 
integral in equation 20, so that, again to first order in ∆Cp/Cp, 
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where ∆Cp= Cp(t+∆t) -Cp(t), and the experimental instantaneous weigh average Mw,inst,e is used to 
define Mw,e(t) according to 
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Now, ∆Mw,t(t) is defined to be the increment in Mw that must occur over time ∆t in order for 
Mw,e(t+∆t) to be equal to Mw,t(t+ ∆t) 

)()()( ,,, tMttMtM ewtwtw −∆+=∆                                        (23) 
This allows equation 21 to be re-written as 
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using the relationship between  <Mw,inst,t> and the average monomer concentration <Cm> over the 
interval t to t+∆t  

><>=< mtinstw CtpM )(,,
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and 
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leads to the quadratic equation 
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This yields the solutions 
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This controller assumes that control intervals are short enough that the quantities change linearly 
over the control intervals ∆t, which are much shorter than the duration of the reaction.  Hence 
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so that  
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and the required change in Cm over the control interval ∆t is  
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Using ∆Cm(t) and ∆t in place of dCm and dt, respectively, in equation 12 gives the flow rate Q(t) to 

which the monomer feed pump should be set over the entire control interval ∆t 
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where <Cm> is from equation 28.   

 As mentioned after the Ansatz value of p is used it is re-computed over any interval 

∆τ  before t by 









∆

∆
+=

τα )()(
)()(

)(
)(

1)( exp,
, tCt

tMtC
tM

tC
tp

m

wp
ew

m

                              (33) 

where ∆Mw,exp(t) is the difference between Mw,e(t) and Mw,e(t-∆τ) 
 

)()()( ,,exp, τ∆−−=∆ tMtMtM eweww                                   (34) 
 There are several physical limits that constrain the solutions to the addition of monomer to 
the reactor. One of these is that Mw,e(t) cannot fall faster than the batch rate that occurs when Q(t)=0. 
 This limit can be extended if the controller adds extra initiator or the temperature increases, or if a 
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controller that includes chain transfer agent (CTA) is incorporated.  In this latter case the CTA does 
not affect the reaction kinetics and can cause much larger reductions in Mw than either initiator or 
temperature increases.  Extension to CTA is currently underway. 
 Considering the limits imposed by equation 28 leads to three cases to distinguish. 

1) If ∆Mw,t(t)>0 then the positive root of equation 28 must be used, otherwise an unphysical 
negative <Cm> would be obtained ; i.e. 
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2) Equation 24 shows that <Mw,inst> can become negative if ∆Mw,t(t) is sufficiently negative.  

<Mw,inst><0 is unphysical and such an ∆Mw,t(t) cannot be achieved over the control interval 
∆t, and the only recourse is to set the pump flow rate to zero, Q(t)=0, and wait until 
Mw,e(t’)=Mw,t(t’) at some point t’ which is greater than t+∆t.  The condition for setting Q(t)=0 
over the control interval ∆t is, if 
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As mentioned, this limit can be extended if other control variables, such as CTA, temperature, or 
initiator are used.   

3) The square root in equation 28 will be negative and hence the solution will be imaginary and 
unphysical, so that no monomer will be added over the control interval and so Q(t)=0 over 
the control interval when 
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4) The negative root of equation 28 is used as follows: 
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then
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It is noted that this is not a simple ‘bang-bang controller’, such as are found, for example, 

in a thermostat controlled heating system, where the heating element is either switched on or off. 
Mw controller results for linearly increasing Mw vs t, at T=45oC.  Figure 9 shows an 

example result for an application of the Mw controller.  For this an Mw,t(t) target trajectory was 
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chosen as linearly increasing in time with a slope of 50.00 g/mol-s and an Mw(0) of 3.5x104 
g/mole.  The reaction was carried out at T=45oC and had a starting monomer concentration 
Cm,0=0.005 g/cm3.  The control interval was kept uniform at ∆ti=∆t=120s.  This increasing Mw 
gives good contrast to a corresponding batch reaction in which Mw(t) decreases, which is also 
shown in Figure 9.  The overall slope for the controlled Mw was 50.02 g/mol-s, less than 0.1% 
away from the target slope. The target trajectory was met by the controller within a 6% error bar. 
 The early oscillatory swings about the model path are due to the use of Ansatz values for α and p 
deliberately far from the actual values, which allowed these latter values to self-correct and hence 
bring the reaction very close to the control trajectory.  The A2 term in equation 9 was negligible 
through most of the reaction, increasing at the end to 8%. 
 

 
Figure 9.  Linearly increasing target Mw trajectory (red), and the reaction that followed it (black).  
Also shown is the uncontrolled, batch trajectory for Mw. 
 
 Equation 2 was used to compute the experimental values of Mw,inst, denoted Mw,inst,e , from 
Mw,e(t).  The results are shown in figure 10, with Mw,e also shown to contrast the two quantities. 
Using equation 1 the target trajectory for Mw,inst,t can be computed from the target trajectory 
Mw,t(t)=Mw,o+st, where Mw is in g/mole, and t in seconds, and Mw,o=3.5x104 and s=50.0 g/mole-s.  
This yields  
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The curve of Mw,inst,t through Mw,inst,e in figure 10 follows equation 46 and is not a fit 
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Figure 10.  Mw,inst,e computed from Mw,e via equation 2 is shown, together with Mw,e.  Also shown is 
the target trajectory for Mw,inst,t given by equation 46 
 
 Figure 11 shows both Cm(t) and Cp(t) from the reaction of figure 9.  The fluctuations in Cm 
that lead to the fluctuations in Mw and Mw,inst seen in figure 10 are apparent.  Also shown in figure1 
are the pump flow rates, where the granularity corresponds to the finite width of the control interval, 
120s.   Compared to the total reaction time of 15,800s, ∆t/ttotal=0.0076.  The oscillations in Cm are 
directly correlated to the spike-like behavior of the flow rate Q(t);  Q(t) is at its maximum when Cm 
is at its minimum and the controller is requesting a large increase in Cm, after which Q(t) tapers off 
as Cm increases and when Cm reaches a local maximum it instructs the pump to shut off, Q(t)=0.  
Technical refinements in controller response can be made to reduce the oscillations, but the net Mw 
fidelity to the control path is already very good.  The oscillations in Cp are largely suppressed 
because, while Cm is an instantaneous measurement from the UV detector, Cp integrates the flow of 
monomer into the reactor to give total accumulated polymer, as seen in equation 16. 
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Figure 11.  Cp and Cm in the reactor (g/cm3) during the reaction of figure 5.  Also shown is the flow 
rate as modulated by the automatic controller.  The control interval is 120s. 
 
III.1.5   Associated reduced viscosity results for linear Mw vs t at T=45oC 
 There are cases where it may be difficult to obtain the good, continuous Mw,e data needed for 
this type of controller.  Such cases include significant particulates in the sample stream, such as in 
the case of inverse emulsion polymerization,36  where aggregates are present, or where turbidity is 
high, even in dilute solutions.  In such cases the reduced viscosity offers a powerful alternative 
because it is not very sensitive to dense particulates, since these have low intrinsic viscosities, and is 
not sensitive to turbidity and other optical effects.  Since it is related to molecular weight, often by a 
Mark Houwink relationship it can serve as a useful replacement for direct measurements of Mw.  
Vega et al. used periodic manual measurements of intrinsic viscosity on reaction aliquots, together 
with densitometer measurements for conversion to achieve a closed loop controller via an 
experimentally determined Mark Houwink relation. 

Figure 12 shows ηr and instantaneous ηr,inst computed by the general equation 3 for the 
reaction of figures 9 and 10.  The two curves are reminiscent of Mw,e and Mw,inst,e in figure 10, and an 
ηr controller can be constructed by re-tracing the steps in the above Mw controller.  The major 
difference is that ηr is not generally directly proportional to Cm, so that a polymer-specific 
relationship might be used based on a Mark-Houwink relationship between (instantaneous) intrinsic 
viscosity [η]inst and Mw,inst. 

ββη minst CpaM '][ ==                                               (41) 
Where β ranges from 0.5 for an ideal random coil to 0.8 for a coil with excluded volume.  Figure 13 
shows ηr,inst vs Mw,inst.  The power law obtained, β=0.72, falls within the expected range.  It is noted 
that Cp in the detector train is low enough that the reduced viscosity is essentially equal to the 
intrinsic viscosity; i.e. ][ηη ≅r . 
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Figure 12.  Data for ηr and ηr,inst corresponding to the reaction of figure 9. 
 
Associated <S2>z results for linear Mw vs t at T=45oC 
 The angular extrapolation of the MALS data allowed <S2>z  in equation 9 to be computed.  
Using equation 3  <S2>z,inst was also computed and is shown in figure 9 vs Mw,inst,e.  A power law of 
the form  

γbMSRg =>≡< 2/12                                         (42) 
is expected, where Rg is defined as the root mean z-squared radius of gyration of the polymer.  For 
random coils γ is expected to fall in the range 0.50 (ideal coil) to 0.60 (with excluded volume).  
γ=0.51 is in this range. 

 If the relation holds that hydrodynamic volume is proportional to Rg
3 then, because 

[η]�Rg
3/M the exponents for Rg and [η] are expected to have the relationship 13 −= γβ .  The 

exponents γ=0.51 and β=0.72 are within 25% of this.  The extrapolations shown do not cover a full 
order of magnitude so are not expected to yield highly precise exponents, rather good estimates 
which might be useful in qualitatively determining features such as branching and cross-linking in 
future reactions on branching/cross-linking systems, especially those where branching/cross-linking 
agents might be used as control variables. 
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Figure 13.  Power law plots of Rg,inst and ηr,inst vs Mw,inst 
 

To test the robustness of the Mw controller the same linear Mw vs t as in the reaction at 
T=45oC (figures 9 and 10) was requested but with a rising T.  In the isothermal experiment above p 
and α remained approximately constant throughout, as expected for constant temperature and very 
slowly dissolving initiator.  With changing temperature, however, these parameters are no longer 
constant and the ability to successfully re-compute them during the reaction is a strong test of the 
‘free of kinetic model’ nature of the controller.  In other words, the effects of T are entirely subsumed 
into p and α and their re-computations, which make no model assumptions about their temperature 
dependence. 
 Figure 14 shows a target trajectory with the same slope s=50.0 g/mole-s as in figure 9, but 
with temperature increasing by steps from 45oC to 57oC during the reaction. The re-computation of p 
and α during the rising temperature reaction yielded performance comparable to the isothermal 
reaction of figure 9.  Values of α ranged from 1.0x10-4 s-1 to 2.5x10-4 s-1, while p ranged from 
4.0x107 to 9.0x107  These data demonstrate how the controller can continue to function even when 
reactor temperature changes significantly during the reaction, without requiring a detailed kinetic 
model. 
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Figure 14.  Automatic Mw controller results when the reactor temperature is changing. 
 
III.1.6  Conclusions on basic principles automatic controller for conversion and Mw  
Direct automatic control of monomer concentration and of Mw during linear chain growth free 
radical polymerization has been achieved for the first time.  The controller does not depend on a 
detailed kinetic model and uses two proportionality constants based on fundamental rate and free 
radical polymerization principles, α(t) and p(t).  It is the first step in extending the automatically, 
actively controlled variables to include chain transfer agents, initiator, temperature, branching agents, 
quenchers, inert and non-inert gases, and other variables, as well as to extension to composition 
control in copolymerization. 
 It is noted that ACOMP is frequently used in reactions with high solids contents37,38,39  
including emulsion40,41 and inverse emulsion36 reactions and the current controller is directly 
applicable to such cases without modification.  The only difference in using ACOMP with high 
solids is that a higher dilution level is used.  Whereas 80x dilution is used here, yielding on the order 
of 5x10-4 g/cm3 in the detector train, an industrial type reaction with 50% solids would be diluted 
1,000x.  The controller itself is unaffected by the amount of dilution. 
 Extension to copolymerization will follow a similar strategy; there will be proportionalities in 
the rates, αA and  αB , for comonomers A and B, which can be frequently re-computed during the 
copolymerization, so that composition trajectories can be determined without recourse to a model, so 
that concepts such as reactivity ratios, while quite useful, are not required for the controller. The ratio 
of feed rates of comonomers A and B can be determined by the current values of αA and  αB in order 
to follow a desired composition trajectory.  The molecular weight can be simultaneously controlled 
by the total rates of A and B feed, where p can now be a function of instantaneous comonomer 
concentrations, and can also be re-computed if and as it changes during copolymerization.  ACOMP 
has been used extensively for monitoring copolymerization reactions,42,43,44,45,46,47,48 so that the 
underlying methodology needed to provide composition information to the copolymerization 
controller already exists. 
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The current controller is for linear chain growth and so is not directly usable for branching 
growth.  ACOMP has already been utilized, however, to monitor molecular weight and intrinsic 
viscosity during branching and cross-linking reactions,49 so that the basic data stream needed to 
develop a branching controller has been demonstrated. 
 The current work forms a basis for extending polymerization reaction control, which will 
involve much concerted extra effort and additional approaches, to many types of reactions of current 
interest. Areas where control may offer intriguing new opportunities include controlled radical and 
other living type reactions that underlie much progress in stimuli responsive polymers of unique 
compositions, MWD, and architectures,50,51,52,53,54,55  nucleobase polymers56,57 , and information 
containing polymers,58,59

  On the other end of the spectrum, high volume industrial polymers, such as 
polyolefins, can benefit from direct active control approaches.  The complexities of synthesizing 
these polymers has recently been highlighted60 and an extensive literature exists.61,62,63 

While this work has not used any formal engineering principles, efforts are currently 
underway to use non-linear control algorithms and optimization procedures derived from the vast 
area of process control theory and practice. 

          2. Production of multimodal MWD 
In batch and semi-batch polymerization reactions it is typical to end up with a final polymeric 
product that has unimodal distributions as concerns molecular weight, comonomer composition, and 
branching.  The types and shapes of these distributions can be varied by many different control 
variables, including reagent concentrations, temperature, and, in the case of semi-batch production, 
flow rate of reagents into the reactor.   
 The molecular weight distribution (MWD) of a polymer is one of the single most important 
characteristics defining its usefulness for applications.  MWD controls mechanical properties and 
processability, as lower Mw fractions are easier to process when a fraction of higher Mw is 
present.64,65,66 There is often an advantage to having two or more distinct polymer sub-populations. 
The production of multimodal polymers is frequently achieved by blending polymers made in 
separate reactions,67,68,69 often in separate reactors.70,71,72   

This work concerns the production of two or more modes (or sub-populations) during a 
polymerization process.  Production of multi-modal molecular weight distributions is the focus with 
free radical homopolymerization of linear (unbranched) chains.  The instrumentation used to achieve 
this is ACOMP (Automatic Continuous Online Monitoring of Polymerization reactions), 73 together 
with a feedback control interface:  ACOMP/CI.  A weight average molecular weight controller (Mw 
controller) was recently introduced and used in conjunction with an ACOMP/CI to follow target 
monomer concentration and molecular weight trajectories, producing specific final MWDs.74  The 
Mw controller does not require any detailed kinetic models.  Rather, it uses two fundamental 
principles:  1) The rate of monomer conversion to polymer is proportional to monomer 
concentration, Cm, at any instant, which is a universal rate concept.  2) For free radical growth of 
linear chains the instantaneous value of weight average molecular weight, Mw,inst, is also proportional 
to Cm. 

This work using the Mw controller with the new ACOMP/CI allows multimodal polymer 
populations to be built up in successive stages in a single reactor.  Here, the automatically controlled 
flow of monomer into the reactor is used together with one or more automatically controlled discrete 
additions of chain transfer agent (CTA) to achieve two or more sub-populations in the final polymer 
product. 
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III.2.1  Use of a chain transfer agent to control Mw automatically 
In considering the ways in which molecular weight can be changed quickly in a minimally 

disruptive manner during free radical polymerization, chain transfer agents (CTA) are superior for 
several reasons:  1) an immediate, calculated large decrease in Mw can be made by adding a specific 
amount of CTA, 2) the CTA does not change the reaction rate 3) the CTA does not require changing 
temperature or adding any additional reagents, such as monomer, and 4) use of CTA provides a 
wider dynamic range of Mw control than any of the other readily available methods. 
 CTA can be contrasted with the other means of changing Mw, such as controlling 
temperature, or initiator or monomer concentration.  Temperature is a blunt means of controlling Mw. 
 Raising T reduces Mw and increases the reaction rate, and lowering T increases Mw while slowing 
the reaction.  Increasing initiator concentration [I2] decreases Mw at approximately 1/sqrt[I2], but also 
accelerates the reaction proportionately to sqrt[I2]. Increasing Cm gives an increase in Mw,inst since 
this latter is directly proportional to Cm.  Hence, adding monomer cannot be used to lower Mw in a 
multi-modal population, but could be used for one or more upwards jumps of Mw to produce multi-
modes.  One aspect to be cautious of in such an approach is causing a large increase in reactor 
viscosity, as well as possible strong exothermicity which can lead to reactor gelation. 
 Figure 15 shows fractional monomer conversion, f, vs time.  The reaction rates are the same 
with two different concentrations of CTA and without any CTA, for all three reactions at 45oC.  The 
rates are so close it is difficult to distinguish the data from the separate reactions. In contrast, the 
reaction rates are significantly increased when T is increased to 55oC and then further to 65oC. 

