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Abstract—In this paper, a model reference control based inertia
emulation strategy is proposed. Desired inertia can be pre-
cisely emulated through this control strategy so that guaranteed
performance is ensured. A typical frequency response model
with parametrical inertia is set to be the reference model. A
measurement at a specific location delivers the information of
disturbance acting on the diesel-wind system to the reference
model. The objective is for the speed of the diesel-wind system
to track the reference model. Since active power variation is
dominantly governed by mechanical dynamics and modes, only
mechanical dynamics and states, i.e., a swing-engine-governor
system plus a reduced-order wind turbine generator, are involved
in the feedback control design. The controller is implemented
in a three-phase diesel-wind system feed microgrid. The results
show exact synthetic inertia is emulated, leading to guaranteed
performance and safety bounds.

Index Terms—Inertia emulation, microgrid, diesel-wind sys-
tem, model reference control, voltage-source converter.

I. INTRODUCTION

Lack of inertia has been a crucial issue for microgrids under
autonomous operation [1] because most distributed energy
resources (DER) are converter-interfaced and do not respond
to frequency variations in the grid due to their decoupled
control design. The solution is to implement supplementary
loops to couple the active power stored in converter-interfaced
DER with rate-of-change of frequency (RoCoF), however, it
is hard to assess how much synthetic inertia can be provided
through this loop under disturbance, let alone emulate exact
synthetic inertia. Under some specific control structures like
droop control or virtual synchronous generator, the synthetic
inertia can be estimated or controlled [2], but this requires
DER to operate as voltage sources and at the cost of de-loaded
operation. On the another hand, guaranteed performance be-
comes necessary due to the increasing renewable penetration
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[3]. According to [3], maintaining bounded frequency response
under disturbance is a challenging control task.

Motivated by these issues, a novel inertia emulation strategy
for converter-interfaced current-source DER is proposed. The
model reference control (MRC) concept is employed [4]
to provide capability of emulating exact inertia. A diesel-
wind system feed microgrid is used as a test system. A
frequency response model, which is generally like a swing-
prime-governor system, is defined as the reference model,
where the desired inertia is parametrical. A measurement at a
specific location delivers the information of disturbance acting
on the diesel-wind system to the reference model. Then a static
state feedback control law is designed to ensure the frequency
of the physical plant tracks the reference model so that the
desired inertia can be precisely emulated. Since active power
variation is dominantly governed by mechanical dynamics
and modes, only mechanical dynamics, i.e., the swing-engine-
governor system plus a reduced-order wind turbine, are used in
control design stage. Thus only mechanical states, which are
easier to measure, are used in the feedback loop. By using
this strategy exact synthetic inertia is emulated, leading to
guaranteed performance and safety bounds.

The rest of the paper is organized as follows. Section
IT presents detailed model of the diesel-wind system. The
reduced-order model of wind turbine generator is derived
in Section III. The model reference control based inertia
emulation strategy is expressed in Section IV. Three-phase
nonlinear simulation is illustrated in Section V followed by
conclusion and future work in Section VI.

II. DIESEL-WIND SYSTEM MODELLING

A. Diesel Generator

The diesel generator model consists of diesel engine,
speed governor, exciter, voltage regulator and a two-axis syn-
chronous machine. The overall mathematical model is found
in [5]. The diesel generator frequency response is governed



by its mechanical dynamics and are expressed in Eq. (1):
MqAwqg = AP, — AP, 4
74AP,, = AP, — AP, ()
TamAP, = —AP, — (1/Rq)Aw,

where wqy, P, P, are rotating speed, mechanical power
and valve position, respectively. All parameters are scaled to
microgrid level based on [6].

