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The k-ε turbulence model has been described as perhaps “the most widely used complete turbulence model.”   

This family of heuristic Reynolds Averaged Navier-Stokes (RANS) turbulence closures is supported by a suite 

of model parameters that have been estimated by demanding the satisfaction of well-established canonical 

flows such as homogeneous shear flow, log-law behavior, etc.   While this procedure does yield a set of so-

called nominal parameters, it is abundantly clear that they do not provide a universally satisfactory 

turbulence model that is capable of simulating complex flows. Recent work on the Bayesian calibration of the 

k- model using jet-in-crossflow wind tunnel data has yielded parameter estimates that are far more 

predictive than nominal parameter values. Here we develop a self-similar asymptotic solution for 

axisymmetric jet-in-crossflow interactions and derive analytical estimates of the parameters that were 

inferred using Bayesian calibration. The self-similar method utilizes a near field approach to estimate the 

turbulence model parameters while retaining the classical far-field scaling to model flow field quantities.   

Our parameter values are seen to be far more predictive than the nominal values, as checked using RANS 

simulations and experimental measurements. They are also closer to the Bayesian estimates than the nominal 

parameters.  A traditional simplified jet trajectory model is explicitly related to the turbulence model 

parameters and is shown to yield good agreement with measurement when utilizing the analytical derived 

turbulence model coefficients.  The close agreement between the turbulence model coefficients obtained via 

Bayesian calibration and the analytically estimated coefficients derived in this paper is consistent with the 

contention that the Bayesian calibration approach is firmly rooted in the underlying physical description. 

Nomenclature 

c = constant 

A = turbulent velocity scale constant 

B = turbulent length scale constant 

C = turbulent kinetic energy constant 

Cμ = turbulence model constant 

Cε1 = turbulence model constant 

Cε2 = turbulence model constant 

d = jet nozzle diameter (m) 

D = turbulent dissipation constant 

f = self-similar velocity function 

g = self-similar turbulent kinetic energy function 

h = self-similar turbulent dissipation function 

J = jet momentum ratio 

l = turbulent length scale (m) 

L = distance separating counter-rotating vortices (m) 

k = turbulent kinetic energy (m/s)
2 

M = freestream Mach Number 

n = self-similarity exponent 

p’ = impulse/length (kg/s) 
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P = turbulent production (m
2
/s

3
) 

ReT = turbulent Reynolds number 

t = time (s) 

u = streamwise velocity (m/s) 

U = freestream velocity (m/s) 

v = cross-stream velocity (m/s) 

Vj             =    jet velocity (m/s) 

W = normal velocity (m/s) 

x = streamwise location (m) 

y = cross-stream location (m) 

z = normal distance (m) 

α = locally defined constant 

ε = turbulent dissipation (m
2
/s

3
) 

ξ = y/l 

Γ = circulation (m
2
/s) 

ρ = density (kg/m
3
) 

σk = turbulent kinetic transport coefficient 

σε = turbulent dissipation transport coefficient 

τ = shear (Pa) 

 

Subscripts/superscripts 

 

j = jet 

s = midstream value 

* = dimensionless 

0 = constant value 

∞ = freestream, far-field 

 

I. Introduction 

Reynolds-Averaged Navier-Stokes (RANS) based simulations tend to be the “workhorse” for industrial fluid 

flow problems due to their ease-of-use and low computational overhead. A common closure hypothesis is the k-ε 

turbulence model which has been described by Pope
1
 as perhaps “the most widely used complete turbulence model.”   

Here “complete” signifies a turbulence model that provides closure to the Reynolds stresses without requiring 

additional information.   The model relies upon a simple Boussinesq assumption
1,6,7

 (effective turbulent viscosity 

analogy to molecular viscosity). It uses a scalar eddy viscosity approximation implying that a useful effective 

turbulent viscosity closure follows by identifying a turbulent velocity and length scale.   The necessary length and 

velocity scales then results from solution of the kinetic turbulent energy equation and the turbulent dissipation. This 

type of modeling approach is by definition approximate and must be supported by a suite of model parameter 

constants
8
. Traditionally, the parameters have been estimated by solving the system of equations for simplified 

“unit-level” flow problems where well-known analytical or experimental data is available. Typical problems that are 

utilized include: homogeneous shear, law-of-the-wall and decaying homogeneous isotropic turbulence
1,8,9

.   While 

requiring the model to honor the basic flows with the intent of identifying a “universal” set of turbulence parameters 

is laudable, the reality is less satisfactory.   The values for the model parameters obtained using the traditional 

procedure (here referred to as the nominal set) tend to provide “plausible trend” solutions for many flows (especially 

simple ones) but are less suitable for complex flows.   The variability associated with the specification of turbulence 

model constants, k-ε in particular, is well summarized by Pope
1
. 

 

 As an alternative to using simplified flows to compute the turbulence model parameters, efforts to estimate their 

value by examining flows that are more closely aligned with the problem class of interest have also been developed.   