 
Figure 15. Fractional monomer conversion versus time for varying [CTA]/[monomer], and 

for three different temperatures:  45oC, 55oC, and 65oC.  The CTA does not affect conversion 
kinetics, whereas increasing T substantially accelerates conversion. 
 

In this work CTA was used to decrease Mw by as much as a factor of thirty.  To achieve this 
effect with initiator would require an impractical increase of one hundredfold in the initiator 
concentration. Figure 16 shows measured Mw (f=0.75) in a batch reaction as a function of 
temperature from 45C to 65C, and as a function of the concentration of CTA, expressed as the molar 
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ratio of [CTA]/[monomer].  Also shown is final Mw computed from increasing initiator 
concentration at fixed T=45oC.  Clearly, the CTA offers a much broader dynamic range of Mw 
control, while leaving the reaction rate unchanged. 
 

 
Figure 16.  Effects on final Mw of changing [CTA]0/[M]0, T, and 100*[I2]0/[M]0. For the latter, the 
actual [I2]0/[M]0 was multiplied by 100 in order to fit on the same x-axis as [CTA]0/[M]0. 
 

As a prelude to multimodal control, the chain transfer constant, k3, was determined for   pAm 
synthesized using KPS as initiator and NaOOCH as chain transfer agent.  The chain transfer constant 
(CTC) had been previously determined by ACOMP for other types of CTA.75 

The chain transfer constant was determined within the context of the weight average 
molecular weight Mw and weight average chain length Xw=Mw/MAm (where MAm is the molar mass 
of Am, 71.08 g/mole), since that is the moment of the molecular weight distribution (MWD) 
measured by light scattering and used as the basis for control. 
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where kp, kt, and k3 are the propagation, termination, and chain transfer rate constants, respectively, 
and [M], [R], and [CTA] are molar concentrations of monomer (Am), free radical, and chain transfer 
agent, respectively.  Y is a dimensionless constant that varies from 1 for pure recombination to 2 for 
pure disproportionation, with value between 1 and 2 when both processes occur.  For Am 
polymerization disproportionation dominates76.  The dimensionless constant d is the polydispersity 
index Mw/Mn. 
 The reciprocal of equation 43 leads to a linear relation with [CTA]/[M], where all values are 
taken at the outset of the reaction; i.e. where monomer conversion f is in the limit of f=0.  This 
allows use of the known initial ratio of chain transfer agent to initial monomer concentrations, 
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[CTA]0/[M]0, and is also the moment in the reaction when polydispersity is the lowest; i.e. near f=0 
the polydispersity indices, such as Mw/Mn and Mz/Mw are close to their instantaneous values.  For 
free radical polymerization Mz:Mw:Mn = 3:2:1.  It is typical in standard, non-ACOMP methods to 
determine chain transfer properties at low conversion. 
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When plotted vs [CTA]0/[M]0  the slope of  this equation yields k3/kpd.  This dimensionless quantity 
is the chain transfer constant, CTCw, where the subscript ‘w’ indicates it is based on Mw: 
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Xw,inst(f=0;[CTA]=0) is the weight average chain length at f=0 when there is no CTA.  It subsumes 
the cluster of constants kt[R]Y/kpd in equation 43, so that none of these needs to be individually 
known to find CTC.  The standard CTC is based on Mn and is k3/kp, so its relation to CTCw 
determined by light scattering is 
 

wn dCTCCTC =                                                       (46) 
 

Data for CTC determination was obtained using ACOMP by running batch reactions using 
KPS as initiator at No CTA, 0.25 and 0.125 [NaOOCH]:[Am].  For these batch reactions, the 
NaOOCH, Am and DIH20 were charged to the reactor, then stirred and purged for 0.5 h prior to 
polymerization. The reactions were carried out at 45°C, 2% starting AM and 0.5% KPS to total mass 
of monomer.  

 
Figure 17: Batch reaction of polyacrylamide with increasing CTA concentration and determination 
of CTC.  Lines show extrapolation to f=0, which are used for Xw,inst(f=0) in equation 2.  
CTC=7.51x10-4 using equations 43 and 44. 
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 For determination of the CTCw, the Mw for Xw,inst(f=0) were found from extrapolating the 
linear portions of the conversion data in figure 17 to f=0, as seen by the line fits.  CTC=7.51x10-4 
(dimensionless) was found. While McCormick et al.77  used initiator VA-044  at 30C it is still 
interesting to  compare that group’s result with the present CTCn result for KPS. McCormick found 
CTCn =1.06x10-3 and d=Mw/Mn=1.5 by SEC-MALS, and also used Xn(f=0) in equation 2.  Applying 
Mw/Mn=1.5 to equation 4 yields CTCn =1.12x10-3 for the data of figure 17, within 4% of 
McCormick’s value despite the different temperature and initiator.   

There are cases where it may be difficult to obtain the good, continuous Mw data needed for 
this type of controller.  Such cases include significant particulates in the sample stream, such as in 
the case of inverse emulsion polymerization,36  where aggregates are present, or where turbidity is 
high, even in dilute solutions.  In such cases the reduced viscosity ηr offers a powerful alternative 
because it is not very sensitive to dense particulates, since these have low intrinsic viscosities [η], 
and is not sensitive to turbidity and other optical effects.  Since [η] is related to molecular weight, 
often by a Mark Houwink relationship, it can serve as a useful replacement for direct measurements 
of Mw.  Vega et al. used periodic manual measurements of intrinsic viscosity on reaction aliquots, 
together with densitometer measurements for conversion to achieve a closed loop controller via an 
experimentally determined Mark Houwink relation.78 In the current ACOMP system the 
concentration of polymer and shear rate are low enough that the approximation is used that ][ηη ≅r . 
 This approximation is usually made for viscosity measurements made in GPC characterization. 
 Figure 18 shows [η] vs conversion for the same reactions as in figure 17.  The effect of the 
CTA on [η] is clear, and a similar treatment for chain transfer constant as it relates to [η] can be 
made, and is briefly considered in Results and Discussion. 
 
 

 
Figure 18.  The effect of CTA on intrinsic viscosity [η]. 
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III.2.2 Results for bimodal and trimodal MWD  
 

Figure 19 shows results for automatic production of a bimodal MWD.  Mw shows an abrupt 
change in slope when the CTA is added at Cp=0.0075 g/cm3, and then smoothly decreases, Mw,inst 
goes through an abrupt drop from an average Mw,inst ~ 1.43x106 g/mol to Mw ~ 56,000 g/mol.  It is 
noted that to produce a drop of 26x in Mw by using initiator alone would have required an 
impractically huge increase of 650x in initiator concentration. 

 
Figure 19. Mw and Mw,inst during the production of a bimodal polymer production 
 

Figure 20 shows the automatic flow rate decisions made by the controller, both for the 
monomer and CTA flow rates from their respective reservoirs. 

 
Figure 20.  The CTA and monomer flow rates into the reactor during the reaction of figure 19. 

There can be situations where MALS is impractical, e.g. in the cases of high particulate 
content or turbidity.  In these cases measurement of reduced viscosity ηr can offer a robust alternative 

44 
 



for control.  A single capillary viscometer has no optical components and ηr is normally unaffected 
by particulates in a polymer solution.  Such single capillary viscometers are also inexpensive and 
need no calibration.  Use of single capillary viscometry has been widely discussed in previous 
work.37,38,79  Intrinsic viscosity [η] is the limit of ηr at zero concentration.  The values of Cp and 
shear rates in the ACOMP visometer are low enough that ηr ~[η].  This latter assumption is virtually 
always made in viscometric analysis of GPC data, where the Cp and shear conditions are comparable. 
 Figure 21 shows ηr and ηr,inst where ηr,inst is computed from the ACOMP data for ηr and Cp 
according to 

( )
p

rp
instr dC

Cd η
η =,                                                       (47) 

The data are from the same bimodal reaction of figure 19.  The behavior of ηr and ηr,inst closely 
mirror the behavior for Mw and Mw,inst in figure 19;  there is a sudden change in slope of ηr when the 
CTA is added and ηr,inst drops abruptly. 

 
Figure 21.  Behavior of ηr and ηr,inst for the bimodal reaction of figure 6. 
 
The relationship between reduced viscosity and molar mass of the form 

βη instwinstr AM ,, =                                          (48) 
can be used to control Mw,inst via measurements of ηr,inst.  Figure 22 takes the average values of ηr,inst 
and Mw,inst in the two bimodal regions of figures 19 and 21, which yields a power law of β=0.594, 
which is in the normal range of β for random coils (0.5 for an ideal coil and 0.8 for a random coil 
with high excluded volume).  Also shown in figure 22 is ηr vs Mw.  Figure 21 shows that there is a 
much smaller variation in ηr  than ηr,inst, and figure 19 shows the smaller variation of Mw compared 
to Mw,inst, which yields a significantly different power law for ηr vs Mw. 
 When using a viscometer instead of light scattering for control, a target trajectory can be 
established, Mw,inst,t, and then equation 48 can be used to find the corresponding target path ηr,inst,t. 
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Figure 22.  Determination of A and β in equation 48 for ηr,inst  vs Mw,inst, from the average values of 
the high and low mass modes.   
 

A trimodal population was produced automatically by stabilizing an initial Mw, followed by a 
first addition of CTA and then a second addition of CTA.  The results are shown in figure 23. The 
inflection points upon each addition of CTA are noticeable in the cumulative Mw data, but not 
pronounced.  The Mw,inst data clearly shows the three molecular weight modes produced. 

 
Figure 23.  A trimodal population produced by two additions of CTA. 
 
 The chromatography-free method of computing MWD developed in this project (discussed in 
section IV.1) was used with the Mw,iinst values shown in figure 23 and the results are shown in figure 
24.  The instantaneous value of Mw/Mn=2 was used together with a log-normal distribution.  Also 
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shown in figure 24 is the GPC chromatogram.  The two methods are in remarkably good agreement 
(there is no fitting used between the two MWD results).  They both illustrate that, although there is a 
trimodal population, clearly seen in the Mw,inst in figure 23, the natural instantaneous width of the 
MWD is enough to smear out the net MWD so that the three sub-modes cannot be resolved by GPC 
or the chromatograph-free approach.  Interestingly then, the Mw,inst gives the most direct evidence of 
the trimodal population, with no model assumptions and no auxiliary chromatographic 
measurements. 

 
Figure 24.  MWD by both the Mw,inst data from ACOMP with the log-normal assumption for 
instantaneous MWD, and by GPC using PEO calibration standards. 
 
 Figure 25 is a superposition of normalized MWD for the bimodal distribution of figure 19 
and the trimodal distribution of figure 23. ‘Normalized’ means the integral of the distribution is 
unity.  The MWD based on the Mw,inst computations are shown.  Both MWD cover the same range of 
molecular weights, but the bimodal distribution emphasizes the extremes and would be expected to 
have higher polydispersity.  

 Table 2 compiles the number, weight, and z-average masses, Mn, Mw, and Mz, respectively, 
and the polydispersity indices Mw/Mn  and Mz/Mw. As expected the Mw/Mn for the bimodal is higher 
than for the trimodal, by both methods.  The agreement between Mw,inst and GPC results is better for 
the bimodal than the trimodal, which is unexpected, since figure 19 for the bimodal shows a 
seemingly greater disparity between the GPC and Mw,inst MWDs than in figure 23 for the trimodal.  
This may be due to the high M tail on the Mw,inst MWDs for the trimodal in figure 23, which weights 
the Mw and Mz averages towards higher values.  It is not certain if the high M deviation between 
GPC and Mw,inst MWDs is due to the GPC column reaching its exclusion limit, where all high M 
molecules elute at the same elution volume, or to some other effect. 
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Figure 25.  Superposition of normalized bimodal and trimodal MWD from the Mw,inst computations. 
 
Table 2.  Comparison of molecular weight averages and polydispersities from the GPC and Mw,inst 
determinations of MWD for bimodal and trimodal MWD. 

  Bimodal figure 19  Trimodal figure 23 
  by Mw,inst by GPC  by Mw,inst by GPC 
Mn  3.75E+04 3.31E+04  3.52E+04 3.59E+04 
Mw  3.63E+05 2.71E+05  2.82E+05 1.70E+05 
Mz  1.43E+06 1.07E+06  1.60E+06 5.60E+05 
Mw/Mn  9.66 8.20  8.01 4.73 
Mz/Mw  3.96 3.96  5.66 3.30 

 
III.2.3  Outlook on automatic production of multimodal MWD 
Multimodal molecular weight distributions for unbranched polymers produced in free radical 
reactions have been created using an automatic feedback controller.  The controller continuously 
monitors polymer Mw and constantly adjusts the monomer flow from reservoir to reactor in order to 
achieve a specified Mw trajectory, and then adds an amount of CTA to create a second, lower Mw 
mode, when a target amount of the first Mw mode is reached.  The amount of CTA can be 
predetermined or calculated in real time based on the current weight average molecular weight and 
the target weight average molecular weight using a previously defined CTC. Further subsequent 
additions of CTA can be made to produce additional modes.   
 A non-chromatographic method for determining MWD using ACOMP measurements of 
Mw,inst and an assumed log-normal distribution for the instantaneous MWD yields MWD for the final 
product in good agreement with PEO-equivalent GPC MWD.  Because of the instantaneous width of 
the MWD neither GPC nor the model-dependent Mw,inst method of obtaining final MWD can resolve 
all sub-populations.  In contrast, the model free Mw,inst obtained directly from the ACOMP data 
reveals the multiple modes. 
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     3.  Copolymer composition control, and simultaneous Mw and composition control 
 
III.3.1 Basic principles approach to automatic composition control 
 The ultimate goal of the controller is to lead the reaction along simultaneous target trajectories 
for  instantaneous weight average molecular weight, Mw,inst,t(t), and for instantaneous composition, 
which can be represented as the instantaneous average mass fraction of comonomer A incorporated 
into chains forming at any instant t, FA,inst,t(t).  The instantaneous average mass fraction of 
comonomer B incorporated into the chain is simply FB,inst(t)=1-FA,inst(t).  In some cases it will be 
preferable to use polymer concentration Cp as the independent variable, instead of t, especially in 
cases where the endproduct should have specific composition distributions.   
 In the homopolymer controller case a single rate constant α and a molecular weight 
proportionality constant, p, were needed to control the trajectory of Mw, each of which can be re-
computed during the reaction.21  To extend to a copolymer system the rates αΑ and αB are introduced, 
such that, over an interval ∆t the amount of A and B converted to polymer are 
 

tCC

tCC

BBpB

AApA

∆=∆

∆=∆

α

α

,

,

                                                 (49a,b) 

where CA and CB represent the concentration of monomers A and B in g/cm3.  In reality αΑ and αB 
are subtly complex;  for any given composition they embody the relative reactivities of A and B as 
well as the concentrations of A and B.  Hence, there is a stronger requirement to re-compute αΑ and 
αB during even isothermal reactions, compared to re-computation of α in the homopolymer case.  
Although it is explicitly acknowledged that αΑ and αB can change throughout the reaction, and hence 
should be re-computed during the reaction, cases have been found where αΑ and αB remain constant. 
24 
 The issue of the relationship between monomer concentration and instantaneous weight average 
molecular weight Mw,inst is also more complex than in the homopolymer case, where the single, 
measurable proportionality constant p was used 

minstw pCM =,                                                          (50a) 

where Cm is the monomer concentration in g/cm3 and all molecular weights in this work are 
expressed in g/mole.  It is noted that ‘Mw,inst’ is the general term for ‘instantaneous weight average 
molecular weight’, whereas ‘Mw,inst,t’ is the term for ‘target instantaneous weight average molecular 
weight’.  While no model was needed for p, since it is frequently measured during the reaction, it 
implicitly subsumes factors such as polymerization, termination, and initiator decomposition rates, 
kp, kt, kd, respectively, initiator efficiency, chain transfer, and initiator concentration.19 

