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Abstract—We consider tracking of a target with elliptical
nonlinear constraints on its motion dynamics. The state estimates
are generated by sensors and sent over long-haul links to a remote
fusion center for fusion. We show that the constraints can be
projected onto the known ellipse and hence incorporated into the
estimation and fusion process. In particular, two methods based
on (i) direct connection to the center, and (ii) shortest distance to
the ellipse are discussed. A tracking example is used to illustrate
the tracking performance using projection-based methods with
various fusers in the lossy long-haul tracking environment.

Index Terms—Long-haul sensor networks, state estimate fu-
sion, error covariance matrices, nonlinear constraints, elliptical
track constraints, root-mean-square-error (RMSE) performance,
projection.

I. INTRODUCTION

Sensor networks have been deployed to support applications
in both military and civilian domains [1], [3], in which
ground, airborne, or underwater sensors with sensing, data
processing, and communication capabilities are tasked for
target tracking/monitoring. Typically, target state estimates and
error covariances are generated by the sensors and sent to
a remote fusion center that fuses the data to obtain global
estimates periodically at specified time instants. Long-haul
sensor networks usually span a large geographical area and
the links between the sensor and the remote fusion center can
be fiber-optic, satellite, or underwater acoustic links. The long
propagation time and losses over such connections can reduce
the amount of useful data available at the fusion center, leading
to degraded fusion performance and even failure to meet the
system requirements on the overall quality of fused estimates.

In many ground target tracking applications, target dynamics
are subject to certain constraints such as those defined by
roadways. Constrained estimation and fusion have received
increasing attention over the years. In the literature, a unifying
modeling framework for equality-constrained dynamic sys-
tems is proposed in [15] using a distance-based optimization
criterion. Target state-space modeling accounting for con-
straints has been studied for straight-line and circular tracks
respectively in [5] and [6]. In [7], constrained fusion is studied
in the context of centralized and distributed incorporation
of known linear constraints. [10] and [11] have considered
linear constrained fusion in the context of information loss
whereas projection-based methods have been studied in [12]
for estimation and fusion with circular constraints.

This work continues our investigation of nonlinear con-
strained fusion with information loss, and as an extension
of [12], we focus on elliptical constraints. In particular, we
consider two versions of the projection-based solution, using
either direct connection to the known ellipse center, or by
solving for the shortest-distance point on the ellipse. Overall,
we are interested in the effect of various (i) projection methods
to incorporate the constraints at the sensors and/or the fusion
center; (ii) fusion rules; and (iii) ways the fusion center
interpolates missing sensor estimates on fusion performance.
Simulation results of a simple tracking example demonstrate
the effectiveness of projection-based constrained estimation
and fusion under elliptical constraints, and they also show the
differences among the solutions with variable losses in the
long-haul tracking environment.

The remainder of the paper is organized as follows: Sec-
tion II reviews constrained system state model. In Section III,
we discuss two projection methods to generate constrained
state estimates. Several closed-form fusers are briefly dis-
cussed in Section IV along with ways to incorporate the
elliptical constraints into these fusers. A simulation example
is presented in Section V to demonstrate the joint effect
of variable information loss, ways to perform projection,
and fuser types on tracking performance before the paper
concludes in Section VI.

II. SYSTEM MODEL

In this section, after presenting the basic nonlinear state
model, namely, the coordinated turn (CT) model, we discuss
how to incorporate the known elliptical constraint into the
system model to generate the constrained states.

