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Abstract—The network infrastructures have been rapidly up-
graded in many high-performance networks (HPNs). However,
such infrastructure investment has not led to corresponding
performance improvement in big data transfer, especially at the
application layer, largely due to the complexity of optimizing trans-
port control on end hosts. We design and implement ProbData,
a PRofiling Optimization Based DAta Transfer Advisor, to help
users determine the most effective data transfer method with the
most appropriate control parameter values to achieve the best data
transfer performance. ProbData employs a profiling optimization-
based approach to exploit the optimal operational zone of various
data transfer methods in support of big data transfer in extreme-
scale scientific applications. We present a theoretical framework of
the optimized profiling approach employed in ProbData as well
as its detailed design and implementation. The advising proce-
dure and performance benefits of ProbData are illustrated and
evaluated by proof-of-concept experiments in real-life networks.

Index Terms—Big data transfer, profiling optimization, data
transfer advising, high-performance networks

I. INTRODUCTION

High-performance networking (HPN) technologies and ser-
vices featuring advance bandwidth reservation such as OS-
CARS [3] in ESnet [1] are being rapidly developed and
deployed across the nation and around the globe to support big
data transfer in extreme-scale scientific applications. To reap
the benefits of such HPN technologies and services, a number
of high-performance data transfer protocols and methods have
emerged, including TCP variants such as Scalable TCP [15]
and UDP-based protocols such as UDT [11]. However, end-
to-end data transfer is a complex process that involves many
components, some of which may require significant system and
network knowledge for parameter tuning and configuration. End
users are typically domain experts who lack such knowledge
and may find it very difficult to determine what data transfer
method to use and what control parameter values to set in order
to achieve satisfactory data transfer performance over high-
speed dedicated connections in high-performance networks.

To illustrate the effects of different transport methods on
end-to-end data transfer performance, we compare in Fig. 1
the maximum throughput performance achieved by two TCP
variants (i.e., Cubic TCP [13] and Scalable TCP [15]), default
UDT [7], [11], and TPG-tuned UDT! using both single and
multiple data streams over various connections with different
Round Trip Time (RTT) delays emulated between host bohr®4
and host bohr@®5 at Oak Ridge National Laboratory (ORNL).
We observe that TCP outperforms UDT with default settings
for short RTTs; UDT is not as sensitive to RTT as TCP; and

'The control parameter values of UDT are determined based on transport profiling
conducted by the TPG toolkit [21].
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Fig. 1. Comparison of maximum throughput between Cubic TCP, Scalable

TCP, default UDT, and TPG-tuned UDT over 10 Gbps emulated connections
with different RTTs at ORNL: (a) single stream, (b) multiple streams.

TPG-tuned UDT outperforms TCP beyond a certain RTT. These
measurements indicate that UDT is generally more suitable than
TCP for big data transfer (although requires tuning) over long-
haul high-speed dedicated connections.

Moreover, control parameter values may also play a signif-
icant role in determining end-to-end transfer performance. As
shown in Fig. 1(a), with the default settings, UDT achieves
a slightly higher performance (around 1 Gbps) than TCP over
connections of long RTTs using a single stream, which is far
below the connection bandwidth of 10 Gbps. Using multiple
streams, TCP outperforms default UDT for all RTTs, as shown
in Fig. 1(b). However, if we carefully tune the control parameter
values of UDT, e.g., using TPG [21], over long-haul (e.g.,
longer than 90 ms) connections, UDT is able to outperform
TCP in both single- and multi-stream cases.

To further illustrate and investigate the effects of control
parameter values on data transfer performance, we plot in Fig. 2
the performance comparison of UDT in response to different
buffer sizes over connections of different RTTs emulated be-
tween two other hosts feynmanl and feynman2 at ORNL. We
observe that the buffer space needed by UDT [7] to achieve the
peak performance increases as the RTT increases. This behavior
is different from traditional transport protocols such as TCP,
where the increase of buffer space does not significantly affect
the transport performance after reaching a certain point such as
the bandwidth-delay product (BDP) over a given connection.