 For the copolymer case p is dependent on reactivity ratios and hence on FA; i.e. p=p(FA) so that 
( ) ( ) mAAinstw CFpFM =,                                              (50b) 

where FA is abbreviated notation for the instantaneous average mass fraction of comonomer A 
incorporated into polymer chains formed at any instant, Finst,A, and is given by 
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Since p(FA) can be computed and re-computed during a reaction, two independently chosen 
composition and molecular weight trajectories, FA,t(t) and Mw,inst,t(t) can be followed simultaneously.  
 There are monomer reservoirs and feed pumps for monomer A and monomer B, at 
concentrations CA’ and CB’,  with independently controlled feed rates into the reactor of QA(t) and 
QB(t), respectively.  The goal of the controller is to automatically control QA(t) and QB(t) to follow 
both the chosen target trajectories FA,t(t) and Mw,inst,t(t).  The ratio of the feed rates at any instant will 
generally control FA(t), whereas the sum of the rates will generally control Mw,inst(t). 
 For the copolymer case the total monomer concentration m is given by 

BAm CCC +=                                                            (52) 
 It is noted that computation of Mw by light scattering for copolymers becomes significantly more 
complex if the comonomers in the copolymer have significantly different dn/dc in the solvent used 
when there is significant breadth to the composition distribution.  This problem has been solved 
using ACOMP, but requires specific implementation.25 .  In the current case dn/dc of Am and SS in 
water are close enough to each other that a constant value of 0.180 cm3/g was used.  Details on dn/dc 
and its treatment for SS and Am were given previously.26  
 The instantaneous average fractional compositions FA and FB=1-FA are required for the 
controller. The primary quantity that the ACOMP system measures in terms of conversion is the 
concentration of each monomer CA and CB.  The concentration of each monomer in polymeric form 
CA,p and CB,p at any point in the reaction is found from mass balance by 
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where V(t) is the volume in the reactor at time t, CA’ is the concentration of monomer (g/cm3) in the 
A reservoir, and QA(t) is the flow rate (cm3/s) of A from the reservoir into the reactor.  The same 
notation applies to comonomer B.  The cumulative fraction of polymer consisting of A is fA, and of 
B is fB 
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where fA(t)+fB(t)=1 and the total concentration of polymer is 
pBpAp BCC ,, +=                                                           (55) 

The instantaneous most probable fraction of A in polymer chains produced at any time t is  FA given 
by equation 51.  Since dAp=-dA=αAAdt, FA can be written as                                      
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Equation 56 shows the power of αΑ and αB, since they not only determine the consumption of each 
comonomer, but also the instantaneous most probable composition FA, and FB=1-FA.  There is, of 
course, a distribution of compositions around the most probable value.  Here, the most probable 
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instantaneous value of FA will be referred to as the ‘average value of instantaneous composition’.  
Model distributions were previously used in ACOMP to compute full composition distributions from 
the most probable values.27  A similar method is illustrated in one of the cases below. 
 
III.3.2  Combined, simultaneous controller for Mw and copolymer composition 
The goal of the controller is to follow simultaneous target trajectories for molecular weight and 
composition, Mw,inst,t(t) and FA,t(t), respectively, in order to produce a final composition distribution 
Cp(FA) where Cp(FA)dFA is the concentration of polymer chains that have a fractional composition of 
monomer A, FA, within the interval FA to FA+dFA, and a molecular weight distribution Cp(Mw,inst) 
where Cp(Mw,inst)dMw,inst is the concentration of chains that have Mw,inst  in the interval Mw,inst to 
Mw,inst+dMw,inst.  The controller uses a control interval ∆t starting at time t, over which the required 
changes in CA and CB are made with the monomer feed pumps in order to obtain Mw,inst,t(t+∆t) and 
FA,t(t+∆t). 
 At a given time, t, a control interval begins, where CA(t), CB(t), FA(t), CA,p(t), CB,p(t), Cp(t), fA(t), 
and Mw(t) are all known from the ACOMP data stream.  The target trajectory for FA is denoted by 
FA,t(t).  By the end of a control interval of length ∆t the composition should be FA,t(t+∆t).  This places 
the following requirement on ∆CA(t+∆t) and   ∆CB(t+∆t):  Using equation 56 
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where αA and αB are the current values that have been directly measured from the ACOMP data 
stream.  Equation 57 specifies only the ratio of the required ∆CA(t+∆t) and   ∆CB(t+∆t), but not the 
sum.  The sum is the change in total monomer concentration ∆Cm(t+∆t)=∆CA(t+∆t)+∆CB(t+∆t), and 
this is a degree of freedom.  This degree of freedom is used to simultaneously fulfill the target 
molecular weight, as follows.  
 From equation 50b the target for the total monomer concentration at any time must be 
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where p[FA(t)] explicitly recognizes that p is dependent on copolymer composition.  The method 
of the first molecular weight controller for homopolymer can then be used.  p(FA) is computed 
over a previous interval and that value is used over the subsequent control interval, under the 
premise that FA changes slowly enough over control intervals to use a previous value.  The rest of 
the procedure in that controller is then followed, including solution of the quadratic equation for 
determining the necessary average monomer concentration over the control interval, <Cm>.  
Upon further inspection of  the Mw controller above, it was found that case iv) leads to non-
optimum flowrates, and the solution to case i) should be used for case iv) as well; i.e. use of the 
negative root solution of case iv above, equations 38 and 39, has been eliminated.    
 Reaching the target molecular weight over the interval t to t+∆t, Mw,inst,t(t+∆t), will fix ∆Cm(t+∆t) 
to a target value for that interval, ∆Cm,t(t+∆t) so that the necessary monomer concentration is reached 
at the end of the interval t to t+ ∆t.  The total target concentration of monomer at t+∆t is 
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Then, the target value for change in total monomer concentration over the interval t to t+∆t, 
∆Cm,t(t+∆t), is the required difference in total monomer concentration from t to t+∆t, in order to 
reach  Cm,t(t+∆t).   

)()()()()( ,, ttCttCtCttCttC BAmtmtm ∆+∆+∆+∆=−∆+=∆+∆                            (60) 
So, the required change in CA by the end of the control interval is  
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and ∆CB(t+∆t) is  

)()()( ttCttCttC AmB ∆+∆−∆+∆=∆+∆                                (62) 
Now, the total change ∆CA over ∆t is due to the loss of A due to polymerization over ∆t and the 
amount of A pumped in over ∆t  
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which yields the sought after automatically set pump rate QA(t)  
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Similarly, the pump rate QB(t) from monomer B reservoir is automatically set to 
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V(t) is the volume of the reactor at time t, and is computed taken into account both the inflow of 
fluid from reservoirs A and B, and the outflow from the ACOMP withdrawal rate q. 
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where V0 is the initial volume of the reactor.  Pumps A and B are set to QA(t) and QB(t) at t, the 
beginning of the control interval. 
  
Limitations   
 The naturally occurring values of p, αA and αB put certain limitations on the target trajectories 
Mw,inst,t(t) and FA,t(t).  The changes in these latter two quantities over interval ∆t are 
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and, taking the total differential of FA in equation 57 
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Or, more compactly, 
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Equations 66 and 68 show that, in addition to p(t), αA(t) and αB(t), the achievable value of ∆CA(t+∆t) 
further limits ∆Mw,inst(t+∆t), and ∆FA(t+∆t), and hence also ∆FB(t+∆t) =1−∆FA(t+∆t).  The lowest 
value of ∆CA(t+∆t) is when no pumping from the A reservoir to reactor occurs, QA(t)=0, for which 
equation 62 becomes the minimum achievable change in CA, ∆CA,min(t+∆t) 
 

( ) ttCttC AAA ∆−=∆+∆ )(min, α                                     (69a) 
 

and similarly for the minimum achievable change in B, ∆CB,min(t+∆t) occurs at QB(t)=0, so that 
 

( ) ttCttC BBB ∆−=∆+∆ )(min, α                                      (69b) 
 
This means the maximum negative change in total monomer concentration over ∆t is 
 

)()()( min,min,min, ttCttCttC BAm ∆+∆+∆+∆=∆+∆                              (70) 
 
 The maximum negative change (drop) in Mw,inst,t(t) that can be demanded over ∆t, 
∆Mw,inst,nm(t+∆t) is hence at QA(t)=QB(t)=0, and is given by 

 
[ ] ttCtCpM BBAAnmtinstw ∆+−=∆ )()(,,, αα                               (71) 

This fundamental limit is placed by p(t), αA(t), αB(t), and the current abundances of comonomers 
CA(t) and CB(t). 
 In principle there is no fundamental maximum positive increase in Mw,inst, since this is governed 
by equations 59 and 62, which depend on, for a given reactor volume V(t) and abundances of 
comonomers CA(t) and CB(t), reservoir concentrations CA’, CB’, and flow rates QA, QB, whose 
maximum values are limited only by technical considerations. 
 The maximum positive changes in ∆FA(t+∆t) are similarly limited by the same technical 
considerations of V(t), CA’, CB’, and flow rates QA, QB.  Since the ∆CB(t+∆t) cannot be eliminated, it 
can only be minimized by setting QB=0 in achieving the technical maximum of ∆FA(t+∆t),  
∆FA(t+∆t)technical max, in which case 
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When comonomer B has a high reactivity ratio rB, the αBCB∆t term can seriously reduce this 
technical maximum. 
 Unlike the fundamentally limited Mw,inst,nm(t+∆t), given by equation 71, the maximum 
negative change in ∆FA(t+∆t), ∆FA(t+∆t)technical mn, is technically limited.  The way to produce 
∆FA(t+∆t)technical mn  is to set QA=0 and maximize the feed of B into the reactor, subject to its 
technical limitations.   In this case 
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 When establishing target trajectories Mw,inst,t(t) and FA,t(t) the above limitations can be used to 
make sure the trajectories lie within both the fundamental and technical limitations of the system.  
When establishing target trajectories simultaneously, further constraints appear on the range of 
allowable simultaneous trajectories.  This is because, while  equation 59 connects the ∆Cm(t+∆t) 
necessary to achieve a target ∆Mw,inst,t(t+∆t) over interval t to the necessary ∆CA(t+∆t) and ∆CB 
(t+∆t) over the interval, these latter two quantities depend on CA(t) and CB(t) at the beginning of the 
interval, as well as the most recent values of p(t), αA(t), and αB(t), and are hence trajectory-
dependent.   
 One way to attempt to ensure viable simultaneous trajectories is to start with known values of 
CA(0) and CB(0) and Ansatz values for p(0), αA(0), and αB(0),  and then compute the maximum 
changes in ∆Mw,inst(t+∆t) and ∆CA(t+∆t) possible over the first interval, producing the extrema for 
these latter two quantities, thus setting envelopes in which the target trajectories Mw,inst,t(∆t) and 
∆Ft(∆t) must lie over the first interval.  Computing the subsequent extrema from these latter extrema 
yields the new boundaries for Mw,inst,t(2∆t) and ∆Ft(2∆t), and so on.  Case 4) below is an example 
where the last part of the trajectories for Mw,inst,t(t) and Ft(t) could not be met simultaneously, and in 
this case control reverted to an active manual form.  Applying the latter iterative procedure to 
Mw,inst,t(t) and Ft(t) before starting a synthesis could avoid this problem.  Because p[FA(t)], αA(t), 
and αB(t) can vary in complex ways during a reaction, however, it will not be possible to employ the 
iterative procedure without some knowledge or estimates of these latter values.  Without complete 
knowledge, alternatively, hierarchical rule based controllers can be used, which set acceptable 
bounds for deviation from the target trajectories Mw,inst,t(t) and Ft(t) and make control decisions based 
on maintaining trajectories within these bounds 
 Finally, the method can be extended to N comonomers, with the requirement that the 
concentration of each be measurable.  This will not normally be possible with UV spectra alone, so 
other detectors, such as conductivity, refractometry, polarimetry (for chiral molecules, such as in 
natural products) NMR, FTIR, NIR, and Raman scattering may be required.  In the case of N 
monomers, whose rates α1, α2....αΝ are measured via measurement of each comonomer 
concentration, the target composition trajectory for each one, Fi,t, can be established, where the 
current value of Fi(t) is given by 
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III.3.3  Results for the simultaneous copolymer composition and Mw controller. 
 Figure 26 shows a reaction where the target trajectory for copolymer composition FA,t(t) was held 
constant, by holding constant the total monomer concentration as well as the instantaneous fraction 
of SS, FSS.  The total monomer concentration is within 4.6% of the target, with an average error of 
2.9%.  The FSS converges on the trajectory ~900 seconds after control begins, and remains within 
4.5% of the trajectory with an average error of 1.7%.  Also shown in figure 26, for contrast, is the 
trajectory that FSS follows in a batch (uncontrolled) reaction.  Because rSS>>rAm the SS is consumed 
rapidly and FSS dies off.   
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 Figure 27 shows the pump rates for SS and Am, QSS(t) and QAm(t), continuously adjusted by the 
automatic controller according to equations 64a and 64b during the controlled reaction. It is noted 
that it is not sufficient to simply feed SS in order to compensate its more rapid consumption than 
Am, rather, Am must also be fed into the reactor to compensate for its differential loss. 
 

 
Figure 26.  Copolymer control for constant composition and monomer concentration, together with 
target composition and monomer concentration trajectories, FA,t(t) and mt(t), respectively (gray 
scale). The FSS target trajectory is the horizontal gray line.  The experimental trajectory straddles the 
target trajectory.  Also shown is total monomer concentration (right hand y-scale), which was kept 
constant. 
 

 
Figure 27. Pump rates QSS(t) and QAm(t) for Case 1, the reaction of figure 26.   
 
 Figure 28 shows the results for the case where both target composition and Mw trajectories are 
held constant, FSS,t(t)=0.64 and Mw,t(t)=52,000 g/Mol, respectively.  The average of FSS, <FSS> = 
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0.615,  is slightly lower than the 0.64 desired FSS trajectory.  The Mw is within 10% of the 52,000 
g/Mol trajectory after ~35 minutes of the control being active and steadily converges closer to the 
value as the reaction proceeds.  
  

 
Figure 28.  Both composition and Mw are held constant. The horizontal gray lines show the target 
trajectories for composition, FSS,t(t), and for Mw,t(t). 
 
 Figure 29 shows the results when both SS and Mw are targeted to rise linearly in time.  Due to the 
much higher reactivity ratio of SS, FSS would decrease quickly in a batch reaction, as shown in the 
grey curve of figure 26, so an increasing FSS path is a dramatic opposite of the uncontrolled case.  
While both Mw and FSS have a systematic offset from the target trajectory, they both follow the target 
linear increase well, and are far different from the batch trajectories. 
 