The approaches can range from case specific
10

 (sometimes ad hoc) parameter adjustment to more sophisticated 

parameter estimations schemes
13

. A procedure based on Bayesian parameter estimation, developed by Ray et. 

al.
2,3,4,5

, has demonstrated significant improvement in predictive ability for a class of jet-in-crossflow problems.   
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This process requires significant input from high quality simulation and/or experimental measurement.   While 

perhaps daunting, the result is a predictive simulation capability for a practical but complex flow problem. 

 

 In this paper, however, we ask the question: can a simpler analytical solution that is more representative of the 

problem of interest be used to successfully estimate turbulence model parameters?  Consequently, we seek a bridge 

between estimates drawn from simple canonical flows and coefficient values estimated from flows that are more 

closely aligned with a particular problem.   Our approach is to derive and approximately solve a self-similar model 

for axisymmetric wake/jet flow.   Though highly simplified, this solution will yield rigid constraints on the k-ε 

turbulence model constants:  11,,  CCC  (we ignore the TKE and ε transport coefficients and define 

1;1  kk  ) that are in general agreement with a more complex parameter estimation scheme.   While 

analytical approaches are unlikely to be viable for highly complex flows, they nonetheless provide support for model 

calibration efforts by demonstrating connection between classical and recent procedures. 

 

 

II. Governing Equations 

 

Following the classical modeling approach for free-shear flows described by Tennekes and Lumley
6
 we examine 

simplified Reynolds averaged expressions for momentum, turbulent kinetic energy (TKE) and turbulent dissipation
8
 

expressed in terms the streamwise velocity u, TKE 𝑘 and turbulent dissipation ε.   Assuming that the flow can be 

described by a self-similar approach we express the streamwise velocity as: 

 
)()()()(  fxuuf

l

y
f

u

u
s

s


      (1) 

Here us = us(x) is the maximum jet velocity defect, i.e. the centerline velocity “l” is the local turbulence length scale 

that changes with “x”.   The turbulent kinetic energy and dissipation follow as: 
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We can relate velocity scale and the length scale to k and ε via the algebraic definitions:  
2)( ss Cuxk  and 

l

u
Dx s

s

3

)(  .  The partially linearized
6
 governing equations associated with the flow of interest are the simplified 

axisymmetric momentum equation: 
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the turbulent kinetic energy: 
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and turbulent dissipation 
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where the effective viscosity is given by: 




2k
C .   The governing equations as represented by equations (3) - (5) 

are incompressible. While the class of problems that we will examine using results from this development have 

compressible features, we believe that the self-similar turbulent behavior that is the focus of our development is 

largely Mach number independent.  Hence the incompressible approach is likely adequate.   This conclusion was 

supported by an early analytical development where a compressibility correction term based upon a Sarkar-

Zeman
11,12 

dilatation-dissipation model was included in the TKE equation.  Application of turbulence model 

parameters derived with the compressibility included to problems of interest showed uniformly worse agreement 

with measurements as compared to incompressible results suggesting that our incompressible modeling assumption 

is likely to be appropriate. 

A. Self-Similarity 

 

Following Tennekes and Lumley
6
 our goal is to compute us(x), ks(x), εs(x) and l(x) such that the governing 

equations will be invariant with “x”, i.e. self-similar (self-preserving).   We start with the momentum equation: 
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Putting these expressions back into the momentum equation gives: 
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(dividing through by 
l

us

2

)  and demanding self-similarity will require that the terms in 

l

u
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constant, which implies that 
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      (8) 

These two expressions are a set of differential equations that will tell us the behavior of the length scale “l” and the 

velocity scale us.   Additionally, via the algebraic definitions
2)( ss Cuxk  and 

l

u
Dx s

s

3

)(  , the scaling behavior 

for ks and εs will be available.  We find that these expressions have a general solution
6
 as 
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We still do not have an expression for “n” and require another equation.    

 

Following the traditional analysis for axisymmetric wakes
1,6

 we would propose that the jet momentum at any 

plane normal to the jet core flow direction is equal to the jet momentum at the nozzle exit
14

 which is  

jjj VmdV 22 .   Here 𝑉𝑗 is the velocity of the jet, 𝜌𝑗 is the density of the jet and 𝑑 the jet diameter.  𝑚̇ is the 

jet’s mass flow rate. We can therefore write 
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Here 𝜌∞ is the density of the freestream and 𝑈, its velocity. Equation (14) demands that 

3/10212  nnnconstlus .   Given this formulation we can write 

 
3/13/2*

3/23/2*

xdBl

xUdAus



 

      (11) 

We emphasize that the preceding argument was based upon the approximation that the momentum constraint 

could be best described by Uu , a plausible assumption for a wake/jet flow field or the transverse jet far from the 

jet exit
12

.   Near the jet exit, however, the flow is clearly less influenced by the freestream velocity and the 

momentum constraint would be better modeled via uu .   Under this assumption, we formulate the constraint as

2/102)1(222  nnnconstlus , implying that 
2/12/1*2/12/1* ; xdBlxUdAus  

.   

This result is, of course, consistent with the 2-d wake/jet flow field
5
 but is also valid for transverse jet near field 

behavior.  The existence of two length and velocity scales describing near and far-field behavior of jet-in-crossflow 

has been described by several researchers
15

 though clearly the far-field behavior dominates the jet trajectory 

behavior and is almost always described by the decay rates associated with equation (11)
16,17

.  

