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Abstract—The network infrastructures have been rapidly up-
graded in many high-performance networks (HPNs). However,
such infrastructure investment has not led to corresponding
performance improvement in big data transfer, especially at the
application layer, largely due to the complexity of optimizing trans-
port control on end hosts. We design and implement ProbData,
a PRofiling Optimization Based DAta Transfer Advisor, to help
users determine the most effective data transfer method with the
most appropriate control parameter values to achieve the best data
transfer performance. ProbData employs a profiling optimization-
based approach to exploit the optimal operational zone of various
data transfer methods in support of big data transfer in extreme-
scale scientific applications. We present a theoretical framework of
the optimized profiling approach employed in ProbData as well
as its detailed design and implementation. The advising proce-
dure and performance benefits of ProbData are illustrated and
evaluated by proof-of-concept experiments in real-life networks.

Index Terms—Big data transfer, profiling optimization, data
transfer advising, high-performance networks

I. INTRODUCTION

High-performance networking (HPN) technologies and ser-

vices featuring advance bandwidth reservation such as OS-

CARS [3] in ESnet [1] are being rapidly developed and

deployed across the nation and around the globe to support big

data transfer in extreme-scale scientific applications. To reap

the benefits of such HPN technologies and services, a number

of high-performance data transfer protocols and methods have

emerged, including TCP variants such as Scalable TCP [15]

and UDP-based protocols such as UDT [11]. However, end-

to-end data transfer is a complex process that involves many

components, some of which may require significant system and

network knowledge for parameter tuning and configuration. End

users are typically domain experts who lack such knowledge

and may find it very difficult to determine what data transfer

method to use and what control parameter values to set in order

to achieve satisfactory data transfer performance over high-

speed dedicated connections in high-performance networks.

To illustrate the effects of different transport methods on

end-to-end data transfer performance, we compare in Fig. 1

the maximum throughput performance achieved by two TCP

variants (i.e., Cubic TCP [13] and Scalable TCP [15]), default

UDT [7], [11], and TPG-tuned UDT1 using both single and

multiple data streams over various connections with different

Round Trip Time (RTT) delays emulated between host bohr04

and host bohr05 at Oak Ridge National Laboratory (ORNL).

We observe that TCP outperforms UDT with default settings

for short RTTs; UDT is not as sensitive to RTT as TCP; and

1The control parameter values of UDT are determined based on transport profiling

conducted by the TPG toolkit [21].
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Fig. 1. Comparison of maximum throughput between Cubic TCP, Scalable
TCP, default UDT, and TPG-tuned UDT over 10 Gbps emulated connections
with different RTTs at ORNL: (a) single stream, (b) multiple streams.

TPG-tuned UDT outperforms TCP beyond a certain RTT. These

measurements indicate that UDT is generally more suitable than

TCP for big data transfer (although requires tuning) over long-

haul high-speed dedicated connections.

Moreover, control parameter values may also play a signif-

icant role in determining end-to-end transfer performance. As

shown in Fig. 1(a), with the default settings, UDT achieves

a slightly higher performance (around 1 Gbps) than TCP over

connections of long RTTs using a single stream, which is far

below the connection bandwidth of 10 Gbps. Using multiple

streams, TCP outperforms default UDT for all RTTs, as shown

in Fig. 1(b). However, if we carefully tune the control parameter

values of UDT, e.g., using TPG [21], over long-haul (e.g.,

longer than 90 ms) connections, UDT is able to outperform

TCP in both single- and multi-stream cases.

To further illustrate and investigate the effects of control

parameter values on data transfer performance, we plot in Fig. 2

the performance comparison of UDT in response to different

buffer sizes over connections of different RTTs emulated be-

tween two other hosts feynman1 and feynman2 at ORNL. We

observe that the buffer space needed by UDT [7] to achieve the

peak performance increases as the RTT increases. This behavior

is different from traditional transport protocols such as TCP,

where the increase of buffer space does not significantly affect

the transport performance after reaching a certain point such as

the bandwidth-delay product (BDP) over a given connection.

Figs. 1 and 2 show that the performance of both TCP

and UDT over high-speed dedicated connections is sensitive

to network environments (e.g., connection delays) and signif-

icantly affected by control parameters. Therefore, it is critical

to identify a suitable data transfer method together with a set

of appropriate control parameter values to achieve satisfactory

transport performance (mainly throughput) at the application

layer. However, it is not straightforward to determine the



optimal control parameter values, e.g., the buffer size for UDT.