Figs. 1 and 2 show that the performance of both TCP
and UDT over high-speed dedicated connections is sensitive
to network environments (e.g., connection delays) and signif-
icantly affected by control parameters. Therefore, it is critical
to identify a suitable data transfer method together with a set
of appropriate control parameter values to achieve satisfactory
transport performance (mainly throughput) at the application
layer. However, it is not straightforward to determine the



optimal control parameter values, e.g., the buffer size for UDT.
As shown in Fig. 2, an “over-sized” buffer might slow down the
data transfer speed observed by the end user. In addition, due
to the lack of accurate models for high-performance transport
protocols such as UDT [7], [11], which is widely adopted in
the HPN community [6], and the complex dynamics of network
environments, it is generally very difficult to derive the optimal
operational zone using an analytical approach.
Transport profiling, which
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works (HPNs) [20]. How-
ever, exhaustive profiling is
prohibitively time consum-
ing when there exists a large
parameter space and is impractical to meet data transfer re-
quirements of scientific applications in network environments
that are subject to frequent changes (e.g., configurations of
the sender or receiver host, connection delay, connection band-
width, etc.). Generally, it is not favorable to conduct exhaustive
profiling when the overhead of “on-line” profiling is compara-
ble with the data transfer time itself.

We propose a profiling optimization based data transfer
advisor, referred to as ProbData, to identify the most suitable
transport method and the most appropriate control parameter
values for a given data transfer request. ProbData supports
both TCP and UDT protocols and is developed on top of two
profiling toolkits, i.e., Transport Profile Generator (TPG) [5],
[21] and iperf3 [2]. Specifically, ProbData conducts memory-
to-memory data transfer profiling on TCP using iperf3 and on
UDT using TPG, respectively. To further improve the efficiency
of transport profiling, ProbData employs the Simultaneous Per-
turbation Stochastic Approximation (SPSA) algorithm [18] to
accelerate the exploration of parameter space. We first discuss
a theoretical framework of the optimized profiling approach
employed in ProbData, and then present the design and im-
plementation details of ProbData. The advising procedure and
performance benefits of ProbData are illustrated by proof-of-
concept experiments in real-life networks.

The rest of the paper is organized as follows. Section II
introduces transport profiling. Section III describes SPSA-based
profiling optimization. Section IV presents the design and
implementation of ProbData. Section V illustrates the advising
procedure and evaluates the performance benefits of ProbData.

Fig. 2. UDT profiling on buffer size
over 10Gbps emulated connections of
different delays at ORNL.

II. TRANSPORT PROFILING

End-to-end data transfer is a complex process that involves
various network segments and end-host components, whose

parameter settings have a significant impact on the end-to-
end performance observed by end users at the application
layer. It is difficult to decide transport selection and parameter
setting using an analytical approach due to complex system
dynamics and frequent changes in network environments. Pa-
rameter tuning may help achieve a better performance, but it
typically requires extensive network and system knowledge that
many science users lack. Moreover, even if they are able to
manually conduct “fine tuning” on some aspects such as core
affinities [8], [14] and IRQ balance/conflict [17] at the system
level, many application-level control parameters may still affect
end-to-end performance to a large degree.

A transport profile T P;((hs, h.),e, ) is a control-response
plot illustrating how a set of control parameters 6 affect the
performance of a given transport protocol ¢ over a network
connection or link e between a sender host h, and a receiver
host h,-. Such a profile indicates the quantitative and qualitative
behavior of each component involved in the data transfer
process and provides an insight into maximizing the overall
transport performance, which can be obtained by exhausting
the combinations of the parameter values and collecting the
corresponding performance measurements. Every data point in
the profile is produced by a “one-time profiling” that sends a
certain amount of data with a specific combination of param-
eters 6 during time interval [0, AT] and measures the average
throughput performance as

AT
/ s(x,0) dx
_ Jo
Y .
where s(z,0) is the sending rate with respect to parameter ¢
at time point z.

The goal of transport profiling is to find the parameter values
6*, at which the throughput G(6*) reaches its global maximum.
Exhaustive transport profiling is able to find the optima, but is
too time consuming for practical use.

