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Abstract—We consider an infrastructure of networked systems
with discrete components that can be reinforced at certain costs
to guard against attacks. The communications network plays
a critical, asymmetric role of providing the vital connectivity
between the systems. We characterize the correlations within this
infrastructure at two levels using (a) aggregate failure correlation
function that specifies the infrastructure failure probability given
the failure of an individual system or network, and (b) first-
order differential conditions on system survival probabilities
that characterize component-level correlations. We formulate an
infrastructure survival game between an attacker and a provider,
who attacks and reinforces individual components, respectively.
They use the composite utility functions composed of a survival
probability term and a cost term, and the previously studied
sum-form and product-form utility functions are their special
cases. At Nash Equilibrium, we derive expressions for individual
system survival probabilities and the expected total number of
operational components. We apply and discuss these estimates for
a simplified model of distributed cloud computing infrastructure.

Keywords and phrases: networked systems, composite utili-
ties, aggregated correlation function, game theory, Nash Equi-
librium

I. INTRODUCTION

Infrastructures for cloud computing, science experiments
and computations, and smart energy grid, consist of com-
plex systems connected over long-haul networks. In these
infrastructures, the communications network plays a critical,
asymmetric role of providing the vital connectivity between
the systems which include cloud computing sites or supercom-
puters or energy distribution centers. Network failures render
these systems unreachable, and in extreme cases can render
the entire infrastructure unavailable. Such an infrastructure is
represented by its constituent systems, Si, i = 1, 2, . . . , N , and
the network is represented as a separate system SN+1 [14].
The individual systems themselves are complex, consisting of
several discrete cyber and physical components, which must
be operational and connected to the network. The individual
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components of Si may be disabled or disconnected, and Si

as a system may be disconnected, by component cyber and
physical attacks.

The components can be reinforced to survive direct attacks,
but they may rendered unavailable by attacks to other com-
ponents. For example, servers at a cloud computing site can
be hardened against cyber attacks but they can all be made
unavailable by cutting fiber connections to the site. On the
other hand, non-reinforced components will always be dis-
abled by direct attacks. The reinforcements and attacks incur
costs to the provider and attacker, respectively. In networked
systems, correlations between components and systems lead
to the propagation of disruptions across the infrastructure.
Thus, in addition to within system Si, the attack effects may
propagate to components of other systems Sj , j 6= i.

The infrastructure provider is tasked with developing strate-
gies to choose a number of components to reinforce against at-
tacks by taking into account various correlations. Game theory
formulations are used in [14] to derive such defense strategies
separately for sum-form and product-form utility functions. In
this paper, we employ the complex utility functions [13] that
generalize and unify both utility functions, and additionally
explicitly account for the asymmetric role of the network in
deriving the Nash Equilibrium (NE) conditions and defense
strategies.

For Si, let ni denote its number of components of which
yi and xi denote the number of components attacked and
reinforced, respectively. Let Pi be the survival probability of
Si, and PI be the survival probability of entire infrastruc-
ture. Also, let S−i denote the infrastructure without Si, and
P−i be its survival probability. The relative importance of
Si is captured by the aggregate failure correlation function
Ci [15] given by the failure probability of S−i given the
failure of Si. The asymmetric role of the network is specified
by two conditions [14]: (a) CN+1 = 1 indicates that the
network failure will disrupt the entire infrastructure, and (b)
Ci = 0, for i = 1, 2, . . . , N , indicates that disruptions of
individual systems are uncorrelated. The correlations between
components of individual systems are captured by simple
first-order differential conditions on Pi [15]. This two-level
characterization helps to conceptualize the basic correlations
in infrastructures, such as cloud computing and smart grid
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infrastructures, and provides insights into the needed de-
fense strategies by naturally “separating” the system-level and
component-level aspects.

A game between an attacker and a provider involves balanc-
ing the costs of attacks and reinforcements of systems, given
by LA(y1, . . . , yN+1) and LD(x1, . . . , xN+1), respectively,
with the survival probability of the infrastructure. We consider
that the provider minimizes the composite utility function given
by

UD (x1, . . . , xN+1, y1, . . . , yN+1)

= FD,G(x1, . . . , xN+1, y1, . . . , yN+1)

×GD(x1, . . . , xN+1, y1, . . . , yN+1)