 
 

Figure 29.  Mw and composition FSS are both targeted to rise linearly.  The composition and target 
trajectories FSS,t(t) and Mw,t(t) are shown in gray scale. 
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 Figure 30 shows the target  composition trajectory FSS,t(t)  (gray scale lines) for producing a 
trimodal composition distribution and the corresponding experimental result.  The representation 
for figure 30 is versus Cp.  The resulting polymer has similar amounts of high SS content chains 
(FSS~0.75), mid-content SS chains(FSS~0.5), and low content SS chains (FSS~0.25).    The target 
Mw trajectory was set to be constant at Mw,inst,t(t)=3.65x104 g/mole, and this was met to within 
7% and had an average error of 2.9%. 
 This is an example of ‘hybrid automatic control’; control switched from fully automatic to 
active manual control in the final FSS=0.25 stage of the trimodal production. The automated 
controller did well to control both the composition and molecular weight in the first two stages 
until it reached the final stage at FSS=0.25.  After this, Mw was too high to allow monomer to be 
pumped in, causing the SS fraction to continue to drop.  Thus the operator switched to active 
manual mode to maintain the desired SS fraction despite the molecular weight rising slightly 
above the desired path.  This is a case of ‘operator discretion’, where the decision was made to 
allow the Mw to rise above the target path in order to maintain FSS=0.25.  In future controllers 
hierarchical decisions based on priorities can be programmed in when certain limits are reached; 
e.g. maintain the trajectory of composition at the expense of Mw, or vice versa, or automatically 
follow a path that uses a weighted compromise of allowable deviations from the target 
trajectories. 
 Figure 31 shows the variation of p with the ratio of SS and Am concentrations; p(FSS).  These 
values were obtained from averages of the values of p(FSS) on the three FSS(Cp) plateaus in figure 
32, and from homopolymer pSS and pAm reactions.  The explicit dependence of p on FSS was 
introduced in equation 50b.  Significantly, p(FSS) drops by  over an order of magnitude from its 
maximum at p(FSS=0)~2.5x107 cm3/Mol  to its minimum at approximately p(FSS=0.5)~1.75 x 106 

cm3/Mol  , before climbing after this and ending  at  p(FSS=1)~7x106 cm3/Mol .  As the automatic 
controller tried to switch from 50% SS polymer to 25% SS polymer, p(FSS)  increased by ~50%, 
causing the Mw to increase.  The operator, being able to see these data live, was able to identify 
that the Mw and composition trajectories for the third phase were not simultaneously achievable. 
Thus, by switching to active manual mode, the operator was able to maintain the desired SS 
polymer fraction by allowing Mw to be slightly above the set path.  Figure 32 shows the details of 
how p(FSS(t)) (t), αA(t), and αB(t) vary as the reaction proceeds. It should be noted that there are 
artefactual undulations that occur when calculating instantaneous values, such as FSS, α, and 
p(FSS), which are due to the time required for the reactor contents to reach equilibrium when 
monomer flowrates are changed.  Due to mixing residence times in both the reactor and detector 
train mixing chamber, it takes 10’s of seconds for the full signal to appear in the detectors.  These 
artefactual undulations are most prevalent during manual control when the operator toggled the 
pumps on/off to achieve the trajectory rather than the smooth changes produced by the automatic 
controller.   However, the average values of these instantaneous quantities are accurate and 
useful. 
 The above section on Limitations outlines fundamental limits on how much decrease in 
Mw,inst is possible over a control interval, and also treats technical limitations on the minimum 
decrease in FA over a control interval, and the technical limitations on the maximum increases in 
Mw,iinst and FA over a control interval.  The third phase of figure 30, as described in the preceding 
paragraph, is a good example of this.  Due to p(FSS)  rising significantly, the controller does not 
need any additional monomer to reach the desired molecular weight.  Due to the much higher 
reactivity ratio of SS compared to Am, the composition portion requires the addition of SS 
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monomer to maintain the desired SS polymer fraction.   In cases such as this, the live data 
displayed by the controller allow the user to intervene when the paths cannot be physically 
achieved. 

 
Figure 30.  Production of a trimodal composition distribution, while holding Mw constant. 
 

 

Figure 31.  Dependence of p on FSS; p(FSS), as first defined in equation 50b. 
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Figure 32.  shows the computed values of p, αSS, and αAm for production of the trimodal distribution 
 of figure 30 

III.3.4 Instantaneous composition distributions 
 The instantaneous fractional composition provided by ACOMP is the average composition of 
polymer being produced at a given instant. The Stockmayer bivariate distribution is invoked to 
provide the distribution from which that average comes. Let Linst be the instantaneous number-
average length of live radical chains,  

Linst=Mw,inst/〈m〉      (75) 

where 〈m〉 is the average molecular weight of the monomers producing polymer at that instant,  

〈m〉=FAmA+FBmB     (76) 

where mA and mB are the molar masses of monomers A and B, respectively.  Because the molecular 
weight distribution is computed with its own distribution function, the Stockmayer distribution w(u) 
is simplified to focus solely on the composition distribution u centered around the average 
instantaneous fraction of monomer species A, u=F−FA  
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where β=FAFB 1+4FAFB(rArB−1), where the reactivity ratios rA and rB are rss = 2.0 ; rAm = 0.085 
respectively. W(u) is then normalized. 

The instantaneous composition distribution wi is summed with the previous distributions 
w0,…,wi−1 , each weighted by the change in polymer concentration increase over which it was 
computed so that the cumulative composition distribution is  

CCD= ∑ Δ(cp)iwi                                                (78) 
 

 Figure 9  shows the composition distribution from the ACOMP values of FSS, together with the 
computations for full composition distributions based on the Stockmayer approach. 
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Figure 33.  Average and full model based composition distributions for the trimodal composition 
distribution 
 
III.3.5 Summary and outlook for simultaneous copolymer composition and Mw control 
 A fully automatic controller was developed which can simultaneously follow target trajectories 
for copolymer composition and Mw.  The controller does not require a detailed kinetic model.  
Instead, the individual conversion rates of both comonomers, αA and αB are measured, in addition to 
the proportionality constant, p, between total comonomer concentration and Mw,inst.  These three 
measurable parameters allow the pump rates from reservoirs containing monomers A and B to be 
constantly readjusted in order to follow the target trajectories.  The three parameters can also be re-
measured as frequently as required during the process to follow changes in their values as reaction 
concentrations and conditions change.  Figure 32 gives an example of the changing values of αA, αB, 
and p during a controlled reaction. 
 The controller was demonstrated for target trajectories that 1) maintain constant composition and 
comonomer concentration with no Mw control, 2) Maintain both composition and Mw constant, 3) 
increase both Mw and FSS (instantaneous fraction of SS), both of which tend to naturally decrease in 
uncontrolled batch reactions, and 4) produce a trimodal composition distribution while maintaining 
Mw constant.   

 Fundamental and technical restrictions on the latitude of choice for simultaneous composition 
and molecular weight trajectories have been considered, including switch over from fully automatic 
to active manual control when limits are surpassed.  The idea of hierarchical priorities and decision 
making for such cases as a future part of the controller is raised. 
 Without using models, the ACOMP data produce results for the average values Mw, fA, and fB, as 
well as the average instantaneous values Mw,inst, FA, and FB.  As such, average distributions can be 
built, but the full distributions are not directly measured.  If well known distributions are invoked 
then the average distributions can be turned into full distributions, in a model dependent procedure.  
This was demonstrated for composition using the Stockmayer composition distribution. 
 The controller can find use in several contexts.  One is to assure that desired average 
compositions and molecular weights are obtained consistently in polymer manufacturing.  Another is 
to produce controllable composition and molecular weight distributions that can imbue the final 
product with unique properties.  While an exploration of the relationship between specific 
distributions and final properties is beyond the scope of this work, an initial demonstration of the 
polyelectrolyte behavior of two different end products was made using ACM.  Interestingly, the end 
products of polymers unimodal and trimodal in composition, with approximately the same overall 
average Mw and composition, gave very similar polyelectrolyte behavior.  Future work could include 
a deeper exploration of the connection between the distributions and final properties, including film 
forming, solid state, thermal, and other properties. 
 Another application for the composition controller, without the molecular weight control portion 
is for the production of controlled comonomer gradients in living type copolymerizations, such as 
RAFT and NMP.1,80,81,82 ,83,84,85,86,87,88,89,90,91  33,34, 35,36,37, 38, 39, 40, 41  Any type of gradient, such as a 
‘taper’, or simply constant average composition can be programmed. In these cases it is not necessary 
to control the molecular weight since the conditions of the living polymerization determine the 
MWD.  However, the molecular weight controller could be used to correct for deviations from ideal 
living behavior, by automatically feeding the necessary reagents into the reactor, controlling 
temperature, etc. 

60 
 



 Finally, as long as the concentration of each comonomer can be measured then it is possible to 
control the composition distribution of three or more comonomers. 
 
4. Active manual conversion control in industrial type inverse emulsion polymerization  

This is a particularly important milestone because it is the first time in the project that a 
reaction, exactly as used in the polymer manufacturing industry, was run and controlled on the 
ACOMP/CI.  

The inverse emulsion system consisted  of a continuous oil phase, an aqueous phase 
containing Am, surfactant stabilizer, and initiator.  The total Am content was 30%, which is an 
industrial concentration level.  This is contrasted with all the previous experiments where Am 
was at 3% in water.  Extensive changes in the ACOMP system were carried out to accommodate 
the higher viscosities, flow rates, and breaker surfactant dilution solvents used.  Considerable 
effort was invested in these changes and in arriving at proper reaction conditions and continuous 
sample handling.  

Three reactions were performed to evaluate the efficacy of controlling inverse emulsion 
polymerization reactions using initiator feed as the control variable.  These are shown in figure 
34.  A batch reaction carried out at 51 C was performed to establish the natural trajectory of the 
reaction (black trace).  The second reaction established a target conversion trajectory by 
increasing the reactor temperature by 2 degrees C every 30 minutes starting one hour after adding 
initiator (blue trace).  The reactor was held at 51C for the third reaction while the operator used 
initiator feed to steer the conversion along a similar path as the increasing temperature reaction 
(red trace).  Hence, an isomorphic reaction pair in conversion for temperature and initiator was 
achieved (red and blue traces).   

 

Figure 34. The black trace shows monomer conversion for Am in inverse emulsion  at fixed T.  
The target trajectory obtained by changing T (blue) and the active manual control result (red) are 
shown. 
 
 Figure 35 shows the temperature profile used to produce the target trajectory of figure 34 
(blue trace in figure 34).  The initiator flow rate  sequences provided by the operator in order for 
the actively controlled reaction to follow the target trajectory are also shown in figure 35. 
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Figure 35.  The rising temperature sequence from 51C to 61C used to produce the target conversion 
trajectory in figure 34 (blue).  Also shown is the initiator flow sequence controlled by the operator to 
produce the trajectory in figure 34 (red) that follows the target trajectory. 
 
 Figure 36 shows the raw dilute viscosity signals for all three reactions.  As expected, 
whereas the conversion trajectories for the isomorphic pair are very close (red and blue traces in 
figure 34), the viscosity traces do not overlap.  This is because the conversion rate is proportional to 
the square root of initiator concentration whereas the molecular weight is inversely proportional to 
the square root of initiator concentration, so that following a conversion trajectory with initiator will 
not follow the corresponding viscosity trajectory for that reaction.  Hence, a separate active control 
reaction is needed, whereby the target viscosity trajectory is matched via active manual control of 
initiator feed.  This will be done in the next quarter. 

 
Figure 36.  Raw dilute solution viscosity traces for the three experiments. 
 
          5.  Terpolymerization: first results with NMR/ACOMP† 
 UV absorption has been used to separate and follow co-conversion of two different comonomers. 
 To separate three or more with UV alone is very difficult.  In order to extend the project to 
terpolyomerization – i.e. with three comonomers- a 60 MHz process NMR (Cosa-Xentaur) was 
purchased at a very steep discount and integrated into the ACOMP system, receiving a continuous 
flow of dilute reactor liquid.  This allowed first steps in monitoring and control of terpolymerization. 
 For this the monomer Am, SS and sodium acrylate (Ac) were used.  

† A manuscript based on these results is still in preparation for peer reviewed publication as of 10/10/17 
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III.5.1  First time coupling of NMR to ACOMP 

NMR analysis was performed using a COSA Xentaur Aspect AI60 high-resolution FT-NMR 
equipped with a temperature controlled flow cell.  Data collection was performed using the 
manufacturer supplied software.  The NMR was coupled to the ACOMP system using a recirculating 
pump operating continuously at 10 ml/min which withdrew sample directly from the ACOMP 
reactor for introduction to the NMR flow cell.  Withdrawn sample was recirculated back to the 
reactor and no dilution or conditioning of the sample was performed prior to NMR analysis.  The 
flow cell was heated using an Omega 4” 200W tube heater coupled to a filtered and metered air flow 
operating at 0.7-1.0 SCFM.  Sample temperatures within the flow cell were monitored by 
thermocouple and maintained to within 40 ± 1.0 ºC during the course of the reactions.  (10/20/2016 , 
 10/26/2016, and 11/4/2016 did not have NMR heating) 

NMR data collection was performed continuously during the reaction using a 45º pulse with 
D1 = 3 sec, P1 = 15 µsec, DT = 20 µsec and AT = 2 sec.  A graphical representation of the pulse 
sequence is shown in Figure 37.  Automated shimming of the instrument was performed via the 
Aspect software immediately prior to the beginning of data collection. 

 
Figure 37.  Graphical representation of the NMR pulse sequence used for reactions. 
 

NMR spectra were collected using the “Woody Correction” method in the Aspect software.  
This method was developed by Woody Conover of Acorn NMR for use in automated, on-line 
systems.  Briefly, the Woody Correction method uses multiple spectra, with each individual pulse 
transformed then signal averaged in the frequency domain, as opposed to the time domain.  The 
method was developed to reduce field drift broadening which was observed in older permanent 
magnet NMRs.  The Woody Correction in the Aspect software also allows for setting a total number 
of pulses collected before averaging, along with a rejection criteria based on signal RMS quality 
threshold.  For example, the software can be set to average 6 out of 8 pulses with an RMS threshold 
of 80%.  This method helps to correct for problems often seen in on-line/flow cell systems where 
bubbles, precipitates, phase separation, etc. can interfere with the quality of individual spectra. 

The first step in processing the NMR data is to normalize scans. An example of multiple 
NMR scans during a batch (uncontrolled) terpolymerization reaction of Am, SS, and Ac is shown in 
figure 38.  
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The spectra were normalized to the water peak area from 3.7 to 5.3 ppm. Normalization to 
the total signal intensity as well as to the water peak intensity was also performed, but was found to 
be less accurate. Normalizing to the total signal intensity had errors due to baseline noise.  
Normalizing to the water peak intensity lead to inconsistent results due to varying levels of viscosity 
broadening across the different experiments.  Once normalized, each spectra has the x-axis (ppm) 
shifted so that the spectral features are in the same ppm location for each scan.  When present in the 
reaction, sodium formate was used as a reference shift.  For reactions without sodium formate, the 
water peak as the reference.  Normalization and reference shifting of the data was done using 
MestReNova. 
 Several methods of integrating the monomer peak intensities were examined. Processing 
methods were developed using Mnova software using signal smoothing, reference shifting for 
formate followed by deconvolution and peak picking for analysis.  The available standard processing 
methods were found to be inadequate, so an a processing method was developed in-house.  A linear 
background subtraction was performed using the spectra values at 5.98 ppm and 6.55 ppm for the 
linear fit.  These points were chosen by looking the evolution of the NMR spectra for many 
reactions, and observing the spectra is generally flat in these regions and does not contain peaks.  
Once the linear fit is subtracted, the NMR spectra is integrated from 6.36 – 6.535 ppm for Am and 
6.11 – 6.278 ppm for Ac. The region were chosen to maximize the signal from the monomer of 
interest while minimizing the contribution from the other monomer.  Several integration ranges were 
attempted, all giving very similar results once normalized to all scans. Prior to initiation, the 
monomer concentrations are known, thus the integral areas are proportional to the monomer 
concentration.  As the reaction proceeds, the loss of integral area is directly proportional to the 
monomer concentration. 
 

 
Figure 38.  NMR data for the batch (uncontrolled) terpolymerization of Am, Ac, and SS. 
 
III.5.2  Results on terpolymerization with combined NMR and UV in ACOMP 
 Figure 39 shows the instantaneous mass fractions of the three comonomers during the reaction 
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shown in figure 38.  The NMR separated the Am and Ac signals to give the respective fractions and 
instantaneous fractions, while the UV was used to separate out the average and instantaneous mass 
fractions for SS. 

 
Figure 39. The instantanous mass fractions of Am, SS and Ac from combined NMR and UV data 
from ACOMP for the batch terpolymerization of figure 38.. 
 
 Figure 40 shows the corresponding Mw and reduced viscosity data for the batch (uncontrolled) 
terpolymerization of figure 38. 

 
Figure 40.   The Mw and reduced viscosity behavior associated with the batch terpolymerizatoin 
reaction of figure 38. 
 
 A first attempt at active, automatic terpolymerization composition control was made using a 
constant SS mass fraction as the target trajectory.  The results are seen in figure 41.  It took over two 
hours to get close to the target Finst,SS=0.65 target trajectory, and this was held within about 15% for 
over 12 hours.  At 62,000 seconds control action ceased and the reaction returned to uncontrolled 
batch mode, with the expected results that SS, which has the highest reactivity ratio of the three 
comonomers was most rapidly consumed.  The results, while not showing the precision of the 
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copolymer results above, are certainly promising and improvements can lead to monitoring of 
copolymerization involving four or more comonomers.  Such multiple comonomer reactions are 
commonly used in paint, coating, and adhesive industries. 

 
Figure 41.  First results for composition control of a terpolymerization reaction using combined 
NMR and UV data from ACOMP. 
 
