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Abstract—We consider the problem of inferring the operational
status of a reactor facility using measurements from a radiation
sensor network deployed around the facility’s ventilation off-gas
stack. The intensity of stack emissions decays with distance, and
the sensor counts or measurements are inherently random with
parameters determined by the intensity at the sensor’s location.
We utilize the measurements to estimate the intensity at the
stack, and use it in a one-sided Sequential Probability Ratio Test
(SPRT) to infer on/off status of the reactor. We demonstrate the
superior performance of this method over conventional majority
fusers and individual sensors using (i) test measurements from
a network of 21 NaI detectors, and (ii) effluence measurements
collected at the stack of a reactor facility. We also analytically
establish the superior detection performance of the network
over individual sensors with fixed and adaptive thresholds by
utilizing the Poisson distribution of the counts. We quantify
the performance improvements of the network detection over
individual sensors using the packing number of the intensity
space.

Keywords-Detection network, sequential probability ratio test,
reactor facility, detection, and localization.

I. INTRODUCTION

Inferring the operational status of a reactor facility, using
measurements from an independent monitoring system, is
critical to the assessment of its compliance to agreements. In
particular, such a monitoring system could assist in identifying
activities beyond the agreed upon ones, for instance, longer
operational periods. In this paper, we consider the problem of
inferring the on/off status of a reactor facility by using an on-
site network of radiation sensors deployed around the off-gas
ventilation stack of the facility, as shown in Figure 1. These
sensors measure the emissions from the ventilation stack as
counts in keV spectrum, which shows peaks corresponding to
radioactive isotopes, for example, 662 keV peak of Cs-137
shown in Figure 2. When the reactor is off, the measurements
correspond to background radiation, typically without promi-
nent peaks. When the reactor is on, the measured spectrum
reflects emissions from the stack which decay with distance.

The sensors measure intensity levels (at their locations)
as gamma spectral counts, but the measurements themselves
are inherently random due to the source and background
processes [1]. The radiation intensity at the stack is unknown,
but the distributions of sensor measurements corresponding to
the source and background are closely approximated by the
Poisson distribution. The facility activity inference problem
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Figure 1. Stack instrumentation of reactor facility.

Figure 2. Spectrum of gamma counts.

is to infer the on/off facility status based on measurements
collected by sensors at known fixed locations.

This problem is a special case of the generic detection
problem that has been studied extensively using different
formulations, for example, a Gaussian source amidst Gaussian
background [2] and low-level radiation source amidst compa-
rable background levels [3]–[5]. In particular, a wide range
of such detection problems have been solved using Sequential
Probability Ratio Tests (SPRTs), including the detection of
radiation sources [6]–[8]. For single sensors, typically, the
detection problem is solved by choosing appropriate thresholds
for SPRT. For a collection of sensors, a simple approach
uses the majority of individual decisions. For a network of
sensors wherein their locations and measurements can be
communicated to a fusion center, better detection performance
compared to both methods above can be achieved. In particu-
lar, the localization-based detection method [9], [10] achieves
this by using measurements to estimate source location and



strength, and uses these estimates to adaptively compute SPRT
thresholds. In this scenario, both source location and strength
are unknown. Our case is somewhat simpler since the location
of radiation origin, namely, the stack, is known yet its emission
intensity is unknown. However, the intensity measurements are
not conducive to inferring the reactor’s on/off status by using
simple thresholds, thereby requiring methods such as SPRT.

In this paper, we utilize emission measurements to estimate
the intensity at the stack, which we then plug into a one-sided
SPRT to infer on/off status of the reactor. This method can
be viewed as a special case of localization-based detection,
wherein the localization is in intensity space compared to
intensity-location space in [9]. We demonstrate the practical
advantages of our method by using two different testbed mea-
surements. The first datasets come from tests conducted under
Domestic Nuclear Detection Office’s (DNDO) Intelligence Ra-
diation Sensors Systems (IRSS) program [11], [12]. The sec-
ond datasets are generated using gas effluence measurements
collected on the stack of the High Flux Isotope Reactor (HFIR)
in Oak Ridge National Laboratory (ORNL), using a simple
quadratic decay model with Poisson distributed measurements
[1]. In both cases, we show the superior performance of
our method over conventional majority fusers and individual
sensors, in terms of false alarm and detection probabilities.