+ FD,L(x1, . . . , xN+1, y1, . . . , yN+1)LD(x1, . . . , xN+1),

where the first product term corresponds to the reward and
the second product term corresponds to the cost. Within
the product terms, FD,G and FD,L are the reward and cost
multiplier functions, respectively, of the provider, and GD and
LD represent the reward and cost, respectively, of keeping
the infrastructure operational. Similarly, we consider that the
attacker minimizes

UA (x1, . . . , xN+1, y1, . . . , yN+1)

= FA,G(x1, . . . , xN+1, y1, . . . , yN+1)

×GA(x1, . . . , xN+1, y1, . . . , yN+1)

+ FA,L(x1, . . . , xN+1, y1, . . . , yN+1)LA(y1, . . . , yN+1),

where FA,G and FA,L are the reward and cost multiplier func-
tions, respectively, of the attacker, and GA and LA represent
the reward and cost of disrupting the infrastructure operation,
respectively. The expected capacity of the infrastructure is the
expected number of available components, given by

NI =

N∑
i=1

niPi,

which reflects the part of infrastructure that survives the
attacks. In the example of cloud infrastructure, it represents
the number of servers operational and available to users on
the average.

Using appropriate FD,G and FD,L terms, the composite
utility function can be specialized as: (a) the sum-form utility
function given by

UD+ = − [PI(x1, . . . , xN+1, y1, . . . , yN+1)] gD

+ LD(x1, . . . , xN+1),

which will be minimized by the provider, and the scalar
gD ≥ 0 represents the benefit of keeping the infrastructure
operational; and (b) the product-form utility function given by

UD× = [1− PI(x1, . . . , xN+1, y1, . . . , yN+1)]

× LD(x1, . . . , xN+1),

which will be minimized by the provider; it represents the
“wasted” cost to the provider since it is the expected cost
under the condition that the infrastructure fails. The sum-form
and product-form utility functions [14] reflect two different
values attached to keeping the infrastructure operational: the

sum-form represents a weaker coupling of probability and
cost terms, whereas the product-form utility function is their
product. In general, they lead to qualitatively different defense
strategies that are derived separately, and the correspond-
ing expressions for the survival probabilities appear to be
structurally different. The composite utility functions lead to
simpler expressions for Pi, i = 1, 2, . . . , N , and NI at the
Nash Equilibrium (NE). In particular, the dependence of Pi

on cost terms and aggregate correlation functions, and their
partial derivatives, is presented in a compact form by using the
composite gain-cost and composite multiplier terms (defined
in Section IV). We apply these results to a simplified model
of cloud computing infrastructure with multiple server sites
connected over a communications network.

The organization of this paper is as follows. We briefly
describe the related work in Section II. In Section III, we
briefly describe the infrastructure model of [14] along with the
aggregate correlation function and differential conditions on
system survival probabilities. We present our game-theoretic
formulation using composite utility functions in Section IV,
and derive NE conditions and estimates for the system survival
probabilities and expected capacity. We apply the analytical
results to a model of cloud computing infrastructure in Sec-
tion V. We present conclusions in Section VI.

II. RELATED WORK

Critical infrastructures of power grids, cloud computing,
and transportation systems rely on communications networks
for connecting their constituent systems. These infrastructures
are under increasing cyber and physical attacks, which the
providers must counter by applying defense measures and
strategies. Game-theoretic methods have been extensively ap-
plied to develop the needed defense strategies [1], [2], [10].
A comprehensive review of the defense and attack models in
various game-theoretic formulations has been presented in [9].
Recent interest in cyber and cyber-physical systems led to
the application of game theory to a variety of cyber security
scenarios [10], [19], and, in particular, for securing cyber-
physical networks [3] with applications to power grids [4],
[6], [11], [12].

The system survivability terms are integrated into discrete
models of cyber-physical infrastructures in various forms
under Stackelberg game formulations [5]. A subclass of these
models using the number of cyber and physical components
that are attacked and reinforced as the main variables has
been studied in [18]. These models characterize infrastructures
with a large number of components, and are coarser compared
to the models that consider the attacks and reinforcements
of individual cyber and physical components. Under these
formulations, various forms of correlation functions are used
to capture the dependencies amongst the constituent systems
and their components [15], [16], [18].

Collections of systems with complex interactions have been
studied using game-theoretic formulations in [8], and their
two-level correlations have been studied using the sum-form
utility functions in [15] and the product-form utility functions
in [16]. These two utility functions are unified in [13] and
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the sum-form utility function has been studied under the
asymmetric role of communications network in [14]. In this
paper, we unify these two works by using the composite
utility functions and additionally explicitly account for the
asymmetric network role.