As a numerical example, the UDT [11] protocol includes
a few commonly accessible parameters including packet size
(m € {ml,mg, s ,mNm}), block size (I € {ll,lg, s ,ZNL}),
buffer size (f € {f1, f2,---, fn,}), and number of parallel data
streams (p € {p1,p2, - ,pn,}). If a one-time profiling takes
At (typically on the order of several minutes) to finish, it takes
a total of At-N,,,-N;-N¢- N, to generate a complete profile prior
to the actual data transfer. In the emulations conducted in [20],
we fix the packet size m (i.e., N, = 1) and the number of
parallel data streams p (i.e., N, = 1), and only vary the block
size from 1 to 25 times of the payload size (i.e., N; = 25) and
the buffer size from 1.0MB to 1.0 GB with a 2.0 MB step (i.e.,
N¢ = 513). If a one-time profiling takes At = 2 minutes, the
exhaustive search would take 25,650 minutes (around 18 days!).
As both the number of control parameters and the profiling
resolution increase, the time to produce a complete profile
rapidly increases, making the exhaustive search-based approach
practically infeasible. Therefore, we focus on the design of
transport profiling with minimized profiling time to achieve
satisfactory data transfer performance.



III. PROFILING OPTIMIZATION BASED ON STOCHASTIC
APPROXIMATION

We conduct transport profiling at the application layer rather
than system tuning at lower layers. The entire data transfer
process could be treated as a “black box” system, where the
input is the set of control parameters ¢ and the output is the
corresponding throughput measurement G(6). Based on this
model, it is appropriate to use the Simultaneous Perturbation
Stochastic Approximation (SPSA) algorithm [18] to quickly
determine the optimal parameter values because: i) it does not
require an explicit formula of G(6), which is unavailable in
practice, but only “noise-corrupted” measurements y = G(6) +
&, which can be obtained by running a “one-time profiling”
using existing tools such as iperf3 and TPG with a set of
specified parameter values; ii) it does not require any additional
information about system dynamics or input distribution. These
are highly desirable features as they account for the dynamics in
the data transfer process and the randomness in various network
environments and performance measurements.

A. Stochastic Approximation (SA) Methods

Suppose that the average throughput performance G is a
function of control parameter set 6, i.e., G = G(¢). The goal
is to find the control parameter values 6* that maximize G(6)
within the feasible space O, i.e., Igleaéc G(6).

Based on the standard Kiefer-Wolfowitz Stochastic Algo-
rithm (KWSA) [16], we have the following multi-variable
recursive optimization procedure

Ors1 = O + ar - 9x(0r), (D
where aj > 0 is a scalar gain coefficient, g(0) = aG—w) is the
gradient of G, 0}, is the set of control parameter Values in the
k-th iteration, and §(6)) is an approximation of g(6y).

The “noise-corrupted” performance observation, denoted by
y(0), is available at any value of § € © and given by

y(0) = G(0) +¢,
where ¢ is the noise incurred by the randomness in networks
and the dynamics in end-host systems. In fact, y(6) is the
observed average throughput performance of a one-time data
transfer profiling with a specific 6 during a specific duration.

The gradient g(6) of G(6) is approximated by an appropriate
finite difference given by

0k (0r) = YO+ cx) =

: . 2cy,
where ¢ is a small positive number.

The coefficients a;, and ¢, in the above equations should
satisfy the following condmons to guarantee the convergence,

lgrgoak—Othk—OZak—ooz <oo. (2)

Based on the above stochastlc approxunkation method, Prob-
Data utilizes SPSA [18], [19] to further reduce profiling over-
head: instead of collecting observations along all dimensions of
the gradient, it randomly perturbs the control parameter set in
two opposite directions and collects corresponding performance

y(Ok — cx)

)

measurements to approximate the gradient, i.e.
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where the coefficient sequence {A; r} (¢ = 1,---,d for d

dimensional control parameters) are independent and symmet-
rically distributed around O with finite inverse E |A:}€| over
all parameter components ¢ and time steps (i.e., iterafions) k.
ProbData decides each component of {A; ;} based on the
symmetric Bernoulli 1 distribution with a probability of 0.5
for each outcome of either +1 or —1 [19], which has been proven
to be simple and effective [20].