We also analytically establish the superior detection per-
formance of our network method over individual sensors with
fixed and adaptive thresholds, by utilizing the Poisson distribu-
tion of the counts. Additionally, we quantify the performance
improvements of the network detection over individual sensors
using the packing number of the intensity state-space. Similar
results have been derived for the more general source detection
problems in [9], and here we sharpen those results and simplify
the proof for our one-dimensional problem.

The rest of the paper is organized as follows. We formulate
the facility activity inference problem in Section II. In Sections
III and IV, respectively, we discuss experimental results and
performance comparisons based on IRSS and HFIR datasets.
We present analytical results which establish performance
bounds on detection and false alarm rates of the network
detection method relative to those of the other methods, in
Section V.

II. DETECTION PROBLEM

We consider a two-dimensional monitoring area M ⊆ <2,
such as a [0, D]× [0, D]-grid, with D <∞, for detecting the
presence of unknown intensity AS ∈ A, with A := (0, AMax]
and AMax < ∞, at the stack S located at (xS , yS) ∈ M.
There is a background process of noise characterized by
intensity parameter B ∈ B, with B := (0, BMax] and
BMax <∞, parameterized by PB .

In order to monitor M, a network of N sensors are
deployed, with sensor i located at Mi := (xi, yi) ∈ <2, for
i = 1, 2, . . . , N . Given a point P := (x, y) ∈ <2, we have
the distance d(P,Mi) =

√
(x− xi)2 + (y − yi)2 + h2, for

i ∈ {1, · · · , N} and where h is the height of the stack. The
measurements at sensor i are characterized as follows:

(a) Background measurements: When the facility is off, the
“background” measurements at sensor i are distributed
according to PBi , with Bi = B.

(b) Source measurements: When the facility is on, the inten-
sity within a spectral band at the sensor’s location (xi, yi)
is a function of AS and d(S,Mi) = d((xS , yS),Mi),
that is Ai = AS

d(S,Mi)2
. We represent this dependence

explicitly as a function Ai = FS(AS , xS , yS , xi, yi). The
measurements of Ai collected by sensor i are distributed
according to PAi+Bi .

The underlying measurement distributions PBi and PAi+Bi
are Poisson processes with parameters Bi and Ai + Bi,
respectively [1], [8], [13].

Let {mi,1,mi,2, . . . ,mi,ni} be the sequence of measure-
ments collected by sensor i during the time window of interest.
The radiation count mi,j observed at the location Mi at time
j is a Poisson-distributed random variable with parameter
λ = Bi if the reactor is off, or with parameter λ = Ai +Bi if
the reactor is on, which is approximated as a point radiation
source [1]. The probability of the measurement mi,j at sensor i
is given by its likelihood function L(mi,j) = λmi,j e−λ

mi,j !
, where

λ ∈ {Ai +Bi, Bi}.
The performance of a detection method is characterized

by its (i) false alarm probability P0,1, corresponding to the
probability of declaring the presence of a source when none
exists, that is, declaring that reactor is on while it is off, and
(ii) missed detection probability P1,0, corresponding to the
probability of declaring the presence of only the background
process when a source is present, that is, failing to detect
that reactor is on. The detection probability is given by
P1,1 = 1−P1,0, which is the probability of declaring a source
when one is present in the monitoring area.
A. SPRT Detection

The SPRT utilizes likelihood functions to decide between
the hypotheses HA+B and HB corresponding to a source
amidst the background and the background only, respectively.
Let L(m1,m2, . . . ,mn|Hλ), for λ ∈ {A + B,B}, denote
the likelihood of the measurements m1,m2, . . . ,mn under the
hypothesis Hλ. The ratio of likelihoods:

LA,B,n =
L(m1,m2, . . . ,mn|HA+B)

L(m1,m2, . . . ,mn|HB)
is used by SPRT for detecting the source with false positive
and missed detection probabilities P0,1 and P1,0, respectively,
as follows [14]:(i) If LA,B,n < P0,1

1−P1,0
, declare the background HB ;

(ii) Else if LA,B,n > 1−P0,1

P1,0
, declare a source HA+B ;

(iii) Otherwise, declare the measurements to be insufficient
for making a decision.