B. Type-4 Wind Turbine Generator

In type-4 wind turbine generators (WTG), the permanent
magnet synchronous generator (PMSG) is driven by the wind
turbine and connected to a back-to-back voltage-source con-
verter (VSC). The machine side converter (MSC) is used to
regulate the speed of PMSG to achieve maximum power point
tracking (MPPT), while the grid side converter (GSC) delivers
the power in synchronous frequency. In this study, the averaged
model of the converter is employed. The converter regulation
is assumed to be infinitely fast so that:

Ug,cmd = Vg Ud,cmd = Ud (2)

where vg and v, are the converter output voltage in the d-q
axis and the corresponding command values are denoted by
the subscript “cmd”.

1) Wind Turbine: The aerodynamic model can be repre-
sented as follows [7]:
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and vyind, Ry, p, 0 and w; are the wind speed, blade radius,
air density, pitch angle of rotor blades and wind turbine speed,
respectively. In this study, the WTG is assumed to operate at
a partial loaded condition, so #; = 0 and pitch angle control
is omitted. In addition, mechanical drive train is simplified
using a constant gear ratio k. So the generator electric speed
wy, mechanical speed w,,, and the wind turbine speed w; have
the following relationship w, = pw,, = pkw;, where p is the
pole pair number of the generator. The MPPT curve is given
below [7]:
Pyppr = Copw; (6)

2) Permanent Magnet Synchronous Generator and MSC
Control: The permanent magnet synchronous generator
(PMSG) dynamics in the d-q axis as well as swing dynamics
are given as follows [7]:
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Fig. 1. Rotor side converter control.

where @54, i5q, Usd, Usq are the stator current and voltage of
PMSG. The electric torque is given as follows:

3 . .
§p [Wisqg + (La — Lg)isdisq) (8)

The speed of PMSG is regulated by the MSC. The control
diagram is shown in Fig. 1. The active power reference is
given based on the MPPT curve calculated in Eq. (6). wje
is the supplementary control signal for inertia emulation.
Defining the integrator outputs as three states x1, x2 and xs,
respectively, and substituting Eq. (2) yields the differential-
algebraic model as follows:

T, =

&1 =K1 (Pret + tic — Pe)

i‘Q :Kz [Kil(Ref + Uje — Pe) +x1 — qu]
&3 = — Kigisd
0=- Usd — Lqumisq + 23 — Kp37;sd (9)

0=-— VUsq + Ldpwmisd + X2
+ Kp2 [Kpl(Pref + Uje — Pe) + 1z — isq]
0=— P, + 1.5(vsqisq + ’Usqisq)
3) Output L Filter Model and GSC Control: Under the

assumption of Eq. (2), the output filter model in the d-q axis
is represented as follows

i o + wi ! Uod + ! v
ld = —7 Ud lqg = 7 Yod T 7 Vgd
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where vyq 4 is the GSC output voltage, i;4,4 iS current on
the inductor and v,q,4 is the terminal voltage of converter
connected to grid and assumed to be fixed. The standard P
& Q control in [8] is implemented, where the DC link voltage
is regulated through active power control loop.

III. SELECTIVE MODAL ANALYSIS BASED WTG MODEL
REDUCTION

The selective modal analysis (SMA) based model reduction
has been proved to be successful in capturing active power



variation of WTG [9] and is chosen to achieve a reduced-
order model. In WTG control design, the time frame of DC
regulation is usually faster than MSC current loop for stability.
Thus the DC link, GSC and output filter are simplified as
a power flow-through and the corresponding dynamics are
omitted in the model reduction.

Consider a type-4 WTG connected to a reference bus.
Combining the equations from (3)—(9) and linearizing them
about the equilibrium points under vying = 12(m/s) yields the
following state-space model:

A:I:VV = AsysWAxW + BsysWAuie (11a)
APgen = sysWAl'W + DsysWAuie (11b)
where the state vector is defined as xyw =
[isds Tsqs Wm, T1, T2, a:g,]T and the subscript W denotes

the WTG. The WTG rotor speed Aw,, dynamics is closely
related to its active power output, and the mode where Aw,
has the highest participation would capture the most relevant
active power dynamics. Therefore, Aw,, is considered as the
most relevant state, and the other states denoted as z(t) are
less relevant. Eq. (11) can be rearranged as