 

Thus, we are posed with a modeling challenge whereby we would like to retain both modeling similarity 

behaviors but would appear to be limited to one approach or the other.   Indeed, consistency for self-similarity would 

appear to make any combination of these two behaviors incompatible.   Here we focus on turbulence model 

parameter estimates. It will permit us to utilize a combination of the two similarity closures with one approach 

applied for flow field results and the other used to estimate turbulence model coefficients.  We propose that 

1. The momentum equation honors the far-field solution 
3/13/2*3/23/2* ; xdBlxUdAus  

thereby describing the streamwise varying behavior associated with jet-in-crossflow flowfield.   This 

analysis is capable of modeling the flow field and turbulence quantities given specified turbulence 

model parameters.   We compute the turbulence model coefficients utilizing the procedure described 

below. 

2. The turbulence quantities k and ε are to be modeled using the near-field behavior - 
2/12/1*2/12/1* ; xdBlxUdAus  

 - and solved to provided estimates for the turbulence model 



 

American Institute of Aeronautics and Astronautics 

 

6 

parameters  11,,  CCC .   While the turbulence-based model parameters are necessarily based upon 

these near field expressions, we assign the turbulence Reynolds number to be consistent with the far-

field value, i.e. ReT = 14.1    We emphasize that the near-field approximation is only suitable to provide 

estimates for the turbulence constants, here  11,,  CCC while the far-field model is appropriate to 

provide mean, turbulent and trajectory information. 

 

B. Classical Turbulence Length and Velocity Scales (Far-field) 

 

Following this prescription, we assume that 
3/13/2*3/23/2* ; xdBlxUdAus  

 (far-field) whereby the 

turbulent kinetic energy and dissipation follow from the definitions as: 
3/43/422*  xdUCAks  and 

3/73/7
3
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or, collecting terms 
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If we follow the classical approach utilized for wake/jet problems
1,6

 we assume we approximate 
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, where ReT is approximately 14.1
6
. By defining 1  we can 

solve the velocity function as )
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to give 
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so that we can finally obtain 
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If we use the axi-symmetric wake turbulent Reynolds number ReT = 14.1 we can estimate 

3/13/13/23/1 )(3.0;)(4.1
d
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us  .   The efficacy of these approximations to yield results consistent 

with transverse jet theory and measurements is described below. 

 

C. Turbulence Model Parameter Estimates 

 

Obviously, our focus in this document is to determine estimates for the turbulence model parameters constants 

 11,,  CCC  which follow from a self-similar solution to the turbulence equations e.g. TKE: 
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and the dissipation expression: 
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We introduce the near field self-similar formulations to give 
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We will need to simplify either equation (19) or (20) to gain a solution.  Utilizing the approximation that 

10

2
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g
which is consistent with both the Pope

1
 and Tennekes and Lumley treatment

6
 and the definition α = 

1, we can write equation (19) as  
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Now if we demand that 2Re0 
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g T

the associated differential simplifies to become 
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where Ei_1 is the exponential integral: du
u

e
xE

x

u

i 
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)(1_    This expression gives a solution for g(ξ) that honors the 

required boundary conditions: g’ (0) = 0 and g(∞) = g(-∞) = 0.  The constant 2Re0 
C

D
g T was chosen because 

the associated solution honors the necessary boundary conditions, i.e. a solution for g(ξ) which is bounded for ξ>>1.   

Equation (22) also permits us to estimate g0 to be  1)2ln(2
4

1
))()0((

2

1
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C
ggg .    We emphasize 

that we have not imposed a magnitude for g(ξ) but have chosen an expression that provides a plausible solution for 

ξ→∞. 

 

 The proposed balance between the turbulent dissipation term and a portion of the mean flow convective term, i.e. 






x

k
U is at first glance potentially troubling when viewed from our traditional notion of a local balance 

between production and dissipation.   However, the energy budget for an axisymmetric wake measured by Uberoi 

and Freymouth
17

 (discussed in Pope
1
) suggests that such is not the case.   Indeed, their measurements suggest that 

 

1. production is a rather small portion of the budget 

2. dissipation is balanced by a partitioned component of the mean flow convective TKE, while, 

3. turbulent transport balances the other component. 

 

Similar results are noted for wake flows by Tennekes and Lumley
6
.  These statements are recapitulated in our 

modeling approach whereby dissipation is balanced by a portion of the mean flow convection, gh
C

D
T 2Re   

with the other component balanced by the turbulent transport, i.e.: 0
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Returning to our analysis we note that there are now two algebraic expressions available to estimate the turbulent 

kinetic energy and dissipation as 
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Eliminating 
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C

D
 .    Here we have utilized the axisymmetric wake Reynolds number estimate 

as ReT  = 14.1, while noting that this value is consistent with the far-field wake and should be consider as 

preliminary. 

 

 We turn to the turbulent dissipation equation 

 
0Re)(

1
4

2

2
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1 



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


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 .