This SPRT is compactly denoted as:
P0,1

1− P1,0
≤ LA,B,n ≤

1− P0,1

P1,0
.

We consider two different applications of SPRT for the
detection problem. First, when measurements are collected
from a single sensor, A ∈ < and B ∈ < correspond to the
source and background intensities, respectively, at the location



Mi. Second, when measurements are collected from sensors at
N different locations, we use vectors A ∈ <N and B ∈ <N
to denote the source and background intensities, respectively,
at all these locations. We now express this test in terms
of measurements only. For a single detector, the likelihood
function is:

L(mi,1,mi,2, . . . ,mi,ni |Hλ) =

ni∏
j=1

λmi,je−λ

mi,j !
,

where λ ∈ {Bi, Ai + Bi}. The SPRT for detection can be
expressed in terms of the sum of measurements as [15]:

ln
[

P0,1
1−P1,0

]
+niAi

ln
[
Ai+Bi
Bi

] ≤
n∑
j=1

mi,j ≤
ln
[

1−P0,1
P1,0

]
+niAi

ln
[
Ai+Bi
Bi

] .

This is an example of the separable test defined in [9] to be
expressed as:

FL(P0,1, P1,0, A,B, n) <

n∑
i=1

mi

< FU (P0,1, P1,0, A,B, n),

for suitable lower and upper threshold functions, FL(·) and
FU (·) respectively, where A and B are the source and back-
ground intensity levels. Furthermore, the sensor measurements
are statistically independent not only across time but also
across sensors, and hence satisfy the following conditions:

Li(mi,1,mi,2, . . . ,mi,ni |Hλ) =

ni∏
j=1

Li(mi,j)

Lπ(m1,j ,m2,j , . . . ,mN,j |Hλ) =

N∏
i=1

Li(mi,j),

where Li(mi,j) is the probability of measurement mi,j at
sensor i and λ ∈ {A + B,B}. Therefore, when measurements
are collected from sensors at N different locations, the SPRT
can be expressed as:

ln
[

P0,1

1−P1,0

]
≤

N∑
i=1

ln
[
Ai+Bi
Bi

]
mi,j −

N∑
i=1

Ai ≤ ln
[
1−P0,1

P1,0

]
.

These properties are satisfied in the case of point radiation
sources, which show that the corresponding weighted SPRT
is separable and can be expressed in a more general form:

FL(P0,1, P1,0,A,B, N) <

N∑
i=1

wimi

< FU (P0,1, P1,0,A,B, N),

for suitable lower and upper threshold functions, FL(·) and
FU (·) respectively, and wi is the weight assigned to measure-
ment mi.

The upper and lower threshold functions FU (·) and FL(·)
depend on the unknown source intensity, and hence cannot be
directly computed. In practice, threshold values τL = FL(·)
and τU = FU (·) are often chosen based on domain-specific
considerations and the target false alarm rate P0,1 and missed
detection rate P1,0.

B. Stack Intensity Estimation

Using n N -tuple source network measurements, of the form
(mS

1,j , · · · ,mS
N,j) for j = 1, · · · , n, we compute the estimate

ÂS of AS as:

ÂS =
1

nN

N∑
i=1

d2i

 n∑
j=1

mS
i,j

 .

Similarly, we also estimate the background intensity as:

B̂ =
1

nN

N∑
i=1

 n∑
j=1

mB
i,j

 .

The source estimate is δ-robust in that there exists
δ(ε, n,N) ∈ [0, 1], which is a non-decreasing function of
precision ε, such that:

P
{
ÂS ∈ AS,ε

}
> δ(ε, n,N),

where AS,ε = {a ∈ A|d(a,AS) < ε} is called the ε-precision
region. A localization method is monotone robust if δ(ε, n,N)
is a non-decreasing function on the number of measurements n
and sensors N . Monotone robustness ensures that the estimate
is within an ε-precision region around the source intensity AS
with probability δ, which improves as more measurements and
sensors are utilized. This condition is a reasonable requirement
in general, and in our particular case, it is satisfied by a version
of Hoeffding’s inequality (e.g. in [16]):

P (|ÂS −AS | < ε) ≥ 1− e
−2nNε2

AMax ,

since the measurements are statistically independent in time
and across the sensors.