As shown in Fig. 2, an “over-sized” buffer might slow down the

data transfer speed observed by the end user. In addition, due

to the lack of accurate models for high-performance transport

protocols such as UDT [7], [11], which is widely adopted in

the HPN community [6], and the complex dynamics of network

environments, it is generally very difficult to derive the optimal

operational zone using an analytical approach.
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Fig. 2. UDT profiling on buffer size
over 10 Gbps emulated connections of
different delays at ORNL.

Transport profiling, which

sweeps through the entire

space of the control pa-

rameter values of a given

transport method, has been

proved to be useful [21] and

may be used for transport se-

lection and parameter setting

to support big data trans-

fer in high-performance net-

works (HPNs) [20]. How-

ever, exhaustive profiling is

prohibitively time consum-

ing when there exists a large

parameter space and is impractical to meet data transfer re-

quirements of scientific applications in network environments

that are subject to frequent changes (e.g., configurations of

the sender or receiver host, connection delay, connection band-

width, etc.). Generally, it is not favorable to conduct exhaustive

profiling when the overhead of “on-line” profiling is compara-

ble with the data transfer time itself.

We propose a profiling optimization based data transfer

advisor, referred to as ProbData, to identify the most suitable

transport method and the most appropriate control parameter

values for a given data transfer request. ProbData supports

both TCP and UDT protocols and is developed on top of two

profiling toolkits, i.e., Transport Profile Generator (TPG) [5],

[21] and iperf3 [2]. Specifically, ProbData conducts memory-

to-memory data transfer profiling on TCP using iperf3 and on

UDT using TPG, respectively. To further improve the efficiency

of transport profiling, ProbData employs the Simultaneous Per-

turbation Stochastic Approximation (SPSA) algorithm [18] to

accelerate the exploration of parameter space. We first discuss

a theoretical framework of the optimized profiling approach

employed in ProbData, and then present the design and im-

plementation details of ProbData. The advising procedure and

performance benefits of ProbData are illustrated by proof-of-

concept experiments in real-life networks.

The rest of the paper is organized as follows. Section II

introduces transport profiling. Section III describes SPSA-based

profiling optimization. Section IV presents the design and

implementation of ProbData. Section V illustrates the advising

procedure and evaluates the performance benefits of ProbData.

II. TRANSPORT PROFILING

End-to-end data transfer is a complex process that involves

various network segments and end-host components, whose

parameter settings have a significant impact on the end-to-

end performance observed by end users at the application

layer. It is difficult to decide transport selection and parameter

setting using an analytical approach due to complex system

dynamics and frequent changes in network environments. Pa-

rameter tuning may help achieve a better performance, but it

typically requires extensive network and system knowledge that

many science users lack. Moreover, even if they are able to

manually conduct “fine tuning” on some aspects such as core

affinities [8], [14] and IRQ balance/conflict [17] at the system

level, many application-level control parameters may still affect

end-to-end performance to a large degree.

A transport profile TPt(〈hs, hr〉, e, θ) is a control-response

plot illustrating how a set of control parameters θ affect the

performance of a given transport protocol t over a network

connection or link e between a sender host hs and a receiver

host hr. Such a profile indicates the quantitative and qualitative

behavior of each component involved in the data transfer

process and provides an insight into maximizing the overall

transport performance, which can be obtained by exhausting

the combinations of the parameter values and collecting the

corresponding performance measurements. Every data point in

the profile is produced by a “one-time profiling” that sends a

certain amount of data with a specific combination of param-

eters θ during time interval [0,∆T ] and measures the average

throughput performance as

G(θ) =

∫ ∆T

0

s(x, θ) dx

∆T
,

where s(x, θ) is the sending rate with respect to parameter θ

at time point x.

The goal of transport profiling is to find the parameter values

θ∗, at which the throughput G(θ∗) reaches its global maximum.

Exhaustive transport profiling is able to find the optima, but is

too time consuming for practical use.