III. DISCRETE SYSTEM MODELS

We consider infrastructures with constituent systems con-
sisting of discrete components [15], [16], and connected over
a communications network [14]. The correlations between
systems, including the network, in these infrastructure are
characterized in terms of their survival probabilities as follows.

Condition 3.1: Aggregate Correlation Function: [15],
[16] Let Ci denote the failure probability of rest of the
infrastructure S−i given the failure of Si, and let C−i denote
the failure probability of Si given the failure of S−i such that

Ci(1− Pi) = C−i(1− P−i),

for i = 1, . . . , N + 1. Then, the survival probability of the
infrastructure is given by

PI = Pi + P−i − 1 + Ci(1− Pi)

= Pi + P−i − 1 + C−i(1− P−i).�

Under the statistical independence of system failures we
have Ci = 1− P−i since the failure probability of S−i is not
dependent on Pi. Substituting in the above condition, we have
PI = PiP−i as expected. Generalizations of this condition
include two interesting cases: (a) If Ci > 1−P−i, the failures
in S−i are positively correlated to those in Si, indicating that
they occur with a higher probability following the latter. (b)
If Ci < 1 − P−i, failures in S−i are negatively correlated to
latter failures.

The important asymmetric role of the communications net-
work is characterized using the following condition.

Condition 3.2: Asymmetric Network and Uncorrelated
Systems Conditions: [14] The aggregated correlation func-
tions of Si, i = 1, 2, . . . , N + 1 satisfy the conditions: (i)
for the network SN+1, we have CN+1 = 1, and (ii) for the
constituent systems, we have Ci = 0, i = 1, 2, . . . , N . �

The part (i) leads to PI = P−(N+1) which indicates the
role of rest of infrastructure S−(N+1) without the network.
The part (ii) leads to PI = Pi + P−i − 1, i = 1, 2, . . . , N
which linearly depends on each of failure probabilities of the
constituent system Si and rest of infrastructure S−i.

At the system-level, the effects of reinforcements and at-
tacks can be separated using the two following conditions:

(i) first condition, ∂P−i

∂xi
≈ 0 for i = 1, 2, . . . , N , indicates

that reinforcing Si does not directly impact the survival
probability of the rest of the infrastructure; and

(ii) second condition, ∂Pi

∂xj
≈ 0 for i = 1, 2, . . . , N + 1, j =

1, 2, . . . , N and j 6= i, indicates that reinforcing Sj does
not directly impact the survival probability of Si.

While the reinforcements do not directly encompass the cor-
relations between the parts of infrastructure, their failures may
still be correlated due to the underlying system structures
as reflected in their aggregated correlation functions. These

system-level considerations for the provider are captured by
the following condition which is obtained by differentiating
PI in Condition 3.1 with respect to xi and ignoring the terms
corresponding to parts (i) and (ii) above.

Condition 3.3: De-Coupled Reinforcement Effects: For PI

in Condition 3.1, we have for i = 1, 2, . . . , N + 1,
∂PI

∂xi
≈ (1− Ci)

∂Pi

∂xi
+ (1− Pi)

∂Ci

∂xi

for the provider. �
In the cases Ci is constant, we note that ∂Ci

∂xi
= 0, which is

the case under both parts of Condition 3.2.
The system survival probabilities satisfy the following

differential condition that specifies the correlations at the
component level [15], [17].

Condition 3.4: System Multiplier Functions: The survival
probabilities Pi and P−i of system Si and S−i, respectively,
satisfy the following conditions: there exist system multiplier
functions Λi and Λ−i such that

∂Pi

∂xi
= Λi(x1, . . . , xN , y1, . . . , yN )Pi

∂P−i
∂xi

= Λ−i(x1, . . . , xN , y1, . . . , yN )P−i

for i = 1, 2, . . . , N + 1. �
Expressions for Λi for two cases are derived in [14] when:

(a) component failures of Si are statistically independent, and
(b) Pi is expressed using the contest survival functions.