      (24) 

 

We now use the same type of approximation to analyze equation (24).   If we can write: hgh
g

gg

g

h
0

0

2

 we can 

again demand that 4Re 02 g
C

D
C T  to honor a far field constraint on the self-similar dissipation h(ξ). Recalling 

that the TKE equation required 2Re)( 0 
C

D
gMf T , we immediately (and unambiguously) compute an estimate 

for 2C with 22 C .  The value for 2C computed here is larger than the nominal value which is traditionally 

92.12 C  .  A final constraint follows from the solution to equation (24) which is simply Equation (22) with a 

modified magnitude, i.e. 

 







 )exp()(2)

2

1
(2

2

22

1_

2

1_
1 

ii EE
C

C
h .

      (25) 

This solution then implies that 010 gCh    whereby 
C

C
4

1)2ln(2
1


 .  

 

Since our goal is to estimate the parameter 1C we will require an estimate for the constant C which is associated 

with the TKE magnitude.  Recalling that 
2

ss Cuk  we can estimate ks by utilizing the so-called Bradshaw 

assumption
1,6,8

 namely that ss kkvu 3.0)45.0(
3

2
''  .  Then employing: '

Re
''

2

f
u

vu
T

s with 

31.0
2

62.0
))(''(

2

1
' max  fff  (a simple arithmetic average for the distribution) we can estimate 
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)31.0(Re
)45.0(2

3

''

1 T
s

vu

k
C .   Using 1.14Re T we find that 072.0C .  The estimate for 1C then 

follows as: 34.1
)072.0(4

1)2ln(2
01 







 
 gC . 

 

To summarize the turbulence parameter estimates are:  

 

 𝐶𝜇 = 0.1, 𝐶𝜀2 = 2, and 𝐶𝜀1 = 1.34 (26) 

 

We will refer to {𝐶𝜇 , 𝐶𝜀2, 𝐶𝜀1} computed using Equation (26) as 𝐶𝑎. 

 

D. Jet Trajectory Formulation Explicitly Using Analytical Turbulence Model Parameters 

 

A common description of the jet-in-crossflow behavior is the jet penetration trajectory
25, 26

.   Simplified models have 

been developed based on line-impulse, counter-rotating vortex pair expressions. They provide good estimates for 

trajectory behavior
26,27

.   The formulation of these models directly involves turbulence behavior through their length 

scale definition, implying that one can expect that turbulence model parameter information can be explicitly related 

to the trajectory behavior.   Here we utilize the approximate analytical descriptions of the self-similar jet in 

crossflow to formulate a jet trajectory model that directly includes a subset of the turbulence model parameter 

constants. 

 

We start by examining the trajectory model formulation.  We can relate the local turbulence behavior of the jet to 

the trajectory via a line impulse vorticity argument.  The fundamental expression that is used is the vertical velocity 

W induced by a CVP
12

 as 

 Ldt

dz
W

4




      (27) 

where 2L is the spacing between the vortices and Γ is the circulation strength of the vortex. We can relate the 

circulation back to the jet strength as 

 
LUdV jj  


2

4

22
.
      (28) 

We then connect the nozzle impulse per unit length 
U

dV jj

22

4




 to the impulse per unit length, say 'p  , of the 

CVP via the impulse-circulation expression: Lpz  2' 28,29
 .  The distance separating the vortices, L, is slightly 

less than the jet spreading distance
16

 and estimated to be 0.7 𝑙 ≤ 𝐿 ≤ 0.8𝑙, with an average value of lL
4

3
 .  

However, a useful limiting case to consider is to assume that lL   i.e. the vortex core is equal to spreading 

location. 

 

Clearly the turbulent length scale specification is the connection between turbulence model and the jet 

penetration trajectory, where the trajectory differential equation is 
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Similarly, the vortex speed model 
Ldt

dz
W

4


   is also related to the turbulence length scale via 

 
11 )(

8
)(
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.
      (30) 

We now derive expressions for 
d

l
as a function of the turbulence model parameters. 

The turbulence modeling formulation involves specification of the velocity and length scales
3/13/2*3/23/2* ; xdBlxUdAus  
 (far-field) whereby the turbulent kinetic energy and dissipation follow 

from the definitions as 
3/43/422*  xdUCAks  and 

3/73/7
3

*

3*
 xd

d

U

B

A
Ds which were developed previously 

for the classical far-field analysis.  The turbulent length and velocity scale constants A
*
 and B

*
 are related via: 

 8
;1Re
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      (31) 

to give 
3/13/1*3/13/2* )

Re

3
(

2

1
;)

3

Re
(

2

1
JBJA

T
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      (32) 

The self-similar turbulent velocity and length scale constants A and B, respectively, must now be related to the 

turbulence model parameters.  The turbulence model parameters are contained within the definition for the constant 

turbulent Reynolds number ReT since 

 T
CC

D
Re

2




.
      (33) 

To proceed we require two additional expressions to estimate D and C.   The turbulence model parameter procedure 

developed previously utilizes the two approximations )
12ln2

(
4

1

1C
C


 and  

 
4)12ln2(

4

1
4

2

2 
C

D
C       (34) 
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The resulting solution for D is 

 2

1

2/1

2

2/1

)12ln2(
4

1





CC

C
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      (35) 

whereby the Reynolds number is 
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      (36) 

 

The associated length scale expression 
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It is convenient to write this expression as  

3/1

2/1
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differential equation 
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      (38) 

Equation (38) expresses a simple trajectory model as a function of the associated turbulence model parameters 

specifically C  and 2C .  Below, we compare it to numerical solution, as well as other analytical models of jet 

penetration. 