IV. Additional groundbreaking     
 
         1. Chromatography-free MWD obtained by ACOMP during polymerization 

The quantities measured directly by ACOMP are model free. Equation 2 shows the 
relationship between the cumulative weight average molecular weight Mw(t) measured directly by 
ACOMP and the derivative yielding the instantaneous weight average molecular weight Mw,inst(t).  
These two characteristics can be quite different from each other, as seen in figure 42. 
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Figure 42.  Contrast between Mw and Mw,inst, both of which are model-free characteristics 
determined by ACOMP during polymerization reactions. 

 
The basic principles T/F controllers presented above do not require detailed models for their 

robust performance.  Since ACOMP also yields a model-free Mw,inst there is an opportunity to 
combine this latter with model instantaneous distributions to enable chromatography-free complete 
MWD.  

There is a long historical body of work on polymer MWD, with some of the seminal works 
presented in the mid 20th century,92,93 with the resulting and widely used Flory-Schulz MWD94,95, 
Stockmayer bivariate composition/MWD for copolymers,96  and others.  A comprehensive review of 
instantaneous MWD and their applications was recently given by Soares.97 

 Before invoking a model, Mw,inst itself tracks  the ‘model free polydispersity’, 
mfpn

w

M
M  due to 

the changes in Mw,inst over the course of the polymerization reaction, without any assumptions of 
instantaneous polydispersity. 
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Now, for any instantaneous width Mw,inst, there will necessarily exist a dimensionless number 

wi that relates Mw,inst to Mn,inst,  
 

iinstniiinstw MwM ,,,, =                                                   (80) 
For the Flory-Schulz distribution, which is a specific case of the geometric distribution, and which is 
expected in the long chain limit for free radical polymerization,  wi=2. (There similarly exists other 
constants relating other moments to each other, such as Mz, but this is not pursued here).  The total 
weight and number averages Mw and Mn are 
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where the Ci are the histogram heights in figure 43. 
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Which gives the polydispersity index Mw/Mn based on the model instantaneous MWD 
 

                      
(83) 

 
 
In the case where a specific w is presumed to hold for all wi then 
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 Table 3 shows the molecular weight averages and polydispersities from GPC using molecular 

weight standards and 
mfpn

w

M
M from the histogram inset in figure 43, using w=2.  The polydispersities 

are in very good agreement, and the molecular weight averages are in good agreement, considering 
that ACOMP provides the MALS values and the GPC in this case gives the ‘PEO equivalent MWD’. 
 
Table 3.  Molecular weights from GPC with PEO standards and from ACOMP Mw,inst with w=2 
 ACOMP GPC/standards 
Mn 3.13E+05 3.59E+05 
Mw 8.01E+05 9.08E+05 
Mz 1.71E+05 1.98E+05 
Mw/Mn 2.53E+00 2.53E+00 
Mz/Mw 2.15E+00 2.19E+00 
 
 Figure 43 also shows the MWD that results when the instantaneous w=2 is used in 
conjunction with the continuous log normal distribution of the form 
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While the Flory-Schulz is the ideal underlying instantaneous distribution, the log normal distribution 
is very frequently used in polymer science in conjunction with GPC since the effect of the column is 
often to convolute the true MWD of the polymer population (normally the geometric distribution) 
with a Gaussian spread due both to statistical, entropic permeation of polymers through the multitude 
of serpentine paths available in the column, as well as lateral diffusion traveling through tubing en 
route to and through the detector(s).  It is completely characterized by the most probable (peak) 
molecular weight Mo and the width of the MWD, σ.  The Mn, Mw, and Mz values are related to these 
two parameters by 
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Using w=2 leads to σ2=ln(2)=0.6931, which allows the instantaneous Mo to be related to Mw,inst by 
instwMM ,0 7071.0=                                        (87)  

  
The close match of the MWD by GPC and by ACOMP Mw,inst in conjunction with the log normal in 
figure 43 is striking.  While the use of the log normal distribution to produce a continuous MWD 
resembling the GPC result provides an aesthetically pleasing shape familiar to practitioners of GPC, 
it contains no additional information beyond the molecular weight averages and polydispersity 
indices that result from the assumption of w=2, shown in Table 3. 
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Figure 43.  The MWD using GPC with PEO standards (grey) and MWD computed from Mw,inst 
histogram (inset) using wi=w=2 and the use of the corresponding log normal distribution. 
 
 2. Oxygen as a potential process control variable 
 The project used the following process control variables:  Temperature, initiator, monomer, 
comonomer, and chain transfer agent.  In the course of the project an interesting new possibility 
arose; use of O2 as a powerful control variable. Currently, O2, or air, is used in industrial free radical 
polymerization reactions to slow down or quench reactions.  It is often used as a sort of ‘panic 
button’;  if a reaction begins to run away exothermically rapid additions of O2 or air can slow or halt 
the reaction, thus avoiding a potentially explosive event. 
 Because of the continuous, precise nature of the ACOMP data stream it was possible to monitor 
quantitatively the effects of O2 on both conversion rate and Mw in the aqueous free radical 
polymerization of Am.  Figure 44 shows the effects of different levels of O2 (in mg/L) in the reactor, 
starting with 0 (orange).  It shows that O2 can slow the conversion and even completely stop it at 
some threshold.  In figure 44 the threshold is between 17 and 37 mg/L.  Furthermore, if the O2 is 
purged out by N2 then the reaction resumes at the rate previous to the introduction of O2; i.e. O2 does 
not ‘kill’ the reaction, rather it reversibly halts the reaction.  There are also effects of O2 on chain 
composition, but these were not explored in depth here (preliminary FTIR measurements did show 
some change in composition when using O2). 
 Figure 45 shows the effect of O2 on Mw during the same reactions.  It shows that the effect of O2 
is to decrease Mw.  When O2 is purged out by N2 then Mw increases again.  This reversibility leads to 
the very interesting possibility of using O2 as a bidirectional Mw control variable; i.e. introducing 
controlled amounts of O2 can lead to desired drops in Mw, whereas purging with N2 can lead to 
desired increases in Mw.  Both initiator feed and chain transfer used as control variables can only 
irreversibly decrease Mw, whereas monomer feed as a control variable leads to an increase in Mw.  
Temperature is a reversible variable - increasing temperature decreases Mw and vice versa- but it has 
only a limited effect on Mw compared to O2 and it is generally slow to change and reach equilibrium, 
especially in large reactors of industrial interest. 
 Hence, a further area of research would be to develop O2 as a polymerization control variable.  
Such development was not within the scope of this project.  
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Figure 44.  Conversion vs time (s) for different levels of O2 in the reactor during Am free radical 
polymerization 
 

 
Figure 45.  Effect of O2 on Mw during free radical polymerization of Am 
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V. LSU developed non-linear reaction control‡ 
    

1. Model-Centric Optimal Operation of Polymerization Processes 
This report discusses the formulation, implementation and testing of a generic and flexible model 
centric framework for integrated simulation, estimation, optimization and feedback control of 
polymerization systems (Figure 46). The modelling work was carried out using gPROMS modelling 
language and embedded into our model centric framework providing a complete environment for 
modelling/analysis of complex systems. The core component in the framework is the mathematical 
model of the system, in this case the batch and semi-batch free radical solution polymerization of 
Acrylamide in water solution.  
 
Within the scope of the project the following activities were carried out to full completion: 
 

• A first-principles mathematical model was developed by using reaction rate laws available in 
polymerization literature.  

• The model was then validated by comparing the simulations with experimental data.  
• The validated model was then used to perform parameter estimation and adjust the kinetic 

parameters for the proposed system.  
• Model-based optimization analysis was conducted to determine the optimal temperature 

profile in conjunction with the optimal monomer and initiator flow rate in order to reach a 
final target polymer while minimizing the batch time.  

• A nonlinear state estimation strategy was formulated, implemented and tested using 
experimental facilities.  

• Alternative linear and nonlinear control strategies were formulated and tested. 
• The polymerization of acrylamide in water solution using potassium persulfate (KPS) as 

initiator is studied to demonstrate the effectiveness of the module and framework. 
 

 
 

‡ This section V was written by the Romagnoli group at LSU.  Figure labeling is consecutive with the narrative 
sequence, but it has its own separate references at the end and its own way of presenting equations 
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Figure 46: Model centric framework for integrated simulation, estimation, optimization and 
feedback control of polymerization systems 

2. Theoretical Developments 

V.2.1 Process Modelling 

A detailed mechanistic model for solution polymerization of Acrylamide in batch and semi-batch 
reactors was developed and tested experimentally. The following set of kinetic and dynamic 
equations describe the system: 
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Where and: 

 
 

 

 
 

 

 

 

 

Monomer Conversion 

 

 

 

Constitutive Equations for the Gel, Glass and Cage Effects 

In free radical polymerization, the mobility of the radicals reduces along the reaction due to increase 
in the viscosity of the reactor as more polymers are produced. This phenomena which is called gel 
effect causes a reduction in the termination rate constant, , and should be considered in the 
formulation of the model. At high conversion when even the motion of monomer is severely 
restricted the propagation rate,  is also decreased.  This glassy state in which the solution is highly 
viscous sets a limiting conversion on the polymerization process. In this work the correlation by Ross 
and Laurence9 is used for both gel and glass affect. This can be written as: 

 
 

 

 
 

 

Here,  represents the total free volume and  are the critical free volumes which are 
calculated as below: 
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Where 

 
 

 

 are the volume fraction and the glass transition temperature of the polymer, solvent and 
monomer and  is the constant.  
The initiator efficiency ( ) describes the fraction of initiator free radicals which can successfully 
initiate the polymerization. Not all primary radicals can produce propagating chains. They execute 
many oscillations in “cages” before they diffuse apart and start a reaction. During the oscillations the 
radicals may also form an inactive species. Hence, to account for the two competing phenomena, 
initiator efficiency is appended in the mathematical model. Initiator efficiency factor also decreases 
as the viscosity of the reactor solution rises. The free volume theory is used to model this 
relationship:  

 
 

 

Here the initial initiator efficiency and C is a constant. 

Molecular Weight Distribution 

Together with polymer composition, the molecular weight distribution (MWD) can also show drifts 
that can become critical when reactions are carried to high conversion. In order to obtain complete 
representation of molecular weight distribution, a similar methodology based on finite weight 
fractions is applied11. However, in our application the approach needs to be modified to account for 
semi batch operation and the consequent volume changes. It consists of dividing the entire polymer 
population into discrete intervals and calculating the weight fraction of polymer in each of the 
discrete intervals. By ignoring the concentration of live polymer given that it is negligible compared 
with the dead polymer concentration, for each interval the polymer weight fraction is calculated with 
the following equations: 

 
 

 

The dynamic of weight fraction is then calculated: 

 

 

 

Where the right-hand side represents the dynamic growth of dead polymers of length n which can be 
written according to the kinetic rate equation as below: 
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This can be shown by further simplification as follows:  

 
 

Substituting we get: 

 

 

The term can be represented as: 

 
 

 

Assuming,  and  : 

 
 

 

And the final form of weight fraction for a semi-batch condition will be: 

 
 

 

Energy balances  

One of the most complex features of the free radical polymerization is the exothermic nature of it.  
Generated energy during polymerization should be removed by a coolant or dissipated to 
environment. Otherwise, the reactor can thermally run away. Even if run away does not occur, 
molecular weight can be broaden. To model non-isothermal polymerization, energy balance should 
be applied to the reactant mixture in the reactor and oil in the bath. From the application of the 
energy conservation principle, the following equations show the energy balance for a perfectly mixed 
jacketed semi-batch reactor: 

 
 

 
 

 

 

 

Here  denote the reactor and jacket temperature respectively. It was assumed that both 
reactor and jacket are perfectly mixed and have a constant temperature.  are the average 
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density and heat capacity of the reactor. are the heat capacity of monomer, solvent 
and coolant flow which consists of water and ethylene glycol.  is the overall heat transfer coefficient 
and A is the heat transfer area. 

Weight Average Molar Mass  Calculation 

Controlling  has a high impact on the final distribution of polymers. Thus, it is of interest to 
investigate the effect of different parameters on  as well as determining a formulation which can 
lead to a certain trajectory. Assuming small chain transfer to monomer and solvent the instantaneous 
number average of a polymer which is produced at time  is given by: 

 

 

 

Where Y is a factor which is equal to 1 when the termination reaction is dominated by 
recombination, and 2 when disproportionation dominates. The cumulative weight average molar 
mass  can then be obtained by knowing the mass of dead polymer inside the reactor, , as 
follow: 

 

 

 

Here  and  are the instantaneous polydispersity and the monomer molecular weight 
respectively. Assuming constant temperature, which results in constant kinetic rate parameters, the 
only two terms which are varying during the reaction are the concentration of monomer  and 
live radicals , both of which can be manipulated using the monomer and initiator flow. This 
gives the opportunity to propose various trajectories of  by proper formulation of the optimization 
problems.  
 

V.2.2 Parameter Estimation 
Kinetic rate constants are significant parameters of a polymerization system which have to be 
determined accurately since only a slight change in them will result in considerable change of the 
final polymer characteristics. The data regarding the kinetic rate constants may be obtained from 
literature or determined experimentally. However for some materials the properties are not available 
in the literature and it may not be possible to measure them through experiments due to lack of 
experimental facilities. Moreover, there are many criteria that affect the kinetic rate parameters such 
as reactor operating conditions, presence of inhibitors and purity of the materials which are different 
for various systems. So, proper values of the rate constants should be determined via a parameter 
estimation technique. This is an important prerequisite step in order to evaluate these variables and 
improve the model reliability for optimization and model-based control scheme development. The 
parameter estimation is often formulated as an optimization problem in which the estimation 
attempts to determine the values for the unknown parameters in order to maximize the probability 
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that the mathematical model will predict the values obtained from the experiments. Effective 
solution of parameter estimation is attainable if the following criteria are met: 

1) The nonlinear system should be structurally identifiable which means that each set of 
parameter values will result in unique output trajectories. 
2) Parameters which have a weak effect on the estimated measured variables and the 
parameters which their effect on the measured output is linearly dependent should be 
detected and removed from the formulation of the estimation since their affect cannot be 
either accurately or individually quantified.  

For the proposed system, the parameters of the polymerization model which was discussed before 
can be represented as  which are the outputs of the parameter estimation model 
and  which are the time-varying inputs, and 𝜃𝜃 the set of model parameters 
which in this case are . The selection of these parameters are justified as the most 
sensitivity in conversion and weight average molecular weight data is with respect to the termination 
and propagation rate of a polymeric chain. Proper estimation of the initiator efficiency factor is also 
important since it controls the effective radical concentration. In this work the parameter estimation 
scheme is based on maximum likelihood criterion. The gEST function in gPROMS is used as the 
software to estimate the set of parameters using the data gathered from the different experimental 
runs. Each experiment is characterized by a set of conditions under which it is performed, which are: 
 

• The overall duration; 
• The initial conditions which are the initial loading of initiator, solvent and monomer 
• The variation of the control variables. For the batch experiment temperature is the only 

variable, while in semi batch both temperature and flow rate of monomer or initiator have to 
be considered.  

• The values of the time invariant parameters. 
Assuming independent, normally distributed measurement errors, , with zero means and standard 
deviations, , this maximum likelihood goal can be captured through the following objective 
function: 
 

 

 

 
Where N represents the total number of measurements taken during all the experiments, θ is the Set 
of model parameters to be estimated which may be subject to a given lower and upper bound, NE , 
NVi  and NMij are respectively the total number of experiments performed,  the number of variables 
measured in the ith experiment and the number of measurements of the jth variable in the ith 
experiment.  is the variance of the kth measurement of variable j in experiment i while  is the 
kth measured value of variable j in experiment i and  is the kth (model-)predicted value of 
variable j in experiment i. 
 

The variable  depends on the error structure of the data which can be constant (homoscedastic) or 
dependent on the magnitude of the predicted and measured variables (heteroscedastic). If  is 
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fixed in the model, the maximum likelihood problem is reduced into a least square criterion. If a pure 
heteroscedastic model applied, the error has the following structure: 

 

Which means that as the magnitude of the measured variable increases the variance of   also 
increases. The parameter  and  are determined as part of the optimization during the estimation. 
In this work we assume the measurement error for both conversion and weight average molecular 
weight in all the experiments can be described by constant variance models since the errors for both 
conversion and weight average molecular weight is independent of their magnitude in the 
measurement. The given upper and lower bounds of the variance are according to the accuracy of the 
measurement plant and the function gEST specifies the  value along with  and  as part of 
the optimization. 