III. IRSS EXPERIMENTAL RESULTS

In this section, we experimentally address the facility ac-
tivity inference problem posed in Section II, that is, infer the
on/off status of a reactor facility by using an on-site network
of radiation sensors deployed around the off-gas ventilation
stack, by making use of IRSS datasets. We treat the stack as
2-dimensional, positioned at the IRSS datasets source location,
with a network of 21 NaI detectors placed around it. The role
of the stack is emulated by a low-radiation source and the NaI
sensors play the role of network deployment. We first describe
the datasets used in our testing, then consider experimental
intensity-estimation SPRTs, and lastly make performance com-
parisons in order to assess network methods superior detection.
A. IRSS Datasets

DNDO IRSS supported the development of networks of
commercial-off-the-shelf radiation counters for detecting, lo-
calizing, and identifying low-level radiation sources. Under
this program, a series of indoor and outdoor tests were
conducted with multiple source strengths and types, differ-
ent background profiles, and various types of source and
detector movements. Following the tests, network algorithms
were replayed in various re-constructed scenarios using sub-
networks. Together, these measurements and algorithm traces
provide a rich collection of highly valuable datasets for testing
the current and next generation radiation network algorithms,
including the ones (to be) developed by broader R&D com-
munities such as distributed detection, information fusion, and
sensor networks.

The first batch of canonical datasets for public use includes
measurements from ten indoor and two outdoor tests which
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Figure 3. Indoor test configurations.

represent increasingly challenging baseline scenarios for ro-
bustly testing radiation network algorithms. The indoor tests
were performed in the Low Scatter Irradiator (LSI) facility
at the Savannah River National Laboratory (SRNL). There
were 17 NaI 2”×2” and 4 other stationary detectors laid out
in a spiral and two concentric circles around the center of
the testing facility, as shown in Figure 3(a). Radiation counts
collected by each detector were mapped into 21 spectral bins.
Several experiments were conducted both with stationary and
moving sources of various strengths and types.

Our tests make use of the following datasets:
1) Background Measurements: Background counts are col-
lected at all detectors with no source present to characterize
the background radiation levels of LSI.
2) Cs-137 Source at Center: The detector counts for a station-
ary 35µCi Cs-137 source are collected by placing the source
at the center of the detector field.
3) Co-57 Source at Center: Similar to Cs-137 test, the detector
counts for a stationary 45µCi Co-57 source located at the
center are also measured.
4) Source Off-Set from Center: The effects of asymmetrical
configurations of the source and detectors are captured by plac-
ing a stationary 7.6µCi Cs-137 source at 0m (Cs-137 1), 1m
(Cs-137 2), 2m (Cs-137 3), and 4m (Cs-137 4) diagonally
offset from the center towards the northeast area of detector
field, see Figure 3(b).
B. Experimental SPRTs

In order to assess the effectiveness of detection using
intensity estimates, we device three left-handed intensity-
estimation SPRTs (LH-IE SPRT) and test them on six different
pairings of IRSS datasets. This means that for the background
measurements along with each of the five different source
datasets described above, we perform single sensors, simple
majority, and sensor fusion LH-IE SPRTs. Each dataset is
composed of 9 runs with 120 measurements each. We divide
the set of runs in half to allocate data for both training and
testing. Furthermore, we set a window size for all runs, for
example, a window of size w = 5 produces 116 window
measurements for each run. In implementing our three types
of LH-IE SPRTs, we use different window sizes and resulting
window measurements.

Moreover, for all 21 sensors, we compute the distance
between sensor i and source S; discarding sensors whose
distance to the source is greater than the maximum distance

plus the mean distance divided by some factor, that is if
d(S,Mi) > d(S,Mi)Max+d(S,Mi)

4.5 . Using training data, we
estimate the source intensity as:

ÂS =
1

nKN

N∑
i=1

d2i

 K∑
k=1

n∑
j=1

mSw
i,k,j


with mSw

i,k,j a source-present window measurement, K = 4 and
n = 121−w. Similarly, we estimate the background intensity
as:

B̂ =
1

nKN

N∑
i=1

 K∑
k=1

n∑
j=1

mBw
i,k,j

 .