For a given data transfer protocol ¢ and its corresponding
control parameter set 6, = [0;1,0;2, -+ ,0;.4] ", we define the
following multi-variable recursive optimization procedure for
SA-based profiling with iteration index k:

Orikir =0k +argeinBin), i=1,2,--,d,
and the corresponding gradient approximation of G(6):

(9t,i,k
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where i = 1,--- ,d for d dimensions of control parameter 6.

B. UDT and TCP Profiling based on SPSA

The profiling for two major data transfer protocols, TCP
and UDT, are supported in the current version of ProbData.
TCP is the de facto standard transport protocol on the Internet
and UDT [7] is a high-performance UDP-based data transfer
protocol widely adopted in HPN community [6]. ProbData
recommends the better protocol choice based on: i) historical
profiling data, ii) online profiling results, and iii) several well-
known (user-specified optional) rules.

Based on existing profiling results of UDT on various control
parameters including packet size (m), block size (), buffer
size (f), and number of parallel data streams (p) over various
network environments, one may decide some parameter values
without profiling. In particular, if a jumbo frame is supported
along the path for a given data transfer, it is desirable to enable
it to minimize per packet overhead [9]. Hence, the packet size
m can be decided by exploring the Path MTU (PMTU), i.e.,

{/mTcp =MTU — 40; (3)
mupr = MTU — 44.

Since UDT is not best suited for environments with a high
level of concurrency [12], we focus on UDT profiling in a
single-stream case (i.e., p = 1). Therefore, the control parame-
ter set for UDT includes block size (1) and buffer size (f), i.e.,



Oupr = [I, f]", and we have the following 2-variable recursive
optimization procedure for SPSA-based UDT profiling:

{z}m] _ {Zk i (Bﬂ)

=] (i) @
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and the corresponding gradient approximation g(é):
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Note that ProbData conducts such SPSA-based UDT profil-

ing by leveraging the capabilities of TPG.

Similarly, based on our previous profiling results, the effect
of packet size (m) and block size (1) for TCP is not as critical
as that for UDT, and the socket buffer size (w) and number of
parallel data streams (p) play a critical role on the end-to-end
throughput performance. ProbData performs SPSA-based TCP
profiling on these two control parameter, i.e., 07cp = [w,p] .
The corresponding 2-variable recursive optimization procedure
and the gradient approximation are defined as follows:
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Note that ProbData conducts SPSA-based TCP profiling
based on iperf3, which has a similar profiling process as TPG.
An outline of the SPSA-based profiling algorithm is provided
in Alg. 1 with more details in Sec. IV.

C. Termination Conditions

ProbData employs the following three simple and practical
termination conditions to guarantee the performance and the
termination of the SPSA-based UDT/TCP profiling.

1) Performance Gain Ratio (PGR): the performance gain ratio

C(0 < C < 1) is defined as C = %, where y is the
Y

Algorithm 1 SPSA-based TCP/UDT profiling

1k« 0,00€0; 1/ randomly pick a starting point [20]
2: while terminatign conditions are n(c)t met do

S O k+ 1)

4:  Generate a pair of perturbations A, € {+1,—1} fol-
lowing the symmetric Bernoulli £1 distribution with a
probability of 0.5 for each outcome;

5 Run one-time profiling twice to collect two observations
yp and y;

6:  Generate simultaneous perturbations to approximate the
unknown gradient g(6y) using Eq. 5/Eq. 8;

7 Apply the standard stochastic approximation form in
Eq. 1 to update 0y to a new value ék+1;

8: k+ k+1;

a§0k<_(

observed throughput of a one-time profiling, and y* is
the best throughput performance of a given data transfer
method over a given network connection, which actually
is unknown until a complete transport profile is obtained.
In ProbData, we set y* to be the connection bandwidth?.
When it reaches an operational zone that results in a
throughput y with a PGR no less than a certain user-
specified value, SPSA-based profiling stops. Note that this
condition may or may not be satisfied in a certain profiling.

2) Impeded progress: ProbData terminates TCP/UDT profil-
ing when the number of consecutive iterations that do not
produce any performance improvement over the best one
observed so far exceeds an upper bound L.