As a numerical example, the UDT [11] protocol includes

a few commonly accessible parameters including packet size

(m ∈ {m1,m2, · · · ,mNm
}), block size (l ∈ {l1, l2, · · · , lNl

}),
buffer size (f ∈ {f1, f2, · · · , fNf

}), and number of parallel data

streams (p ∈ {p1, p2, · · · , pNp
}). If a one-time profiling takes

∆t (typically on the order of several minutes) to finish, it takes

a total of ∆t·Nm·Nl·Nf ·Np to generate a complete profile prior

to the actual data transfer. In the emulations conducted in [20],

we fix the packet size m (i.e., Nm = 1) and the number of

parallel data streams p (i.e., Np = 1), and only vary the block

size from 1 to 25 times of the payload size (i.e., Nl = 25) and

the buffer size from 1.0 MB to 1.0 GB with a 2.0 MB step (i.e.,

Nf = 513). If a one-time profiling takes ∆t = 2 minutes, the

exhaustive search would take 25,650 minutes (around 18 days!).

As both the number of control parameters and the profiling

resolution increase, the time to produce a complete profile

rapidly increases, making the exhaustive search-based approach

practically infeasible. Therefore, we focus on the design of

transport profiling with minimized profiling time to achieve

satisfactory data transfer performance.



III. PROFILING OPTIMIZATION BASED ON STOCHASTIC

APPROXIMATION

We conduct transport profiling at the application layer rather

than system tuning at lower layers. The entire data transfer

process could be treated as a “black box” system, where the

input is the set of control parameters θ and the output is the

corresponding throughput measurement G(θ). Based on this

model, it is appropriate to use the Simultaneous Perturbation

Stochastic Approximation (SPSA) algorithm [18] to quickly

determine the optimal parameter values because: i) it does not

require an explicit formula of G(θ), which is unavailable in

practice, but only “noise-corrupted” measurements y = G(θ)+
ξ, which can be obtained by running a “one-time profiling”

using existing tools such as iperf3 and TPG with a set of

specified parameter values; ii) it does not require any additional

information about system dynamics or input distribution. These

are highly desirable features as they account for the dynamics in

the data transfer process and the randomness in various network

environments and performance measurements.

A. Stochastic Approximation (SA) Methods

Suppose that the average throughput performance G is a

function of control parameter set θ, i.e., G = G(θ). The goal

is to find the control parameter values θ∗ that maximize G(θ)
within the feasible space Θ, i.e., max

θ∈Θ
G(θ).

Based on the standard Kiefer-Wolfowitz Stochastic Algo-

rithm (KWSA) [16], we have the following multi-variable

recursive optimization procedure

θ̂k+1 = θ̂k + ak · ĝk(θ̂k), (1)

where ak > 0 is a scalar gain coefficient, g(θ) ≡ ∂G(θ)
∂θ

is the

gradient of G, θ̂k is the set of control parameter values in the

k-th iteration, and ĝ(θ̂k) is an approximation of g(θk).
The “noise-corrupted” performance observation, denoted by

y(θ), is available at any value of θ ∈ Θ and given by

y(θ) = G(θ) + ξ,

where ξ is the noise incurred by the randomness in networks

and the dynamics in end-host systems. In fact, y(θ) is the

observed average throughput performance of a one-time data

transfer profiling with a specific θ during a specific duration.

The gradient g(θ) of G(θ) is approximated by an appropriate

finite difference given by

ĝk(θ̂k) =
y(θ̂k + ck)− y(θ̂k − ck)

2ck
,

where ck is a small positive number.

The coefficients ak and ck in the above equations should

satisfy the following conditions to guarantee the convergence,

lim
k→∞

ak = 0, lim
k→∞

ck = 0,

∞
∑

k=1

ak =∞,

∞
∑

k=1

(
ak

ck
)2 <∞. (2)

Based on the above stochastic approximation method, Prob-

Data utilizes SPSA [18], [19] to further reduce profiling over-

head: instead of collecting observations along all dimensions of

the gradient, it randomly perturbs the control parameter set in

two opposite directions and collects corresponding performance

measurements to approximate the gradient, i.e.

ĝk(θ̂k) =
y(θ̂k + ck∆k)− y(θ̂k − ck∆k)

2ck























∆−1
1,k

∆−1
2,k

...

∆−1
d,k























,

where the coefficient sequence {∆i, k} (i = 1, · · · , d for d

dimensional control parameters) are independent and symmet-

rically distributed around 0 with finite inverse E|∆−1
i, k| over

all parameter components i and time steps (i.e., iterations) k.

ProbData decides each component of {∆i, k} based on the

symmetric Bernoulli ±1 distribution with a probability of 0.5

for each outcome of either +1 or –1 [19], which has been proven

to be simple and effective [20].