We also compute both intensities at sensor locations, that is
Âi = ÂS

d(S,Mi)2
and B̂i = B̂ for i = 1, · · · , N . We set the

false detection to P0,1 = 0.1 and true detection to P1,1 = 0.9.
Lastly, we compute the SPRT weights, wi = ln Âi+B̂i

B̂i
for

each sensor i.

For single sensors and simple majority tests, the adaptive
thresholds are of the form:

τLi = ln
P0,1

1− P1,0
+ Âi,

whereas in the sensors fusion test:

τL = ln
P0,1

1− P1,0
+

N∑
i=1

Âi.

These LH-IE SPRTs are performed multiple times on each
combination of datasets (as specified above) using window
sizes starting at w = 1 and increasing by a factor of 5 at
every iteration ending with w = 56.

C. Performance Comparison

We estimate the false alarm and detection rates of various
LH-IE SPRT classifiers, i.e. single sensors, simple majority,
and sensors network. The results are summarized in ROC
curves as shown in Figure 4 to Figure 9, wherein the false
alarm and detection rates are on Y axes and the window size
on the X axes. In general for a classifier, lowering of the
threshold parameter leads to higher detection rate but also
increases the false alarm rate. The desired performance of a
classifier is a high detection rate at a low false alarm rate, as
indicated by the sensors network LH-IE SPRT when applied
to all six pairs of datasets.

These ROC curves illustrate how even after eliminating
sensors which are far away from the source, not all of the
remaining detectors perform well under the single sensors
test. This is particularly evident in the datasets containing Cs-
137 at low intensity 7.6µCi, see Figure 6 to Figure 9. The
simple majority test seems to perform reasonably well, yet it
is not completely effective when dealing with a low intensity
source or when the source is farther away from the bulk of the
sensors, as shown in Figure 6 and Figure 9, respectively. On
the other hand, the LH-IE SPRT fuser performed consistently
well, achieving optimal detection within a few iterations of
window size increase.



(a) False detection. (b) True detection.

Figure 4. Cs-137 Roc Curves.

(a) False detection. (b) True detection.

Figure 5. Co-57 Roc Curves.

(a) False detection. (b) True detection.

Figure 6. Cs-137 1 Roc Curves.

(a) False detection. (b) True detection.

Figure 7. Cs-137 2 Roc Curves.

(a) False detection. (b) True detection.

Figure 8. Cs-137 3 Roc Curves.

(a) False detection. (b) True detection.

Figure 9. Cs-137 4 Roc Curves.

IV. HFIR EXPERIMENTAL RESULTS

Our second testbed consists of artificially generated datasets
developed from effluence measurements of three gases,
namely, Ar-41, Cs-138, and Xe-138, collected on the stack
of HFIR in ORNL. We again test the sensors network, single
detectors, and simple majority LH-IE SPRTs on each of the
datasets. We conclude the section with SPRTs performance
comparisons for each isotope.

(a) Ar-41. (b) Cs-138. (c) Xe-138.

Figure 10. On/Off Effluence Measurements.

A. HFIR Datasets And Experimental SPRTs
Effluence measurements of Ar-41, Cs-138, and Xe-138

gases are collected on the stack of HFIR in ORNL. These
gases are continuously monitored using a feeding tube in the
stack, and the measurements are provided and statistically
analyzed every four hours. The stack itself is shared by another
reprocessing facility at ORNL, which complicates the on/off
classification task for HFIR. The Figures 10(a), 10(b), and
10(c) show scatter plots of the ground truth data corresponding
to Ar-41, Cs-138, and Xe-138, for on/off periods of HFIR from
January 2015 to January 2016.