3) Upper bound: ProbData terminates TCP/UDT profiling
when the total number of profiling iterations exceeds a
threshold V.

D. Preventing Local Optima

In addition to the aforementioned three termination condi-
tions, we take a simple but “scalable” approach to move the pro-
filing process out of a local optima region under the constraints
of L and N. Specifically, if no performance improvement is
observed after a certain number of consecutive iterations that
have reached a certain fraction of L, we enlarge the profiling
step sizes by certain factors 7, > 1 and 7. > 1,i.e, a=a- T,
and ¢ = ¢ - 7.. This operation repeats until ProbData yields a
better performance or one of the conditions in Sec. III-C is met.

IV. IMPLEMENTATION AND OPERATING PROCEDURE

ProbData is implemented with 18,000+ lines of C/C++ code
in Linux and is available for download at [4].

A. Overview

As shown in Figure 3, ProbData integrates several existing
profiling toolkits such as TPG [5], [21] and iperf3 [2]. To
obviate the need of conducting exhaustive transfer profiling,
ProbData employs SPSA [18], [20] to realize optimized profil-

2The bandwidth of a dedicated connection in HPN is considered as a constant since
it is reserved in advance and provisioned in real time.
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ing approaches, with the following major components:

o ProbData drives the entire advising process and work with
a command-line user interface. It first searches in the
historical profiling data for data transfer advising to avoid
unnecessary on-line profiling and then perform on-line
profiling if the recommended settings are not satisfactory.

o The SPSA-based fast profiler employs Alg. 1 to conduct
profiling for TCP and UDT based on TPG and iperf3.

o The historical profiling database stores all profiling results
as the advising progresses.

e The UDT profiler employs TPG.

o The TCP profiler employs iperf3.

B. High Level Control Logic

Upon the arrival of a user request, if there exist some his-
torical profiling data that match the request, ProbData searches
the historical profiling data for the best data transfer method
and corresponding control parameter values, and presents the
advising results to the user. It conducts on-line data transfer
profiling only if the advising results are not satisfactory to the
user. If no historical data exists, ProbData employs Alg. 1 to
carry out on-line data transfer profiling for the request.

ProbData consists of a pair of sender and receiver, which
communicate with each other to exchange control parameters
and move the profiling process forward through a TCP-based
control channel. The client and server are also responsible
for running the corresponding client and server of TPG and
iperf3 to conduct memory-to-memory data transfer profiling.
The main steps and control flow charts of the client and server
of ProbData are shown in Figs. 4(a) and 4(b), respectively. The
entire profiling process is mainly driven by the ProbData client,
in which each step is acknowledged by the ProbData server
prior to the actual execution.

C. Functional Components

ProbData supports memory-to-memory data transfer profiling
for TCP and UDT in the current version. As shown in Fig. 3,
ProbData uses iperf3 [2] to perform profiling for TCP and uses
TPG [21] to perform profiling for UDT [7].

1) Iperf3

Ipert3, developed at ESnet [1], is a toolkit for actively
measuring the maximum achievable bandwidth over a network
connection using TCP, UDP, or SCTP. It is a rewrite from
scratch of the original well-known iperf, but with a relatively
smaller and simpler code base and a library that can be incor-
porated in other programs. Iperf3 supports various parameters
including packet size, block size, buffer size, and number of
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Fig. 4. Control flow charts of ProbData.

parallel data streams. ProbData incorporates iperf3 library in the
implementation to repeatedly conduct “one-time” TCP-based
profilings to realize SPSA-based profiling. In each iteration,
the control parameter values are calculated based on Eqs. 7
and 8, and the resulted achievable bandwidth (i.e., the average
throughput performance) is reported and stored.
2) TPG

Transport Profile Generator (TPG) [21], similar to iperf3,
is a toolkit for conducting transport profiling using UDT.
In addition to those control parameters as in iperf3, TPG
supports tuning of UDP socket options and other UDT protocol-
specific configurations, and also supports transport profiling
based on multiple physical NIC-to-NIC connections. Similarly,
ProbData repeatedly calls the TPG APIs to conduct “one-
time” UDT-based profiling to realize SPSA-based profiling.
In each iteration, the control parameter values are calculated
based on Eqgs. 4, 5, and 6, and the resulted average throughput
performance is reported and stored as well.