For a given data transfer protocol t and its corresponding

control parameter set θt = [θt,1, θt,2, · · · , θt,d]
⊤, we define the

following multi-variable recursive optimization procedure for

SA-based profiling with iteration index k:

θ̂t,i,k+1 = θ̂t,i,k + ak ĝt,i,k(θ̂t,i,k), i = 1, 2, · · · , d,
and the corresponding gradient approximation of G(θ):

ĝθt,i,k

(

θ̂t,i,k

)

=

y
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,

where i = 1, · · · , d for d dimensions of control parameter θ.

B. UDT and TCP Profiling based on SPSA

The profiling for two major data transfer protocols, TCP

and UDT, are supported in the current version of ProbData.

TCP is the de facto standard transport protocol on the Internet

and UDT [7] is a high-performance UDP-based data transfer

protocol widely adopted in HPN community [6]. ProbData

recommends the better protocol choice based on: i) historical

profiling data, ii) online profiling results, and iii) several well-

known (user-specified optional) rules.

Based on existing profiling results of UDT on various control

parameters including packet size (m), block size (l), buffer

size (f ), and number of parallel data streams (p) over various

network environments, one may decide some parameter values

without profiling. In particular, if a jumbo frame is supported

along the path for a given data transfer, it is desirable to enable

it to minimize per packet overhead [9]. Hence, the packet size

m can be decided by exploring the Path MTU (PMTU), i.e.,
{

mTCP = MTU − 40;
mUDT = MTU − 44.

(3)

Since UDT is not best suited for environments with a high

level of concurrency [12], we focus on UDT profiling in a

single-stream case (i.e., p = 1). Therefore, the control parame-

ter set for UDT includes block size (l) and buffer size (f ), i.e.,



θUDT = [l, f ]⊤, and we have the following 2-variable recursive

optimization procedure for SPSA-based UDT profiling:

[

l̂k+1

f̂k+1

]

=

[

l̂k

f̂k

]

+ ak


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, (4)

and the corresponding gradient approximation ĝ(θ̂):

ĝk(θ̂UDT,k) =
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, (5)

where y+ and y− are calculated as






















y+k = y(θ̂ + ck∆k) = y

([

l̂k + ck∆l,k

f̂k + ck∆f,k

])

y−k = y(θ̂ − ck∆k) = y

([

l̂k − ck∆l,k

f̂k − ck∆f,k

])

. (6)

Note that ProbData conducts such SPSA-based UDT profil-

ing by leveraging the capabilities of TPG.

Similarly, based on our previous profiling results, the effect

of packet size (m) and block size (l) for TCP is not as critical

as that for UDT, and the socket buffer size (w) and number of

parallel data streams (p) play a critical role on the end-to-end

throughput performance. ProbData performs SPSA-based TCP

profiling on these two control parameter, i.e., θTCP = [w, p]⊤.

The corresponding 2-variable recursive optimization procedure

and the gradient approximation are defined as follows:

[

ŵk+1

p̂k+1

]

=

[

ŵk
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Note that ProbData conducts SPSA-based TCP profiling

based on iperf3, which has a similar profiling process as TPG.

An outline of the SPSA-based profiling algorithm is provided

in Alg. 1 with more details in Sec. IV.

C. Termination Conditions

ProbData employs the following three simple and practical

termination conditions to guarantee the performance and the

termination of the SPSA-based UDT/TCP profiling.

1) Performance Gain Ratio (PGR): the performance gain ratio

C(0 < C < 1) is defined as C =
y

y∗
, where y is the

Algorithm 1 SPSA-based TCP/UDT profiling

1: k ← 0, θ̂0 ∈ Θ; // randomly pick a starting point [20]

2: while termination conditions are not met do

3: ak ←
a

(A+ k + 1)α
; ck ←

c

(k + 1)γ
;

4: Generate a pair of perturbations ∆k ∈ {+1,−1} fol-

lowing the symmetric Bernoulli ±1 distribution with a

probability of 0.5 for each outcome;

5: Run one-time profiling twice to collect two observations

y+k and y−k ;

6: Generate simultaneous perturbations to approximate the

unknown gradient g(θ̂k) using Eq. 5 / Eq. 8;

7: Apply the standard stochastic approximation form in

Eq. 1 to update θ̂k to a new value θ̂k+1;

8: k ← k + 1;

observed throughput of a one-time profiling, and y∗ is

the best throughput performance of a given data transfer

method over a given network connection, which actually

is unknown until a complete transport profile is obtained.