III. Comparison to Computational Approaches 

 

The preceding approximate analytical development has focused on estimating the main parameters within the k-ε 

turbulence model.   While the approach utilized here is highly simplified it nonetheless provides parameter estimates 

for the major model parameters 𝐶𝑎 =  {𝐶𝜇 , 𝐶𝜀2, 𝐶𝜀1}. With access to the turbulence model parameters it is possible to 

perform a computational study of an experimentally well-characterized jet-in-crossflow problem to ascertain the 

efficacy of the analytically estimated turbulence model parameters.  Further, one may use the analytical model for 

jet penetration as a check on the accuracy of the self-similar model from which 𝐶𝑎 was derived. 

A. RANS Computational Study Utilizing Analytical Parameters 

 

 Values of 𝐶𝑎 were used to perform RANS (k-) simulations of jet-in-crossflow (JIC), with a jet-to-freestream 

momentum ratio J of 10.2. The freestream velocities for the three cases are 215, 251 and 286 m/s respectively, 

corresponding to freestream Mach number 𝑀 = 0.6, 0.7 and 0.8. We used experimental data from Beresh et al
16

 to 
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validate these RANS simulations. A schematic of the experimental setup is in Figure 1 (left). A Mach 3.73 jet is 

introduced into a freestream of Mach number M, flowing from left to right. The jet curves with the flow and rolls 

into a counter-rotating vortex pair (CVP) as it flows downstream. PIV measurements of the mean flow are available 

on the midplane (plane of symmetry) and for the M = 0.8 case, also on the crossplane that slices through the CVP. 

Figure 1 (right) shows the streamwise vorticity field on the crossplane; the CVP is clearly visible. A window W is 

delineated around one of the vortices for clarity. The RANS simulations are performed with a compressible form of 

the RANS equations
21,22

; a description of the governing equations and the implicitly stepped finite volume numerical 

method used to solve them is available in Ray et al
2
. The mesh requires about 10 million grid cells to obtain grid-

independent solutions
20

. Velocities on the midplane (vertical and streamwise) are extracted at three streamwise 

locations (at 𝑥 𝑑⁄  = 21, 31.5 and 42, where d = 9.53 mm is the diameter of the jet) and compared against 

experimental measurements from Beresh et al
16

.  

 

 
Figure 1 Left: Schematic of the wind tunnel section simulated in this paper. The freestream is introduced from the left. The jet is 

at the bottom of the test section. The midplane and crossplane are clearly shown. Right: The counter-rotating vortex pair (CVP) 

of the jet as seen on the crossplane. The window in black delineates one of the vortices. 

In Figure 2, we plot the streamwise velocity deficit (top row) and the normalized vertical velocity (bottom row) at 

the three streamwise locations mentioned above for the M = 0.8 interaction. Here, streamwise velocity deficit is 

defined as (U – u) / U, where U is the maximum velocity encountered at a streamwise location, and is typically 

slightly higher than the freestream velocity because of the mass added by the jet. Experimental data are plotted as 

symbols and the predictions using Cnom = {𝐶𝜇 , 𝐶𝜀2, 𝐶𝜀1} = {0.09, 1.92, 1.44}
30

, the nominal value of the parameters, 

with a dashed line. Predictions using Ca are plotted with a solid line. The improvements over predictions using Cnom 

are clear and quite significant. The flowfield obtained with Cnom contains a CVP that is too strong, as seen in the 

vertical velocity induced by it (bottom row of figures); further, the CVP penetrates excessively into the crossflow, 

compared to the experimental results. The use of Ca largely corrects these errors at all the streamwise locations; in 

fact, the experimental measurements are very close to the Ca predictions. The same improvements in predictive skill 

are seen in Figure 3, which plots the results for the M = 0.7 case. 

 

 Figure 4 plots the results for the M = 0.6 case. Cnom provides very poor predictions of the experimental 

measurements, and the use of Ca does result in an improvement. However, the quality of agreement between Ca and 

the experimental results is not as good as in Figure 2 and Figure 3. This could be due to the approximate nature of 

the derivation of Ca, though the experimental measurements for M = 0.6 also show some anomalous behavior 

compared to M = 0.7 and M = 0.8. For example, between 2 ≤ 𝑦/𝑑 ≤ 7 the streamwise velocity deficit seems to 

adopt a constant value for M = 0.6, whereas in M = 0.7 and M = 0.8, it reduces to zero. In contrast, the numerical 

predictions of the streamwise velocity deficit for M = 0.6, as in the M = 0.7 and 0.8, do reduce to zero outside the 

CVP. 