The capability of the model to properly describe the polymerization system has been investigated by 
doing a number of experiments in both semi-batch and batch mode using different trajectories for 
temperature and initiator and monomer flow rate. After the validation of the estimated parameters, 
the model can then be applied for the dynamic optimization to provide optimum temperature and 
monomer or initiator flow rate for a desired objective that can be a target conversion or molecular 
weight distribution. This step will be explained next. 

V.2.3  Dynamic Optimization 

The objective of the dynamic optimization is to find the optimal control profile for one or more 
control variables and control parameters of the system that derives the process to the desired final 
polymer property specification while minimizing the reaction time. The process control variables are 
selected based on their impact on the product quality and their capability for real time 
implementation. In this case temperature, monomer and initiator flow rate were selected as the 
control variables. Temperature plays a very important role in controlling the reaction kinetics which 
considerably affects the molecular weight distribution while monomer flowrate is also a powerful 
means of controlling molar mass by affecting the concentration of the main feed to the reactor. The 
initiator flow also affects both conversion and the molecular weight but offers less straightforward 
means for controlling molecular weight. The optimization of the model was performed using the 
gOPT function in gPROMS which applies the control vector parameterization (CVP) approach. 
Variation of the control variables in this case is considered as piecewise-constant which indicates 
that the control variables remain constant at a certain value over a certain part of the time horizon 
before they jump discreetly to a different value over the next interval. The optimization algorithm 
determines the values of the controls over each interval, as well as the duration of the interval. 
Optimizer implements a “single-shooting” dynamic optimization algorithm consists of the following 
steps: 

1. Duration of each control interval and the values during the interval are selected by the 
optimizer 

2. Starting from the initial condition the dynamic system is solved in order to calculate the 
time-variation of the states of the system 
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3. Based on the solution the values objective function, its sensitivity to the control variables 
and also the constraints are determined. 

4. The optimizer revises the choices at the first step and the procedure is repeated until the 
convergence to the optimum condition is achieved. 

 For the proposed system the optimal control problem is formulated as the form below: 

 

Subject to the process model and the following constraints: 

 

 

 

 

Where J in our case in defined for the general case as 

 

Where  is the initial condition of the system including the initial loading in the reactor and  
stands for the time horizon while  indicates the control variables which are the temperature, 
monomer and initiator flow rates subjected to their lower and upper bounds. : represents the time 
variant parameters which in this case is the volume of the contents of the reactor. The formulation of 
the objective function consists of four terms, where ,  and  are the values of the monomer 
conversion, molar mass and weight fraction of polymer within a chain length at the final time  
respectively and ,  and  are their corresponding desired values.  are the weighting 
factors determine the significance of each term in the objective function. A schematic representation 
of the optimization problem for the polymerization problem is given in Figure 47. 
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Figure 47: Schematic representation of the optimization problem in polymerization processes 

V.2.4  Optimal Nonlinear State Estimation 

For nonlinear state estimation, an analogous algorithm to the discrete-time extended Kalman filter 
(DEKF) is implemented. This method is purely recursive. The sequencing of the algorithm is as 
follows: 

 
First step - Model and measurements are described in a discretized form for each iteration. 

  

  

 
 

Here, x represents the state variables,  the nonlinear process model, u manipulated variables, 
and w the model noise with covariance . Moreover,  represents the measured properties,  
the nonlinear measurement and  the measurement noise vector with covariance . Both errors  
and  are assumed to be independent, with zero mean and white Gaussian noise. Furthermore,  
is the iteration in which the DEKF is activated, where  is the initialization time in [min], and  
is the time interval for nonlinear state estimation in [min]. 

 
Second step.- Initialization: For , the nonlinear process model presented initializes and 

computes current state variables based on the previous states. Additionally, the process model uses 
real measurements of the controlled variables of system during the calculation of the current states. 
The initial covariance error matrix  and covariance matrices Q and R, which contain the 
DEKF’s free parameters, are fixed. State estimation accuracy and data reconciliation ability of the 
DEKF depend largely on the quality of these parameters. 

 
Third step.- DEKF: For , notice that the superscripts “+” and “-” denote a priori and a 
posteriori states, respectively. A priori refers to when the calculation is done before  is taken 
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into account. A posteriori refers to when the calculation is after  is considered. The following 
computations occur: 
 Derive the model Jacobian matrix of partial derivatives, linearize it around its previous a 

posteriori state estimate and approximate it to a discrete-time approach. 

 
 

 Calculate the time update of the state estimate and the estimation error covariance matrix, P, 
which is an indicator of the estimation accuracy. 

  

  

 Compute the measurement Jacobian matrix of partial derivatives and linearize it around its 
current a priori state estimate. 

 
 

 Calculate the measurement update of the state estimates and estimation error covariance. K is 
the Kalman gain matrix. It computes the amount of correction to incorporate or take from 
the state variables on their a priori estimation. Notice that the stability properties of the 
estimation error dynamics can be analyzed through the eigenvalues of the matrix . 

  

  

  

 
In this formulation, the DEKF has a hybrid implementation. The real-time integration of the 

nonlinear model computes the state estimates, whereas linear approximation computes the estimate 
error covariance and the filter gain matrices. The advantages of the filter lie in its nature of 
estimation and predictive-corrective form. The recursive characteristic allows rapid estimation in 
real-time, which is mandatory for online deployment. However, a disadvantage is that it cannot take 
into account bounds on process variables and other constraints.  

Tuning the DEKF 

For obtaining a robust action of the filter, an adequate tuning of its free parameters is required. 
The tuning problem addresses the offline minimization of the mean squared errors between the 
estimated and measured values in each iteration. All measurements have different weights, , which 
aims to normalize the terms by giving them the same importance. To avoid unreal kinetics and 
unstable behavior of the system, the problem is constrained to only positive values of the a posteriori 
estimated state variables. In addition, the free-parameters search is constrained between an upper and 
a lower bound vector of p parameters that search the diagonal values , Q and R. Thus, the 
dimensionality of the optimization/tuning problem is , where  denotes the available 
measurements and  the number of state variables. The selected cost function is. 
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Constraints: 

  

 (28b) 

 

The algorithm for tuning the DEKF is the Parallel Local Metric Stochastic Radial Basis Function 
with Restart (ParLMSRBF-R) algorithm. This algorithm seeks optimal parameters using a surrogate 
model, e.g. radial basis function, and evaluates multiple points simultaneously. When no 
improvement is attested, the algorithm restarts in order to avoid local optimal solutions. 

In summary, the algorithm follows a master-worker criterion, assuming that  processors are 
available and two function evaluations consume the same computational time. A set of initial points 
generated by a space filling or other similar experiment design evaluate the cost function. The 
surrogate model is initially fitted and then updated using the output from each iteration. The function 
is evaluated with the points obtained from a group of candidate points. ParLMSRBF-R performs 
exploitation of the solution domain by keeping track of the consecutive failed, , and 
successful, , iterations. When  or  exceed a predefined tolerance value, the step 
size is reduced by half or doubled respectively. Later, the recorded values of  and  are 
reset. Two scored criteria evaluate the next point: the estimated value generated by the response 
surface model and the minimum distance from points evaluated earlier. A good candidate point 
should be far from its previously evaluated one, and its estimated function value should be as close 
as possible to the actual value. 

V.2.5 Feedback Control 

Linear Feedback Control of  

To control the  trajectory, a conventional Proportional-Integral  controller is designed where 
 is controlled by manipulating monomer flow rate. The choice of the manipulated variable for the 

feedback control of the is based on the input effects on the controlled variable, in terms of gain 
and response time. From the simulation analysis of the response, the monomer flow has been shown 
to better fit the requirements than initiator flow rate. The feedback control uses a PI–like algorithm, 
which is expressed mathematically as follow: 

 

 

 

 

Where  denotes the value for input variables (monomer flow) at each time instant which is sent to 
the pump.  are the proportional gain and integral time constants of the controller. 
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These parameters are tuned using different simulations with the model, and optimum values for the 
proportional and integral constants are selected which vary for each experiment. 
 
An alternative approach is to use the velocity form in which the change in controller output is 
calculated and applied instead of the output value. Writing the equation for the (n-1) sampling time 
and subtracting, straight forward calculation will lead to the following form: 

 

 

 

 
The velocity form has two main advantages over the position form. First it intrinsically contains 
some provisions for antireset windup since the summation of errors is not explicitly calculated. The 
antireset windup could be considerably high for  because the time constant of the process is rather 
high and the response is slow. Secondly, for velocity control algorithms, applying the controller in 
automatic mode, that is, switching it from manual operation, does not require any initialization of the 
output . This is also a prerequisite in this work since all the control experiments start based on the 
optimization trajectory for the first  minutes of the experiment and then once the data from 
ACOMP stabilizes, the controller starts to provide corrective actions. 
 
Nonlinear (Linearizing) Control of Monomer Concentration 
From previous discussions, it is clear that the main objective in controlling polymerization reactors is 
to control  and indirectly the MMD. However, real-time measurement of monomer concentration 
is also available by ACOMP. Therefore, an effort was made to control the total amount of monomer 
and as a result the monomer concentration inside the reactor by manipulating the monomer flow 
(  The control strategy is based on the input-output linearizing geometric approach which takes 
into account the nonlinear dynamics of the processes, formalized in the general dynamic model. 
Unfortunately, due to the complex relationship between  and  no such formulation can be 
designed for controlling  .  
 
The principle of the linearizing approach is to find a control law such that the tracking error is 
governed by a pre-specified stable linear differential equation called a reference model. The control 
algorithm can be explained in three steps. First the input output model should be derived by 
appropriate manipulation of the general dynamic model. This provides an explicit relation between 
the manipulated variables and the control objectives which takes the form of an order differential 
equation: 
 

 

 

 

With  being the relative degree of the input/output model. Depending on the control and 
manipulated variables,  and   could be highly complex functions of the model parameters. 
However, the relation is always linear with respect to the manipulated variable. Secondly, a stable 
linear reference model of the tracking error is selected. The model determines how we desire the 
tracking error to decrease and presented as follow: 
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The coefficients  are tuning coefficients which should be selected so that the differential 
equation (30) is stable. Finally the control design consists of calculating the control action  such 
that the input-output model exactly matches the reference model. Using the previous equation and 
substituting for  solution for  can be obtained. 
 

 

 

 
The formalism of the nonlinear controller using  as manipulated variable is considered in this 
case. The relative degree of  with  is one thus simplifying the controller formulation. 
Substituting for  , an explicit relation for monomer feed rate  can be obtained with respect 
to known variables: 
 

 

 

 
Where  is the desired/target optimal known trajectory for total amount of monomer obtained from 
dynamic optimization. It is worth mentioning that similar approach is also possible by using the 
initiator flow as manipulated variable, however, in this case the relative degree is two thus leading to 
more complex (although explicit) relationship for the initiator flow. 
 
3.   Experimental Implementation  

V.3.1 Experimental apparatus and setup 

The polymerization pilot plant consists of a 1.5 L reactor monitored by the ACOMP system and 
different auxiliary fittings and instruments. Pumps driven by encoded stepper motors inject monomer 
and initiator solutions into the reactor. An external jacket sets the inner temperature of the reactor at 
certain conditions. From a high flow rate (~40 mL/min) recirculation loop annex to the reactor, the 
ACOMP extracts a constant sample stream. For pilot scale, a rate of 0.5 mL/min is sufficient. This 
setup allows minimal time delay from the time new materials are added into the reactor until they are 
finally detected by the sensor. The ACOMP analyzes the sample by diluting it 80 times with 
deionized water and homogenizing it in a mixing chamber. Ultraviolet visible absorption 
spectroscopy, viscometry, and multi-angle laser light scattering detectors measure the sample. The 
monomer and polymer concentrations are determined by spectroscopy at 245 nm, and the is 
calculated from the static/multi-angle light scattering data. To ensure stable readings during the 
experiment, air bubbles are purged from the ACOMP sensors to guarantee precise measurements. 
Figure 3 illustrates the pilot plant components and its functionality. 
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Once the experiments are completed, the Gel Permeation Chromatography (GPC) method 
provides the final MWD with an in-house system. It consists of a Shimadzu LC-10ADVp 
(Columbia, MD) high-pressure solvent delivery pump that provides a continuous flow of sodium 
chlorine solution through the GPC column followed by a Shimadzu RID-10A differential 
refractometer. The sample injector is an IDEX/Rheodyne MX-II with a 50 μL sample loop volume. 
A series of polyethylene oxide standards ranging from 25,000 to 1 million g/mol are used to create a 
standard column calibration. The described method refers as GPC standard calibration. 

 

Figure 48: Schematic of experimental setup 
 

 

V.3.2 Integrated State Estimation and Control Framework 
The proposed framework includes the integration of nonlinear state estimation to improve linear 

control and monitor unmeasured properties. The framework embraces offline tuning of the filter and 
the dynamic optimization of the system. The filter/controller module is implemented in python 2.7 
environment as it allows full connectivity and has compatibility with the ACOMP server. Figure 49 
explains with a flow diagram the functionality of the module. Because the DEKF requires several 
iterations to converge, a cascade structure improves the resolution of the filter and guarantees an 
adequate control action. The filter remains in the inner loop at a higher frequency than the outer loop 
where the control is allocated. Although the DEKF is in the high-frequency loop, it still has a 
discrete performance. The ACOMP updates measurements every 1 sec; thus, the relation 

 must occur for a satisfactory operation of the module. Narrower time intervals in 
state estimation bring higher accuracy to the filter action. 
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Figure 49: Flow Diagram of DEKF, PID feedback control and process behavior coupled 

Figure 50 shows the proposed framework and the idea behind the overall integration. By 
using gPROMS, optimal recipes through dynamic optimization are generated offline. Similarly, the 
DEKF free-parameters are tuned using a stochastic global optimization technique. The ACOMP 
provides online measurements of , , and  which are taken into account for state estimation 
while reconciling these measurements. The measured control variables ,  and  are included into 
the nonlinear model to give more realism to the model. Six state variables are corrected in each 
iteration based on the attested errors and the Kalman gain matrix. Moreover, the estimated state 
variables are utilized to calculate unmeasured properties, e.g., MWD and , which allows its 
monitoring during the reaction. The module starts 20 min after the reaction initiated because the 
ACOMP requires a prior stabilization of its measurements. 

86 
 



 

Figure 50: State estimation, monitoring and feedback control framework 
 

4. Results and Discussion 
V.4.1 Parameter Estimation 

In an initial step, using a set of the experimental data, parameter estimation was performed for the 
main kinetic parameters. The optimal values of the estimated parameters as well as the uncertainty of 
the parameter represented as 95% confidence interval (CI) are shown in Table 4. In addition the 
correlation matrix, given as an 8 × 8 lower triangular matrix (the upper triangular matrix is identical 
to the lower one), is provided in this table. The most pronounced correlations between the parameters 
are shown in bold with a threshold value of 0.7.  
 Most of estimated parameters obtained have narrow confidence intervals indicating that the 
number of measurements performed for the parameter estimation were sufficient.  The normalized 
covariance matrix shows that although a few parameters are quite correlated, most parameters 
estimated in the optimization are only weakly correlated and thereby suitable for being estimated 
simultaneously. The greater correlation coefficients are found between the propagation rate and the 
termination rate as well as initial initiator efficiency and decomposition rate. Likely, any change in 
one of these parameters could be compensated by a change in the other ones. For example, the 
coefficient between Ap and Ad is 0.94 indicating a strong correlation between them and making it 
difficult to find a unique estimate for these parameters. Unique parameter estimate means that the 
parameters shall have an acceptably low correlation to any of the other parameters and a low 
confidence interval. Thus, in spite of the large covariance above mentioned, a consistent estimation 
is possible because of the true value of the parameter estimates are located within a very small 
confidence bands reducing their uncertainty. However the confidence ellipsoids are large including 
in most cases negative numbers. Thus a second iteration was performed by eliminating two of the 
correlated parameters Ad and At and fixing their values to the estimated ones in the first iteration. 
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The optimal values of the estimated parameters as well as the uncertainty of the parameter 
represented as 95% confidence interval (CI) are shown in Table 5. 
 For illustration purposes the confidence regions for the parameter pairs estimated are shown 
in Fig. 51. Here, the contours correspond to a confidence level of 95%. In other words, there is a 
probability of 95% that the true values of the parameter pair fall within this ellipsoidal confidence 
region that is centered in the parameter estimates. The narrow shapes of the joint confidence regions 
given in Fig. 51 indicate a reliable estimation of the parameters. 
 