For each of these gases, we use its effluent measurements to
estimate the intensity of radiation at the stack for both on/off
periods, that is, ÂS = m̄On

i and B̂ = m̄Off
i , where m̄i is the

mean measurement and i ∈ {Ar − 41, Cs− 138, Xe− 138}.
We assume that the stack S is located in the center of a
detection field and generate 21 random positions, Mj for
j ∈ {1, · · · , 21}, around S with assigned intensities Âj =

ÂS
d(S,Mj)2

and B̂j = B̂
d(S,Mj)2

. As in the previous section, we
discard positions whose distance from the stack are greater
than a fixed radius. Using the intensities corresponding to the
remaining locations, we create Poisson distributions and arti-
ficially generate datasets for both on/off activity periods, that
is, {mOn

j,k }mk=1 ∼ Pois(cÂj) and {mOff
j,k }mk=1 ∼ Pois(cB̂j)

for j ∈ {i, · · · , N} and c ∈ N. We again define window
sizes, detection rates, and SPRT weights as in Section III, the
adaptive thresholds are defined as:

τLj = ln
P0,1

1− P1,0
+ cÂj , τL = ln

P0,1

1− P1,0
+

N∑
j=1

cÂj .

We perform single sensors, simple majority, and sensor net-
work LH-IE SPRTs multiple times for each gas type, using
window sizes w ∈ {1, · · · , n+ 5, · · · , 56}.
B. Performance Comparison

We estimate the false alarm and detection rates of single
sensors, simple majority, and sensors network LH-IE SPRT
classifiers using artificially generated datasets. The results are
summarized in ROC curves as shown in Figure 11 to Figure



13. These ROC curves illustrate how even after eliminating
sensors which are far away from the stack, not all of the
remaining detectors perform well under the single sensors test.
This is particularly evident in the datasets corresponding to a
source of either Cs-138 or Xe-138, see Figure 12(a) and 13(a).
The simple majority test as well as the network SPRT, seem
to perform well in the case of Ar-41. Yet for Cs-138 and Xe-
138. simple majority fails to detect almost all measurements
coming from off-periods, as shown in Figure 12(a) and Figure
13(a). We conclude that SPRT fuser is consistently better and
hypothesize an increase in window size will further lower the
false alarm detection rate of Xe-138.

(a) False detection. (b) True detection.

Figure 11. Ar-41 Roc Curves.

(a) False detection. (b) True detection.

Figure 12. Cs-138 Roc Curves.

(a) False detection. (b) True detection.

Figure 13. Xe-138 Roc Curves.

V. DETECTION BASED ON INTENSITY ESTIMATION

Recall the stack intensity estimates ÂS and B̂ defined
in Section II. In this section, we use those estimates to
derive sharpened versions of the SPRTs. We first consider
sensor measurements collected at a single location, and then
consider measurements from sensors at different locations in
the network.

A. Single Location Measurements

The source and background intensity estimates ÂS and B̂
are substituted into the threshold function of the SPRT, based
on nα := n measurements {mi|i = 1, 2, . . . , n}, for α =
1, 2, . . . , N , as follows:

FL(P0,1, P1,0, Âα, B̂, n) <

n∑
i=1

mi

< FU (P0,1, P1,0, Âα, B̂, n),

where Âα = FS(ÂS , xS , yS , xα, yα). We denote this location-
based SPRT by Lα;Ŝ .

For SPRT L, we denote the detection and false alarm
probabilities by ED (L) and EF (L), respectively. Let A =
(0, AMax] ⊆ < denote the set of all possible source intensities.
An open cell with center ak ∈ A and radius ρA is defined as:

Ck = {a ∈ A|d(a, ak) < ρA},
where d(a1, a2) = |a1−a2|. We define C0 to be the cell located
at a = ρA.

Definition 5.1: A ρA-packing of the state space A := A
corresponds to disjoint cells with cell centers at ak, k =
1, 2, . . . ,K and of radius ρA all contained inside the state
space A. We define such a packing to be translation invariant
if all the cells are still inside A when their centers are
translated as a + ak, for all a ≤ ρA. The state packing num-
ber M(A, ρA) denotes the maximum size of a translation-
invariant ρA-packing of the state space A.

Note this number will be m or m−1 for AMax = 2ρAm+r,
depending on the value 0 ≤ r < 2ρA.