Awp || A A2 Awy, B,
z A21 A22 z Bz e
(12)
Wy
APgen = [Cr Cz] + DsysWUie

The less relevant dynamics are:

z = A22Z + AglAwm + Bzuie (13)
And the most relevant dynamic is described by:
Awm = AllAwm + Algz + Bruie (14)

In (14), z can be represented by the following expression:

t
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Using the most relevant mode, Aw,,(7) can be expressed as
[9]:

Awp, (1) = CrvpeT

(16)
where )\, is the relevant eigenvalue, v, is the corresponding
eigenvector and c, is an arbitrary constant. The accuracy of
(16) is guaranteed by the dominant term of Aw,,,, which can be
used in solving the first integral in (15). Since Ago is Hurwitz
and its largest eigenvalue is much smaller than \,., the natural
response will decay faster and can be omitted. The essential
reason is that A,o represents electrical dynamics which are
faster than the electro-mechanical dynamic represented by
Ar. Then the response without control input in (15) will be

approximately equal to the forced response represented as
follows:

t
6A22(t_t0)z(t0)+/ eAzz(t—T)AmAUJm(T)dT 17

to

~ (ATI — Agg)ilAglAwm (18)

The wj. is assumed to be fixed during the time window of
interest, then the integral is calculated as

t
/ A2 B i (7)dr ~ (—Ass) ' Boue  (19)

to

Finally, the reduced-order WTG model with control inputs is

AWy, = Araw Awp, + Braw Uie

20
AP = (20)

' Dy, + Draw Uie

where

Aw = A11 + A1o(A\ I — Agg) T Ay
Craw = Cp + C(A\ — Ag) ' Agy
Buaw = B, + A12(—A2) " 'B,

Diw = Dyysiv + C(—A2) ' B,

IV. MODEL REFERENCE CONTROL BASED INERTIA
EMULATION STRATEGY

The typical MRC structure is shown in Fig. 2 [4]. The states
of reference model z, and physical plant x, are measured.
By closing the loop, the physical plant output y, will track
the output of the reference model y,. Fig. 3 illustrates the
MRC-based inertia emulation in our test system. The reference
model is given as a frequency response model similar to Eq.
(1) but with desired inertia H,. The active power from the
physical plant to the load is measured and the deviation value
is sent to the reference model. It is worth mentioning that as
shown in many previous studies [9] [10] the mechanical states
and modes are enough to capture active power variations.
So only mechanical dynamics are considered in the control
design. It consists of the swing dynamics, diesel engine, speed
governor expressed in Eq. (1) and the reduced-order model of
wind turbine, which has been derived in the previous section.
Thus only these states are measured in the feedback loop. As
a result, the controller has been significantly simplified since
these states are easier to measure and a state estimator is not
necessary.

Combining Eq. (1) and Eq. (20) yields the reduced-order
model of the physical plant. The power flow is expressed as
AP, = AP, ;4 + AP,,. The states, disturbance, input and
output are defined as follows:

zp = [Awg, AP, AP,, Awp,]"

(24)
Wp = A-Ijlaup = Uie, Yp = AoJd
Similarly, the reference model is defined as:
o P B
= [“’ ™ ”} (25)

Wy :Plvyr =w



Reference Model with Desired Inertia
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Fig. 2. Typical model reference control structure.

where AP, = P, and the corresponding equations are given in
Fig. 3. Based on [4] a state-feedback controller law is designed
using linear matrix inequalities (LMI) which guarantee that
the output of the closed-loop plant tracks the output of the
reference model well in the H, sense. As illustrated both x,
and x,, are measured and the controller admits the following
form

U = Kpzp + K2, (26)

Then the augmented closed-loop system is obtained as follow:
Gop(t) = Aoy (t) + Boyp(t — v(t)) + Ewey(t)
e(t) = Cxoy(t) + Dxoy(t — v(1))

where

xov(t) = [xp(t)axr(t)]vaov (t) = [wp(t)a wr(t)]T
Yp(t) =y (1), C = [Cp, —C], D= [DpKp, Dp K]

27)

Load

Diesel Generator Bus 3

Fig. 3. Diagram of model reference control based inertia emulation.

