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The Kk-¢ turbulence model has been described as perhaps “the most widely used complete turbulence model.”
This family of heuristic Reynolds Averaged Navier-Stokes (RANS) turbulence closures is supported by a suite
of model parameters that have been estimated by demanding the satisfaction of well-established canonical
flows such as homogeneous shear flow, log-law behavior, etc. While this procedure does yield a set of so-
called nominal parameters, it is abundantly clear that they do not provide a universally satisfactory
turbulence model that is capable of simulating complex flows. Recent work on the Bayesian calibration of the
k-g model using jet-in-crossflow wind tunnel data has yielded parameter estimates that are far more
predictive than nominal parameter values. Here we develop a self-similar asymptotic solution for
axisymmetric jet-in-crossflow interactions and derive analytical estimates of the parameters that were
inferred using Bayesian calibration. The self-similar method utilizes a near field approach to estimate the
turbulence model parameters while retaining the classical far-field scaling to model flow field quantities.

Our parameter values are seen to be far more predictive than the nominal values, as checked using RANS
simulations and experimental measurements. They are also closer to the Bayesian estimates than the nominal
parameters. A traditional simplified jet trajectory model is explicitly related to the turbulence model
parameters and is shown to yield good agreement with measurement when utilizing the analytical derived
turbulence model coefficients. The close agreement between the turbulence model coefficients obtained via
Bayesian calibration and the analytically estimated coefficients derived in this paper is consistent with the
contention that the Bayesian calibration approach is firmly rooted in the underlying physical description.

Nomenclature

constant

turbulent velocity scale constant

turbulent length scale constant

turbulent kinetic energy constant

turbulence model constant

turbulence model constant

turbulence model constant

jet nozzle diameter (m)

turbulent dissipation constant

self-similar velocity function

self-similar turbulent kinetic energy function
self-similar turbulent dissipation function

jet momentum ratio

turbulent length scale (m)

distance separating counter-rotating vortices (m)
turbulent kinetic energy (m/s)?

freestream Mach Number

self-similarity exponent

impulse/length (kg/s)
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turbulent production (m%/s°)
turbulent Reynolds number

time (s)

streamwise velocity (m/s)

freestream velocity (m/s)
cross-stream velocity (m/s)

jet velocity (m/s)

normal velocity (m/s)

streamwise location (m)
cross-stream location (m)

normal distance (m)

locally defined constant

turbulent dissipation (m?/s®)

yll

circulation (m?/s)

density (kg/m®)

turbulent Kkinetic transport coefficient
turbulent dissipation transport coefficient
shear (Pa)
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Subscripts/superscripts

jet

midstream value
dimensionless
constant value
freestream, far-field
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I. Introduction

Reynolds—Averaged Navier-Stokes (RANS) based simulations tend to be the “workhorse” for industrial fluid

flow problems due to their ease-of-use and low computational overhead. A common closure hypothesis is the k-¢
turbulence model which has been described by Pope® as perhaps “the most widely used complete turbulence model.”
Here “complete” signifies a turbulence model that provides closure to the Reynolds stresses without requiring
additional information. The model relies upon a simple Boussinesq assumption™®” (effective turbulent viscosity
analogy to molecular viscosity). It uses a scalar eddy viscosity approximation implying that a useful effective
turbulent viscosity closure follows by identifying a turbulent velocity and length scale. The necessary length and
velocity scales then results from solution of the Kinetic turbulent energy equation and the turbulent dissipation. This
type of modeling approach is by definition approximate and must be supported by a suite of model parameter
constants®, Traditionally, the parameters have been estimated by solving the system of equations for simplified
“unit-level” flow problems where well-known analytical or experimental data is available. Typical problems that are
utilized include: homogeneous shear, law-of-the-wall and decaying homogeneous isotropic turbulence'®°.  While
requiring the model to honor the basic flows with the intent of identifying a “universal” set of turbulence parameters
is laudable, the reality is less satisfactory. The values for the model parameters obtained using the traditional
procedure (here referred to as the nominal set) tend to provide “plausible trend” solutions for many flows (especially
simple ones) but are less suitable for complex flows. The variability associated with the specification of turbulence
model constants, k-¢ in particular, is well summarized by Pope’.

As an alternative to using simplified flows to compute the turbulence model parameters, efforts to estimate their
value by examining flows that are more closely aligned with the problem class of interest have also been developed.
The approaches can range from case specific'® (sometimes ad hoc) parameter adjustment to more sophisticated
parameter estimations schemes™. A procedure based on Bayesian parameter estimation, developed by Ray et.
al.>*** has demonstrated significant improvement in predictive ability for a class of jet-in-crossflow problems.
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This process requires significant input from high quality simulation and/or experimental measurement. While
perhaps daunting, the result is a predictive simulation capability for a practical but complex flow problem.