 

In  Figure 5 we plot the streamwise vorticity field on the crossplane. The vorticity predicted by Cnom and Ca, are 

plotted in color, with the vorticity computed from PIV measurements plotted on top as contours. This is done for the 

M = 0.8 case, for which we have PIV measurements on the crossplane
23

. We see (from the color map) that the use of 
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Ca weakens the CVP and shrinks it size, thus bringing it in line with experimental data. It also sits somewhat below 

the experimental CVP, which can also be seen in the midplane velocity profiles in Figure 2. 

 

In Figure 6 we compare the vorticity fields plotted in Figure 5 quantitatively. We compute the circulation of 

vorticity field inside W, as well as the centroid of that distribution in the crossplane (henceforth referred to as the 

“point-vortex metrics”). This is done for flowfields generated by Cnom and Ca, as well as the flowfield that was 

measured via PIV.  The point-vortex metrics of the simulated flowfields are normalized by their experimental 

counterparts and plotted in Figure 6. The horizontal line indicates a perfect match. It is clear that the circulation of 

the CVP simulated using Ca matches experiments very well, whereas Cnom leads to a CVP that is about 30% too 

strong. This explains the excessive vertical velocities seen in Figure 2. The CVP’s height predicted by Ca is also 

close to experimental results, whereas Cnom provides a CVP that is about 30% too high. This is also seen in the plots 

for streamwise velocity deficit in Figure 2. The figure also shows that CVP simulated using Ca is too close to the 

midplane, though the difference is small (about 10%). Due to this small difference, it was not readily apparent in 

Figure 5. 

 

 
 

 
Figure 2 Top row: Plots of streamwise velocity deficit at three streamwise locations 𝒙 𝒅⁄ =  𝟐𝟏, 𝟑𝟏. 𝟓 and 𝟒𝟐. 𝟎. Experimental 

data are plotted with symbols, the RANS predictions using the nominal parameter values Cnom are plotted with a dashed line and 

those obtained using Ca with a solid line. Bottom row: The normalized vertical velocity 𝒗 𝑼∞⁄ . Results are for the M = 0.8 test 

case. 

Having established that the CVP simulated using Ca is far more accurate than the one generated using Cnom, we 

investigate the finer points of the simulated jet versus experiments. The evolution of the jet can be tracked using the 

streamwise velocity deficit, the maximum vertical velocity on the midplane or the CVP; they do not exactly coincide 

spatially. In Figure 7 (left) we plot the streamwise velocity deficit (in color) as computed using Ca, with the 

streamwise vorticity overlaid with contours. In Figure 7 (right) we illustrate the experimental counterpart. We see 

that the simulated jet is slightly below the experimental one, as seen in Figure 2. It is also slightly narrower. The 

CVP is also closer to the midplane, and occupies a greater fraction of the region where the streamwise velocity 

deficit assumes significant values.  This could be a consequence of having a narrower jet. However, given that Ca 
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was estimated under a set of gross assumptions required for a self-similar solution, it is surprising that it does so well 

for JIC simulations. 

 

In  

 

 

Table 1 we compare the analytically-derived 𝐶𝑎 against the parameters estimated via the Bayesian parameter 

estimation approach
2
. It was computed using the same experimental data and RANS equations. We compare the 

values of 𝐶𝜇 , 𝐶𝜖2 and 𝐶𝜖1that correspond to 𝐶𝑛𝑜𝑚, Ca, and 𝐶𝑜𝑝𝑡, where 𝐶𝑜𝑝𝑡is the MAP (maximum a posteriori) 

estimate obtained by the Bayesian calibration performed for a M = 0.8 crossflow. The results indicate that 𝐶𝑎 is in 

good agreement with the Bayesian results. While we emphasize that the current result is highly simplified, the good 

agreement between approaches suggests that the data-informed procedure described by Ray et. al.
2,3,4,5

 likely 

succeeds because it honors the underlying physics associated with the jet-in-crossflow problem.   It also suggests 

that compressibility effects at these downstream locations are weak, since our incompressible formulation provides 

relatively good agreement with experimental data. By offering more than a strictly semi-empirical modification, 

flow-specific calibration would then appear to be a useful procedure to develop dedicated simulation tools for a 

particular problem class.    

 

 

 
Figure 3 Top row: Plots of streamwise velocity deficit at three streamwise locations 𝒙 𝒅⁄ =  𝟐𝟏, 𝟑𝟏. 𝟓 and 𝟒𝟐. 𝟎. Experimental 

data are plotted with symbols, the RANS predictions using the nominal parameter values Cnom are plotted with a dashed line and 

those obtained using Ca with a solid line. Bottom row: The normalized vertical velocity 𝒗 𝑼∞⁄ . Results are for the M = 0.7 test 

case. 