IV. GAME THEORETIC FORMULATION

The provider’s objective is to make the infrastructure re-
silient by reinforcing xi components of Si by optimizing
the utility function. Similarly, the attacker’s objective is to
disrupt the infrastructure by attacking yi components of Si by
optimizing the corresponding utility function. NE conditions
are derived by equating the corresponding derivatives of the
utility functions to zero, which yields

∂UD

∂xi
=

(
GD

∂FD,G

∂PI
+ LD

∂FD,L

∂PI

)
∂PI

∂xi

+ FD,G
∂GD

∂xi
+ FD,L

∂LD

∂xi
= 0

for i = 1, 2, . . . , N + 1 for the provider. We define

LD
G,L = GD

∂FD,G

∂PI
+ LD

∂FD,L

∂PI

as the composite gain-cost term, wherein the gain GD and loss
LD are “amplified” by the derivatives of their corresponding
multiplier functions with respect to PI . We then define

FD,i
G,L = FD,G

∂GD

∂xi
+ FD,L

∂LD

∂xi

as the composite multiplier, wherein the gain multiplier FD,G

and cost multiplier FD,L are “amplified” by the derivatives
of their corresponding gain and cost terms with respect to
xi, i = 1, 2, . . . , N + 1, respectively. These two terms lead

the compact NE condition ∂PI

∂xi
= −FD,i

G,L

LD
G,L

. Various terms of
the composite utility function specialized to sum-form and
product-form utilities are shown in Table I.
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TABLE I
GAIN AND COST TERMS AND THEIR MULTIPLIERS FOR SUM-FORM AND PRODUCT-FORM UTILITIES OF PROVIDER.

FD,G GD FD,L LD
∂FD,G

∂PI

∂GD
∂xi

∂FD,L

∂PI
LD
G,L FD,i

G,L

sum-form: UD+ [1− PI ] gD 1 LD - 1 0 0 −gD ∂LD
∂xi

product-form: UD× 0 0 [1− PI ] LD 0 0 - 1 −LD [1− PI ]
∂LD
∂xi

A. NE Sensitivity Functions

We now derive estimates for Pi at NE using aggregated
correlation functions and their partial derivatives to infer
qualitative information about their sensitivities to different
parameters.

Theorem 4.1: Survival Probability Estimates: Under Con-
ditions 3.1, 3.3, and 3.4, estimates of the survival probability
of system Si, for i = 1, 2, . . . , N + 1 is given by

P̂i;D =

∂Ci

∂xi
+

FD,i
G,L

LD
G,L

∂Ci

∂xi
− (1− Ci)Λi

for i = 1, 2, . . . , N + 1 under the condition: Ci < 1 or
∂Ci

∂xi
6= 0. Under the asymmetric network correlation coeffi-

cient CN+1 = 1, the survival probability of the network is
given by

P−(N+1);D = − 1

Λ−(N+1)

FD,N+1
G,L

LD
G,L

.

Proof: Our proof is based on deriving NE conditions for the
utility function. At NE, we have

∂PI

∂xi
= −

FD,i
G,L

LD
G,L

.

Then, using the equation in Condition 3.3 and ∂Pi

∂xi
= ΛiPi

from Condition 3.4, we have

(1− Ci)ΛiPi;D + (1− Pi;D)
∂Ci

∂xi
= −

FD,i
G,L

LD
G,L

. (1)

Under the condition Ci < 1 or ∂Ci

∂xi
6= 0, we have

∂Ci

∂xi
− (1− Ci)Λi 6= 0, and hence, we obtain

Pi;D =

∂Ci

∂xi
+

FD,i
G,L

LD
G,L

∂Ci

∂xi
− (1− Ci)Λi

,

for i = 1, 2, . . . , N + 1.
Consider the survival probability of the infrastructure, under

the asymmetric network condition, we have CN+1 = 1 and
∂CN+1

∂xN+1
= 0, which imply the condition Ci < 1 or ∂Ci

∂xi
6= 0 is

not satisfied; hence, the above formula cannot be used directly
since the denominator ∂Ci

∂xi
− (1 − Ci)Λi = 0. Instead, using

CN+1 = 1 in Condition 3.1, we obtain PI = P−(N+1), which
implies

∂PI

∂xN+1
=
∂P−(N+1)

∂xN+1
.

Then, NE condition is given by

∂PI

∂xN+1
=
∂P−(N+1);D

∂xN+1
= Λ−(N+1)P−(N+1);D = −

FD,N+1
G,L

LD
G,L

,

which completes the proof. �
The system survival probability estimates P̂i;D provide

qualitative information about the effects of various parameters
including aggregated correlation coefficient Ci, system multi-
plier functions Λi, composite gain-cost LD

G,L and composite
multiplier FD,i

G,L; note that the estimates may not necessarily
lie within range [0,1]. In particular, P̂i;D (i) increases and
decreases with FD,i

G,L and LD
G,L, respectively, (ii) increases

with Λi, and (iii) depends both on Ci and its derivative for
i = 1, 2, . . . , N . For the network, P−(N+1);D is in a simpler
form since CN+1 = 1.