In this paper, however, we ask the question: can a simpler analytical solution that is more representative of the
problem of interest be used to successfully estimate turbulence model parameters? Consequently, we seek a bridge
between estimates drawn from simple canonical flows and coefficient values estimated from flows that are more
closely aligned with a particular problem. Our approach is to derive and approximately solve a self-similar model
for axisymmetric wake/jet flow. Though highly simplified, this solution will yield rigid constraints on the k-¢

turbulence model constants: {C " C.., Cgl} (we ignore the TKE and ¢ transport coefficients and define

o, =1 ; o, =1) that are in general agreement with a more complex parameter estimation scheme. While

analytical approaches are unlikely to be viable for highly complex flows, they nonetheless provide support for model
calibration efforts by demonstrating connection between classical and recent procedures.

Il. Governing Equations

Following the classical modeling approach for free-shear flows described by Tennekes and Lumley® we examine
simplified Reynolds averaged expressions for momentum, turbulent kinetic energy (TKE) and turbulent dissipation®
expressed in terms the streamwise velocity u, TKE k and turbulent dissipation €.  Assuming that the flow can be
described by a self-similar approach we express the streamwise velocity as:

u _ oy, _
u__f(T)_f(f)—)U—US(X)f(f) (€]

S

Here us = ug(x) is the maximum jet velocity defect, i.e. the centerline velocity “I” is the local turbulence length scale
that changes with “x”. The turbulent kinetic energy and dissipation follow as:

k =k, ()g(£)
& =&,()h(£) @)

We can relate velocity scale and the length scale to k and & via the algebraic definitions: K (X) = CuZand
u3
& (x)= DTS . The partially linearized® governing equations associated with the flow of interest are the simplified

axisymmetric momentum equation:

2
Uau 10 k< ou

- (yC ==
X yo (yC, P ) )
the turbulent kinetic energy:
k 10 k2 ok k2(ouY
U&:ray‘ycfk?—ay”@?(—ayJ ¢ @

and turbulent dissipation
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where the effective viscosity is given by: C Pt The governing equations as represented by equations (3) - (5)
&

are incompressible. While the class of problems that we will examine using results from this development have
compressible features, we believe that the self-similar turbulent behavior that is the focus of our development is
largely Mach number independent. Hence the incompressible approach is likely adequate. This conclusion was
supported by an early analytical development where a compressibility correction term based upon a Sarkar-
Zeman'**2 dilatation-dissipation model was included in the TKE equation. Application of turbulence model
parameters derived with the compressibility included to problems of interest showed uniformly worse agreement
with measurements as compared to incompressible results suggesting that our incompressible modeling assumption
is likely to be appropriate.

A. Self-Similarity

Following Tennekes and Lumley® our goal is to compute u(x), ks(x), &(x) and I(x) such that the governing
equations will be invariant with “x”, i.e. self-similar (self-preserving). We start with the momentum equation:

ou 10, k?*au

= = ya(y?a) and compute the term:
u_du, ¢ udldf
ox dx  1dx"dé ©

Putting these expressions back into the momentum equation gives:

2 2 2 2 2 2
ofQue U dldf)_uild( kigtdf) . (CTluild( g®df
dx | dx’d&) “ 1 ydél g hdé) “I D)1 £déL” h dé ™)

2 du, (v, di df
dx I dx ™ d¢&

> be

uS

u
(dividing through by I—S) and demanding self-similarity will require that the terms in

constant, which implies that

| du
— —— = const
u; dx
®)
1dl
—— = const
ug dx

S

These two expressions are a set of differential equations that will tell us the behavior of the length scale “I” and the
3

u
velocity scale u,.  Additionally, via the algebraic definitions K, (X) = Cu:‘and g(x)= DTS , the scaling behavior

for k, and &, will be available. We find that these expressions have a general solution® as
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We still do not have an expression for “n” and require another equation.
Following the traditional analysis for axisymmetric wakes"® we would propose that the jet momentum at any
plane normal to the jet core flow direction is equal to the jet momentum at the nozzle exit** which is
ijjzd 2 = MV, . Here V; is the velocity of the jet, p; is the density of the jet and d the jet diameter. 7 is the
jet’s mass flow rate. We can therefore write
T 242 _ T
ijvj d® =const = anijuydy
0
o (10)
2
= 27p,Uul j fadé
0
Here p,, is the density of the freestream and U, its velocity. Equation (14) demands that
ul? =const >n—1+2n=0-—>n=1/3. Given this formulation we can write
u, = A'Ud?/3x2/3
(11)

I — B*d 2/3X1/3

We emphasize that the preceding argument was based upon the approximation that the momentum constraint
could be best described by p, UU, a plausible assumption for a wake/jet flow field or the transverse jet far from the
jet exit'®. Near the jet exit, however, the flow is clearly less influenced by the freestream velocity and the
momentum constraint would be better modeled via p_UU. Under this assumption, we formulate the constraint as
u’l> =const - 2(n—1)+2n=0—n=1/2, implying that u, = AUd"*x™"> ; 1=B"d"*x"?.

This result is, of course, consistent with the 2-d wake/jet flow field® but is also valid for transverse jet near field
behavior. The existence of two length and velocity scales describing near and far-field behavior of jet-in-crossflow

has been described by several researchers™ though clearly the far-field behavior dominates the jet trajectory
behavior and is almost always described by the decay rates associated with equation (11)*¢*".