The agreement between jet-in-crossflow calibrated models, however, comes at a price regarding other flow 

effects.   A wall-bounded shear layer would be expected to honor traditional log law behavior
1
 which in turn 

imposes a well know constraint
1,8

 upon the k-ε constants as 

         

2/1

12

2 )(   CCC 
                (39) 
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where κ = 0.41 is the Von Karman constant.   Utilizing the so-called nominal constants i.e., 92.12 C , 

44.11 C , 09.0C  and 3.1  we estimate that κ≈0.43 which compares well to the classical value.   

Utilizing values that are optimized for the jet-in-crossflow problem, i.e., 0.22 C , 34.11 C , 1.0C  and 

0.1  yields: κ ≈ 0.46 which is 15% larger as compared to the expected value.   Analytical constraints that 

explicitly require production versus dissipation invariance
 
such as for a homogeneous shear flow

1
 lead to

 

 1

1

1

2










 C

CP
,
      (40) 

where 


P
 is measured as 1.7    Nominal results give 1.2

144.1

192.1

1

1

1

2 













C

C
which is larger than the 

experimentally measured value.   Utilization of the current incompressible values gives

94.2
134.1

12

1

1

1

2 













C

C
which is much too large.   These two examples tend to demonstrate our contention that 

calibration for turbulence model coefficients is necessarily problem-class dependent. 

 

 

 
Figure 4 Top row: Plots of streamwise velocity deficit at three streamwise locations 𝒙 𝒅⁄ =  𝟐𝟏, 𝟑𝟏. 𝟓 and 𝟒𝟐. 𝟎. Experimental 

data are plotted with symbols, the RANS predictions using the nominal parameter values Cnom are plotted with a dashed line and 

those obtained using Ca with a solid line. Bottom row: The normalized vertical velocity 𝒗 𝑼∞⁄ . Results are for the M = 0.6 test 

case. 
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. 

 

Figure 5 Vorticity plots inside the window W.  Left: Vorticity predictions using Cnom are plotted in color, with the experimental 

vorticity field overlaid as white contour lines. Right: Vorticity predicted using Ca. Results are for the M = 0.8 case. 

Figure 6 Circulation and position of the centroid of the CVP computed using Ca (analytical coefficients) and Cnom (nominal 

coefficients). The quantities are normalized by their experimental counterparts. The horizontal line indicates perfect 

agreement. 
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Table 1. Comparison between the current incompressible, self-similar model, the compressible Bayesian model of Ray et. al.2 and 

the nominal model, suggesting relatively good agreement between the current model and the calibrated one. “B” is used as 

shorthand for the parameter values obtained using Bayesian calibration. “N” is the corresponding shorthand for nominal 

parameters. 

 𝐶𝜇 𝐶𝜖1 𝐶𝜖2 

Self-Similar Model (current) (𝐶𝑎, M = 0) 0.10 1.34 2.00 

Bayesian Model (𝐶𝑜𝑝𝑡 , M = 0.8) 0.10 1.42 2.10 

Relative Error (SSM=0 - B) / B (%) 0% -6% -5% 

Nominal (𝐶𝑛𝑜𝑚) 0.09 1.44 1.92 

Relative Error (SS - N) / N (%) 11% -7% 4% 

 

B. Assessing the Jet Trajectory Model  

 

We now evaluate the impact of 𝐶𝑛𝑜𝑚, 𝐶𝑎and 𝐶𝑜𝑝𝑡 on jet penetration (Equation 38). Specifically, we estimate 

𝑍 = 0.624 (𝐶𝜇  𝐶𝜖2)−1/3 for these values of 𝐶 and tabulate in Table 2. We see that Equation 38 predicts that 𝐶𝑛𝑜𝑚 

will result in excessive jet penetration, as observed in Figures 2-5, vis-à-vis 𝐶𝑎. It will also result in penetrations 

larger than 𝐶𝑜𝑝𝑡, as seen in Ref. 2. However, the impact, as estimated via Equation 38, is not very large (though it 

does have the correct trend) and with access to RANS simulations we can directly estimate the trajectory penetration 

without being constrained to the functional form associated with Equation (38).    

 
 

 

 

 

Figure 7 Plots of streamwise velocity deficit (in color) with the vorticity plotted on top with contours. Left: results simulated 

using Ca. Right: Experimental results. As seen in Figure 2 and Figure 5, the simulated jet sits a little lower than the 

experimental one and is also a little narrower.  
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Table 2. Comparison between the trajectory function constants as a function of k-ε turbulence model parameters using the current 

incompressible, self-similar model ( 𝐶𝑎), Bayesian-calibrated (𝐶𝑜𝑝𝑡) and nominal values (𝐶𝑛𝑜𝑚).   Notice that the nominal values 

result in an increased degree of penetration relative to the self-similar and calibrated parameters which is consistent with the 

vortex pair locations in Figure 5. 𝑍 = 0.624 (𝐶𝜇  𝐶𝜖2)−1/3 

 

 𝐶𝜇 𝐶𝜖1 𝐶𝜖2 𝑍 (𝑍𝑛𝑜𝑚−𝑍)

𝑍𝑛𝑜𝑚
 (%) 

Self-Similar Model (𝐶𝑎, M = 0) 0.10 1.34 2.00 1.06 5.2 

Bayesian Model (𝐶𝑜𝑝𝑡 , M = 0.8) 0.10 1.42 2.10 1.04 6.7 

Nominal (𝐶𝑛𝑜𝑚) 0.09 1.44 1.92 1.11 0 

 

 

 
Figure 8. Comparison of jet penetration trajectories predicted using the analytical model i.e., Equation (38) with 𝑪𝒂 and RANS 

computations using both 𝑪𝒂 and 𝑪𝒏𝒐𝒎.  Results are plotted for crossflow Mach number M = 0.8 (left), M = 0.7 (middle) and M = 

0.6 (right). The symbols denote experimental results, the dotted lines the RANS simulation using 𝑪𝒏𝒐𝒎, and the solid lines the 

RANS simulations using 𝑪𝒂. Equation (38) is plotted using dashed lines. 