We now consider that the asymmetric role played by the
network described in Condition 3.2, namely, its failure renders
entire infrastructure unavailable; also, failures of individual
systems are uncorrelated with others. The following theorem
provides a single, simplified expression for the expected ca-
pacity under these conditions.

Theorem 4.2: Expected Capacity under Asymmetric Net-
work Correlations: Under Conditions 3.1-3.4, the expected
capacity is given by

NI =

N∑
i=1

(
−ni

Λi

FD,i
G,L

LD
G,L

)
for i = 1, 2, . . . , N .
Proof: Using Equation (1) in the proof of Theorem 4.1, under
part (ii) of Condition 3.2 simplifies to the equation

ΛiPi;D = −
FD,i
G,L

LD
G,L

for i = 1, 2, . . . , N . Thus, we have Pi = − 1
Λi

FD,i
G,L

LD
G,L

, which
provides the expression for NI . �

This condition indicates that lower LD
G,L and higher com-

posite multiplier FD,i
G,L lead to lower expected capacity. Typ-

ically, the composite gain-cost LD
G,L is negative (e.g. −gD

for sum-form) since it is minimized by the provider; thus,
its lower value is more negative and has a higher magnitude.
Also, larger values of Λi also lead to lower expected capacity.
In particular, the condition Λi > 1, called the faster than
linear growth of ∂Pi

∂xi
, leads to lower expected capacity. This

seems counter-intuitive since faster improvement in Pi due to
increase in xi leads to lower expected capacity, but note that
it only characterizes the states that satisfy NE conditions

Results similar to Theorems 4.1 and 4.2 are presented in

[14], where the term
FD,i

G,L

LD
G,L

is replaced by a more specific term

ξAi =

{
1
gD

∂LD

∂xi
if A = +

(1− PI)∂ lnLD

∂xi
, if A = ×
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where A = + and A = × correspond to the sum-form
and product-form utilities, respectively. Theorem 4.2 subsumes
these results and is also applicable to more general cases.

V. DISTRIBUTED CLOUD COMPUTING INFRASTRUCTURE

A distributed cloud computing infrastructure consists of N
sites, each with li servers at site i, i = 1, 2, . . . , N , as shown
in Figure 1. The sites are connected over a communication
network SN+1 which consists of a number of routers each
managing lN+1 connections. A variety of cyber and physical
attacks on its components degrade the infrastructure in dif-
ferent ways. Cyber attacks on the servers may be launched
remotely over the network since they are accessible to users.
In contrast, routers are geographically separated with limited
access primarily to network administrators, and cyber attacks
on routers require different techniques compared to servers.
Furthermore, physical attacks in the form of fiber cuts degrade
this infrastructure, but they require a proximity access by an
attacker. For example, fibers connecting server sites to gateway
routers and in between wide-area routers may be physically
cut, thereby making sites and portions of networks inaccessible
to users. Various reinforcements against the attacks may be
used by the provider including replicating servers and routers
to support fail-over operations, and installing redundant fiber
lines to the sites and between router locations. In this section,
we consider a special case where the provider and attacker
randomly chooses xi and yi components to reinforce and
attack, respectively, according to uniform distribution [14].

A. System Models and Correlations

This infrastructure is represented by a collection of cyber
and physical models of the sites and network [14]. The cyber
and physical aspects of site Si is represented using S(i,c)

and S(i,p) that correspond to cyber and physical models,
respectively as illustrated in Figure 2. Similarly, the network
SN+1 is represented by S(N+1,c) and S(N+1,p), which are
the cyber and physical models. Let n(i,c) and n(i,p) represent
the number of cyber and physical components, respectively, of
site Si such that ni = n(i,c) + n(i,p). Similarly, let x(i,c) and
x(i,p) represent the number of cyber and physical components
reinforced at site Si such that xi = x(i,c) + x(i,p), and let
y(i,c) and y(i,p) represent the number of cyber and physical
components attacked at site Si such that yi = y(i,c) + y(i,p).
The relationships between these system-level models can be
captured using the aggregate correlation functions as follows
(described in detail in [14]). For the communications network,

C(N+1,c) = lN+1C(N+1,p)

which reflects that a cyber attack on a router will disrupt all
its lN+1 connections, and for server sites

C(i,p) = liC(i,c)

which indicates that fiber disruption at site Si will disconnect
all its li servers.