Thus, we are posed with a modeling challenge whereby we would like to retain both modeling similarity
behaviors but would appear to be limited to one approach or the other. Indeed, consistency for self-similarity would
appear to make any combination of these two behaviors incompatible. Here we focus on turbulence model
parameter estimates. It will permit us to utilize a combination of the two similarity closures with one approach
applied for flow field results and the other used to estimate turbulence model coefficients. We propose that

1. The momentum equation honors the far-field solution U, = AUd**x?® ; 1=B"d**x"*

thereby describing the streamwise varying behavior associated with jet-in-crossflow flowfield. This
analysis is capable of modeling the flow field and turbulence quantities given specified turbulence
model parameters. We compute the turbulence model coefficients utilizing the procedure described

below.
2. The turbulence quantities k and ¢ are to be modeled using the near-field behavior -
u, = AUdY*x™* ; 1=B"d"Y*x"? - and solved to provided estimates for the turbulence model
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parameters {C ﬂ,Cgl, Cgl}. While the turbulence-based model parameters are necessarily based upon

these near field expressions, we assign the turbulence Reynolds number to be consistent with the far-
field value, i.e. Rey=14.1 We emphasize that the near-field approximation is only suitable to provide

estimates for the turbulence constants, here {Cﬂ,Cgl, Cgl}while the far-field model is appropriate to

provide mean, turbulent and trajectory information.

B. Classical Turbulence Length and Velocity Scales (Far-field)

Following this prescription, we assume that U, = AUd?®x?? ; 1=B"d**x"? (far-field) whereby the

turbulent kinetic energy and dissipation follow from the definitions as: kS =CAU%d**x™" and

A*3 U 3
e =D ——d"3x73, Equation (7) then becomes

B" d
B” df c?1d(g? df
——_|2f+e—|=C = —| LT ¢e— |
3A ( eEdgj “D gdg( h gng (12)
or, collecting terms
df \ 1 d (g?,df
ol 2f+E— = —| L |,
“( gdfj édé( h fdfj 3
where we define o = B* D > |= B*ReT.
3A C#C 3A

If we follow the classical approach utilized for wake/jet problems™® we assume we approximate

2
D
9 ~ const ~1 and 5= Re; = const, where Rer is approximately 14.1°. By defining & =1 we can
h C
u

1
solve the velocity functionas f = exp (—E 52) , Whereby the approximate momentum constraint gives

2
T i V T * K * K \]
—&—’2 =2J=AB?27 — A'B” == Here J represents the dimensionless jet momentum
4 p U 4 8

\/ 2
parameter**>1¢ J = &U_JZ . We can then solve the two expressions
P

B* * * \]

—Re; =1 ; AB?==

3A 8 (14)
to give
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A (ReT )2/3J1/3

* — ( )1/3 1/3 (15)

so that we can finally obtain
Us _ A*(d )2 ~ 1 (ReT )22 3 1/3(d )23
U X 2 3
l ( )1/3 _( 3 )33 1/3(£)1/3 (16)
d 2 Re; d

If we use the axi-symmetric wake turbulent Reynolds number Rey - 14.1 we can estimate

u d | X

= =14J"3(=)" ] =0.3J 1":‘(a)”3 . The efficacy of these approximations to yield results consistent

X

with transverse jet theory and measurements is described below.

C. Turbulence Model Parameter Estimates

Obviously, our focus in this document is to determine estimates for the turbulence model parameters constants
{C c,C 1} which follow from a self-similar solution to the turbulence equations e.g. TKE:

el

2
DK 10 KK oK) .
X yoy £ oy £\ oy (17)
and the dissipation expression:
oe 10 k2 ou g?
Uazg—(c I ) CélC k(ayj ngrzo. (18)
. A*3 u’®
We introduce the near field self-similar formulations to give kK, = CA”U*d'x ™" and &, = —d*x’t
write:
dg, 1d ,_dg df D
29 + —Re;, =—h=0
a(29 fdéj) fdé(gdf) C(dfj TC (19)
and
df D h®
dh+é&—)+=—(&E— -C,Re; ——=0
a( édf) gdég@ ég) (dfj &2 TCg (20)
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We will need to simplify either equation (19) or (20) to gain a solution. Utilizing the approximation that

%2 = % = 1which is consistent with both the Pope® and Tennekes and Lumley treatment® and the definition o =
1, we can write equation (19) as
dg 1(df Y D
(29+§d§) E%Gdf C(déjj ReTEgog=O- 1)

D
Now if we demand that g, Re; c = 2 the associated differential simplifies to become

& jg f E — (& :g) c (ddffj =0 which can be integrated in closed form to give
1 2E 2E
9="c .1( £%)-2E ,(&")-ep(=£) |, 22)
where E; ; is the exponential integral: E i 1(X) ITdU This expression gives a solution for g(&) that honors the

X
D
required boundary conditions: g> (0) = 0 and g(«) = g(-:c) = 0. The constant g, Re; E = 2 was chosen because
the associated solution honors the necessary boundary conditions ie.a solution for g(&) which is bounded for £&>1.
Equation (22) also permits us to estimate goto be g, = = (g(O) +g(x)) = (2 In(2) — 1) We emphasize

that we have not imposed a magnitude for g(&) but have chosen an expression that provides a plausible solution for
E— 0.