We define the upper-threshold set Sα,τU and lower-
threshold set Sα,τL to represent all the possible source intensi-
ties and SPRT bound functions corresponding to the thresholds
of Lα;[τL,τU ], for α = 1, 2, . . . , N , as follows:

Sα;τL = {AS ∈ A
| τL = FL(P0,1, P1,0, Âα, B̂, nα);

Âα ≥ FS(AS , xS , yS)
}

and

Sα;τU = {AS ∈ A
| τU = FU (P0,1, P1,0, Âα, B̂, nα);

Âα ≥ FS(AS , xS , yS)
}
.

For sensor measurements collected at a single location,
the following result generalizes Theorem 3.1 of [17]. It
characterizes the performance improvements of Lα;Ŝ over its
thresholded version Lα;[τL,τU ], as a function of the packing
numberMMM(·) and the quality of localization given by δ(·).

Theorem 5.1: Consider the detection of a source using
separable SPRTs. For α = 1, 2, . . . , N and sufficiently large
nα take SPRT Lα;Ŝ , based on a monotone δ-robust localization
method and any threshold-based SPRT Lα;[τL,τU ]

(i) The detection rates satisfy:

ED
(
Lα;Ŝ

)
>[

ED
(
Lα;[τL,τU ]

)
+ (M(A, εα;DA)− 1)

]
×δ(εα;DA , nα)

where εα;DA = max
a1,a2∈Sα;τU

d(a1, a2).

(ii) The false alarm rates satisfy:

EF
(
Lα;Ŝ

)
<[

EF
(
Lα;[τL,τU ]

)
− (M(A, εα;FA)− 1)

]
×δ(εα;FA , nα)

where εα;FA = max
a1,a2∈Sα;τL

d(a1, a2).

Proof: The proof outline is similar for both Parts (i) and (ii).
We compute a cell CCCτ for Lα;[τL,τU ] on the state space AAA,



in which Lα;[τL,τU ] does not make an error and calculate
its diameter to derive the underlying εA values, εα;DA for
detection rate and εα;FA for false alarm rate, of the localization
algorithm. Then, we utilize the εA value, computed from
these diameters, for Lα;Ŝ and exploit the monotonicity of
δ(·) in n and N to ensure that ÂS is within the εA-precision
region. Lastly, we compute the εA-packing of the state space
and identify the cell corresponding to CCCτ in which Lα;[τL,τU ]

makes a correct decision. In all the other cells Lα;Ŝ does not
make an error with probability δ and hence it offers better
performance than the former.

We now detail the bounds on the detection rate in Part (i),
which assumes that the source is present. Let SτU denote the
centroid of SτU and let CτU denote the cell of radius εDA
centered at SτU . Consider a εDA -packing of the state space
(translated if needed) such that one of its cells aligns exactly
with CτU . For fixed τL and τU , LτL,τU does not make an error
if the source lies inside CτU – more precisely, if the source
intensity AS ∈ {a|a ∈ CτU }. But SτU will make an error
everywhere else, in particular on all the other cells of the εA-
packing of the state space. There are M(A, εDA) cells inside
the state space. Only one such cell corresponds to CτU over
which the detection does not make an error. On the other hand,
LŜ does not make an error on any of the cells, but with proba-
bility δ. Thus, the detection probability of Lα;Ŝ corresponding
to these cells is at least [(M(A, εDA)− 1)] δ(εDA , n). For the
cell CτU , however, detection by Lα;[τL,τU ] is with probability
1 and that by Lα;Ŝ is with probability δ, which leads to the
inequality in Part (i). �

The implications of the above theorem are qualitatively
similar to those in the next section derived for measurements
from different sensor locations, and we will describe the two
cases together.
B. Network Measurements

From measurements collected at different sensor locations,
the localization-based SPRT Lw;Ŝ is obtained as follows.
Based on the source-present and background intensity esti-
mates ÂS and B̂ obtained from the localization algorithm, we
estimate Â = [Â1Â2 . . . ÂN ] and B̂ = [B̂1B̂2 . . . B̂N ], where
Âi = FS(ÂS , xS , yS , xi, yi) as defined in a previous section
and B̂i = B̂ for all i. Furthermore, the measurement weights
are:

ŵi =
Âi + B̂i

Âi
.