Note that in Eq. (27), a time delay with the bound 7, <
v(t) < kK is considered. Now we are in the position to
introduce the controller design theorem.

Theorem 4.1: Consider the system in (27). If there exists
P>0,Q>0 M, >0,U; ,V; i=1,2, and K such that
LMI in (22) (at the bottom of the page) holds, where

B =[Br0"

01 =AP+PAT +Q+ U, + 1,
On=-Q-Vi' —Vi+0U," +U,
Y, =M, —2P,i=1,2

Then the state-feedback controller given in (29) can guarantee
that the system in (27) will attain output tracking performance
~v in H, sense:

(28)

[K,,K,]=KP™! (29)

_ A, 0 _ E, 0 V. RESULTS AND DISCUSSION
A= 0 A, B = 0 E, The wind turbine and PMSG parameters chosen can be
i B,K, ByK, found in [7]. Other parameters are given as follows:
B = 0 0 Mg=4,M,=6,R;=R,.=0.03,D,. =0
Td = Tdyr = 0.5, Tem = Tom,r = 0.1
[0 U+ VT BK U, 0 E  PCT  pAT PAT ]
. ST A S 1 0, 0 0 0 0
* * V-V 0 7, 0 KD KB'  KBT
* * * -1y 0 0 0 0 0
* * * * —Kk7IT, 0 0 0 0 <0 (22)
* * * * * —~2T 0 ET ET
* * * * * * —I 0 0
* * * * * * * —77;11]\_41 0
* * * * * * * * —k" M, |
Kuee = [ —15.22 390 3.89 9.21 13.85 —-7.90 -—-3.37 ] (23)




Ky =2°%K;=10°
Ky = Kp3 =08, K;p = Ki3=0.5

The feedback control gain is presented in Eq. (23). The
disturbance is considered as a step load change of 30 kW.
The diesel generator speed is represented in Fig. 4. The actual
speed (blue curve) tracks the virtual speed (red dash curve)
generated by the reference model, where the desired inertia
constant is set to be three seconds. By using the model
reference control, one second synthetic inertia constant is
precisely emulated. By having the guaranteed performance,
safety bounds can be easily derived under the worst-case
scenario. The PMSG speed and WTG active power variation
are shown in Fig. 5 and 6, respectively.
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Fig. 4. Diesel generator speed under MRC-based and conventional inertia
emulation.
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Fig. 5. Wind turbine speed under MRC-based and conventional inertia
emulation.

The response under conventional inertia emulation realized
by a washout filter K,,s/(0.005s + 1) with different gains is
shown in Fig. 4 as well. As seen, when K, = 0.2 the response
is close to the one from reference model. However, a trial and
error procedure is needed to reach desired performance, and
will be sensitive to model uncertainty.

VI. CONCLUSION AND FUTURE WORK

In this paper, a novel model reference control based syn-
thetic inertia emulation strategy is proposed. The reference
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Fig. 6. Wind turbine active power output under MRC-based and conventional
inertia emulation.

model is designed to have a similar structure to the frequency
response model with desired inertia. Through an active power
measurement and state feedback, the wind turbine generator
generates additional active power to guarantee that the diesel
generator speed follow the frequency from the reference
model. This novel control strategy ensures precise emulated
inertia by the wind turbine generator as opposed to the trial
and error procedure of conventional methods. By having guar-
anteed performance, safety bounds can be easily derived under
the worst-case scenario. In addition, simultaneous emulation
of inertia and damping coefficient can be realized. Moreover,
inertia coordination of multiple renewable sources is capable
via this control strategy as well.
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