The proposed balance between the turbulent dissipation term and a portion of the mean flow convective term, i.e.

ok
U 8_ oc & is at first glance potentially troubling when viewed from our traditional notion of a local balance
X

between production and dissipation. However, the energy budget for an axisymmetric wake measured by Uberoi
and Freymouth®’ (discussed in Pope') suggests that such is not the case. Indeed, their measurements suggest that

1. production is a rather small portion of the budget
2. dissipation is balanced by a partitioned component of the mean flow convective TKE, while,
3. turbulent transport balances the other component.

Similar results are noted for wake flows by Tennekes and Lumley®. These statements are recapitulated in our

D
modeling approach whereby dissipation is balanced by a portion of the mean flow convection, Re; E h=2g

1d df
with the other component balanced by the turbulent transport, i.e.: 5— —— (§ df + C

dg ¢dg d&

Returning to our analysis we note that there are now two algebraic expressions available to estimate the turbulent
kinetic energy and dissipation as
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D 2In(2)-1. D

=Re; ; =2.

Cc,C’ 4C "C 23)
.. D o 8 i
Eliminating —- from these expressions gives values for C, = —————Re;" =0.1and
C (2In(2) -1)
D 8 a . . . .
- = C# Re; = —————Re;". Here we have utilized the axisymmetric wake Reynolds number estimate
C (2In(2) - 1)

as Rer = 14.1, while noting that this value is consistent with the far-field wake and should be consider as
preliminary.

We turn to the turbulent dissipation equation

2
dh 1d,.dg. C.(df D h?
ane ety = D¢y Zal B ¢ Re — 1 =0.
+§d§+§d§(§d§)+c[déJ 27T g (24)

_— : _h?
We now use the same type of approximation to analyze equation (24). If we can write: — = 909 h = g,h we can

g

D
again demand that C_, Re; c d, =4 to honor a far field constraint on the self-similar dissipation h(¢). Recalling

D
that the TKE equation required f (M) Re; Jo E = 2, we immediately (and unambiguously) compute an estimate

for C_, with C_, =2. The value for C_, computed here is larger than the nominal value which is traditionally

C,, =1.92 . Afinal constraint follows from the solution to equation (24) which is simply Equation (22) with a
modified magnitude, i.e.

— Csl 1 2 2 2
h= 2C (ZE,_1(§§ )_2Ei_1(§ )—exp(—f )) (25)
This solution then implies that h, =C_, = g, whereby C_, = 2In(2) -1 Inz(lzc) —1 _

Since our goal is to estimate the parameter C_, we will require an estimate for the constant C which is associated

with the TKE magnitude. Recalling that kS = Cus2 we can estimate K by utilizing the so-called Bradshaw
H 1,6,8 ot 2 - [ u52 -
assumption*®® namely that U'v'= 5(0.45)ks =0.3k,. Then employing: U'V'~ Re_ f ' with
€r

0.62

1
f'= > (f' o+ T ()= — = 0.31 (a simple arithmetic average for the distribution) we can estimate
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s .3
u'v'  2(0.45)

Re;'(0.31). Using Re; =14.1we find that C ~0.072. The estimate for C_, then

2In(2) -1
4(0.072)

~
~

follows as: C,; =0, =[

To summarize the turbulence parameter estimates are:
¢, =0.1, C., = 2,and C.y = 1.34 (26)

We will refer to {C,u Cez, Ce1 } computed using Equation (26) as C,.

D. Jet Trajectory Formulation Explicitly Using Analytical Turbulence Model Parameters

A common description of the jet-in-crossflow behavior is the jet penetration trajectory® ?®. Simplified models have
been developed based on line-impulse, counter-rotating vortex pair expressions. They provide good estimates for
trajectory behavior®?’. The formulation of these models directly involves turbulence behavior through their length
scale definition, implying that one can expect that turbulence model parameter information can be explicitly related
to the trajectory behavior. Here we utilize the approximate analytical descriptions of the self-similar jet in
crossflow to formulate a jet trajectory model that directly includes a subset of the turbulence model parameter
constants.

We start by examining the trajectory model formulation. We can relate the local turbulence behavior of the jet to
the trajectory via a line impulse vorticity argument. The fundamental expression that is used is the vertical velocity
W induced by a CVP*? as

_dz_ I
Cdt 4 @7)

where 2L is the spacing between the vortices and I is the circulation strength of the vortex. We can relate the
circulation back to the jet strength as

T 242
ijde =2p UI'L. (28)

T
ijijdZ
We then connect the nozzle impulse per unit length

to the impulse per unit length, say p', of the

CVP via the impulse-circulation expression: p,'= 2, T'L?* . The distance separating the vortices, L, is slightly
3

less than the jet spreading distance™® and estimated to be 0.7 I < L < 0.8(, with an average value of L = ZI .

However, a useful limiting case to consider is to assume that L =1 i.e. the vortex core is equal to spreading
location.