We utilize these quantities to compute the threshold functions
of Lw;Ŝ as follow:

FL(P0,1, P1,0, Â, B̂, N) <

N∑
i=1

ŵimi

< FU (P0,1, P1,0, Â, B̂, N)

The localization-based weighted-SPRT Lw;Ŝ requires the mea-
surements from all the sensors, which are used by its compo-
nent localization algorithm to estimate ÂS .

Let Ai and Bi be the source intensity and background levels,
respectively, at the sensor that collected measurement mi. For

α = w, we consider generalizations of the upper-threshold and
lower-threshold sets defined in the previous section as follows:

Sw;τL = {AS ∈ A
| τL = FL(P0,1, P1,0,A,B, N);

Ai ≥ wiFS(AS , xS , yS)} , and

Sw;τU = {AS ∈ A
| τL = FU (P0,1, P1,0,A,B, N);

Ai ≥ wiFS(AS , xS , yS)} .
For the case of sensor measurements collected at different

sensor locations, we have the following version of Theorem
5.1, which can be proved in a similar way.

Theorem 5.2: Consider the detection of a source using
weighted-separable SPRTs. For SPRT Lw;Ŝ , based on a mono-
tone δ-robust localization method and any threshold-based
SPRT Lw;[τL,τU ] for sufficiently large nw = n.
(i) The detection rates satisfy:

ED
(
Lw;Ŝ

)
>[

ED
(
Lw;[τL,τU ]

)
+ (M(A, εw;DA)− 1)

]
×δ(εα;DA , nw, N)

where εw;DA = max
a1,a2∈Sw;τU

d(a1, a2);

(ii) The false alarm rates satisfy:

EF
(
Lw;Ŝ

)
<[

EF
(
Lw;[τL,τU ]

)
− (M(A, εw;FA)− 1)

]
×δ(εw;FZ , nw, N)

where εw;FA = max
a1,a2∈Sw;τL

d(a1, a2).

The overall implications of Theorems 5.1 and 5.2 are quite
similar, and we now summarize both by using the index
α = 1, 2, . . . , N,w to cover both cases. The performance of
Lα;Ŝ in terms of both expected detection and false alarm ED
and EF , is better than that of Lα;[τL,τU ] by a factor proportional
to the packing number M(·) and δ(·) with appropriate param-
eters. Qualitatively speaking, a “larger” state space will have
a larger packing number, and hence Lα;Ŝ will lead to more
effective detection. In particular, the performance of Lα;Ŝ
will be increasingly better as one considers a larger intensity
space A, more sensors N , and more measurements nα. The
performance comparisons in Theorems 5.1 and 5.2 are valid
no matter how the thresholds are chosen for Lα;[τL,τU ]; for
example, they can be based on domain-specific knowledge as
in radiation source detection, Bayesian inference, or Dempster-
Shafer theory.

VI. CONCLUSION

We formulated the facility activity inference problem with
known location but unknown intensity using random sen-
sor measurements in presence of a background process. We
devised one-sided intensity-estimation SPRTs and discussed
experimental results and performance comparisons based on
IRSS and HFIR datasets. We then presented analytical results
that establish performance bounds on detection and false alarm
rates of the network detection method relative to single sensors



and simple majority approaches. Moreover, we analytically
established the superior detection performance of the network
over individual sensors with fixed and adaptive thresholds.

Our results lead to the following conclusions: (i) These
LH-IE SPRTs are effective in inferring the on/off status of
a reactor facility. However, the best results require fusing
all sensors within a set radius from the facility. (ii) Overall,
the fusion of multiple sensors provides better performance
compared to those based on individual sensors. (iii) LH-IE
SPRT fuser outperforms the simple majority LH-IE SPRT,
thereby illustrating the importance of the fuser choice.

Future work may result in further improvements to our
method. A consistently effective way of establishing an ad-
missible sensor distance from the source should be devised.
Similarly, defining an optimal window size is yet to be deter-
mined, since from our experimental results we can conclude
that increasing the size almost monotonically improves or
worsens the results. It would be of interest to investigate the
number of window measurements needed by the network LH-
IE SPRT to reach an optimal decision. Additional future work
includes further simulations and datasets experimentation, and
integration of other sensor modalities such as acoustic, biota,
power supplies and cooling towers.
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