A. Coordinated Turn (CT) Model

A maneuver (i.e., a turn) usually follows a pattern known
as coordinated turn (CT) characterized by a near constant turn
rate and near constant speeds along both coordinates. Consider
a 2D tracking scenario with orthogonal coordinates ξ and η,
and the state estimate x is composed of position and velocity
components along both axes as well as the turn rate component
Ω: x =

[
ξ ξ̇ η η̇ Ω

]T
. The evolution of the state vector
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x is described by the following discretized CT model [2]:

xk+1 = Fkxk + uk

=


1 sin ΩkT

Ωk
0 − 1−cos ΩkT

Ωk
0

0 cos ΩkT 0 − sin ΩkT 0

0 1−cos ΩkT
Ωk

1 sin ΩkT
Ωk

0

0 sin ΩkT 0 cos ΩkT 0

0 0 0 0 1

xk + uk, (1)

where F is the state transition matrix, T is the sampling
period1, the subscript k is the discrete time index, and uk
is the process noise whose covariance matrix is given by

Qk =


q̃ξ

[
T 3/3 T 2/2

T 2/2 T

]
02×2

0

0

02×2 q̃η

[
T 3/3 T 2/2

T 2/2 T

]
0

0

0 0 0 0 q̃ΩT

 ,
(2)

in which q̃ξ and q̃η (often assumed to be constant over time)
are the power spectral densities (PSDs) of the underlying
continuous-time white stochastic process along the axes, and
q̃Ω is the noise PSD of the turn rate component.

B. Elliptical Constraint

Suppose the target trajectory satisfies the following elliptical
constraint:
(ξk − ξc)2

a2
+

(ηk − ηc)2

b2
= 1, (3)

where (ξc, ηc) is the center of the ellipse, a and b are
respectively the radii along the ξ and η axes, and for simplicity,
the major and minor axes of the ellipsis are parallel to ξ and η
axes. Taking the derivative of the position constraint, we have
the constraint on the velocity as
ξk − ξc
a2

ξ̇k +
ηk − ηc
b2

η̇k = 0. (4)

C. Generating Constrained States

The constrained target states are generated in two steps: (1)
generate states constrained by the unit circle ξ2 + η2 = 1; (2)
transform these states to their elliptical constrained counter-
parts by means of translation and non-uniform scaling.

1) Constrained States on Unit Circle: To incorporate the
circular constraint into the unconstrained CT model, a method
is developed in [6] that utilizes the traveled distance sck along
the circular track and its change rate ṡck. More specifically, we
have the state transition
ξck+1 − ξc
ξ̇ck+1

ηck+1 − ηc
η̇ck+1

 = Fc(ΩkT +ws,ck )


ξck − ξc

ξ̇ck − w
ṡ,c
k (ηck − ηc)
ηck − ηc

η̇ck + wṡ,ck (ξck − ξc)

 , (5)

1A superscript T always denotes the transpose of a vector or matrix.

where the superscript “c” denotes these variables correspond
to the unit circle, ws,ck and wṡ,ck are the process noise of sck
and ṡck respectively, and the matrix

Fc(ΩkT + ws,ck ) =cos(ΩkT + ws,ck )I2×2 − sin(ΩkT + ws,ck )I2×2

sin(ΩkT + ws,ck )I2×2 cos(ΩkT + ws,ck )I2×2

 (6)

contains the rotation element using the turning angle ΩkT +
ws,ck . From Eq. (5), both position and velocity components
at time k + 1 are simply rotations of those at time k that
is corrupted by noise. In addition, the updated turn rate
component can be updated as

Ωk+1 =
η̇ck+1

ξck+1 − ξc
, (7)

which remains the same for the elliptical track after the
transformation to be described below.

It is important to generate these constrained states using an
appropriate level of pre-transformation process noise wsk so
that the overall noise in the elliptical constrained states would
reflect the actual process noise level.

2) Transformation to Elliptical Constrained States: Now,
by simple linear transformations described in the matrix form
ξk+1

ξ̇k+1

ηk+1

η̇k+1

 =

aI2×2 02×2

02×2 bI2×2



ξck+1

ξ̇ck+1

ηck+1

η̇ck+1

+


ξc

0

ηc

0

 , (8)

where the first matrix on the right hand side describes the non-
uniform scaling along both axes, and the last column vector
describes the translation that shifts the center to (ξc, ηc).