Clearly the turbulent length scale specification is the connection between turbulence model and the jet
penetration trajectory, where the trajectory differential equation is
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7Z'

s Zd 2
d 4 dz 1
z U zZ _
—_— > —
Yo 870 7 dx 32 (d) (29)
- r .
Similarly, the vortex speed model W = — = —— s also related to the turbulence length scale via
dt 4l
r -, Ly o, 1.4
— =) =23
ud 8 (d) 8 (d) (30)

We now derive expressions for a as a function of the turbulence model parameters.

The turbulence modeling formulation involves specification of the velocity and length scales

u, = AUd**x™?® ; 1=B"d**x"* (far-field) whereby the turbulent kinetic energy and dissipation follow
%2 124413413 A*3 u’®
from the definitions as k, =CA™“U “d""*x ™" and ; = d""®x""® which were developed previously
for the classical far-field analysis. The turbulent length and velocity scale constants A” and B are related via:
B” i J
—_Re; =1 ; AB?==,
3A° T 8 (31)
. 1 Re . 1,3
togive A == (—- )2/3 . B == (—)"2J3"3, so that
2 2 Re,;
u ~d 213 _ 1 Rer 23 313,023
—==A()"=-(=—-D"J ( )
U x’ 23
1 _ *(5)1/3 _ 1( 3 )1/3‘]1/3(5)1/3 (32)
d 2 Re; d

The self-similar turbulent velocity and length scale constants A and B, respectively, must now be related to the
turbulence model parameters. The turbulence model parameters are contained within the definition for the constant
turbulent Reynolds number Ret since

D
c,ct e ®)
To proceed we require two additional expressions to estimate D and C. The turbulence model parameter procedure
1.2In2-1
developed previously utilizes the two approximations C = Z (C—) and
el
1 D?
Z(2|n2—1)C82F:4 (34)
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The resulting solution for D is

1/2

=—(2| n2-1)—~4
clicy )
whereby the Reynolds number is
_ 4 /2112
o ez o e @)

1
The associated length scale expression — = B ( )1/3 —(— 3 YWEIV3(= )l/3 is now
d 2 Re; d
I 1(3 U2 ~U2AL2 17 X e
E—E[Z(ZInZ—l) C, C€2J(E) . 37)

I 1(3 x )"
It is convenient to write this expression as rin E(Z (2In2 —1)1’2Ci’2Ci’22J (a)] . The trajectory

dz
differential equation i = @ J (d —) s then integrated to give
: 3(16 CjC T )”3
d 8l 9 (2in2-1)

(38)
~ 0.624[C#CSZ]—1/3 J 1/3 (%)1/3

Equation (38) expresses a simple trajectory model as a function of the associated turbulence model parameters
specifically Cﬂ and ng. Below, we compare it to numerical solution, as well as other analytical models of jet
penetration.

I11. Comparison to Computational Approaches

The preceding approximate analytical development has focused on estimating the main parameters within the k-¢
turbulence model. While the approach utilized here is highly simplified it nonetheless provides parameter estimates
for the major model parameters C, = {CH, Ce, Cgl}. With access to the turbulence model parameters it is possible to
perform a computational study of an experimentally well-characterized jet-in-crossflow problem to ascertain the
efficacy of the analytically estimated turbulence model parameters. Further, one may use the analytical model for
jet penetration as a check on the accuracy of the self-similar model from which C, was derived.

A. RANS Computational Study Utilizing Analytical Parameters
Values of C, were used to perform RANS (k-¢) simulations of jet-in-crossflow (JIC), with a jet-to-freestream

momentum ratio J of 10.2. The freestream velocities for the three cases are 215, 251 and 286 m/s respectively,
corresponding to freestream Mach number M = 0.6, 0.7 and 0.8. We used experimental data from Beresh et al*® to
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validate these RANS simulations. A schematic of the experimental setup is in Figure 1 (left). A Mach 3.73 jet is
introduced into a freestream of Mach number M, flowing from left to right. The jet curves with the flow and rolls
into a counter-rotating vortex pair (CVP) as it flows downstream. PV measurements of the mean flow are available
on the midplane (plane of symmetry) and for the M = 0.8 case, also on the crossplane that slices through the CVP.
Figure 1 (right) shows the streamwise vorticity field on the crossplane; the CVP is clearly visible. A window W is
delineated around one of the vortices for clarity. The RANS simulations are performed with a compressible form of
the RANS equations®?*; a description of the governing equations and the implicitly stepped finite volume numerical
method used to solve them is available in Ray et al?>. The mesh requires about 10 million grid cells to obtain grid-
independent solutions®. Velocities on the midplane (vertical and streamwise) are extracted at three streamwise
locations (at x/d = 21, 31.5 and 42, where d = 9.53 mm is the diameter of the jet) and compared against
experimental measurements from Beresh et al'°.

0.15
I -

240 250 260 270 280
u (m/s)

0.1

Y (m)

O n n n n n
0.06 0.04 0.02 0 -0.02 -0.04 -0.06
Z (m)

Figure 1 Left: Schematic of the wind tunnel section simulated in this paper. The freestream is introduced from the left. The jet is

at the bottom of the test section. The midplane and crossplane are clearly shown. Right: The counter-rotating vortex pair (CVP)
of the jet as seen on the crossplane. The window in black delineates one of the vortices.