In ProbData, we set y∗ to be the connection bandwidth2.

When it reaches an operational zone that results in a

throughput y with a PGR no less than a certain user-

specified value, SPSA-based profiling stops. Note that this

condition may or may not be satisfied in a certain profiling.

2) Impeded progress: ProbData terminates TCP/UDT profil-

ing when the number of consecutive iterations that do not

produce any performance improvement over the best one

observed so far exceeds an upper bound L.

3) Upper bound: ProbData terminates TCP/UDT profiling

when the total number of profiling iterations exceeds a

threshold N .

D. Preventing Local Optima

In addition to the aforementioned three termination condi-

tions, we take a simple but “scalable” approach to move the pro-

filing process out of a local optima region under the constraints

of L and N . Specifically, if no performance improvement is

observed after a certain number of consecutive iterations that

have reached a certain fraction of L, we enlarge the profiling

step sizes by certain factors τa > 1 and τc > 1, i.e., a = a · τa
and c = c · τc. This operation repeats until ProbData yields a

better performance or one of the conditions in Sec. III-C is met.

IV. IMPLEMENTATION AND OPERATING PROCEDURE

ProbData is implemented with 18,000+ lines of C/C++ code

in Linux and is available for download at [4].

A. Overview

As shown in Figure 3, ProbData integrates several existing

profiling toolkits such as TPG [5], [21] and iperf3 [2]. To

obviate the need of conducting exhaustive transfer profiling,

ProbData employs SPSA [18], [20] to realize optimized profil-

2The bandwidth of a dedicated connection in HPNs is considered as a constant since

it is reserved in advance and provisioned in real time.
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Fig. 3. Design of ProbData.

ing approaches, with the following major components:

• ProbData drives the entire advising process and work with

a command-line user interface. It first searches in the

historical profiling data for data transfer advising to avoid

unnecessary on-line profiling and then perform on-line

profiling if the recommended settings are not satisfactory.

• The SPSA-based fast profiler employs Alg. 1 to conduct

profiling for TCP and UDT based on TPG and iperf3.

• The historical profiling database stores all profiling results

as the advising progresses.

• The UDT profiler employs TPG.

• The TCP profiler employs iperf3.

B. High Level Control Logic

Upon the arrival of a user request, if there exist some his-

torical profiling data that match the request, ProbData searches

the historical profiling data for the best data transfer method

and corresponding control parameter values, and presents the

advising results to the user. It conducts on-line data transfer

profiling only if the advising results are not satisfactory to the

user. If no historical data exists, ProbData employs Alg. 1 to

carry out on-line data transfer profiling for the request.

ProbData consists of a pair of sender and receiver, which

communicate with each other to exchange control parameters

and move the profiling process forward through a TCP-based

control channel. The client and server are also responsible

for running the corresponding client and server of TPG and

iperf3 to conduct memory-to-memory data transfer profiling.

The main steps and control flow charts of the client and server

of ProbData are shown in Figs. 4(a) and 4(b), respectively. The

entire profiling process is mainly driven by the ProbData client,

in which each step is acknowledged by the ProbData server

prior to the actual execution.

C. Functional Components

ProbData supports memory-to-memory data transfer profiling

for TCP and UDT in the current version. As shown in Fig. 3,

ProbData uses iperf3 [2] to perform profiling for TCP and uses

TPG [21] to perform profiling for UDT [7].

1) Iperf3

Iperf3, developed at ESnet [1], is a toolkit for actively

measuring the maximum achievable bandwidth over a network

connection using TCP, UDP, or SCTP. It is a rewrite from

scratch of the original well-known iperf, but with a relatively

smaller and simpler code base and a library that can be incor-

porated in other programs. Iperf3 supports various parameters

including packet size, block size, buffer size, and number of
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Fig. 4. Control flow charts of ProbData.

parallel data streams. ProbData incorporates iperf3 library in the

implementation to repeatedly conduct “one-time” TCP-based

profilings to realize SPSA-based profiling. In each iteration,

the control parameter values are calculated based on Eqs. 7

and 8, and the resulted achievable bandwidth (i.e., the average

throughput performance) is reported and stored.

2) TPG

Transport Profile Generator (TPG) [21], similar to iperf3,

is a toolkit for conducting transport profiling using UDT.