III. PROJECTION-BASED CONSTRAINED ESTIMATION

Suppose an unconstrained state estimate has been generated,
for instance, by running an extended Kalman Filter (EKF). In
this section, we consider two methods to project this estimate
onto the ellipse. We have shown in earlier work [12] that both
first- and second-order solutions can be used to project an
unconstrained estimate onto a circle, with the latter yielding
comparable tracking performance while incurring lower com-
putational cost. The second-order projection “normalizes” an
unconstrained estimate by finding a point on the circle that
has the shortest distance to it, which can be found equivalently
by drawing a line connecting the center and the point whose
intersection with the circle (near the unconstrained estimate)
is the projected position estimate. Due to the eccentricity,
however, these two methods are not equivalent for elliptical
tracks, and in this section, we discuss both methods separately.
Of note is that we can still linearize the elliptical constraints
and run piecewise first-order projection, but we focus on the
second-order solutions here.

2
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A. Direct Connection to Ellipse Center

A line is draw connecting the center and the unconstrained
estimate (ξc, ηc):

η − ηc =
η̂ − ηc
ξ̂ − ξc

(ξ − ξc) (9)

and its intersection with the ellipse Eq. (3) – nearest to the
estimate – is the projected position. By solving the system of
equations, we have the following projected position estimate:(
ξ̂proj , η̂proj

)
=

(
ξc, ηc + b sgn(η̂ − ηc)

)
, if ξ̂ = ξcξc + 1√

1
a2

+ 1
b2

(
η̂−ηc
ξ̂−ξc

)2
· sgn(ξ̂ − ξc), ηc + η̂−ηc

ξ̂−ξc
(ξ − ξc)

 ,

otherwise
(10)

Once this constrained position estimate has been found, we
can follow the same method shown in [12], where the pro-
jected position components are used to constrain the velocity
components. More specifically, the constraint on velocity as
in Eq. (4) can be expressed in matrix form as[
ξ̂projk −ξc

a2
η̂projk −ηc

b2

]ξ̇k
η̇k

 = 0, (11)

which can be seen as a linear constraint and easily incorporated
into the unconstrained estimate by the linear projection rule
in [12]. For example, if the identity matrix is used as the
weighting matrix in the linear projector, then the constrained
velocity can be derived as ˆ̇
ξprojk

ˆ̇ηprojk

 =
1(

ξ̂projk −ξc
a2

)2

+
(
η̂projk −ηc

b2

)2×


(
η̂projk −ηc

b2

)2 (
ξ̂projk −ξc

a2

)
·
(
η̂projk −ηc

b2

)
(
ξ̂projk −ξc

a2

)
·
(
η̂projk −ηc

b2

) (
ξ̂projk −ξc

a2

)2


 ˆ̇
ξk

ˆ̇ηk

 .
(12)

B. Shortest Distance to Unconstrained Estimate

The above closed-form solution, albeit simple, is not a
true “projection” method per se because we want to invoke
certain optimization criteria for projection2, for example, the
minimum Euclidean distance (when the weighting matrix is
identity matrix) between the unconstrained estimate and a
projected point on the ellipse.

The point on the ellipse Eq. (3) closest to the unconstrained
point (ξ̂k, η̂k) is [4](
ξ̂projk , η̂projk

)
=
(
ξc+

a2(ξ̂k − ξc)
a2 − t

, ηc+
b2(η̂k − ηc)
b2 − t

)
, (13)

2It has been argued in [8] that the projection method itself is somewhat
of a greedy approach in that the solution may not always guarantee the true
constrained minimum in the original optimization problem formulation

where t is a solution of the equation

a2(ξ̂k − ξc)2

(a2 − t)2
+
b2(η̂k − ηc)2

(b2 − t)2
= 1. (14)

In order to solve for t, one can multiply both sides of Eq. (14)
by (a2 − t)2(b2 − t)2, and then expand and rearrange the
equation. Eventually, a quartic equation can be obtained:

c4t
4 + c3t

3 + c2t
2 + c1t+ c0 = 0, (15)

where

c4 = 1,

c3 = −2(a2 + b2),

c2 = a4 + 4a2b2 + b4 − a2(ξ̂k − ξc)2 − b2(η̂k − ηc)2,

c1 = 2a2b2
[
(ξ̂k − ξc)2 + (η̂k − ηc)2 − (a2 + b2))