In Figure 2, we plot the streamwise velocity deficit (top row) and the normalized vertical velocity (bottom row) at
the three streamwise locations mentioned above for the M = 0.8 interaction. Here, streamwise velocity deficit is
defined as (U —u) / U, where U is the maximum velocity encountered at a streamwise location, and is typically
slightly higher than the freestream velocity because of the mass added by the jet. Experimental data are plotted as
symbols and the predictions using C,om = {C ,Ces, Cgl} ={0.09, 1.92, 1.44}*°, the nominal value of the parameters,
with a dashed line. Predictions using C, are plotted with a solid line. The improvements over predictions using Cpom
are clear and quite significant. The flowfield obtained with C,,, contains a CVP that is too strong, as seen in the
vertical velocity induced by it (bottom row of figures); further, the CVP penetrates excessively into the crossflow,
compared to the experimental results. The use of C, largely corrects these errors at all the streamwise locations; in
fact, the experimental measurements are very close to the C, predictions. The same improvements in predictive skill
are seen in Figure 3, which plots the results for the M = 0.7 case.

Figure 4 plots the results for the M = 0.6 case. Cqn, provides very poor predictions of the experimental
measurements, and the use of C, does result in an improvement. However, the quality of agreement between C, and
the experimental results is not as good as in Figure 2 and Figure 3. This could be due to the approximate nature of
the derivation of C,, though the experimental measurements for M = 0.6 also show some anomalous behavior
compared to M = 0.7 and M = 0.8. For example, between 2 < y/d < 7 the streamwise velocity deficit seems to
adopt a constant value for M = 0.6, whereas in M = 0.7 and M = 0.8, it reduces to zero. In contrast, the numerical
predictions of the streamwise velocity deficit for M = 0.6, as in the M = 0.7 and 0.8, do reduce to zero outside the
CVP.

In Figure 5 we plot the streamwise vorticity field on the crossplane. The vorticity predicted by C,, and C, are
plotted in color, with the vorticity computed from PV measurements plotted on top as contours. This is done for the
M = 0.8 case, for which we have PIV measurements on the crossplane®. We see (from the color map) that the use of
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C. weakens the CVP and shrinks it size, thus bringing it in line with experimental data. It also sits somewhat below
the experimental CVP, which can also be seen in the midplane velocity profiles in Figure 2.

In Figure 6 we compare the vorticity fields plotted in Figure 5 quantitatively. We compute the circulation of
vorticity field inside W, as well as the centroid of that distribution in the crossplane (henceforth referred to as the
“point-vortex metrics”). This is done for flowfields generated by Cpo and C,, as well as the flowfield that was
measured via PIV. The point-vortex metrics of the simulated flowfields are normalized by their experimental
counterparts and plotted in Figure 6. The horizontal line indicates a perfect match. It is clear that the circulation of
the CVP simulated using C, matches experiments very well, whereas C,,, leads to a CVP that is about 30% too
strong. This explains the excessive vertical velocities seen in Figure 2. The CVP’s height predicted by Cy is also
close to experimental results, whereas C,,, provides a CVP that is about 30% too high. This is also seen in the plots
for streamwise velocity deficit in Figure 2. The figure also shows that CVP simulated using C, is too close to the
midplane, though the difference is small (about 10%). Due to this small difference, it was not readily apparent in
Figure 5.
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Figure 2 Top row: Plots of streamwise velocity deficit at three streamwise locations x/d = 21,31.5 and 42.0. Experimental
data are plotted with symbols, the RANS predictions using the nominal parameter values C,y, are plotted with a dashed line and
those obtained using C, with a solid line. Bottom row: The normalized vertical velocity v/U . Results are for the M = 0.8 test
case.

Having established that the CVP simulated using C, is far more accurate than the one generated using Cyn, We
investigate the finer points of the simulated jet versus experiments. The evolution of the jet can be tracked using the
streamwise velocity deficit, the maximum vertical velocity on the midplane or the CVP; they do not exactly coincide
spatially. In Figure 7 (left) we plot the streamwise velocity deficit (in color) as computed using C,, with the
streamwise vorticity overlaid with contours. In Figure 7 (right) we illustrate the experimental counterpart. We see
that the simulated jet is slightly below the experimental one, as seen in Figure 2. It is also slightly narrower. The
CVP is also closer to the midplane, and occupies a greater fraction of the region where the streamwise velocity
deficit assumes significant values. This could be a consequence of having a narrower jet. However, given that C,
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was estimated under a set of gross assumptions required for a self-similar solution, it is surprising that it does so well
for JIC simulations.