In addition to those control parameters as in iperf3, TPG

supports tuning of UDP socket options and other UDT protocol-

specific configurations, and also supports transport profiling

based on multiple physical NIC-to-NIC connections. Similarly,

ProbData repeatedly calls the TPG APIs to conduct “one-

time” UDT-based profiling to realize SPSA-based profiling.

In each iteration, the control parameter values are calculated

based on Eqs. 4, 5, and 6, and the resulted average throughput

performance is reported and stored as well.



D. Parameters

Extensive profiling results (e.g., [20], [21]) have shown that

if carefully tuned using TPG [21] or FastProf [20], high-

performance protocols such as UDT can improve the transport

performance over default parameter setting and may also out-

perform traditional data transfer protocols such as TCP and

its variants. Such performance can be consistently achieved

when the control parameter values are within certain ranges.

Therefore, ProbData should rule out the unnecessary profiling

space based on network domain knowledge, big data transfer

properties, and past profiling experiences. In this section, we

first present the setting of parameter values for the SPSA-based

profiling algorithm as shown in Alg. 1 and Section III, and then

describe the approach ProbData takes to adjust the profiling

range for the control parameters.

1) Parameter Selection for SPSA-based Method

The coefficients ak and ck of the stochastic approximation

algorithm need to satisfy the conditions in Eq. 2 to guarantee

the convergence. As shown in Alg. 1, we set these coefficients

as follows:

ak ←
a

(A+ k + 1)α
, ck ←

c

(k + 1)γ
,

where α = 0.602 and γ = 0.101 as suggested by Spall in [19],

and the step sizes a and c are empirically determined based on

the size of the entire search space. In the current version of

ProbData, we set a = 15.0 and c = 5.5 by default, and they

are also tunable through command-line options. We also use a

normalization technique to scale the values of a, c, and θk in

the cases where different dimensions of the control parameters

have different magnitudes. The value of A should be much less

than the expected/allowed number of iterations in Alg. 1 and

we set A = 0.0 by default. The iteration index k starts from

0. A more detailed guideline for setting the parameters of the

SPSA-based method could be found in [19].

2) Control Parameter Calculation

We set the control parameters in the SPSA-based Alg. 1,

denoted by θ′UDT = [l′, f ′]⊤ and θ′TCP = [w′, p′]⊤, to

be positive numbers within a reasonably selected range (see

Section IV-D3) to ensure a comparable magnitude of each pa-

rameter. These “iterative” parameters are scaled and mapped to

decide the actual control parameter values in each iteration. We

perform a rounding operation in calculating the actual values

of the control parameters θUDT = [l, f ]⊤ and θTCP = [w, p]⊤

in the cases where the intermediate results are fractional.

The profiling unit of block size, denoted by µl, is defined as

one payload size of the data transfer protocol being profiled,

which is given by Eq. 3 for UDT and TCP. The block size

l (l ≥ 1) is defined as an integer multiplicity of the payload size.

For a UDP-based protocol such as SABUL [10] or UDT [7],

it is recommended to set the block size to be a multiplicity of

the protocol’s payload size if possible to avoid UDP automatic

segmentation and improve the performance. Note that the block

size is the number of bytes that are transferred by ProbData

by calling the appsend()/apprecv() API functions of the

lower layer profilers (i.e., TPG and iperf3), in which the

send()/recv() API functions of the underlying data transfer

protocol may be called several times to completely send an

entire data block.

Similarly, the profiling unit of buffer size, denoted by µf

and µw for UDT and TCP, respectively, is decided by the user

within a feasible profiling range, e.g., 1 Byte, 512 KB, 1.0 MB,

2.0 MB, or others. We set it to be 1 Byte as default.

The profiling unit of parallel data stream number, denoted

by µp, is simply set to be 1.

Based on the above profiling units, we calculate the actual

values of block size (l), buffer size (f , w), and number of

streams (p) for performance observations (i.e., the calculations

of y+ and y− through one-time profilings) as follows:






















l = round (λl(l
′) · µl)

f = round (λf (f
′) · µf )

w = round (λw(w
′) · µw)

p = round (λp(p
′) · µp)

, (9)

where λ are scaling functions that may take different profiling

patterns. For example, with a function λf (f
′) = 2f

′

, the buffer

size would exponentially increase as f ′ increases.