When the attacker and provider choose components to
attack and reinforce, respectively, according to the uniform
distribution, the following estimates are derived in [14]. For

Fig. 1. Cloud computing infrastructure with N sites [13].

site i, the probability that a cyber-reinforced server survives
y(i,p) fiber attacks is approximated by

p(i,c)|R =
f(i,c)

1 + li
[
y(i,p) − x(i,p)

]
+

,

where the normalization constant f(i,c) is appropriately cho-
sen, and [x]+ = x for x > 0, and [x]+ = 0 otherwise. Then,
the survival probability of a non-reinforced server at site i is
approximated by

p(i,c)|N =
f(i,c)

1 + y(i,c) + li
[
y(i,p) − x(i,p)

]
+

.

Thus, for cyber model S(i,c) of site Si under the independence
of component attacks, we have

Λ(i,c)

(
x(i,p), y(i,c), y(i,p)

)
= ln

(
1 +

y(i,c)

1 + li
[
y(i,p) − x(i,p)

]
+

)
.

The statistical independence of cyber and physical attacks
leads to the following condition [14]

∂Pi

∂xi
= Λ(i,c)Pi,

which enables us to approximate Λi by Λ(i,c).
In the estimate P̂i;D in Theorem 4.1, Λi is in the denomi-

nator with a negative sign since its multiplier (1−Ci) lies in
the interval [0, 1]. When other terms are fixed, P̂i;D depends
linearly on the logarithm of the number of cyber attacks y(i,c)

with a multiplication factor a, and inversely on the logarithm
of
[
y(i,p) − x(i,p)

]
+

which is the number of attacks exceeding
the reinforcements. However, the exact relationship depends
on the sign of a, which could be positive or negative based
on other factors ∂Ci

∂xi
, FD,i

G,L, and LD
G,L.

B. Expected Capacity
Based on Theorem 4.2 we obtain the following expression

for the expected number of servers

NI =

N∑
i=1

− niF
D,i
G,L

LD
G,L ln

(
1 +

y(i,c)

1+li[y(i,p)−x(i,p)]+

)
 .
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Fig. 2. Representation of cloud computing infrastructure [14].

In the equation, ni is positive, and it is reasonable to assume

that −FD,i
G,L

LD
G,L

≥ 0, since ∂PI

∂xi
= −FD,i

G,L

LD
G,L

at NE, and the survival
probability of entire infrastructure PI does not decrease with
xi. Thus, the expected capacity decreases with y(i,c) and the
opposite is true with respect to

[
y(i,p) − x(i,p)

]
+

. In both
cases, the dependence on the number of servers li at site i
is qualitatively similar in that the expected capacity increases
proportional to its logarithm.

The dependencies considered here are quite simple as a
result of the statistical independence and uniform distribu-
tions of reinforcements and attacks. Even under such simple
conditions, the detailed NE conditions are quite complex to
characterize, but they do provide qualitative insights into the
effects of underlying parameters.

VI. CONCLUSIONS

We consider a class of infrastructures with multiple systems,
wherein the communications network plays an asymmetric
role by providing the critical connectivity them. By utilizing
correlations at system- and component-level, we formulated
the problem of ensuring the infrastructure survival as a game
between an attacker and a provider, by using composite utility
functions that generalize previously studied sum-form and
product-form utility functions. We derived Nash Equilibrium
conditions in terms of composite gain-cost and composite
multipliers, which provide compact expressions for individual
system survival probabilities, and also the expected number
of operational components. We applied this approach to a
simplified model of cloud computing infrastructure. These
results extend previous results on interconnected systems [7],
[8] and cyber-physical infrastructures [17] by using the com-
posite utility functions. They also unify the results that were
separately developed for the sum-form utility functions in [15]
and the product-form utility functions in [16], and additionally
account for the network’s critical but asymmetric role.

The formulation studied in this paper can be extended
to include cases where targeted attacks and reinforcements
of specific individual components are explicitly represented.
It is of future interest to compare this formulation to ones
whose utility functions contain the expected capacity term

in place of infrastructure survival probability terms. Another
future direction is to consider the simultaneous cyber and
physical attacks on multiple systems and components, and
sequential game formulations of this problem. Performance
studies of our approach using more detailed models of cloud
computing infrastructure, smart energy grid infrastructures and
high-performance computing complexes would be of future
interest.
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