In

Table 1 we compare the analytically-derived C, against the parameters estimated via the Bayesian parameter
estimation approach?. It was computed using the same experimental data and RANS equations. We compare the
values of C,, C,, and C, that correspond to Cy,4p,, Ca, and C,p¢, Where C,,.is the MAP (maximum a posteriori)
estimate obtained by the Bayesian calibration performed for a M = 0.8 crossflow. The results indicate that C, is in
good agreement with the Bayesian results. While we emphasize that the current result is highly simplified, the good
agreement between approaches suggests that the data-informed procedure described by Ray et. al.>**® likely
succeeds because it honors the underlying physics associated with the jet-in-crossflow problem. It also suggests
that compressibility effects at these downstream locations are weak, since our incompressible formulation provides
relatively good agreement with experimental data. By offering more than a strictly semi-empirical modification,
flow-specific calibration would then appear to be a useful procedure to develop dedicated simulation tools for a
particular problem class.
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Figure 3 Top row: Plots of streamwise velocity deficit at three streamwise locations x/d = 21,31.5 and 42. 0. Experimental
data are plotted with symbols, the RANS predictions using the nominal parameter values C,, are plotted with a dashed line and
those obtained using C, with a solid line. Bottom row: The normalized vertical velocity v/U . Results are for the M = 0.7 test
case.

The agreement between jet-in-crossflow calibrated models, however, comes at a price regarding other flow
effects. A wall-bounded shear layer would be expected to honor traditional log law behavior which in turn
imposes a well know constraint™® upon the k-¢ constants as

2 _ _ 1/2
K _(CEZ Csl)o-gC,u (39)
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where k = 0.41 is the Von Karman constant. Utilizing the so-called nominal constants i.e., ng =192,
C,=144,C = 0.09 and o, =1.3 we estimate that k=0.43 which compares well to the classical value.
Utilizing values that are optimized for the jet-in-crossflow problem, i.e., C,, =2.0, C; =1.34, C , =0.1 and

o, = 1.0 yields: k = 0.46 which is 15% larger as compared to the expected value. Analytical constraints that
explicitly require production versus dissipation invariance such as for a homogeneous shear flow” lead to

P_ C,-1
- _1’ 40
e C,-1 (40)
P _ _C,-1 192-1 o
where — is measured as 1.7 Nominal results give = = 2.1which is larger than the
P C,-1 144-1
experimentally measured value. Utilization of the current incompressible values gives
C,-1 2-1 o _
= = 2.94 which is much too large. These two examples tend to demonstrate our contention that
C,-1 134-1
calibration for turbulence model coefficients is necessarily problem-class dependent.
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Figure 4 Top row: Plots of streamwise velocity deficit at three streamwise locations x/d = 21,31.5 and 42.0. Experimental
data are plotted with symbols, the RANS predictions using the nominal parameter values C,y, are plotted with a dashed line and
those obtained using C, with a solid line. Bottom row: The normalized vertical velocity v/U . Results are for the M = 0.6 test
case.
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Figure 5 Vorticity plots inside the window W. Left: Vorticity predictions using Cpon are plotted in color, with the experimental
vorticity field overlaid as white contour lines. Right: Vorticity predicted using C,. Results are for the M = 0.8 case.
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Figure 6 Circulation and position of the centroid of the CVP computed using C, (analytical coefficients) and C,,, (nominal
coefficients). The quantities are normalized by their experimental counterparts. The horizontal line indicates perfect
agreement.
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Table 1. Comparison between the current incompressible, self-similar model, the compressible Bayesian model of Ray et. al.? and
the nominal model, suggesting relatively good agreement between the current model and the calibrated one. “B” is used as
shorthand for the parameter values obtained using Bayesian calibration. “N” is the corresponding shorthand for nominal
parameters.

Cu Cel CeZ
Self-Similar Model (current) (C,, M = 0) 0.10 1.34 2.00
Bayesian Model (C,y,¢, M = 0.8) 0.10 1.42 2.10
Relative Error (SSy=o- B) / B (%) 0% -6% -5%
Nominal (C,om) 0.09 1.44 1.92
Relative Error (SS - N) / N (%) 11% -1% 4%
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Figure 7 Plots of streamwise velocity deficit (in color) with the vorticity plotted on top with contours. Left: results simulated
using C, Right: Experimental results. As seen in Figure 2 and Figure 5, the simulated jet sits a little lower than the
experimental one and is also a little narrower.

B. Assessing the Jet Trajectory Model

We now evaluate the impact of Cy,,,, Coand C,,, 0N jet penetration (Equation 38). Specifically, we estimate

Z =0.624 (C, C.,)~ /3 for these values of C and tabulate in Table 2. We see that Equation 38 predicts that C,,om,
will result in excessive jet penetration, as observed in Figures 2-5, vis-a-vis C,. It will also result in penetrations
larger than C,,,, as seen in Ref. 2. However, the impact, as estimated via Equation 38, is not very large (though it
does have the correct trend) and with access to RANS simulations we can directly estimate the trajectory penetration
without being constrained to the functional form associated with Equation (38).
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Table 2. Comparison between the trajectory function constants as a function of k- turbulence model parameters using the current
incompressible, self-similar model ( C,), Bayesian-calibrated (Copt) and nominal values (C,,,n,). Notice that the nominal values
result in an increased degree of penetration relative to the self-similar and calibrated parameters which is consistent with the
vortex pair locations in Figure 5. Z = 0.624 (C, C,)™*/3