D. Parameters

Extensive profiling results (e.g., [20], [21]) have shown that
if carefully tuned using TPG [21] or FastProf [20], high-
performance protocols such as UDT can improve the transport
performance over default parameter setting and may also out-
perform traditional data transfer protocols such as TCP and
its variants. Such performance can be consistently achieved
when the control parameter values are within certain ranges.
Therefore, ProbData should rule out the unnecessary profiling
space based on network domain knowledge, big data transfer
properties, and past profiling experiences. In this section, we
first present the setting of parameter values for the SPSA-based
profiling algorithm as shown in Alg. 1 and Section III, and then
describe the approach ProbData takes to adjust the profiling
range for the control parameters.

1) Parameter Selection for SPSA-based Method

The coefficients a; and cj of the stochastic approximation
algorithm need to satisfy the conditions in Eq. 2 to guarantee
the convergence. As shown in Alg. 1, we set these coefficients
as follows:

ag <

a c
Arkre *" Gy

where v = 0.602 and v = 0.101 as suggested by Spall in [19],
and the step sizes a and c are empirically determined based on
the size of the entire search space. In the current version of
ProbData, we set a = 15.0 and ¢ = 5.5 by default, and they
are also tunable through command-line options. We also use a
normalization technique to scale the values of a, ¢, and 6 in
the cases where different dimensions of the control parameters
have different magnitudes. The value of A should be much less
than the expected/allowed number of iterations in Alg. 1 and
we set A = 0.0 by default. The iteration index k starts from
0. A more detailed guideline for setting the parameters of the
SPSA-based method could be found in [19].

2) Control Parameter Calculation

We set the control parameters in the SPSA-based Alg. 1,
denoted by 0, = [U, 1T and Opop = [/, p]7, to
be positive numbers within a reasonably selected range (see
Section IV-D3) to ensure a comparable magnitude of each pa-
rameter. These “iterative” parameters are scaled and mapped to
decide the actual control parameter values in each iteration. We
perform a rounding operation in calculating the actual values
of the control parameters 0y pr = [I, f]T and O7cp = [w, p] "
in the cases where the intermediate results are fractional.

The profiling unit of block size, denoted by i, is defined as
one payload size of the data transfer protocol being profiled,
which is given by Eq. 3 for UDT and TCP. The block size
[ (I > 1) is defined as an integer multiplicity of the payload size.
For a UDP-based protocol such as SABUL [10] or UDT [7],
it is recommended to set the block size to be a multiplicity of
the protocol’s payload size if possible to avoid UDP automatic
segmentation and improve the performance. Note that the block
size is the number of bytes that are transferred by ProbData
by calling the appsend()/apprecv() API functions of the
lower layer profilers (i.e., TPG and iperf3), in which the

send() /recv() API functions of the underlying data transfer
protocol may be called several times to completely send an
entire data block.

Similarly, the profiling unit of buffer size, denoted by s
and p,, for UDT and TCP, respectively, is decided by the user
within a feasible profiling range, e.g., 1 Byte, 512KB, 1.0 MB,
2.0MB, or others. We set it to be 1 Byte as default.

The profiling unit of parallel data stream number, denoted
by fp, is simply set to be 1.

Based on the above profiling units, we calculate the actual
values of block size (), buffer size (f, w), and number of
streams (p) for performance observations (i.e., the calculations

of y* and y~ through one-time profilings) as follows:
I =round (N(l") - )

f=round(As(f') - piy)

w = round Ay (W) - fiw)

C))

p = round (A (p') - tip)
where \ are scaling functions that may take different profiling

patterns. For example, with a function Az (f’) = 2/", the buffer
size would exponentially increase as f’ increases.

In ProbData, we use a linear normalization approach to
perform the scaling functions to calculate the actual values of
the control parameters. For example, the UDT buffer size (f)
in unit of bytes is calculated as

f=round[\¢(f') - ps] =

10)
fma;ﬂ - fmzn (
round |:(f/ - :nzn) ) — f, ] + fmzn M),

where the iterative value f’ is the one used in Alg. 1, and
[ ins Froaw) and [fiin, fmaz) specify the profiling ranges for
the “iterative” and actual UDT buffer size, respectively.