]
,

c0 = a2b2
[
a2b2 − b2(ξ̂k − ξc)2 − a2(η̂k − ηc)2

]
. (16)

There exist a number of closed-form solutions [13], such as
Ferrari’s and Descartes’ solutions, although one can also use
numerical methods find approximate solutions. The process
and measurement noises in realistic tracking are small enough
when compared to the dimension of the ellipse such that
the unconstrained estimate is geographically close enough to
the ellipse itself. As such, The 16-term discriminant for the
polynomial is empirically negative, meaning the solutions to
the above quartic equation consist of two real roots, repre-
senting two points on the ellipse that are respectively closest
and farthest from the given point, and a pair of complex
conjugate roots. One can easily find the projected position
estimate by assigning t the real root with the smallest absolute
value and plugging it into Eq. (13), and derive the projected
velocity components using Eq. (12). As a special case, when
the unconstrained position estimate happens to be on the
ellipse, one would expect the solution to be t = 0 because
the projected position is exactly the original unconstrained
position estimate.

IV. FUSION OF CONSTRAINED ESTIMATES

In this section, we review a few conventional closed-
form fusion rules (i.e., for unconstrained estimates), and then
discuss how to incorporate the constrained estimates into these
rules. Without loss of generality, a two-sensor scenario is
considered here since the results can be readily extended to
cases involving more sensors.

A. Fusion Rules

1) Average Fuser: The simplest average fuser calculates the
arithmetic mean of the sensor estimates as the fuser output:

PGk =
1

2
(P1

k + P2
k) (17)

x̂Gk =
1

2
(x̂1
k + x̂2

k), (18)

in which the superscript “G” denotes the the global estimate
at the fusion center.

3
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2) Simple Track-to-Track Fuser: The simple track-to-track
fuser (T2TF) is a convex combination of the sensor estimates
as follows [2]:

(PGk )−1 = (P1
k)−1 + (P2

k)−1 (19)

x̂Gk = PGk
(
(P1

k)−1x̂1
k + (P2

k)−1x̂2
k

)
. (20)

It is well known that the common process noise results in cor-
relation in the error cross-covariance across sensor estimates.
However, it is generally difficult to derive the exact cross-
covariances over time; as a result, one may assume that the
cross-covariance is negligible in order to apply this simplified
fuser, even though the result will be suboptimal.

3) Fast Covariance Intersection (CI) Algorithm: Another
sensor fusion method without knowledge of the cross-
covariance information is the covariance intersection (CI)
algorithm. The intuition behind this approach comes from a
geometric interpretation of the problem. If one were to plot
the covariance ellipses for PF (defined as the locus of points
{y : yTP−1

F y = c} where c is some constant), the ellipses of
PF are found to always contain the intersection of the ellipses
for P1 and P2 for all possible choices of P12 [9]. The method
is characterized by the weighted convex combination of sensor
covariances:

(PGk )−1 = ω1(P1
k)−1 + ω2(P2

k)−1 (21)

x̂Gk = PGk
(
ω1(P1

k)−1x̂1
k + ω2(P2

k)−1x̂2
k

)
, (22)

where ω1, ω2 > 0 (ω1 +ω2 = 1) are weights to be determined
(e.g., by minimizing the determinant of PGk ). A fast CI
algorithm has been proposed in [14] where the weights are
found based on an information-theoretic criterion so that ω1

and ω2 can be solved for analytically as follows:

ω1 =
D(p1, p2)

D(p1, p2) +D(p2, p1)
, (23)

where D(pA, pB) is the Kullback-Leibler (KL) divergence
from pA(·) to pB(·), and ω2 = 1− ω1. When the underlying
estimates are Gaussian, the KL divergence at time k can be
computed as

Dk(pi, pj) =

1

2

[
ln
|Pjk|
|Pik|

+ dTk,i→j(P
j
k)−1dk,i→j + Tr(Pik(Pjk)−1)− n

]
,

(24)

where dk,i→j = x̂ik− x̂jk, n is the dimensionality of the state,
and | · | denotes the determinant.