Table 4: Original and estimated value of the kinetic rate parameters (first iteration) 

Par. Description Original 
value 

Estimated 
value 

Confidence Interval 95% 
t-value 

Standard 
Deviation 90% 95% 99% 

 Decomposition 
rate [1/min] 

  1.25*1014 1.49*1014 1.96*1014 9.19 7.60*1013 

 Propagation rate 
[m3/mol.min] 

  5.23*104 6.23*104 8.20*104 14.43 3.17*104 

 Termination rate 
[m3/mol.min] 

      3.63*107 

 Initial initiator 
efficiency 

  0.048 0.057 0.076 9.84 0.029 

 Solvent 
transition 

temperature [K] 

 142.61 0.539 0.6431 0.84 221.7 0.327 

 

 

  
 

Figure 51: Confidence ellipsoids for Ad-f0 and Ap-At 
 

Table 5: Original and estimated value of the kinetic rate parameters (second iteration) 
 

Par. Description Original 
value 

Estimated 
value 

Confidence Interval 95% 
t-value 

Standard 
Deviation 90% 95% 99% 

 Propagation 
rate 

  2547 3035 3993 280.1 1546 
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[m3/mol.min] 

 Initial initiator 
efficiency 

  0.001166 0.0013 0.00182 403.2 0.00073 

 Solvent 
transition 

temperature [K] 

 149.94 0.3906 0.465 0.6123 322.2 0.237 

 
 

   

Figure 52: Confidence ellipsoids for final estimated parameters 
 
V.4.2 Off-Line Dynamic Optimization Studies 
The objective of the dynamic optimization is to provide optimal set point profiles for the controller 
to achieve a target polymer. Decision variables in the optimization are selected based on their impact 
on the product quality and their capability for real time implementation. In the proposed case study, 
temperature, monomer and initiator flow rates were selected as decision variables. The optimization 
studies were performed using the gOPT function in gPROMS which applies the control vector 
parameterization (CVP) technique [28]. On the following the results of the optimization are 
illustrated for a number of operational scenarios in terms of alternatives trajectories of the Mw. 

Case 1: Decreasing Trajectory of  

This is the most common trend of  in polymerization reactions which naturally occurs in free 
radical batch reactions. At the beginning of the process when the monomer concentration is high, 
polymers of high chain length are formed, resulting in high . Gradually, by depletion of monomer 
in the reactor, the length of the produced polymer reduces, resulting in smaller . By proper 
formulation of the optimization problem it is possible to obtain a certain decreasing trajectory with a 
specific final value for . The expression for the objective optimization problem in this case is 
summarized as follows: 

 

 

Table 3 provides the values of the different parameters and constraints used in this case. Temperature 
and flow constraints are used based on the capacity of the pump and jacket while the minimum 
volume constraint is the minimum volume necessary for proper mixing of the reactor contents. 
Figure 9 shows the optimal trajectories of the input variables, which are the temperature, monomer 
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and initiator flows. As it is presented in the flow profiles at the beginning of the reaction the flow 
rate of monomer to the reactor is high while the initiator feed is rather low. However, in order to 
decrease the  , the optimizer reduces the monomer flow after some time while rising the initiator 
feed to increase the free radical concentration. This will reduce the instantaneous number average of 
the polymers and as a result the cumulative weight average molar mass also decreases. Results 
in terms of monomer concentration (which is a more common parameter than conversion in semi 
batch reactions) and  with their corresponding targets are shown in the lower panel of Figure 53. 
The complete distribution has also been presented at the final time of the simulation. There is a very 
good agreement between the simulations and the corresponding targets for the three control variables 
suggesting the advantage of using reagent and monomer flow with temperature to control not only 
the conversion (monomer concentration) and  but also the complete distribution (MMD). 

Table 6: Values of the optimization constraints parameters 

Variable Value Unit 

 0.3 mol 

 50 mol 

 0.005 mol 

 5 ml/min 

 5 ml/min 

 80 °C 

 40 °C 

 1200 ml 

 450 ml 
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Figure 53: Simulation results applying the optimal trajectories for the decreasing  trend 
 
Case 2: Constant  
According to Equation 22, by keeping a constant ratio between the monomer and free radical 
concentration, the instantaneous number average molar mass and as a result  will stay constant 
along the reaction. So an attempt was made to reach a constant trajectory of . The objective 
function in this case is formulated as follows: 

 

 

Monomer conversion was eliminated from the objective function to put more weight on the other 
terms, as it is more demanding in this case to reach a constant  profile. The initial loading of the 
reactor and the constraints are the same as in the previous case. Simulation results are shown in 
Figure 54. follows a constant trajectory and there is a good match between the final distribution 
results and the targets. From the manipulated variable profiles it can be deduced that while the 
optimizer almost keeps a constant flow rate of monomer it gradually reduces the initiator flow to 
compensate for monomer consumption and keep the ratio between monomer concentration and free 
radicals constant.  
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Figure 54: Simulation results using the optimal trajectories for the constant  trajectory 
 
Case 3: Increasing  
In the previous case studies it was observed how to keep  constant by keeping a constant ratio 
between the monomer and free radical concentrations. It was also shown how to have a decreasing 
trend of   starting from a high value of   and reducing the monomer feed while increasing the 
initiator flow. To complete our analysis, here we focus on an optimization scheme which could lead 
to an increasing trend of  This requires a higher monomer flow compared with the initiator which 
was injected to the reactor in case 1 which causes the reactor volume exceeding the maximum value 
allowed. To meet the optimization constraints, the initiator concentration was reduced and the 
monomer concentration was increased in their corresponding flows. The objective function in this 
case is formulated as follows 

 

 

 

The term , total amount of monomer injected to the reactor, was eliminated to give the extra 
degree of freedom to add monomer. Results are shown in Figure 3.  increases successfully during 
the simulation and reaches the desired target. There is also a good match in the monomer 
concentration and MMD results between the targets and simulation profiles. It should be mentioned 
that although in this case initiator and monomer flow do not change considerably during the process, 
by changing the feed concentration as explained earlier an increase in  and as a result in the 
instantaneous number average happen. This is also demonstrated in Figure 55 in the monomer 
concentration profile. More moles of monomer are feeding in than are being polymerized, so the 
monomer concentration goes up, and thus the . 
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Figure 55: Simulation results using the optimal trajectories for the increasing  trajectory 
 

Three optimal trajectories, which correspond to the increasing, constant, and decreasing  are 
formulated and experimentally tested to verify the behavior and flexibility of the model under 
different operating conditions. As displayed in Figure 56, different trajectories of  generate 
different shapes of MWD which is the ultimate control objective in terms of achieving desired 
polymer properties. Table 2 provides information of the initial experimental set up as well as the 
monomer and initiator inlet flows concentration. In the results section, the open-loop optimal 
trajectories are given and compared with the filtered predictions as well as closed-loop results. All 
experiments run at the constant temperature of 45 °C. 
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Figure 56.  Final MWD of optimal trajectories 
 
V.4.3 Real-time Testing Studies 

This section will show the results obtained for all the optimization and control techniques studied in 
the previous parts. To demonstrate the feasibility of the proposed strategies, different objective 
functions which were calculated in the optimization section, were validated experimentally using 
data from ACOMP. Building on these results, three control experiments were implemented in which 
the controller set-points are the optimal trajectories obtained from the simulation. The feedback 
control was achieved in all cases using the monomer flow as manipulated variable to control . All 
other input profiles, namely the temperature and initiator flow rates were set equal to their 
corresponding optimal trajectories obtained during optimization. Furthermore, for all closed-loop 
cases the system was initially started using the optimal input trajectories and after 20 minutes the 
controllers were switched on to provide corrective action. This was to allow enough polymerization 
to occur for the SLS detector signal to be larger than the baseline noise. Table 7 gives a summary of 
all the various optimization and control experiments, including the initial loading, feed rate 
concentrations, and control parameters for each reaction. 
 

Table 7: Summary of all the optimization and control experiments 
Exp. 

# 
Exp. 

description 
 

[mol] 
 

[mol] 
 

[mol] 
 

[mol/m3] 
 

[mol/m3] 
 

[Prop. gain] 
 

[Int. gain] 

1 Optimization 
decreasing  

0.3 50 0.005 110.9796 7175.014 N/A N/A 

2 Feedback control 
decreasing  

0.3 50 0.005 110.9796 7175.014   

3 Optimization 
const.  

0.05 30 0.008 3.699 1406.866 N/A N/A 

4 Feedback control 0.05 30 0.008 3.699 1406.866   
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const.  
5 Optimization 

increasing  
0.05 30 0.008 3.699 1406.866 N/A N/A 

6 Feedback control 
increasing  

0.05 30 0.008 3.699 1406.866   

7 Feedback control 
  

0.3 50 0.005 110.9796 7175.014 N/A N/A 

 

DEKF Tuning & System Stability 

The free parameters of the filter are tuned offline using real data from one OL experiment. The 
utilized algorithm evaluates a total of 512 points using the proposed cost function. It tests 16 
candidate points in each iteration. Figure 57a displays the convergence profile of the cost function 
during the evaluations. Table 8 shows the tuned free-parameters obtained with ParLMSRBF-R. The 
stability effects of these parameters require verification in order to use them in closed loop 
experiments. To evaluate the free-parameters, the eigenvalues of the estimation error dynamics per 
iteration are calculated for all OL experiments. Figure 57b presents the distribution of the 
eigenvalues in a real-imaginary plane. Clearly, the eigenvalues fall inside the unitary circle. Thus, the 
propagation of estimation error dynamics exposes stable behavior with the acquired parameters 
making closed loop experiments promising. 

Table 8: DEKF Free parameters 
Covariance Matrix Parameter Value 

 diag ([6.2868E-03, 1.0E-06, 1.0E-04, 71.7574, 1.7437E-02, 9.8167]) 

Q diag ( [6.1502E-03, 3.56E-07, 8.21E-05, 8.697, 3.9721E-03, 4.1485E-03]) 

R diag ( [1.0E-02, 3.3417, 2.9621E-11]) 

  

Number of Function Evaluations

0 100 200 300 400 500

Be
st 

Ob
jec

tiv
e F

un
cti

on
 V

alu
e

60

80

100

120

140

160

180

200

ParLMSRBF-R Convergence Profile

 
Real

-1 -0.5 0 0.5 1

Im
ag

in
ar

y

-1

-0.5

0

0.5

1

 

Figure 57: a) Convergence profile when tuning offline the DEKF free parameters using 
ParLMSRBF-R b) Eigenvalues of the estimation error dynamics for the three OL 
experiments for different , where  increasing,  constant and  decreasing 
trajectory. 
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V.4.4  Open Loop Testing 
Initial tests take place for observing the DEKF performance using real data from ACOMP in OL 

experiments. These embrace the three optimal trajectories formulated during the offline dynamic 
optimization stage. Throughout OL experiments, the process behavior follows strictly the dynamic 
conditions provided by the optimizer without other actions. Thus,  and  are set equal to the 
profiles provided by gPROMS, and a constant  is set. Furthermore, while the reaction starts in the 
pilot plant, the nonlinear model initializes. As the DEKF algorithm explains, prior to filtering action, 
the nonlinear model is the only one running. After 20 minutes, the module starts estimating state 
variables and reconciling measurements making the monitoring of free-radical polymerization 
reactions broader. Unmeasured properties of interest include  and MWD. 

Figures 58-60 illustrate the DEKF action for all OL scenarios. Each figure presents different 
combinations of estimated properties, experimental values and optimal trajectories. Figures 58a, 59a 
& 60a reveal critical information related to the DEKF competency for state estimation and data 
reconciliation. Reconciled or estimated  data points pass through their measurements. It shows 
how the estimates reduce their noise in contrast to raw measurements, and confirms the ability of the 
filter to bring the model close to the measurements. On the other hand, the DEKF is able to track the 
evolution of  and MWD, which are unmeasured properties along the reaction. In chemical plants, 
some properties are simply unmeasurable or take significant time to obtain their experimental values. 
Thus, the opportunity to expand monitoring is possible when using state estimation techniques 
combined with the ACOMP online measurements. The estimated  and  are drawn in parallel 
with respect to their optimal trajectories presented with dashed lines. This shows physical 
consistency between estimated and theoretical values. Figures 58b, 59b & 60b and Figures 58c, 59c 
& 60c depict estimated, measured, and optimal trajectories for  and . Both sets of results present 
satisfactory response as the estimated values follow the measurements observed by the sensors. 

Another important piece of information generated by the filter is the time evolution of the MWD. 
Figures 58d, 59d & 60d illustrate a comparison between the estimated and measured MWD. The 
second one is obtained using the standard calibration GPC method. In this regard, the reader should 
recall that the MWD is not measured online, but a sample is taken only at the end of each 
experiment. It takes around 15 to 30 min to obtain the experimental result. Thus, in the event that the 
measurement does not comply with the standard, the entire product is underspecified. Expanding the 
monitoring to observe the time-evolution of MWD helps to speed up the response during operation 
in order to achieve satisfactory polymeric products. Moreover, Figures 58e, 59e & 60e present the 
estimated MWD evolution along the reaction, which evidences the online monitoring capability 
proposed by the framework. This represents a remarkable tool due to the balanced combination of 
the power of online data and a mechanistic model. 

In summary, all evaluated trajectories show excellent performance in state estimation and data 
reconciliation by the DEKF. Once the filter switches on, estimated properties move towards the 
actual measured values and provide a smoother projection of the property while reducing noise 
significantly. Regarding the online prediction of the MWD, it can be appreciated that results are 
good, which opens the possibility of enhancing the monitoring of this property. The capability of 
noise reduction is important towards optimal control, which is the scope of the next section. 
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Figure 58: Results for increasing  trajectory OL. a)  and  time evolution, b) Monomer 
concentration time evolution, c) Reactor volume time evolution, d) Chain length distribution 
estimated by DEKF and experimental results, e) Chain length distribution estimated by DEKF 
evolution along the reaction. 
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Figure 59: Results for constant  trajectory OL. a)  and  time evolution, b) Monomer 
concentration time evolution, c) Reactor volume time evolution, d) Chain length distribution 
estimated by DEKF and experimental results, e) Chain length distribution estimated by DEKF 
evolution along the reaction. 
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Figure 60: Results for decreasing  trajectory OL. a)  and  time evolution, b) Monomer 
concentration time evolution, c) Reactor volume time evolution, d) Chain length distribution 
estimated by DEKF and experimental results, e) Chain length distribution estimated by DEKF 
evolution along the reaction. 

 

V.4.5 Closed Loop Testing 
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After validating the DEKF in OL experiments, closed loop behavior is studied. Two kinds of 
closed loop experiments are designed: PID and PID integrated with DEKF. The control objective is 
to follow different  as set point trajectories by manipulating . Hence,  is set equal to its 
optimal profile, and a constant  is fixed. The idea is to show that small variations of  along the 
optimal input trajectories should only be necessary to achieve target trajectories. In the first set of 
experiments (PID), the controller collects raw measurements of  in an array considering a 
collecting time of 30 sec. The resultant average from this array is the input value for the controller. 
The mentioned procedure aims to reduce the noise from data using a simple average method. The 
second set of experiments (PID+DEKF) proceed as explained in the framework section. In this case, 
estimated  are inputs to the controller. The noise of these estimates is reduced due to the filtering 
action. The time intervals for control, filtering action as well as the controller parameters, are 
presented in Table 6. Again, the controller and DEKF activate after 20 min the reaction started. 

Figures 61-63 contrast the performance of OL, PID, and PID+DEKF experiments under equal 
operating conditions. In general, three operating philosophies towards standardized polymers are 
compared. These set ups include the experiment following an optimal recipe, with simple control, 
and integrating control and state estimation. Figures 61a, 62a & 63a reveal OL, PID and PID+DEKF 
experimental values from ACOMP. They also present the estimated  and  provided by the 
filter. Clearly, in terms of achieving  set points, the coupling of the DEKF to the linear controller 
improves the quality in the closed loop response. The noise reduction of the DEKF not only 
improves the controller input but also guides the dynamics of the process as the mathematical model 
intervenes. In this way, PID results show more oscillatory behaviors even though their inputs are 
mean values of raw measurements. Likewise, estimated  and  follow parallel paths of their 
similar ones acquired during dynamic optimization as observed in OL experiments. Figures 61b, 62b 
& 63b show the measured values of experimental profiles of . By observation in terms of the 
manipulated variable, trajectories from PID+DEKF show less deviations from the formulated 
profiles used in OL experiments. These results imply that the  injection behaves more efficiently 
in the proposed framework while reasonably achieving the desired set point. 