In ProbData, we use a linear normalization approach to

perform the scaling functions to calculate the actual values of

the control parameters. For example, the UDT buffer size (f )

in unit of bytes is calculated as
f = round [λf (f

′) · µf ] =

round

([

(f ′ − f ′
min) ·

fmax − fmin

f ′
max − f ′

min

+ fmin

]

· µf

)

,

(10)

where the iterative value f ′ is the one used in Alg. 1, and

[f ′
min, f

′
max] and [fmin, fmax] specify the profiling ranges for

the “iterative” and actual UDT buffer size, respectively.

3) Control Parameter Ranges

In the implementation of ProbData, we set the iterative

profiling range to be [1.0, 25.0] based on extensive profiling

results, i.e., l′min = f ′
min = w′

min = p′min = 1.0 and

l′max = f ′
max = w′

max = p′max = 25.0.

The number of parallel data streams is simply set from 1 to

25 by default. A larger number is optional, depending on the

user preference.

If UDT is being profiled, the profiling unit µl of block size

is 8,956 bytes (see Eq. 3). The profiling range in unit of bytes

is from 1 × 8, 956 bytes to 25 × 8, 956 = 223, 900 bytes, and

other parameters in between are calculated similarly as Eq. 10.

The range for TCP is from 8,960 bytes to 224,000 bytes.

We set the profiling range of buffer size for both UDT

and TCP to be from fmin = wmin = 16KB to fmax =
wmax = 2GB3 by default to accommodate various delays of

network connections of different bandwidths up to 40 Gbps and

higher. In addition, to improve the profiling efficiency, ProbData

adaptively makes adjustment to restrict the profiling range of

the buffer size based on the current network status. In particular,

ProbData estimates the average RTT using ICMP echo requests,

based on which, it chooses the profiling range of buffer sizes

3This is the maximal value given that the buffer size is represented by a 32-bit integer.



for TCP and UDT covering the BDP as follows,
{

f ∈ [ω1 · BDP, ω2 · BDP ]
w ∈ [ω1 · BDP, ω2 · BDP ]

, (11)

where BDP is the estimated bandwidth-delay product (BDP),

and 0 < ω1 < 1 and ω2 > 1. Note that in HPNs, the reserved

bandwidth is specified by the user through the command-line

option -y of ProbData; otherwise, ProbData rolls back to the

default profiling range for buffer size.

The RTT estimation is conducted in each iteration of SPSA-

based profiling and updated using moving average to reflect the

current network status, i.e.,

SRTTi+1 = (1− β) · SRTTi + β ·RTTi,

where SRTTi is the estimated/smoothed RTT in iteration i

and RTTi is the newly measured RTT in iteration i. The initial

RTT0 could be either provided by the user (by setting option

-T) or measured by ProbData at its initialization stage. The

weighting factor β (0 ≤ β ≤ 1) is chosen to be 0.125 in the

current implementation of ProbData.

E. Historical Data Storage

ProbData keeps track of the entire process by saving all

intermediate one-time profiling results and the final advising

results as historical profiling data in human-readable format

(text file) for future advising use. The historical profiling data

files are stored in a separate folder profile within the Prob-

Data software package. We create a subfolder mem to store each

record of one-time memory-to-memory data transfer profiling,

under which, the profiling results for the same connection

(defined by a source-destination IP pair) are stored in a separate

text file. Each record of a one-time profiling result takes one

line in the file and the most recently achieved records are

appended to the end of the file. The profiling results of all

one-time profilings over the same connection are stored as time-

stamped records in the same profiling data file. The subfolder

may contain multiple text files that are labeled by the source-

destination IP pair.

V. PERFORMANCE EVALUATIONS

In this section, we illustrate the advising and recommenda-

tion process and evaluate the performance benefits of ProbData.

A. Data Transfer Advising and Recommendation

We present two experimental case studies over a local

10Gbps back-to-back connection and a 10Gbps wide-area con-

nection between Argonne National Laboratory (ANL) and Uni-

versity of Chicago (UChicago) with a RTT of about 2 ms. We

use these two case studies to demonstrate the usage, advising

steps, and typical advising and recommendation outputs.

In ProbData, end users can specify the value of C, L, and N

in the command line and larger values generally lead to longer

profiling time and better performances. We plot the data transfer

performance achieved in each iteration in Fig. 5. In Fig. 5(a),

we set C = 0.999 (a sufficiently large value), L = 20, and

N = 40; while in Fig. 5(b), we set C = 0.85 (a reasonable user

expectation), L = 20, and N = 40. Note that L and N limit

the total number of iterations and there are total three one-time
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Fig. 5. Profiling and advising process of ProbData.

profilings in each iteration for y+, y−, and y∗, respectively.