B. Fusion Rules with Constrained Estimates

When the sensors do not perform projection themselves,
i.e., the fuser inputs are all unconstrained estimates, the fuser
can simply perform conventional fusion, followed by one-step
correction using either of the projection methods described
above, which can be considered “centralized” projection. If
one or more sensors send their self-projected estimates to
the fusion center, as in “distributed” projection, since only

2800 3000 3200 3400 3600
1000

1100

1200

1300

1400

1500

1600

1700

(m)

(m
)

 

 

unconstrained
constrained

Fig. 1: Unconstrained and constrained position estimates

nonsingular covariance matrices can be used as inputs to the
T2TF, fast-CI, or any fuser that requires the inverse of the error
covariances, then the sensors can still send their unconstrained
covariances along with constrained estimates to the fusion
center. The implementation of these schemes will be discussed
in more detail in the tracking example presented below.

V. CONSTRAINED FUSION WITH INFORMATION LOSS

We study the position estimate root-mean-squared error
(RMSE) performances of the constrained estimation and fu-
sion methods described in the previous section using a simple
tracking example with elliptical constraints. The effect of (i)
projection method, (ii) projection-fusion implementation, (iii)
fuser type, and (iv) information loss on constrained fusion
performance are considered.

A. Simulation Setup

The center of the elliptical track is (ξc, ηc) =
(2000, 1000) m with radii along the axes a = 1500 m and
b = 800 m. A total of 5000 simulations are run for each test
scenario. The initial state of the target is generated around
x0 = (ξc + a, ηc, 0, v0, v0/a) where v0 = 25 m/s; that is,
the initial position is centered around (ξc + a, ηc) and the
mean magnitude of the initial velocity is v0. The target state
is generated for a total of 60 seconds using the constrained
target model presented in Section II.

Two sensors are used to observe the constrained motion
where the (position) measurements are generated as

H(1) = H(2) =

[
1 0 0 0 0
0 0 1 0 0

]
V(1) = diag{202, 202} V(2) = diag{152, 152},

where H and V are the measurement matrix and noise covari-
ance respectively. Each sensor is initialized with a sufficiently
large error covariance and runs EKF on top of the CT model
with appropriate parameters, i.e., the process noise PSDs q̃ξ,
q̃η , and q̃Ω that reflect the level of (scaled) process noise wsk
in Eq. (6), the latter of which is generated here as a zero-mean
normal random variable with a standard deviation of 2 mm.
The estimation interval is set to be T = 2 s.

4
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Fig. 2: Position RMSE of unconstrained and constrained estimates
at each sensor

B. Performance

1) Sensor Performance: First we want to look at the
state estimation performance of both sensors. Depending on
whether a sensor incorporates the elliptical constraint Eq. (3)
into its estimation process, we have the position RMSEs of
both unconstrained and constrained estimates plotted in Fig. 2;
and for the latter, we have the “dir. connection” option rep-
resenting the method where the constrained position estimate
is the intersection of a center-to-point ray and the ellipse, and
the “min. distance” option representing the method in which
the projected estimate is the solution of a quartic function
and has the minimum distance to the given point. Fig. 1
shows sample trajectories of both the original/unconstrained
and constrained position estimates (with minimum-distance
projection) generated by Sensor 1 during one run of the
simulation. From the plots in Fig. 2, we can see that by
incorporating the constraints, the estimation accuracy perfor-
mance can be significantly improved at both sensors, where
the position RMSEs can be reduced by approximately 30%
with the direct connection method and 40% with the minimum
distance method when compared against their unconstrained
counterparts. We will focus on the performance of the second
method in the remainder of paper since it in general provides
further improvement in reducing tracking errors.