Furthermore, the DEKF also provides relevant information of the MWD time evolution. Figures 
61c, 62c & 63c contrast the resultant or final MWD between the formulated distributions during 
dynamic optimization, estimated by the filter, and measured with standard calibration GPC. In all 
scenarios, the DEKF illustrates its good prediction ability, especially for the constant  trajectory. 
Figures 61d, 62d & 63d present the estimated MWD evolution in different times along the reaction 
for each trajectory, showing the monitoring ability of the framework. For the increasing  
trajectory (Figure 61d), MWD evolves from fewer to more repeating units of the polymer chain 
length distribution. For the constant  trajectory (Figure 62d), MWD keeps a constant value in the 
evolution of the repeating units distribution. Thus, the constant characteristic hints that this trajectory 
holds a constant evolution of the MWD as well. Finally, for the decreasing  trajectory (Figure 
63d), MWD evolves from more to fewer repeating units. 

Overall, the closed loop experimental results for PID+DEKF demonstrate the best performance 
in achieving a desired  trajectory when compared with PID and OL experiments. In addition, 
results show an efficient  management, as the manipulated variable achieves the control objective 
with less variation. Noise minimization from data reconciliation represents a remarkable advantage 
in frameworks governed by a nonlinear model and data from measurements in combination with 
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feedback control. Finally, the DEKF confirms applicability for online monitoring of unmeasured 
properties. 
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Figure 61: Results for increasing  trajectory closed-loop. a)  and  different trajectories, b) 
Measured flow rate of monomer different scenarios, c) Final chain length distribution from: 
dynamic optimization, estimated by DEKF and standard GPC, d) Time evolution of estimated 
chain length distribution. 
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Figure 62: Results for constant  trajectory closed-loop. a)  and  different trajectories, b) 
Measured flow rate of monomer different scenarios, c) Final chain length distribution from: 
dynamic optimization, estimated by DEKF and standard GPC, d) Time evolution of estimated 
chain length distribution. 
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Figure 63: Results for decreasing  trajectory closed-loop. a)  and  different trajectories, b) 
Measured flow rate of monomer different scenarios, c) Final chain length distribution from: 
dynamic optimization, estimated by DEKF and standard GPC, d) Time evolution of estimated 
chain length distribution. 
 
Model-Based Linearizing control of Total Amount of Monomer 

Although the focus in this work was to control the weighted average molecular weight Mw, 
additional experiments were performed to test the functionalities of the nonlinear controller to 
control total amount of monomer using the monomer flow as manipulated variable. As in the 
previous case of controlling Mw, all other input trajectories were set equal to their corresponding 
optimal trajectories obtained during optimization. Furthermore, the target monomer concentration 
was also obtained from the optimization results. The operating scenario selected for this test was 
with decreasing Mw.  

Figure 64 illustrates the closed loop results in terms of the monomer concentration, 
manipulated variable (Fm) trajectory, initiator flow trajectory (FI) and Mw trajectory. Clearly the 
performance of the controller is excellent forcing the monomer concentration to follow closely the 
optimal trajectory along the batch by performing small adjustments. The monomer flow trajectory 
follows the same trend than the optimal trajectory, however small changes are produced due to 
model uncertainties. However, even perfect control is achieved for monomer concentration, Figure 
20c shows that Mw target cannot be achieved with this type of strategy.  
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(c)                                                                            (d) 

Figure 64: Experimental results for nonlinear controller (controlling Cm using Fm): a) Monomer 
concentration, b) Monomer flow; c) Weighted average molecular weight. Red-Target (simulation); 
blue-Closed-loop. 
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Benefits Assessment 
 This project has opened the door for prototype commercial implementation for certain 
specialty polymers.  This is a very important first step since never before has it been possible to 
control Mw, composition and other polymer and reaction characteristics based on continuous, 
realtime data and analysis streams.  In fact, Fluence Analytics has contracted with a first client to 
deliver a prototype Mw controller software product based on the basic principles controller 
developed by Fluence/Tulane during this project.  The client, who has very tight specifications 
for their product, hopes to optimize their manufacturing process and consistently improve 
product quality (Mw in this instance) with the controller. 
 It is expected that a growing number of industrial clients in the specialty polymer space 
will request Mw and copolymer composition controllers as reference case studies are built up, 
such as the one mentioned above, and as publications, marketing materials and presentations 
from this project and Fluence Analytics reach the relevant audience. 
 While these accumulating implementations will have a positive impact on making more 
efficient use of energy and reducing emission, the big energy picture lies with polyolefin 
manufacturing and certain other commodity polymers, since those are the most energy intensive, 
GHG emissive, and largest sectors in the polymer industry.   
 Table 1 shows the results of studies of energy consumption and potential savings per year 
in the polyolefin sector.§  It shows that polyolefin production leads to an estimated savings of 60 
TBtu per year and 8 million tons/year decrease in GHG emissions if this manufacturing sector 
adapts ACOMP/CI.  This latter figure aligns well with DoE analyses of chemical bandwidth 
studies (emails and conversation with DoE personnel).  

§ Assumes 5% total ‘off-specification’ or other inefficiencies in production 
Annual production data : Plastics Industry Producers’ Statistics Group, as compiled by Vault Consulting, LLC; ACC © April 2016 American 
Chemistry Council, Inc.  
Energy data from Franklin Associates: Cradle-to-gate life cycle inventory of nine plastic resins and four polyurethane precursors, 2011 
Pollution data from life cycle assessment literature review 
Monetary data: spot price Nexant, Bloomberg 
 

The table shows annual savings per year due to 50% reduction in off-specification 
product from online polymer monitoring, where off spec production is assumed at 5% of total 
production.  The focus is on a portion of the U.S. Plastic Industry; polyethylene, polypropylene, 
polystyrene and PVC. This table does not include other major products, such as PET, nylon, 
polycarbonates, synthetic rubbers, and engineering thermoplastics.  Savings numbers will be 
much higher taking these into account, and these are other areas of opportunity for application 
of the technology. 
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Table 9.  Estimates of energy consumption and potential savings, and GHG emissions and potential 
reductions. 

 
Table 1.  Estimates of energy consumption and GHG emissions in the polyolefin manufacturing 
sector, along with estimates of yearly energy and GHG savings if ACOMP/CI is extended to the 
polyolefin industry. 
 

Commercialization 
 With a first Fluence Analytics client requesting a commercial prototype control interface 
software package for an ACOMP system which has been ordered, the door is now open to further 
developing and disseminating the basic principles controllers from this project in the industrial 
sector.  Fluence will seek opportunities to integrate the control interface with ACOMP orders as 
they arise.  

 Fluence placed its first industrial scale ACOMP (without a control interface) on a 50,000 
liter industrial reactor in Fall 2014 at a Louisiana manufacturing site producing specialty 
polymers in a batch process, and this has run with 97% availability.  That installation, which was 
a Joint Development Project with a Fortune 500 chemical manufacturer led to their purchase of a 
second ACOMP system in 2016 at the Louisiana site.  That company is currently evaluating the 
possible widespread adoption of ACOMP at its other U.S. and global operations.  Along the way, 
they are acting as a partner in exploring new features of ACOMP, possibly including a control 
interface in future plans.   

In the meantime, as mentioned, a different client has ordered an ACOMP system and 
requested a prototype control interface.  Fluence is currently negotiating with several important 
polymer manufacturers for ACOMP installation, and the possibility of extending to ACOMP/CI 
is always a very real possibility as future software ‘add-ons’ to an installed base of ACOMP 
systems.  Until recently, being in start-up mode, Fluence has been focused on working with a 
limited number of clients to more fully develop the technology before beginning the marketing 
phase.  Now, Fluence has just begun its first active sales and marketing campaign for ACOMP. 
 Again, it is the polyolefin sector that will yield the greatest energy savings and GHG 
emissions reduction through implementation of ACOMP/CI.  Development of ACOMP/CI for 
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polyolefins is beyond the financial reach of Fluence, which is still a start-up company with 
limited resources that need to be focused on more immediate opportunities. The 
ACOMP/CI team is seeking further federal funding to develop ACOMP/CI for polyolefins.  This 
is a formidable challenge, but there are already well developed plans for immediately launching 
the project once funds are obtained.  The team sees DoE as the most likely source of funding.   

It is noted that, while it may be possible to obtain private industry sponsorship for 
developing polyolefin ACOMP/CI, such sponsorship would inevitably come with a heavy price 
tag in terms of IP, confidentiality, and exclusivity restrictions limiting long-term adoption to the 
entire sector.  Any arrangement that would hinder the quickest and widest possible adoption of 
ACOMP throughout the polyolefin manufacturing is antithetical to the mission of DoE. 
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“Modelling and optimization of free radical polymerization processes in batch and semi-batch 
mode”, N.Ghadipasha, N.Soleimani, C.A.Castor, M.F.Drenski, Prof. Wayne Reed, Prof. Jose 
Romagnoli, AIChE Meeting, (2016) 
 
“A Model-based Robust Control approach for On-line Optimal feedback Control of Polymerization 
Reactors: Application to Polymerization of Acrylamide-wate-Persulfate (KPS) Systems”. 
Ghadipasha N., Geraili A., Hernandez H., Romagnoli J.A., IChEAP’17, Milan Italy (2017)  

 
“Online DEKF for State Estimation in Semi-Batch Free-Radical Polymerization Reactors” , S.D. 
Salas, N. Ghadipasha, W. Zhu, J.A. Romagnoli, T. Mcafee, W.F. Reed, Proceedings of the 27th 
European Symposium on Computer Aided Process Engineering – ESCAPE 27, Barcelona, Spain 
(2017) 
 
“Real Time Optimal Control and State Estimation in Semi-Batch Free-Radical Polymerization 
Reactors”, Salas, S. D.; Zhu, W.; Ghadipasha, N.; McAfee, T.; Reed, W. F.; Romagnoli, J. A., 
AIChE Spring Meeting Conference Proceedings, San Antonio, TX, USA, March 28, 2017. 

 
c. Awards 

 
Awarded the 2016 PSE Model-Based Innovation Prize for the paper, “Combining on-line 
characterization tools with modern software environments for optimal operation of 
polymerization processes” 
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d. Networks or collaborations fostered 

  Have established ongoing collaborations in automatic control of polymerization reactions 
between Tulane University, Louisiana State University, and Fluence Analytics 

e.  Technologies/Techniques; 

Complete working prototypes of the ACOMP/CI (automatic continuous online monitoring of 
polymerization reactions with control interface).  Two systems designed and  built by Fluence 
Analytics;  First unit is at Tulane University, with a 2 liter pilot reactor, where the control 
experiments were carried out and 2) The second unit was contributed as cost share by Fluence 
and is at Fluence and works with a 64 liter pilot reactor. 

Fully automatic control software for the ACOMP/CI without kinetic models by Tulane 
University and Fluence 

Fully automatic non-linear control software for the ACOMP/CI with detailed kinetic models, 
state estimators, and Kalman filters by the LSU group 

f.  Inventions/Patent Applications 

“Systems and methods for the active control of polymer reactions and processing using automatic 
continuous online monitoring of polymerization reactions.”  iEdison serial number 8424601-14-
0003,  US 15/515,119.   W.F. Reed and M.F. Drenski  

 “Device and methods for determination of molecular weight distributions of polymers,”  iEdison 
serial number, 8424601-16-0005. PCT/US 17/28919.    W.F. Reed, M.F. Drenski, R.D. 
Montgomery, A. Wu 
 
g. Other products 

A unique modular, generic and flexible model centric framework for advanced operation of 
polymerization processes has been formulated, implemented and fully tested within an experimental 
facility. The proposed framework has a number of unique features: a) A single model can be used in 
a number of activities during process operation including simulation, parameter estimation and 
steady-state and dynamic optimization; b) By changing the model the same framework can be used in 
different applications thus expanding the capabilities to study new reaction system where parameters 
and conditions are not fully known; c)  The proposed framework have the capabilities of being used 
off-line as well as on-line during plant operation. 

An in-house made state estimation/controller module was formulated, implemented and 
tested using open source platform (python 2.7) environment. This platform allows full functionality 
and connectivity to the ACOMP server to update/modify the process behavior. In addition, a user-
friendly graphic user interface (GUI) allows visualization and modification of control parameters 
while the reaction progresses. 
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Conclusions 
Ground-breaking advances in polymer science and engineering have been made in the course of 
this project.  The project achieved first time automatic control of polymerization reactions based 
on the continuous realtime stream of ACOMP data on the most important polymer and reaction 
characteristics.  The final characteristics controlled of most value to manufacturing are the 
MWD, intrinsic viscosity, and copolymer composition distribution.  As regards this latter, 
production of copolymers is no longer subordinated to comonomer reactivity ratios, and any 
desired composition distribution can now be achieved in free radical copolymerization.  The 
latter methods are also directly applicable to the increasingly important family of living type 
reactions, such as RAFT, ATRP, NMP, and ROMP. 
            While the initial proposal was for three years of funding, only two were obtained, which 
reduced the scope of the project somewhat. In a third year there would have been emphasis on 
moving the technology to more industrial type reactions, especially those in heterogeneous 
systems, such as emulsions and dispersions, in which there are very large specialty chemical 
markets.  Approaching polyolefin monitoring, however, would not have been within the third 
year scope, as it requires entirely different reactors than those in the current Fluence ACOMP/CI, 
and extensive basic R&D in high temperature, high pressure sampling, and high temperature 
measurements needs to be developed.  The R&D needed for this is the subject of ongoing 
proposal preparation for DoE’s CESMII. 
            The fact that a Fluence Analytics ACOMP manufacturing client has requested a beta 
version of the Tulane/Fluence basic principles controller demonstrates that there is industrial 
interest in the ACOMP/CI platform, which must be grown through business development 
efforts.  Fluence recently hired a VP for global business developments who has begun this 
process and there are a number of active initiatives for marketing and outreach.  At the industrial 
ACOMP level itself (i.e. ACOMP without CI) there are current orders at Fluence and many 
discussions and proposals with industries are ongoing.   

An important lesson learned during this project is that there is considerable inertia and 
attachment to status quo at the plant and production level; i.e. the main concerns of the plant are 
to manufacture products at a profit while maintaining sameness of operation and employment 
status, but resisting change and innovation.  In contrast, the Executives of the manufacturing 
companies, together with manufacturing technology teams and the R&D scientists and engineers, 
understand that there are large efficiency gains to be had and in some sense are engaged in a 
struggle with plant operators to usher in innovative technologies.   

The promise of ACOMP/CI is that wide scale industrial implementation of the 
technology will lead to very large efficiency gains in the use of energy, non-renewable 
feedstocks, and plant and energy time, while decreasing GHG emissions per kilo of product, 
increasing worker safety (by eliminating manual sampling of dangerous reactors), and enabling 
the production of new 21st century polymeric materials which are currently still in the R&D 
phase. 

As Fluence Analytics continues to drive ACOMP/CI implementation in both the 
industrial and R&D spaces this goal will inevitably be met.  With continued collaboration and 
support of DoE the basic advances in using ACOMP/CI in conjunction with Artificial 
Intelligence and other sophisticated cyber platforms, and in bringing ACOMP/CI to the 
polyolefin industry, as well as other industries, will be accelerated.  An estimated annual 60 TBtu 
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energy savings and 3 million ton decrease in GHG emissions have been estimated for adaptation 
of ACOMP/CI to the polyolefin industry alone.  

Individual companies will not fund such advances unless they can obtain exclusivity in 
the use of the innovations.  This is antithetical to the mission of DoE, which is to propagate new 
energy saving technologies as broadly as possible for maximum impact. 
 

Recommendations 
 
It is recommended that funding for adaptation of ACOMP/CI to polyolefins and Smart 
Manufacturing  be provided by DoE in order to bring the technology to the most energy intensive 
and GHG emissive sector of the polymer manufacturing industry.  The project PI will be happy 
to discuss this with DoE personnel for appropriate mechanisms and RFPs. 
 It is also recommended that project personnel pursue other DoE opportunities that further 
the goal of developing and implementing ACOMP/CI as widely as possible, such as in 
integrative and advanced Artificial Intelligence approaches. 
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