3) Control Parameter Ranges

In the implementation of ProbData, we set the iterative
profiling range to be [1.0, 25.0] based on extensive profiling
results, ie., I/, = fl. = wl .. = 1.0 and
l;nam = rlnam = w;nam = p;nam = 250'

The number of parallel data streams is simply set from 1 to
25 by default. A larger number is optional, depending on the
user preference.

If UDT is being profiled, the profiling unit y; of block size
is 8,956 bytes (see Eq. 3). The profiling range in unit of bytes
is from 1 x 8,956 bytes to 25 x 8,956 = 223,900 bytes, and
other parameters in between are calculated similarly as Eq. 10.
The range for TCP is from 8,960 bytes to 224,000 bytes.

We set the profiling range of buffer size for both UDT
and TCP to be from fpin = Wmin = 16KB to frax =
Winaw = 2 GB? by default to accommodate various delays of
network connections of different bandwidths up to 40 Gbps and
higher. In addition, to improve the profiling efficiency, ProbData
adaptively makes adjustment to restrict the profiling range of
the buffer size based on the current network status. In particular,
ProbData estimates the average RTT using ICMP echo requests,
based on which, it chooses the profiling range of buffer sizes

_ /

3This is the maximal value given that the buffer size is represented by a 32-bit integer.



for TCP and UDT covering the BDP as follows,

if € w1 - BDP, wy - BDP)] an
w € [wy - BDP, wy - BDP]’

where BDP is the estimated bandwidth-delay product (BDP),

and 0 < wy; < 1 and wy > 1. Note that in HPNs, the reserved

bandwidth is specified by the user through the command-line

option -y of ProbData; otherwise, ProbData rolls back to the

default profiling range for buffer size.

The RTT estimation is conducted in each iteration of SPSA-
based profiling and updated using moving average to reflect the
current network status, i.e.,

SRTT;+1=(1-p5)-SRTT; + B - RTT;,
where SRTT; is the estimated/smoothed RTT in iteration %
and RT'T; is the newly measured RTT in iteration 4. The initial
RTTy could be either provided by the user (by setting option
-T) or measured by ProbData at its initialization stage. The
weighting factor 8 (0 < 8 < 1) is chosen to be 0.125 in the
current implementation of ProbData.

E. Historical Data Storage

ProbData keeps track of the entire process by saving all
intermediate one-time profiling results and the final advising
results as historical profiling data in human-readable format
(text file) for future advising use. The historical profiling data
files are stored in a separate folder profile within the Prob-
Data software package. We create a subfolder mem to store each
record of one-time memory-to-memory data transfer profiling,
under which, the profiling results for the same connection
(defined by a source-destination IP pair) are stored in a separate
text file. Each record of a one-time profiling result takes one
line in the file and the most recently achieved records are
appended to the end of the file. The profiling results of all
one-time profilings over the same connection are stored as time-
stamped records in the same profiling data file. The subfolder
may contain multiple text files that are labeled by the source-
destination IP pair.

V. PERFORMANCE EVALUATIONS

In this section, we illustrate the advising and recommenda-
tion process and evaluate the performance benefits of ProbData.

A. Data Transfer Advising and Recommendation

We present two experimental case studies over a local
10Gbps back-to-back connection and a 10Gbps wide-area con-
nection between Argonne National Laboratory (ANL) and Uni-
versity of Chicago (UChicago) with a RTT of about 2ms. We
use these two case studies to demonstrate the usage, advising
steps, and typical advising and recommendation outputs.

In ProbData, end users can specify the value of C, L, and N
in the command line and larger values generally lead to longer
profiling time and better performances. We plot the data transfer
performance achieved in each iteration in Fig. 5. In Fig. 5(a),
we set C' = 0.999 (a sufficiently large value), L = 20, and
N = 40; while in Fig. 5(b), we set C' = 0.85 (a reasonable user
expectation), L = 20, and N = 40. Note that L and N limit
the total number of iterations and there are total three one-time
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Fig. 5. Profiling and advising process of ProbData.

profilings in each iteration for y™, y~, and y*, respectively.