In what follows, we consider fusion performance with
either centralized or distributed projection in the context of
long-haul communication loss. Loss can effectively reduce
the number of successfully delivered estimates to the fusion
center, which in turn would need to apply prediction (using
the same CT model) based on previously available sensor
estimates and such predicted values would then be used as
input for subsequent fusion. In general, more prediction steps
are needed with increasing link loss rates to interpolate the
missing estimates, thereby increasing the overall estimation
and fusion errors, as will be shown below.

2) Fuser Performance with Centralized Projection: In
Fig. 3, fusion performances under 0%, 25%, and 50% losses
using unconstrained are plotted. The notation “-proj” indicates
the projection step carried out by the fusion center after fusing
unconstrained estimates. From the plots, the errors of these
constrained fused estimates are lower than their unconstrained
counterparts; for example, for the simple track-to-track fuser

(T2TF), consistently yielding the best performance followed
by CI and average fusers, the reduction in position RMSEs
is generally around 40%. Interestingly, the performance gaps
among the fusers also increase significantly with higher link
loss rates, demonstrating the advantage of the T2TF in its
lowest tracking errors and less sensitivity with respect to
increased loss.

3) Fuser Performance with Distributed Projection: Finally,
we repeat the above simulations, but now with projected
sensor estimates and nonsingular unconstrained sensor error
covariances as the fuser input. For cases with nonzero loss,
the fusion center can either use its predicted estimates directly
(based on previous sensor estimates) to interpolate the missing
estimates, or it can perform an extra projection step in between
prediction and fusion steps (as shown in “-proj” in the plots)
to guarantee the position estimate input to the fuser is indeed
on the ellipse. From Fig. 4, we observe that without the inter-
mediate fuser projection step, while the position RMSEs of the
fused estimates are, not surprisingly, smaller than those of the
unconstrained fused estimates, the former errors can be higher
than their counterparts with centralized projection in Fig. 3; the
extra step to force the predicted estimates onto the constraint
can indeed guarantee largely comparable performance between
the centralized and distribution projection methods even with
increasing link loss.

4) Discussions: Information loss results in increased track-
ing error across the board as expected. It also appears neces-
sary for the fusion center to perform the projection step either
before or after the final fusion step with increasing loss, re-
gardless of constrained/unconstrained nature of the individual
sensor estimates. For example, for T2TF and CI fusers, even
with 50% loss, the fusion center, after performing its own
projection, can still yield more accurate position estimates
compared to the original unconstrained sensor estimates in
Fig. 2.

In addition, the exact distance from the unconstrained
estimate to the projected point on ellipse may also be taken
into account by the fusion center. With increasing sensor
measurement noise and/or possible non-zero bias, the closer
an unconstrained estimate is to the center (equivalently, farther
away from the ellipse), the higher the probability that it is
projected to a point on the ellipse farther away from the ground
truth, and the effect can be more pronounced near the minor
axis of the ellipse especially when the eccentricity becomes
larger. It would seem preferable to have the fusion center carry
out the final projection step, i.e., centralized projection, to
reduce the overall uncertainty in sensor measurement quality
and also reduce the additional computational requirement on
the part of the sensors, e.g., to solve the quartic equations.

VI. CONCLUSIONS

We explored constrained estimation and fusion in tracking
a target whose motion is constrained by elliptical tracks. The
effect of long-haul link loss and various ways to implement
projection-based estimation and fusion were also investigated
for different fuser types. Future directions may include fusion
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Fig. 3: Position RMSE of fused estimates with centralized projection
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Fig. 4: Position RMSE of fused estimates with distributed projection

of state estimates under more complex motion constraints
and/or sensor measurement models with varying levels of bias.
Also of interest are constrained estimation and fusion with
partially known and/or time-varying constraint parameters,
for which a more adaptive multiple-model approach can be
pursued to account for increased system uncertainty.
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