Cu Cer Cez Z (Z’;OLZ) (%)
Self-Similar Model (C,, M =0) 0.10 1.34 2.00 1.06 5.2
Bayesian Model (C,,., M = 0.8) 0.10 1.42 2.10 1.04 6.7
Nominal (C,,om) 0.09 1.44 1.92 1.11 0
4 Penetration of jet; M = 0.8, J = 10.2 4 Penetration of jet; M= 0.7, J = 10.2 4 Penetration of jet; M = 0.6, J = 10.2
4 Experimental data 4 Experimental data 4 Experimental data

- = Analytical model - = Analytical model - = Analytical model
10 ——RANS using analytical parameter estimate (C ) 10 ——RANS using analytical parameter estimate (C,) 10

e RANS, uncalibrated (G, ) """ e RANS, UnCalibrated (G ) s
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Figure 8. Comparison of jet penetration trajectories predicted using the analytical model i.e., Equation (38) with €, and RANS
computations using both €, and C,,,,,,. Results are plotted for crossflow Mach number M = 0.8 (left), M = 0.7 (middle) and M =
0.6 (right). The symbols denote experimental results, the dotted lines the RANS simulation using €y, and the solid lines the
RANS simulations using C,. Equation (38) is plotted using dashed lines.

In Figure 8, we plot the trajectory of the jet computed using Equation 38 (with C,), and compare it with RANS
simulations performed with C, and C,,,,,,- The subfigure on the left plots results for a M = 0.8 crossflow. In the
middle and right subfigures, results are plotted for M = 0.7 and 0.6. In the RANS simulations, the jet penetration at
any streamwise location is computed to be where the vertical velocity achieves its maximum value. We see that
Equation 38 compares well with the RANS results for M = 0.8 and M = 0.7. The analytical model seems to provide
a better match to the experimental values than the RANS simulation for the M = 0.7 and M = 0.8 cases. However,
the agreement may be fortuitous, as it does not hold for M = 0.6. Equation (38) is perhaps better used as a relative
measure of the trajectory behavior and a useful delineation of the functional behavior of the turbulence model
parameters, as opposed to an absolute predictive tool. Therefore, there is value in comparing the results of the
current model to a family of “classical” e.g. Hasselbrink and Mungal®®, Margarson®! and Pratte and Baines* jet

. . . . oz 13, X\13
penetration trajectory models. All of these models have the same basic analytical form as: a ~ AOJ (E) and
permit direct comparison in Table 3.

Table 3. Simplified jet trajectory function magnitude constant A,. Most classical result suggest a greater degree of jet penetration
than observed in the Beresh®® experiment, while the estimates based upon the self-similar constants are significantly reduced.

7 X Reference
Trajectory Coefficient; A,, 3 ~ AJY? (E)”3
A,=1.60 Hasselbrink and Mungal®™
A,=1.60 Margarson>"
Ay=2.05 Pratte and Baines>
Ay=1.06 Equation (38), using C,
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To summarize, the analytical derived self-similar turbulence model parameters
C, = {C#,Cel, C€2}={0.1, 1.34,2.0} have been utilized in RANS computations and compared to the well
characterized experiment by Beresh et. al.'®. The use of the analytically estimated in the computations yields
improved comparison with the experimental measurements. A direct connection between traditional jet in
crossflow penetration trajectory models and the turbulence models is exploited to also demonstrate the efficacy of
the analytically estimated coefficients.

IV. Conclusion

In this paper, we have developed a simplified, analytical, similarity-based model for axi-symmetric wake/jet
behavior in a crossflow that is then used to estimate values for the supporting turbulence model coefficients. The
resulting estimates for the turbulence model parameters are in general agreement (less than 10% relative error) with
the calibrated results of Ray et. al.? Numerical simulations performed with the analytically estimated parameters are
in good agreement with experimental measurements that cover a range of freestream Mach numbers. They are far
better than the predictions obtained using C,,m, the nominal values of the parameters. Predictions of velocity on the
midplane as well as vorticity on the crossplane were used to validate the analytical parameter estimates. The model
was also parlayed into an expression for the jet’s penetration into the crossflow, which showed good agreement with
experimental and RANS simulations. It also explained the over-prediction of jet penetration by RANS simulations
using Cpom- The superiority of C,over Con, €ven though derived from an analytically simplified solution of a jet-in-
crossflow problem, leads us to believe that the predictive skill of RANS can be significantly enhanced (over those
obtained using Crom) by using appropriate parameter values e.g., those obtained via calibration. Our previous paper?
explored this possibility.

A drawback for our previous Bayesian calibration approach was that it was purely data-driven, without any
theoretical justification. There was also the risk that the calibrated values were also compensating for the model-
form error (i.e., approximations in the physical modeling of turbulence) that is inherent in RANS. The close
agreement between the turbulence model coefficients obtained from Bayesian calibration and the analytically
estimated values estimated in this paper suggest that the calibration approach is far more capable than simple data-
dependent regression, and is firmly rooted in the underlying physical description. It attests to the credibility of
results drawn from Bayesian calibration. A future paper will investigate calibration in depth i.e., across multiple
freestream Mach numbers and check how they compare to predictions using C, obtained using Equation (26).
Calibrating a RANS model requires a significant amount of effort and we will also check whether C, may be used as
a compromise between C,, and rigorously calibrated parameter values.
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