Given a user request, ProbData conducts data transfer advis-
ing and recommendation by taking the following steps:

Step 1 ProbData locates the appropriate historical profiling file
and searches for the best option (including data transfer
protocol and corresponding control parameter values and
performance). If the user is satisfied with the historical re-
sults, ProbData stops without performing on-line profiling.

Step 2 If the user is not satisfied or there is no historical
profiling data, ProbData lunches SPSA-based TCP profil-
ing using iperf3 following Alg. 1, during which ProbData
keeps updating the best option resulted from the entire
TCP profiling.

Step 3 ProbData performs SPSA-based UDT profiling using
TPG following Alg. 1 as well and keeps updating the best
option resulted from the entire UDT profiling.

Step 4 ProbData compares the three best recommendation op-
tions resulted from: i) historical profiling data, ii) SPSA-
based TCP profiling, and iii) SPSA-based UDT profiling,
and then presents the data transfer protocol selection and
corresponding control parameter values with the highest
throughput.

It is generally difficult to predict the performance of TCP or
UDT over a given connection through an analytical approach.
The dynamics in different environments necessitate transport
profiling to guarantee a satisfactory data transfer performance.
The performance and advising results in Fig. 5(a) and Fig. 5(b)
show that these connections with short RTTs prefer TCP to
UDT. However, as the connection length increases, the protocol
choice become more challenging and could also be affected by
end hosts and their configurations.

B. Profiling Efficiency and Achieved Performance

As mentioned in Section II, it takes about 18 days to conduct
profiling using an exhaustive approach at a coarse-grained
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profiling resolution. The default profiling process in ProbData
does not require any specific profiling resolution as any control
parameter value in the feasible space is an option for achieving
satisfactory performance. Thus, we set the profiling resolution
to be the minimal possible value (i.e., one payload, one byte,
and one data stream) in the experiments in this section. We run
each test for 10 times, measure the average performance and
profiling time (decided by the number of iterations) together
with their standard deviations, and plot the results in Figs. 6
and 7. Each comparison includes the average throughput and
the best overall throughput, denoted by “max”, achieved by
ProbData. The results show that ProbData is able to consistently
find a set of control parameter values that produce a satisfactory
throughput in a short period in various networks.

As shown in Fig. 6, across different values of PGR (C),
ProbData is able to discover an appropriate set of control
parameter values that result in an average performance between
7+Gbps (for smaller values of C' such as 0.5) and 9.0+Gbps
(for larger values of C such as 0.9). The average performance
achieved by ProbData is comparable with the best overall per-
formance and is quite stable as indicated by the corresponding
standard deviations. As shown in Fig. 6(b), larger C' values
generally lead to better performance, and take longer profiling
time (Fig. 6(a)), but compared with the exhaustive profiling
approach, the profiling time is significantly reduced from 18
days to 2-3 hours at most.

Similarly, over a long-haul connection of 380ms RTT emu-
lated by looping back between ANL and UChicago, ProbData
finds an appropriate set of control parameter values that result
in an average performance of 8.0+Gbps, as shown in Fig. 7(b).
Here, the PGR values (i.e., C' values) are chosen from a
set of relatively higher values {0.80,0.85,0.90,0.95}. The
performance difference corresponding to different C' values in
Fig. 7(b) is not as obvious as those in Fig. 6(b). However, the
profiling time differs significantly for different C' values, as
shown in Fig. 7(a).

VI. CONCLUSION AND FUTURE WORK

We designed and implemented ProbData, a profiling opti-
mization based data transfer advisor, which is built on top of ex-
isting toolkits including TPG and iperf3 to realize data transfer
profiling for both TCP and UDT. The advising procedure and
performance benefits of ProbData were illustrated using proof-
of-concept experiments in real-life networks. ProbData can help
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Fig. 7. Profiling time and performance of ProbData over an emulated 10Gb/s
connection of 380ms RTT between ANL and UChicago.

end users determine the best suited data transfer method with
appropriate control parameter values for big data transfer. It is
of our future interest to investigate and improve the convergence
speed of SA-based profiling.
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