In Figure 8, we plot the trajectory of the jet computed using Equation 38 (with 𝐶𝑎), and compare it with RANS 

simulations performed with 𝐶𝑎 and 𝐶𝑛𝑜𝑚. The subfigure on the left plots results for a M = 0.8 crossflow. In the 

middle and right subfigures, results are plotted for M = 0.7 and 0.6. In the RANS simulations, the jet penetration at 

any streamwise location is computed to be where the vertical velocity achieves its maximum value. We see that 

Equation 38 compares well with the RANS results for M = 0.8 and M = 0.7. The analytical model seems to provide 

a better match to the experimental values than the RANS simulation for the M = 0.7 and M = 0.8 cases. However, 

the agreement may be fortuitous, as it does not hold for M = 0.6. Equation (38) is perhaps better used as a relative 

measure of the trajectory behavior and a useful delineation of the functional behavior of the turbulence model 

parameters, as opposed to an absolute predictive tool.  Therefore, there is value in comparing the results of the 

current model to a family of “classical” e.g. Hasselbrink and Mungal
26

, Margarson
31

 and Pratte and Baines
32

 jet 

penetration trajectory models.   All of these models have the same basic analytical form as: 
3/13/1

0 )(
d

x
JA

d

z
 and 

permit direct comparison in Table 3. 

 
Table 3. Simplified jet trajectory function magnitude constant A0.  Most classical result suggest a greater degree of jet penetration 

than observed in the Beresh16 experiment, while the estimates based upon the self–similar constants are significantly reduced.    

Trajectory Coefficient; A0, 
3/13/1

0 )(
d

x
JA

d

z
  

Reference 

A0 = 1.60 Hasselbrink and Mungal
26

 

A0 = 1.60 Margarson
31 

A0 = 2.05 Pratte and Baines
32 

A0 = 1.06 Equation (38), using 𝐶𝑎 
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To summarize, the analytical derived self-similar turbulence model parameters 

𝐶𝑎 =  {𝐶𝜇 , 𝐶𝜖1, 𝐶𝜖2} = {0.1, 1.34, 2.0} have been utilized in RANS computations and compared to the well 

characterized experiment by Beresh et. al.
16

.  The use of the analytically estimated in the computations yields 

improved comparison with the experimental measurements.   A direct connection between traditional jet in 

crossflow penetration trajectory models and the turbulence models is exploited to also demonstrate the efficacy of 

the analytically estimated coefficients. 

IV. Conclusion 

 

In this paper, we have developed a simplified, analytical, similarity-based model for axi-symmetric wake/jet 

behavior in a crossflow that is then used to estimate values for the supporting turbulence model coefficients.   The 

resulting estimates for the turbulence model parameters are in general agreement (less than 10% relative error) with 

the calibrated results of Ray et. al.
2
 Numerical simulations performed with the analytically estimated parameters are 

in good agreement with experimental measurements that cover a range of freestream Mach numbers. They are far 

better than the predictions obtained using Cnom, the nominal values of the parameters.  Predictions of velocity on the 

midplane as well as vorticity on the crossplane were used to validate the analytical parameter estimates.  The model 

was also parlayed into an expression for the jet’s penetration into the crossflow, which showed good agreement with 

experimental and RANS simulations. It also explained the over-prediction of jet penetration by RANS simulations 

using 𝐶𝑛𝑜𝑚. The superiority of Ca over Cnom, even though derived from an analytically simplified solution of a jet-in-

crossflow problem, leads us to believe that the predictive skill of RANS can be significantly enhanced (over those 

obtained using Cnom) by using appropriate parameter values e.g., those obtained via calibration. Our previous paper
2
 

explored this possibility.    

 

A drawback for our previous Bayesian calibration approach was that it was purely data-driven, without any 

theoretical justification. There was also the risk that the calibrated values were also compensating for the model-

form error (i.e., approximations in the physical modeling of turbulence) that is inherent in RANS. The close 

agreement between the turbulence model coefficients obtained from Bayesian calibration and the analytically 

estimated values estimated in this paper suggest that the calibration approach is far more capable than simple data-

dependent regression, and is firmly rooted in the underlying physical description.  It attests to the credibility of 

results drawn from Bayesian calibration. A future paper will investigate calibration in depth i.e., across multiple 

freestream Mach numbers and check how they compare to predictions using Ca obtained using Equation (26). 

Calibrating a RANS model requires a significant amount of effort and we will also check whether Ca may be used as 

a compromise between Cnom and rigorously calibrated parameter values. 
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