Given a user request, ProbData conducts data transfer advis-

ing and recommendation by taking the following steps:

Step 1 ProbData locates the appropriate historical profiling file

and searches for the best option (including data transfer

protocol and corresponding control parameter values and

performance). If the user is satisfied with the historical re-

sults, ProbData stops without performing on-line profiling.

Step 2 If the user is not satisfied or there is no historical

profiling data, ProbData lunches SPSA-based TCP profil-

ing using iperf3 following Alg. 1, during which ProbData

keeps updating the best option resulted from the entire

TCP profiling.

Step 3 ProbData performs SPSA-based UDT profiling using

TPG following Alg. 1 as well and keeps updating the best

option resulted from the entire UDT profiling.

Step 4 ProbData compares the three best recommendation op-

tions resulted from: i) historical profiling data, ii) SPSA-

based TCP profiling, and iii) SPSA-based UDT profiling,

and then presents the data transfer protocol selection and

corresponding control parameter values with the highest

throughput.

It is generally difficult to predict the performance of TCP or

UDT over a given connection through an analytical approach.

The dynamics in different environments necessitate transport

profiling to guarantee a satisfactory data transfer performance.

The performance and advising results in Fig. 5(a) and Fig. 5(b)

show that these connections with short RTTs prefer TCP to

UDT. However, as the connection length increases, the protocol

choice become more challenging and could also be affected by

end hosts and their configurations.

B. Profiling Efficiency and Achieved Performance

As mentioned in Section II, it takes about 18 days to conduct

profiling using an exhaustive approach at a coarse-grained
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Fig. 6. Profiling time (number of iterations) and performance of ProbData
over a 10Gb/s local back-to-back connection.

profiling resolution. The default profiling process in ProbData

does not require any specific profiling resolution as any control

parameter value in the feasible space is an option for achieving

satisfactory performance. Thus, we set the profiling resolution

to be the minimal possible value (i.e., one payload, one byte,

and one data stream) in the experiments in this section. We run

each test for 10 times, measure the average performance and

profiling time (decided by the number of iterations) together

with their standard deviations, and plot the results in Figs. 6

and 7. Each comparison includes the average throughput and

the best overall throughput, denoted by “max”, achieved by

ProbData. The results show that ProbData is able to consistently

find a set of control parameter values that produce a satisfactory

throughput in a short period in various networks.

As shown in Fig. 6, across different values of PGR (C),

ProbData is able to discover an appropriate set of control

parameter values that result in an average performance between

7+Gbps (for smaller values of C such as 0.5) and 9.0+Gbps

(for larger values of C such as 0.9). The average performance

achieved by ProbData is comparable with the best overall per-

formance and is quite stable as indicated by the corresponding

standard deviations. As shown in Fig. 6(b), larger C values

generally lead to better performance, and take longer profiling

time (Fig. 6(a)), but compared with the exhaustive profiling

approach, the profiling time is significantly reduced from 18

days to 2-3 hours at most.

Similarly, over a long-haul connection of 380ms RTT emu-

lated by looping back between ANL and UChicago, ProbData

finds an appropriate set of control parameter values that result

in an average performance of 8.0+Gbps, as shown in Fig. 7(b).

Here, the PGR values (i.e., C values) are chosen from a

set of relatively higher values {0.80, 0.85, 0.90, 0.95}. The

performance difference corresponding to different C values in

Fig. 7(b) is not as obvious as those in Fig. 6(b). However, the

profiling time differs significantly for different C values, as

shown in Fig. 7(a).

VI. CONCLUSION AND FUTURE WORK

We designed and implemented ProbData, a profiling opti-

mization based data transfer advisor, which is built on top of ex-

isting toolkits including TPG and iperf3 to realize data transfer

profiling for both TCP and UDT. The advising procedure and

performance benefits of ProbData were illustrated using proof-

of-concept experiments in real-life networks. ProbData can help
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Fig. 7. Profiling time and performance of ProbData over an emulated 10Gb/s
connection of 380ms RTT between ANL and UChicago.

end users determine the best suited data transfer method with

appropriate control parameter values for big data transfer. It is

of our future interest to investigate and improve the convergence

speed of SA-based profiling.
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